
Pattern-Matching Spi-Calculus∗

Christian Haack
Radboud University, Nijmegen

chaack@cs.ru.nl

Alan Jeffrey
Bell Labs, Lucent Technologies

ajeffrey@bell-labs.com

May 12, 2006

Abstract

Cryptographic protocols often make use of nested cryptographic primitives, for example signed message
digests, or encrypted signed messages. Gordon and Jeffrey’s prior work on types for authenticity did not
allow for such nested cryptography. In this work, we present the pattern-matching spi-calculus, which is an
obvious extension of the spi-calculus to include pattern-matching as primitive. The novelty of the language
is in the accompanying type system, which uses the same language of patterns to describe complex data
dependencies which cannot be described using prior type systems. We show that any appropriately typed
process is guaranteed to satisfy robust authenticity, secrecy and integrity properties.

1 Introduction

Background. Cryptographic protocols are prone to subtle errors, in spite of the fact that they are often relatively
small, and so are a suitable target for formal and automated verification methods. One line of such research
is the development of domain-specific languages and logics, such as BAN logic [15], strand spaces [39],
CSP [37, 38], MSR [17] and the spi-calculus [7]. These languages are based on the Dolev–Yao model of
cryptography [19], and often use Woo and Lam’s correspondence assertions [40] to model authenticity. Tech-
niques for proving correctness include rank functions [38, 30, 28], theorem provers [13, 36, 18], model check-
ers [31, 34] and type systems [1, 3, 16, 24, 25, 23].

Protocol verification by type-checking. Verification tools for cryptographic protocols range from fully au-
tomatic tools, for instance based on model checking (e.g. Casper [32]) or automatic theorem proving (e.g.
ProVerif [11]), to interactive theorem provers (e.g. Isabelle [36]). The obvious advantage of fully automatic
tools is that they do not require any human help beyond the specification of the protocol and its security prop-
erties. On the downside, such tools have theoretical limitations (see for instance [20, 9]). To deal with these
limitations, they often restrict the Dolev–Yao model (for instance by assuming that each principal only runs
a small number of sessions) or are not guaranteed to terminate. Interactive theorem provers, on the other
hand, are not limited in this way but need much human help. In terms of the required human help, verifica-
tion by type-checking is somewhere in between fully automatic verification and interactive theorem proving.
By annotating variables and names with their types, the protocol specifier gives some hints to the automatic
type-checker. Given these type annotations, the type-checker can then automatically (and quickly) construct a
robust safety proof. Type-checking does not require any restrictions on the Dolev–Yao model. In particular,
we can verify protocols even if each principal is allowed to run arbitrarily many sessions.

∗This material is based upon work supported by the National Science Foundation under Grant No. 0208459. The article extends a
shorter paper that was presented at the IFIP workshop on Formal Aspects of Security and Trust in Toulouse, August 2004.

1

Gordon and Jeffrey’s type systems for authenticity [24, 25, 23] use types to enforce crucial engineering
principles for cryptographic protocols [8]. For instance, these type systems use dependent types to enforce
the principle of always including all principal identities that are important for the semantics of a message
(principle 3 from [8]). Or they use tagged union types to enforce that receivers can always tell the number
of a message within a protocol run (principle 10 in [8]) in order to avoid type flaw attacks [29]. Gordon and
Jeffrey prove that the engineering principles enforced by their type system are enough to guarantee robust
safety of protocols. In other words, their type systems are sound. On the other hand, their type systems (like
our type system for pattern-matching spi) are not complete. There are protocols that are robustly safe but do
not type-check. Our type system for pattern-matching spi builds on Gordon and Jeffrey’s earlier systems. It
improves on them in so far as it allows the verification of additional protocols that could not be verified by the
earlier type systems.

Towards more complete and realistic cryptographic type systems. Type systems for interesting languages
are often incomplete, that is they fail to type-check some safe programs. Type systems usually are tailored
to a particular idiom, for example [3] treats public encryption keys but not signing keys, and [25] covers
full symmetric and asymmetric cryptography but not nested uses of cryptography. In this paper, we extend
techniques from [24, 25, 23] to, in addition, reason about protocols making use of nested cryptography, hashing
and message authentication codes. We also present new typing constructs for protocol-independent key types,
which permit reusable long-term keys.

