
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 52, February 2022

18

Pattern Matching in File System

Kuldeep Vayadande
Department of Artificial

Intelligence and Data Science
Vishwakarma Institute of

Technology
Pune, India

Ram Mandhana
Department of Artificial

Intelligence and Data Science
Vishwakarma Institute of

Technology
Pune, India

Kaustubh Paralkar
Department of Artificial

Intelligence and Data Science
Vishwakarma In3.stitute of

Technology
Pune, India

Dhananjay Pawal

Department of Artificial Intelligence
and Data Science

Vishwakarma Institute of
Technology
Pune, India

Siddhant Deshpande

Department of Artificial Intelligence
and Data Science

Vishwakarma Institute of
Technology
Pune, India

Vishal Sonkusale

Department of Artificial
Intelligence and Data Science

Vishwakarma Institute of
Technology
Pune, India

ABSTRACT

String matching algorithms have had a significant impact on

computer science and are used to solve a variety of real-world

challenges. It aids in the completion of time-saving tasks in a

variety of fields. These techniques can be handy when looking

for a string within another string. Database schema and

network systems both employ string matching. We have

designed and used several pattern matching algorithms like

Naive, KMP(Knuth Morris Pratt) and Automation Matcher

algorithm to find patterns in the file system. The proposed

system goes through three main steps; Take the names of the

files present in the current directory; Take the pattern to

search and type of algorithm from the user; And display the

pattern if found in the directory. The program is able to

accurately detect the patterns in the file system using the

mentioned algorithms successfully.

Keywords

Pattern, String, Text-Editing, Pattern-Matching, KMP, Naive

algorithm

1. INTRODUCTION
In today's connected world we need to search different things

everywhere on our computers. Pattern matching is the process

of checking if a sequence of characters is present in the given

data. For this various string matching or searching algorithms

are used. These algorithms are very useful as they play a vital

role in many fields to perform these tasks in an efficient time.

They are used in real life applications like Plagiarism

Detection, DNA sequencing, Spell Checker, Spam Filters and

many more.

In this paper, we study three pattern matching algorithms

namely Naive Algorithm, KMP Algorithm and FA. The

proposed program extracts names of the files from a given

directory and uses the mentioned algorithms to find a specific

pattern. If that pattern is found in the file system, then we

display the name of that file.

[3] Donald T. Campbell stated the term “pattern

identification” as a characteristic of qualitative analysis which

he defines as comprehensive rather than atomic.

Fabrice Le Fessant [1][10] states that the key feature of

functional languages is pattern matching. The paper tells how

the compiler code is better than human code based on two

facts that are compactness and efficiency. The reason behind

this is it considers the matching as a whole and it knows some

details of runtime error such as representation of values. The

paper mainly focuses on producing faster code in the back

tracking framework.

2. LITERATURE REVIEW
F. Lupus Fess ant and L. Marange [1] have created 2

contributions to paper pattern matching. They 1st gave AN

upgrade to the standard technique of collecting pattern

matching phrases into backtracking automata, that has

remained much unchanged for the past fifteen years. Their

advancements end in speedier automata, that mitigates the

downside of backtracking automata in sensible things.

Moreover, the structure of automata is unbroken, conserving

the very fascinating attribute of output size being linear in

input size. Second, they counsel a way for efficiently

assembling or-patterns with variables whereas maintaining

output size dimensionality. victimization or-pattern rather

than various clauses with similar actions leads in programs

that square measure additional compact and simple. These

blessings square measure currently on the market to milliliter

programmers without worrying of poor runtime performance

or code size explosion.

Richard M. Karp Michael zero. Rabin [2] have seen that

randomizing a collection of simply computed and updatable

fingerprints ends up in comparatively straightforward and

economical algorithms for a variety of one-dimensional and

multidimensional pattern-matching drawback problems. The

necessary purpose is that they will be proved. strategies that

cause expected computations being completed in an

exceedingly short quantity of your time or in real time with a

negligible probability of quality, for every and each pattern

text try. several variants and extra uses exist for the ideas and

strategies given here. The author, particularly, has discovered

a brand-new kind of Polynomials over finite domains square

measure accustomed to produce fingerprint functions rather

than numbers, use fields.

