
Pattern Matching in Text Compressed

by Using Antidictionaries

Yusuke Shibata, Masayuki Takeda, Ayumi Shinohara, and Setsuo Arikawa

Department of Informatics, Kyushu University 33
Fukuoka 812-8581, Japan

{yusuke, takeda, ayumi, arikawa}@i.kyushu-u.ac.jp
http://www.i.kyushu-u.ac.jp

Abstract. In this paper we focus on the problem of compressed pattern
matching for the text compression using antidictionaries, which is a new
compression scheme proposed recently by Crochemore et al. (1998). We
show an algorithm which preprocesses a pattern of length m and an
antidictionary M in O(m2 + ‖M‖) time, and then scans a compressed
text of length n in O(n + r) time to find all pattern occurrences, where
‖M‖ is the total length of strings in M and r is the number of the pattern
occurrences.

1 Introduction

Compressed pattern matching is one of the most interesting topics in the com-
binatorial pattern matching, and many studies have been undertaken on this
problem for several compression methods from both theoretical and practical
viewpoints. See Table 1. One important goal of compressed pattern matching is
to achieve a linear time complexity that is proportional not to the original text
length but to the compressed text length.

Recently, Crochemore et al. proposed a new compression scheme: text com-
pression using antidictionary [8]. Contrary to the compression methods that
make use of dictionaries, which are particular sets of strings occurring in texts,
the new scheme exploits an antidictionary that is a finite set of strings that do
not occur as factors in text, i.e. that are forbidden. Let a1 . . . an ∈ {0, 1}+ be
the text to be compressed. Suppose we have read a prefix a1 . . . aj at a certain
moment. If the string ai . . . ajb (i ≤ j, b ∈ {0, 1}) is a forbidden word, namely,
is in the antidictionary, then the next symbol aj+1 cannot be b. In other words,
the next symbol aj+1 is predictable. Based on this idea, the compression method
removes such predictable symbols from the text. The compression and the de-
compression are performed by using the automaton accepting the set of strings
in which no forbidden words occur as factors.

In this paper we focus on the problem of compressed pattern matching for
the text compression using antidictionaries. We present an algorithm that solves
the problem in O(m2 + ‖M‖+ n + r) time using O(m2 + ‖M‖) space, where m
and n are the pattern length and the compressed text length, respectively, ‖M‖

M. Crochemore, M. Paterson (Eds.): CPM’99, LNCS 1645, pp. 37–49, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

38 Yusuke Shibata et al.

Table 1. Compressed pattern matching.

compression method compressed pattern matching algorithms

run-length Eilam-Tzoreff and Vishkin [11]
run-length (two dim.) Amir, Landau, and Vishkin [6]; Amir and Benson

[2,3]; Amir, Benson, and Farach [5]
LZ77 Farach and Thorup [12]; Ga̧sieniec, Karpinski,

Plandowski, and Rytter [14]
LZW Amir, Benson, and Farach [4]; Kida, Takeda, Shi-

nohara, Miyazaki, and Arikawa [17]; Kida, Takeda,
Shinohara, and Arikawa [16]

straight-line program Karpinski, Rytter, and Shinohara [15]; Miyazaki,
Shinohara, and Takeda [20]

Huffman Fukamachi, Shinohara, and Takeda [13]; Miyazaki,
Fukamachi, Takeda, and Shinohara [19]

finite state encoding Takeda [22]
word based encoding Moura, Navarro, Ziviani, and Baeza-Yates [9,10]
pattern substitution Manber [18]; Shibata, Kida, Fukamachi, Takeda,

A. Shinohara, T. Shinohara, Arikawa [21]

denotes the total length of strings in antidictionary M , and r is the number of
pattern occurrences. Since M is a part of the compressed representation of text,
the text scanning time is O(‖M‖+n+ r), which is linear in the compressed text
length ‖M‖+ n, when ignoring r. Moreover, in the case where a set of text files
share a common antidictionary [8], we can regard the O(‖M‖) time processing
of M as a preprocessing. Then the O(n + r) time text scanning will be fast in
practice. The proposed algorithm thus has desirable properties.