Nested cryptography. The process language of pattern-matching spi combines the suite of separate message de-
structors and equality checks from previous systems [24, 25, 23] into one pattern-matching construct. Patterns
at the process level are convenient, and are similar to the communication techniques used in other specification
languages [39, 17, 12]. Notably, our system uses patterns not only in processes but allows patterns in types,
too. This permits types for nested use of cryptographic primitives, which would otherwise not be possible. For
example, previous type systems [24, 25, 23] could express data dependencies such as

(∃a : Princ,∃m : Msg,∃b : Princ,[!begun(a,b,m)])

where !begun(a,b,m) is an effect ensuring that principals a and b have agreed on message m. In this paper, we
extend these systems to deal with more complex data dependencies such as

({|#(`(∃m : Msg, ∃x))|}∃y−1 , ∃a : Princ, ∃b : Princ)[!begun(m,a,b)]

where the effect !begun(a,b,m) makes use of a variable m, which is triply nested in the scope of a decryption
{| · |}∃y−1, a hash function #(·) and a message tag `(·,∃x): such data dependencies were not previously allowed
because the occurrence m in !begun(a,b,m) would be considered out of scope.

A form of nested cryptography are sign-then-encrypt protocols, where principal A digitally signs a secret
message M for B and then encrypts it with B’s public encryption key, resulting in the ciphertext {|{|`(M,B)|}esA|}epB.
Sign-then-encrypt protocols were not typable in [25], because the type system permitted signing keys to only
encrypt public messages. In order to allow such protocols, we refined the typing rules for encryption and
decryption. Whereas in [25] encryption always results in ciphertexts of public types, in pattern-matching spi
ciphertext types keep track of secrecy levels of encrypted plaintexts. For instance, if M’s type is Secret then
{|`(M,B)|}esA’s type typically is Secret(B), meaning that it must be kept secret and may only be published after
encryption with B’s public key. In contrast, if M’s type is Public then {|`(M,B)|}esA’s type typically is Public,
meaning that it may be published as is.

Another form of nested cryptography arises by nesting of digital signatures. If, for instance, principal D
receives a message {|{|{|`(M,D)|}esA|}esB|}esC that has been digitally signed by principals A, B and C, then D
knows that M has been authenticated by these three principals. This information was not expressible in the
type system from [25]. In pattern-matching spi, the tagged message `(M,D) may have an authentication type

2

Public〈A,B,C〉 or Secret〈A,B,C〉. A message of this type requires authentication of principals A, B and C.
This authentication can be acquired by nested digital signatures with signing keys of types SigningEK(A),
SigningEK(B) and SigningEK(C). When principal D receives a message `(M,D) of type Public〈A,B,C〉 (resp.
Secret〈A,B,C〉), then he knows that it has been authenticated by A, B and C.

Somewhat related to nested digital signatures are nonce challenges with multiple responders. In chal-
lenge/response protocols, a single nonce challenge can have multiple responders resulting in authentication of
each of the responders. Suppose, for instance, that A sends a nonce challenge to B, who forwards it together
with additional data to a server S encrypted under a shared symmetric server key kBS, who then sends the
nonce back to A together with additional data encrypted under the shared symmetric server key kAS. In such
a situation, both B and S authenticate to A in reply to a single nonce challenge. In this paper, we have refined
the nonce rules from [25] to allow authentication of multiple responders to a single nonce challenge.

Reusable long-term keys: tag types instead of tagged union types. Whereas in [25] a signing key k has type
EncryptKey(T), where T is a tagged union type enumerating all message formats that k may sign, in pattern-
matching spi Alice’s signing key has type SigningEK(Alice). Our type system still enforces message tagging
for avoiding type flaw attacks but, in contrast to the earlier systems, this is achieved by assigning types to
tags instead of associating keys with tagged union types. Tag types are useful for composing two protocols
that make use of the same key. This is safe provided each protocol requires ciphertexts to include a tag that
identifies the protocol. Our type system enforces such tagging. It is, of course, also still possible to type-check
single protocols that use the same key to encrypt different messages formats (provided that these messages are
properly tagged).

Small core language. While increasing the completeness of a cryptographic type system, it is important to
keep the system tractable, so that rigorous safety proofs are still feasible. For that reason, we chose to define
a small core language and obtain the full language through derived forms. The core language is extremely
parsimonious: its only constructs for messages are tupling, asymmetric encryption and those for asymmetric
keys.We show that symmetric encryption, hashing, keyed hashing and message tagging can all be obtained by
simple syntactic translations into this small core and that these translations yield sensible typing rules.

New type system architecture. Our primitive pattern-matching input operation, which replaces explicit message
destructors from [24, 25, 23], lead us to a technically rather different type system architecture. Our type
system is less syntax directed than the earlier systems, as it includes a set of typing rules that operate on type
environments. These left rules are used to implicitly destruct messages that have been received as input. In
contrast to the earlier typing rules for explicit message destructors, which operate at the process level, our left
rules are message level rules. We have also replaced explicit syntactic operators for nonce casting and nonce
checking by implicit typing rules. This new architecture provides a bit more flexibility, which turns out to be
very useful for elegantly dealing with nested cryptography and hashing.