DONALD E. Knuth, JAMES H. MORRIS, JR.: l: AND

vocalizer R. PRATT [3] investigated text-editing programs

that square measure oft needed to look through a string of

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 52, February 2022

19

characters for instances of a given pattern string, likewise as

all positions, or probably solely the left position, within which

the pattern happens as a contiguous substring of the text. the

foremost apparent technique for locating an identical pattern

is to look at each starting purpose within the text then quit the

search once an accurate letter is found. during this article, they

supply a pattern matching technique that finds all instances of

a pattern of length m within a text of length n in O(m+n) units

of your time. If the text is scan from AN external file, this

method solely needs O(m) internal memory locations and

O(log m) units of your time between single character

inputs.[11]

Donald T. Campbell [4] fictional the phrase "pattern

identification" to explain the holistic (i.e., evaluating the

pattern) instead of atomistic (i.e., examining its elements)

nature of chemical analysis. He declared that one case study

style could supply a sturdy foundation for analysis. A theory

is place to the take a look at if a whole set of expectations is

drawn from it (all of which might be true if they were all

true). In such instance, an "anticipated pattern") could also be

incontestable to be true. This was conjointly dubbed by

Joseph Campbell a "configurational strategy" during this

arrangement, he claimed, chemical analysis tends to as a

result of every sequential take a look at should negate instead

of making sure past beliefs, the take a look at should negate

instead of making sure previous beliefs. The determined

constituent of a pattern or arrangement is precisely as

expected. As Thomas has found out, the strength of this "non-

equivalent, dependent variables" hypothesis was incontestable

by D. Cook and Donald T. Campbell. The term "design"

refers to the fact that the variables that conjure the pattern or

configuration don't seem to be comparable.[12].

3. METHODOLOGY
For this project, to find patterns in the file system, several

pattern matching algorithms such as Naive, KMP (Knuth

Morris Pratt), and Finite Automata were used. Following are

three main steps in the proposed system: Take the names of

the files in the current directory; get the pattern to search for

and the algorithm type from the user; and, if the pattern is

found in the directory, display it. Using the algorithms

mentioned, the program is able to accurately detect patterns in

the file system.

Naive algorithm for Pattern Searching:The Naive algorithm

[1], checks for a match by sliding the pattern over the text one

by one. If a match is found, slide the slider by 1 to check for

more matches. The best-case scenario is when the pattern's

first character does not appear in the text at all.

Naive algorithm for Pattern Matching:This algorithm [1],

checks for a match by gliding the pattern over the text singly.

If a complement is discovered, slide the slider by 1 to examine

for more similarities. The most satisfactory case scenario is

when the pattern's initial character is not present in the text at

all.

KMP Algorithm for Pattern Searching: When there are many

complementing characters followed by an ill-matched

character, the above pattern searching algorithm fails. The

KMP matching rule takes advantage of the pattern's

degenerating property (patterns with constant sub-patterns

showing quite once within the pattern) to cut back the worst-

case complexity to O(n). The fundamental principle of KMP's

algorithm is that by the time it identifies a discrepancy (a few

matches later), few of the characters in next windows text are

already familiar to us. We access this data to keep away from

matching texts that we are aware will be the same in any case.

We differentiate all characters at every shift and shift the

design in succession, then utilize a value from the array to

determine which characters to match next.

Pattern search algorithm based on Finite Automata (FA):It

processes the pattern beforehand and builds a two-

dimensional array representing a Finite Automata in the FA-

based algorithm. The most difficult component of this

algorithm is constructing the FA. Once the FA is in place,

searching is a breeze. To find the first state of the automata

and the first character of the text, we simply need to start at

the beginning. We consider the next character of text at each

step, look for the next state in the built FA, and then move to a

new state. If we get to the end, the pattern will be found in the

text.

3.1 Proposed System
This Pattern matching in file system project helps to search a

pattern from a larger string that is the filename. Various types

of algorithms can be implemented for this. Their main

objective is to improve the time complexity. The traditional

way may take a longer time to do the same task.

We have created a menu driven program for pattern matching,

where the menu consists of the three types of algorithms we

had implemented - Naive Algorithm, KMP Algorithm and

Finite Automata Algorithm. Then according to the algorithm

selected, the working will be decided but overall, the

objective is to take the names of the files present in the current

directory, then take the pattern to search and type of algorithm

from the user and finally display the pattern if found in the

directory.

Steps for execution:

Step 1: The files present in the given directory will be

displayed.

Step 2: Then, the user must enter a pattern of their choice to

search in the file system.

Step 3: The user will then have to enter their choice of

algorithm.

Step 4: If the pattern is found in the file, then it will be

displayed.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 52, February 2022

20

3.2 Flowchart

Fig 1: Flowchart of the project

4. RESULTS AND DISCUSSIONS
The three pattern searching algorithms used in our project can

accurately find the matching pattern in the given file

directory.

The user needs to first specify the directory in which the

searching will take place. After that, the program will display

the names of all the files present in the specified directory.

Then the user has to enter his/her choice of algorithm from the

list. Then, the user has to enter the pattern they have to search

in the file system.

After doing this, if the given pattern is found in the file, it will

be displayed.

Fig 2: Files present in the directory are displayed

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 52, February 2022

21

Fig 3: Pattern is found using Naive Algorithm.

Fig 4: ’Untitled’ Pattern Is Found

Fig 5: Pattern is found using KMP algorithm.