2 Preliminaries

Strings x, y, and z are said to be a prefix, factor, and suffix of the string u = xyz,
respectively. The sets of prefixes, factors, and suffixes of a string u are denoted
by Prefix(u), Factor(u), and Suffix(u), respectively. A prefix, factor, and suffix
of a string u is said to be proper if it is not u. The length of a string u is denoted
by |u|. The empty string is denoted by ε, that is, |ε| = 0. The ith symbol of a
string u is denoted by u[i] for 1 ≤ i ≤ |u|, and the factor of a string u that begins
at position i and ends at position j is denoted by u[i : j] for 1 ≤ i ≤ j ≤ |u|.
The reversed string of a string u is denoted by uR. The total length of strings
of a set S is denoted by ‖S‖. For strings x and y, denote by Occ(x, y) the set of
occurrences of x in y. That is,

Occ(x, y) =
{
|x| ≤ i ≤ |y|

∣∣ x = y[i− |x|+ 1 : i]
}
.

The next lemma follows from the periodicity lemma.

Lemma 1. If Occ(x, y) has more than two elements and the difference of the
maximum and the minimum elements is at most |x|, then it forms an arithmetic
progression, in which the step is the smallest period of x.

Pattern Matching in Text Compressed by Using Antidictionaries 39

0 1 2 3 4

5 6 7

9 10 11 12

8

13

0 0 0 0

1 0 0

0 1

1

01

1
1

0

1

1

1

0, 1

0, 1

0, 1

0, 1

0, 1

Fig. 1. Automaton A(M) for M = {0000, 111, 011, 0101, 1100}. Circles and
squares denote the final and the nonfinal states, respectively. Shaded circles
denote the predict states.

3 Text Compression Using Antidictionary

In this section we describe the text compression scheme recently proposed by
Crochemore et al. [8].

3.1 Method

Let B = {0, 1}. Suppose that T ∈ B+ be the text to be compressed. A forbidden
word for T is a string u ∈ B+ that is not a factor of T . A forbidden word is said
to be minimal if it has no proper factor that is forbidden. An antidictionary for
T is a set of minimal forbidden words for T .

Let M be an antidictionary for T . Then the text T is in the set B∗\B∗MB∗.
The automaton accepting the set B∗\B∗MB∗ can be built from M in O(‖M‖)
time in a similar way to the construction of the Aho-Corasick pattern matching
machine [1]. We denote the automaton by

A(M) = (Q, B, δ, ε, M),

where Q = Prefix(M) is the set of states; B is the alphabet; δ is the state
transition function from Q×B to Q defined as

δ(u, a) =
{

u, if u ∈ M ;
longest string in Q ∩ Suffix(ua), otherwise;

ε is the initial state; M is the set of final states. Figure 1 shows the automaton
A(M) for M = {0000, 111, 011, 0101, 1100}, which is an antidictionary for text
T = 11010001.

40 Yusuke Shibata et al.

The encoder and the decoder in this compression scheme are obtained di-
rectly from the automaton A(M). The encoder E(M) is a generalized sequential
machine based on A(M) with output function λ : Q×B defined by

λ(u, a) =
{

a, if Deg(u) = 2;
ε, otherwise,

where Deg(u) =
∣∣{a ∈ B|δ(u, a) 6∈ M}

∣∣. The decoder D(M) is a generalized
sequential machine obtained by swapping the input label and the output label
on each arc of the encoder E(M). Figure 2 illustrates the move of the encoder
E(M) based on A(M) of Fig. 1 which takes as input T = 11010001 and emits
110. It should be noted that, any prefix of 1101000100 with length greater than
6 is compressed into the same string 110. For a decompression we therefore need
the length of T together with the encoded string itself. Formally, the compressed
representation of T is a triple 〈M, b1 . . . bn, N〉, where M is an antidictionary,
b1 . . . bn is output from the encoder, and N is the length of T .

Let us denote by MF (T) the set of all minimal forbidden words for T . In
the case of binary alphabet we have |MF (T)| ≤ 2 · |T | − 2 as shown in [7]. To
shorten the representation size of the above triple, we need a way to build a
‘good’ antidictionary as a subset of MF (T). Crochemore et al. presented in [8] a
simple method in which antidictionary is the set of forbidden words of length at
most k, where k is a parameter. It is reported in [8] that the compression ratio
in practice is comparable to pkzip.

input: 1 1 0 1 0 0 0 1
state: 0 → 9 → 10 → 11 → 5 → 6 → 2 → 3 → 5
output: 1 1 ε ε ε ε 0 ε

Fig. 2. Move of encoder E(M) for T = 11010001.

3.2 Decoder without ε-Moves

Note that the decoder D(M) mentioned above has ε-moves. For a simple presen-
tation of our algorithm, we shall define a generalized sequential machine G(M)
obtained by eliminating the ε-moves from the decoder D(M).

Let us partition the set Q into four disjoint subsets M , Q0, Q1, and Q2 by

Qi =
{
u ∈ Q\M

∣∣ Deg(u) = i
}

(i = 0, 1, 2).

A state p in Q1 is called a predict state because of the uniqueness of outgoing
arc when ignoring the arcs into states in M . Namely, there exists exactly one
symbol a such that δ(p, a) 6∈ M . We denote such symbol a by NextSymbol(p),
and denote by NextState(p) the state δ(p, a).

Consider, for p ∈ Q1, the sequence p1, p2, . . . of states in Q1 defined by p1 = p
and pi+1 = NextState(pi) (i = 1, 2, . . .). There are two cases: One is the case that

Pattern Matching in Text Compressed by Using Antidictionaries 41

there exists an integer m > 0 such that, for i = 1, 2, . . . , m − 1, pi ∈ Q1, and
pm ∈ Q0 ∪Q2. The other is the case of no such integer m, namely, the sequence
continues infinitely. Let us call the sequence the predict path of p, and denote by
Terminal(p) the last state pm. In the infinite case, let Terminal(p) =⊥, where
⊥ is a special state not in Q. (Therefore, Terminal(p) ∈ Q0 ∪ Q2 ∪ {⊥}.) The
finite/semi-infinite string spelled out by the predict path of p ∈ Q1 is denoted
by Sequence(p). It is easy to see that:

Lemma 2. For any p ∈ Q1, there exist u, v ∈ B∗ with |uv| < |Q1| such that

Sequence(p) = u v v · · · .

Now we are ready to define a generalized sequential machine G(M), where
the set of states is Q0 ∪Q2 ∪{⊥}; the state transition function is δG : Q2×B →
Q0 ∪Q2 ∪ {⊥} defined by

δG(u, a) =
{

Terminal(δ(u, a)), δ(u, a) ∈ Q1;
δ(u, a), otherwise;

the output function is λG : Q2 ×B → B+ ∪B∞ defined by

λG(u, a) =
{

a · Sequence(δ(u, a)), δ(u, a) ∈ Q1;
a, otherwise,

where B∞ denotes the set of semi-infinite strings over B. Figure 3 shows the
decoder G(M) obtained in this way from the automaton A(M) of Fig. 1.

Decompression algorithm using G(M) is shown in Fig. 4. It should be em-
phasized that, if the decoder G(M) enters a state q and then reads a symbol a
such that λG(q, a) is semi-infinite, the symbol is the last symbol of the output
from the encoder E(M). In this case the decoder G(M) halts after emitting an
appropriate length prefix of λG(q, a) according to the value of N .