Fig 6: Pattern is found using FA

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 52, February 2022

22

5. LIMITATIONS
 Only three algorithms are implemented in this

project. More algorithms can be implemented.

 The program will display the whole name of the

matched pattern filename.

6. CONCLUSION
In this project we investigated how different pattern searching

algorithms work and how they are used in our day-to-day life.

We started from looking at simple algorithms like naive to

more advanced algorithms like KMP. We demonstrated the

matching of patterns in a given file system. All the three

algorithms were able to successfully find the matching pattern

in the file system accurately.

7. FUTURE SCOPE
 Making it more user friendly by adding a graphical

user interface to the project.

 Implementing more pattern matching algorithms

into the program

8. REFERENCES
[1] F. Le Fessant and L. Maranget, “Optimizing pattern

matching,” ACM SIGPLAN Not., vol. 36, no. 10, pp.

26–37, Oct. 2001, Doi: 10.1145/507669.507641.

[2] R. M. Karp and M. O. Rabin, “EFFICIENT

RANDOMIZED PATTERN-MATCHING

ALGORITHMS.,” IBM J. Res. Dev., vol. 31, no. 2, pp.

249–260, 1987, Doi: 10.1147/RD.312.0249.

[3] D. E. Knuth, J. James H. Morris, and V. R. Pratt, “Fast

Pattern Matching in Strings,”

http://dx.doi.org/10.1137/0206024, vol. 6, no. 2, pp. 323–

350, Jul. 2006, Doi: 10.1137/0206024.

[4] D. T. Campbell, “Pattern Matching,” Comp. Polit. Stud.,

vol. 8, no. 2, pp. 178–193, 2009, Doi:

10.1177/001041407500800204.

[5] M. C. Johannes Meyer, A. Singhal, and D. E. Seaborg,

“Pattern matching in historical data,” AIChE J., vol. 48,

no. 9, pp. 2022–2038, Sep. 2002, Doi:

10.1002/AIC.690480916.

[6] N. Sinkovics, “Pattern Matching in Qualitative

Analysis,” SAGE Handb. Qual. Bus. Manag. Res.

Methods Challenges, pp. 468–484, May 2018, Doi:

10.4135/9781526430236.N28.

[7] W. M. K. Trochim, “Outcome pattern matching and

program theory,” Eval. Program Plan., vol. 12, no. 4, pp.

355–366, Jan. 1989, Doi: 10.1016/0149-7189(89)90052-

9.

[8] P. Weiner, “Linear pattern matching algorithms,” pp. 1–

11, Jul. 2008, Doi: 10.1109/SWAT.1973.13.

[9] “Pattern Matching by Tony Hack, Jan Dull: SSRN.”

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=143

3934 (accessed Dec. 28, 2021).

[10] Raza, Mir Adil, Kuldeep BabanVayadande, and H. D.

Preetham. "DJANGO MANAGEMENT OF MEDICAL

STORE.", International Research Journal of

Modernization in Engineering Technology and Science,

Volume:02/Issue:11/November -2020

[11] K.B. Vayadande, Nikhil D. Karande,” Automatic

Detection and Correction of Software Faults: A Review

Paper”, International Journal for Research in Applied

Science & Engineering Technology (IJRASET) ISSN:

2321-9653, Volume 8 Issue IV Apr 2020.

[12] KuldeepVayadande, RiteshPokarne, Mahalaxmi

Phaldesai, TanushriBhuruk, Tanmai Patil, Prachi Kumar,

“SIMULATION OF CONWAY’S GAME OF LIFE

USING CELLULAR AUTOMATA” International

Research Journal of Engineering and Technology

(IRJET), Volume: 09 Issue: 01 | Jan 2022, e-ISSN: 2395-

0056, p-ISSN: 2395-0072

[13] VaradIngale, Kuldeep Vayadande, Vivek Verma,

Abhishek Yeole, Sahil Zawar, Zoya Jamadar. Lexical

analyzer using DFA, International Journal of Advance

Research, Ideas and Innovations in

Technology, www.IJARIIT.com.

[14] Kuldeep Vayadande, Harshwardhan More, Omkar More,

Shubham Mulay, Atharva Pathak, VishwamTalnikar, “

Pac Man: Game Development using PDA and OOP”,

International Research Journal of Engineering and

Technology (IRJET), Volume: 09 Issue: 01 | Jan 2022, e-

ISSN: 2395-0056, p-ISSN: 2395-0072.

[15] Rohit Gurav, Sakshi Suryawanshi, ParthNarkhede,

Sankalp Patil, SejalHukare, Kuldeep Vayadande,”

Universal Turing machine simulator”, International

Journal of Advance Research, Ideas and Innovations in

Technology, (Volume 8, Issue 1 - V8I1-1268, ISSN:

2454-132X

IJCATM : www.ijcaonline.org

https://www.ijariit.com/