4 Main Result

Generally, most of text compression methods can be recognized as mechanisms
to factorize a text into several blocks as T = u1u2 . . . un and to store a se-
quence of ‘representations’ of blocks ui. In the LZW compression, for example,

0 1 20/0
0/0
1/100

0/0
1/1 1/10100

0/0100
1/100

9

Fig. 3. Decoder G(M) for M = {0000, 111, 011, 0101, 1100}.

42 Yusuke Shibata et al.

Input. A compressed representation 〈M, b1...bn, N〉 of a text T = T [1 : N].
Output. Text T .
begin

` := 0;
q := ε;
for i := 1 to n − 1 do begin

u := λG(q, bi);
q := δG(q, bi);
` := ` + |u|;
print u

end;
u := λG(q, bn);
print the prefix of u with length N − `

end.

Fig. 4. Decompression by G(M).

the representation of a block ui is just an integer which indicates the node of
dictionary trie representing the string ui. In the case of the compression using
antidictionaries, the way of representation of block is slightly complicated.

Consider how to simulate the move of the KMP automaton for a pattern P
running on the uncompressed text T . Let δKMP : {0, 1, . . . , m}×B → {0, 1, . . . , m}
be the state transition function of the KMP automaton for P = P [1 : m]. We
extend δKMP to the domain {0, 1, . . . , m}×B∗ in the standard manner. We also
define the function λKMP on {0, 1, . . . , m} ×B∗ by

λKMP(j, u) =
{
1 ≤ i ≤ |u|

∣∣ P is a suffix of string P [1 : j] · u[1 : i]
}
.

We want to devise a pattern matching algorithm which takes as input a sequence
of representations of blocks u1, u2, . . . , un of T and reports all occurrences of P
in T in O(n + r) time, where r = |Occ(P , T)|. Then we need a mechanism for
obtaining in O(1) time the value δKMP(j, u) and a linear size representation of
the set λKMP(j, u). In the case of the LZW compression such mechanism can be
realized in O(m2+n) time using O(m2+n) space as stated in [4] and [17]. Similar
idea can also be applied to the case of text compression by antidictionaries,
except that block ui, which will be an input to the second arguments of δKMP

and λKMP, is represented in a different manner.
In our case a block ui is represented as a pair of the current state q of G(M)

and the first symbol bi of ui. Therefore we have to keep the state transitions of
G(M). An overview of our algorithm is shown in Fig. 5. The algorithm makes
G(M) run on b1 . . . bn to know inputs u1, u2, . . . , un to the KMP automaton
being simulated. Figure 6 illustrates the move of the algorithm searching the
compressed text 110 for the pattern P = 0001.

We have the following theorems which will be proved in the next section.

Pattern Matching in Text Compressed by Using Antidictionaries 43

Input. A compressed representation 〈M, b1b2...bn, N〉 of a text T = T [1 : N],
and a pattern P = P [1 : m].

Output. All positions at which P occurs in T .
begin

/* Preprocessing */

Construct the KMP automata and the suffix tries for P and PR;
Construct the automaton A(M) from M ;
Construct the predict path graph from A(M);
Perform the processing required for δG , δKMP, and λKMP (See Section 5.);

/* Text scanning */
` := 0;
q := ε;
state := 0;
for i := 1 to n − 1 do begin

u := λG(q, bi);
q := δG(q, bi);
for each p ∈ λKMP(state,u) do

Report a pattern occurrence that ends at position ` + p ;
state := δKMP(state,u);
` := ` + |u|

end;
u := λG(q, bn);
for each p ∈ λKMP(state,u) such that ` + p ≤ N do

Report a pattern occurrence that ends at position ` + p
end.

Fig. 5. Pattern matching algorithm.

Theorem 1. The function which takes as input (q, a) ∈ Q2 × B and returns
in O(1) time the value δG(q, a), can be realized in O(‖M‖) time using O(‖M‖)
space.

Theorem 2. The function which takes as input a triple (j, q, a) ∈ {0, . . . , m}×
Q2 ×B and returns in O(1) time the value

δKMP(j, u) (u = λG(q, a)),

can be realized in O(‖M‖+ m2) time using O(‖M‖+ m2) space.

Theorem 3. The function which takes as input a triple (j, q, a) ∈ {0, . . . , m}×
Q2 ×B and returns in O(1) time a linear size representation of the set

λKMP(j, u) (u = λG(q, a)),

can be realized in O(‖M‖+ m2) time using O(‖M‖+ m2) space.

Then we have the following result.

44 Yusuke Shibata et al.

input : 1 1 0
state of G(M) : 0 −→ 9 −→ 2 −→ 2
u : 1 10100 0100
state of KMP automaton : 0 −→ 0 −→ 2 −→ 2
output : ∅ ∅ {8}

Fig. 6. Move of pattern matching algorithm when T = 110100010 and P = 0001.

Theorem 4. The problem of compressed pattern matching for the text compres-
sion using antidictionaries can be solved in O(‖M‖ + n + m2 + r) time using
O(‖M‖+ m2) space.

5 Algorithm in Detail

This section gives a detailed presentation of the algorithm to prove Theorems 1,
2, and 3.

5.1 Proof of Theorem 1

For a realization of δG , we have to find, for each q ∈ Q0 ∪ Q2 ∪ {⊥}, the pairs
(p, b) ∈ Q2 × B such that δ(p, b) = p′ ∈ Q1 and Terminal(p′) = q. First of all,
we mention the graph consisting of the predict paths, which plays an important
role in this proof.

Consider the subgraph of A(M) in which the arcs are limited to the outgoing
arcs from predict nodes. We add auxiliary nodes v = 〈p, b〉 and new arcs labelled
b from v to q ∈ Q1 such that p ∈ Q2, b ∈ B, and δ(p, b) = q to the subgraph.
We call the resulting graph predict path graph. Figure 7 shows the predict path
graph obtained from A(M) of Fig. 1.

The predict path graph illustrates, for (p, b) ∈ Q2 × B, the string λG(p, b)
as a path which starts at the auxiliary node 〈p, b〉, passes through nodes in Q1,
and either finally encounters a node in Q0 ∪Q2, or flows into a loop consisting
only of nodes in Q1. A connected component of the predict path graph falls into
two classes: (a) a tree which has as root a node in Q0 ∪ Q2 and has as leaves

10 50 1 0 06 2<9,1> 1

<2,0> 0

<1,1>

<2,1>

3

11

1

1

1

Fig. 7. Predict path graph. Rectangles denote the auxiliary nodes.

Pattern Matching in Text Compressed by Using Antidictionaries 45

(a) (b)

Fig. 8. Connected components of predict path graph.

auxiliary nodes, and (b) a loop with trees, each of which has as root a node on
the loop and has leaves auxiliary nodes. See Fig. 8.

Now we are ready to prove Theorem 1. Construction of δG is as follows: First,
we set δG(p, b) = δ(p, b) for every (p, b) ∈ Q2 × B with δ(p, b) ∈ Q0 ∪Q2. Next,
for every node q ∈ Q0 ∪Q2 of the predict path graph, we traverse the tree that
has q as root. Note that the leaves of the tree are auxiliary nodes 〈p, b〉 such
that Terminal(δ(p, b)) = q, and we can set δG(p, b) = q. Finally, for every node q
on loops of the predict path graph, we traverse the tree that has q as root. The
leaves of the tree are auxiliary nodes 〈p, b〉 such that Terminal(δ(p, b)) =⊥, and
hence we set δG(p, b) =⊥. The total time complexity is linear in the number of
nodes of the predict path graph, i.e. O(‖M‖). The proof is now complete.

5.2 Proof of Theorem 2

In the following discussions, we are frequently faced with the need to get some
value as a function of u, the strings that are spelled out by the paths from
auxiliary nodes. Even when the value for each path can be computed in time
proportional to the path length, the total time complexity is not O(‖M‖) since
more than one path can share common arcs.

Suppose that the value for each path can be computed by making an au-
tomaton run on the path in the reverse direction. Then, we can compute the
values for such paths by traversing every tree in the depth-first-order using a
stack. Since this method enables us to ‘share’ the computation for a common
suffix of two strings, the total time complexity is linear in the number of arcs,
i.e. O(‖M‖). This technique plays a key role in the following proofs.

For an integer j with 0 ≤ j ≤ m and for a factor u of P , let us denote by
N1(j, u) the largest integer k with 0 ≤ k ≤ j such that P [j − k + 1 : j] · u is a
prefix of P . Let N1(j, u) = nil, if no such integer exists. Then, we have:

δKMP(j, u) =
{

N1(j, u) + |u|, if u is a factor of P and N1(j, u) 6= nil;
δKMP(0, u), otherwise.

We assume that the second argument u of N1 is given as a node of the suffix
trie for P . Amir et al. [4] showed the following fact.

Lemma 3 (Amir et al. 1996). The function which takes as input (j, u) ∈
{0, . . . , m} × Factor(P) and returns the value N1(j, u) in O(1) time, can be re-
alized in O(m2) time using O(m2) space.

46 Yusuke Shibata et al.

We have also the next lemma.

Lemma 4. The function which takes as input (q, a) ∈ Q2 × B and returns
u = λG(q, a) as a node of the suffix trie for P when u ∈ Factor(P), can be
realized in O(‖M‖+ m2) time using O(‖M‖+ m2) space.

Proof. We use the technique mentioned above. We can ignore the infinite strings.
That is, we can ignore the trees in which a root is on a loop. Consider the problem
of determining whether uR is a factor of PR. It can be solved in O(min{|u|, m})
time using the suffix trie for PR. If uR is a factor of PR, the node u of the suffix
trie for P can be determined directly from the node uR of the suffix trie for PR

assuming a trivial one-to-one mapping between the two suffix tries, which can
be computed in O(m2) time.

Lemma 5. The function which takes as input (q, a) ∈ Q2 × B such that u =
λG(q, a) is finite and returns in O(1) time the value δKMP(0, u), can be realized
in O(‖M‖+ m) time using O(‖M‖+ m) space.

Proof. We use the technique mentioned above again. We have to consider the
problem of finding the length of longest suffix of u that is also a prefix of P . This
is equivalent to finding the length of longest prefix of uR that is also a suffix of
PR. It is solved in O(min{|u|, m}) time using the suffix tree for PR. We can
ignore the trees in which a root is on a loop.

Theorem 2 follows from the lemmas above.

5.3 Proof of Theorem 3

According to whether a pattern occurrence covers the boundary between the
strings P [1 : j] and u, we can partition the set λKMP(j, u) into two disjoint
subsets as follows.

λKMP(j, u) = λKMP(j, ũ) ∪X(u),

where
X(u) =

{
|P| ≤ i ≤ |u|

∣∣ P is a suffix of u[1 : i]
}
,

and ũ is the longest prefix of u that is also a proper suffix of P . Let

Y (j, `) = Occ
(
P ,P [1 : j] · P [m− ` + 1 : m]

)
	 j,

where 	 denotes the element-wise subtraction. It is easy to see λKMP(j, ũ) =
Y (j, |ũ|). It follows from Lemma 1 that the set Y (j, `) has the following property:

Lemma 6. If Y (j, `) has more than two elements, it forms an arithmetic pro-
gression, where the step is the smallest period of P.

Pattern Matching in Text Compressed by Using Antidictionaries 47

Lemma 7. The function which takes as input (j, `) ∈ {0, . . . , m} × {0, . . . , m}
and returns in O(1) time an O(1) space representation of the set Y (j, `), can be
realized in O(m2) time using O(m2) space.

Proof. It follows from Lemma 6 that Y (j, `) can be stored in O(1) space as a pair
of the minimum and the maximum values in it. The table storing the minimum
values of Y (j, `) for all (j, `) can be computed in O(m2) time as stated in [4].
(Table N2 defined in [4] satisfies min(Y (j, `)) = m−N2(j, `).) By reversing the
pattern P , the table the maximum values is also computed in O(m2) time. The
smallest period of P is computed in O(m) time.

Lemma 8. The function which takes as input (q, a) ∈ Q2 × B and returns in
O(1) time the value |ũ| with u = λG(q, a), can be realized in O(‖M‖ + m) time
using O(‖M‖+ m) space.

Proof. We shall consider the problem of finding the length of longest suffix of
uR that is also a proper prefix of PR. This can be solved by using the KMP
automaton for PR. But we have to consider the case where u is semi-infinite.
In the finite string case, we make the automaton start at the root of tree with
initial state. But in the infinite string case, we must change the value of the
initial state. Let v be the string spelled out by the loop starting at the root of
the tree being considered. We must pay attention to the case where a pattern
suffix is also a prefix of the string v` with ` > 0. To determine the correct value
of the initial state at the root node, we make the automaton go around the loop
exactly ` times and stop it at the root node that is the starting point, where
` is the smallest integer with ` · |v| > |P|. The state of the automaton at that
moment is the desired value.

Lemma 9. The function which takes as input (q, a) ∈ Q2 × B and returns in
O(1) time a linear size representation of the set X(u) with u = λG(q, a), can be
realized in O(‖M‖+ m) time using O(‖M‖+ m) space.

Proof. By using the KMP automaton for the reversed pattern, we mark the
predict nodes at which the pattern begins. Suppose that every predict node
has a pointer to the nearest proper ancestor that is marked. Such pointers are
realized using O(‖M‖) time and space. This enables us to get the elements of
X(u) in O(|X(u)|) time.

Theorem 3 follows from the lemmas above.

6 Concluding Remarks

In this paper we focused on the problem of compressed pattern matching for
the text compression using antidictionaries proposed recently Crochemore et al.
[8]. We presented an algorithm which has a linear time complexity proportional

48 Yusuke Shibata et al.

to the compressed text length, when we exclude the pattern preprocessing. We
are now implementing the algorithm to evaluate its performance from practical
viewpoints. In [16] we showed that the Shift-And approach is effective in the
compressed pattern matching for the LZW compression. We think that the Shift-
And approach will be substituted for the KMP automaton approach presented
in this paper and show a good performace in practice when the pattern length
m is not so large, say m ≤ 32.

For a long pattern we can also consider the following method. Let k be
the length of the longest forbidden word in the antidictionary. By using the
syncronizing property [8], we obtain:

Lemma 10. If |P| ≥ k − 1, then δ(u,P) = δ(ε,P) for any state u in Q such
that δ(u,P) 6∈ M .

Let p = δ(ε,P). Since p ∈ M implies that P cannot occur in T , we can assume
p 6∈ M . If p is in Q1, then let q = Terminal(p). Otherwise, let q = p. We can
monitor whether the state of A(M) is in state p by using the function δG to
check G(M) is in state q. If so, we shall confirm it. Our preliminary experiments
suggest that this search method is efficient in practice.

References

1. A. V. Aho and M. Corasick. Efficient string matching: An aid to bibliographic
search. Comm. ACM, 18(6):333–340, 1975.

2. A. Amir and G. Benson. Efficient two-dimensional compressed matching. In Proc.
Data Compression Conference’92, page 279, 1992.

3. A. Amir and G. Benson. Two-dimensional periodicity and its application. In Proc.
3rd Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 440–452, 1992.

4. A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in
Z-compressed files. Journal of Computer and System Sciences, 52:299–307, 1996.

5. A. Amir, G. Benson, and M. Farach. Optimal two-dimensional compressed match-
ing. Journal of Algorithms, 24(2):354–379, 1997.

6. A. Amir, G. M. Landau, and U. Vishkin. Efficient pattern matching with scaling.
Journal of Algorithms, 13(1):2–32, 1992.

7. M. Crochemore, F. Mignosi, and A. Restivo. Minimal forbidden words and factor
automata. In L. Brim, J. Gruska, and J. Zlatuska, editors, Proc. 23rd Internationial
Symp. on Mathematical Foundations of Computer Science, volume 1450 of Lecture
Notes in Computer Science, pages 665–673. Springer-Verlag, 1998.

8. M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text compression using
antidictionaries. Technical Report IGM-98-10, Institut Gaspard-Monge, 1998.

9. E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Direct pattern match-
ing on compressed text. In Proc. 5th International Symp. on String Processing and
Information Retrieval, pages 90–95. IEEE Computer Society, 1998.

10. E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast sequencial
searching on compressed texts allowing errors. In Proc. 21st Ann. International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 298–306. York Press, 1998.

11. T. Eilam-Tzoreff and U. Vishkin. Matching patterns in strings subject to multi-
linear transformations. Theoretical Computer Science, 60(3):231–254, 1988.

Pattern Matching in Text Compressed by Using Antidictionaries 49

12. M. Farach and M. Thorup. String-matching in Lempel-Ziv compressed strings. In
Proc. 27th Ann. ACM Symp. on Theory of Computing, pages 703–713, 1995.

13. S. Fukamachi, T. Shinohara, and M. Takeda. String pattern matching for com-
pressed data using variable length codes. Submitted, 1998.

14. L. Ga̧sieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms
for Lempel-Ziv encoding. In Proc. 4th Scandinavian Workshop on Algorithm The-
ory, volume 1097 of Lecture Notes in Computer Science, pages 392–403. Springer-
Verlag, 1996.

15. M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern-matching algo-
rithm for strings with short descriptions. Nordic Journal of Computing, 4:172–186,
1997.

16. T. Kida, M. Takeda, A. Shinohara, and S. Arikawa. Shift-And approach to pattern
matching in LZW compressed text. In Proc. 10th Ann. Symp. on Combinatorial
Pattern Matching, Lecture Notes in Computer Science. Springer-Verlag, 1999. to
appear.

17. T. Kida, M. Takeda, A. Shinohara, M. Miyazaki, and S. Arikawa. Multiple pattern
matching in LZW compressed text. In Proc. Data Compression Conference ’98,
pages 103–112. IEEE Computer Society, 1998.

18. U. Manber. A text compression scheme that allows fast searching directly in
the compressed file. In Proc. 5th Ann. Symp. on Combinatorial Pattern Matching,
volume 807 of Lecture Notes in Computer Science, pages 113–124. Springer-Verlag,
1994.

19. M. Miyazaki, S. Fukamachi, M. Takeda, and T. Shinohara. Speeding up the pattern
matching machine for compressed texts. Transactions of Information Processing
Society of Japan, 39(9):2638–2648, 1998. (in Japanese).

20. M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching al-
gorithm for strings in terms of straight-line programs. In Proc. 8th Ann. Symp.
on Combinatorial Pattern Matching, volume 1264 of Lecture Notes in Computer
Science, pages 1–11. Springer-Verlag, 1997.

21. Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara, T. Shinohara, and
S. Arikawa. Byte pair encoding: a text compression scheme that accelerates pattern
matching. Technical Report DOI-TR-161, Department of Informatics, Kyushu
University, April 1999.

22. M. Takeda. Pattern matching machine for text compressed using finite state model.
Technical Report DOI-TR-142, Department of Informatics, Kyushu University,
October 1997.

	Introduction
	Preliminaries
	Text Compression Using Antidictionary
	Method
	Decoder without $varepsilon $-Moves

	Main Result
	Algorithm in Detail
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Concluding Remarks