Authenticity, secrecy and integrity. We formalize authenticity in the same way as Gordon and Jeffrey in their
earlier papers using Woo and Lam’s correspondence assertions, and show that well-typed processes with public
free names are robustly safe for authenticity. (In our terminology, robust safety means safety in the presence
of adversaries.) In addition, we prove robust safety theorems for secrecy (“robust write-safety”) and integrity
(“robust read-safety”). Secrecy and integrity are formalized using the language of types, and the robust write-
and read-safety results formally confirm the informal semantics of public and tainted types, as introduced
in [25]. All three robust safety results are corollaries of the same type preservation theorem, which essentially
states that the operational semantics preserves typings.

Outline. Section 2 presents an introductory example. Section 3 defines the syntax for messages, patterns and
processes, and reviews the technique of specifying authenticity by correspondence assertions from [24, 25,
23, 40]. Section 4 explains the type system for the core language. Section 5 presents derived forms for key
types, symmetric cryptography, message tagging, hashing and keyed hashing, and illustrates their use in simple

3

examples. In Section 6, we analyze two standard protocols with our type system. In Section 7, we prove that
the type system is robustly safe. Many proof details are postponed to the appendix. We conclude in Section 8
with a comparison with related work, a summary and some ideas on future work.

The examples omit complete type derivations, because these are tedious to do by hand. We have type-
checked all examples from this paper (and many more) using our automatic type-checker [22], which is avail-
able on the web. The technical development, including proofs, is contained in Appendix B.

Acknowledgments. We thank Andy Gordon, Radha Jagadeesan, Corin Pitcher and James Riely for comments
and discussions on this work at various stages of its development. Moreover, we thank the referees for their
critique and numerous valuable suggestions how to improve the presentation.

Notational conventions. If the meta-variable x ranges over set S, then ~x ranges over finite sequences over S,
and x ranges over finite multisets over S. We sometimes write sequences~x in contexts that require multisets or
sets, implicitly coercing by ignoring order and multiplicities.

2 An Introductory Example

Before the technical exposition, we want to convey a flavor of the type system by discussing a simple example.
Consider the following simple sign-then-encrypt protocol:

A begins! (M,A,B)

A→ B {|{|sec(M,B)|}esA|}epB

B ends (M,A,B)

Alice wants to send Bob a secret message M. To this end, she first tags M together with Bob’s name with a
tag sec. Tagging is a prudent engineering practice for avoiding confusion between different protocol messages
encrypted by the same key. Our type system enforces this practice and types of tags communicate important
type information. Tagging is actually a derived construct defined as encryption with a key extracted from a
public key pair: `(M)

∆
= {|M|}Enc(`) where the tag ` is a global, public name. Next, Alice encrypts the tagged

message sec(M,B) with her secret signing key esA to authenticate herself. Because M is to be kept secret,
Alice finally encrypts the message with Bob’s public encryption key. The begin- and end-statements are Woo-
Lam correspondence assertions [40]. They specify that Alice begins a protocol session (M,A,B), which Bob
ends after message reception.

Protocol specification in pattern-matching spi. Here are Alice’s and Bob’s side of this protocol expressed in
pattern-matching spi-calculus:

PA
∆
= new m : Secret; begin!(m,A,B); out net {|{|sec(m,B)|}esA|}epB

PB
∆
= inp net {|{|sec(∃x,B)|}dsA−1 |}dpB−1 ; end(x,A,B)

The variable net represents an untrusted channel and dsA and dpB are the matching decryption keys for esA
and epB. An output statement of the form (out net N) sends a message N out on channel net. A statement of
the form (inp net X ;P) attempts to input from channel net a message that matches pattern X . Existentials in
patterns indicate which variables get bound as part of the pattern match. In the input pattern above, the variable
x gets bound, whereas B, dsA and dpB are constants that must be matched exactly.

Type annotations. For a type-checker to verify the protocol’s correctness (and also for us to better understand
and document it), it is necessary that we annotate the protocol with types. For our example, the types for the

4

free variables are:

net : Un net is an untrusted channel
M : Secret M will not be revealed to the opponent
epB : PublicCryptoEK(B) epB is B’s public encryption key
dpB : PublicCryptoDK(B) dpB is B’s matching decryption key
esA : SigningEK(A) esA is A’s private signing key
dsA : SigningDK(A) dsA is A’s matching signature verification key

No type annotations are necessary in PA, because PA does not have input statements. In PB we add two type
annotations. The input variable x is annotated with Secret. Moreover, we add an assertion !begun(x,A,B) to
the input statement, meaning that a (x,A,B)-session has previously begun. The operational semantics ignores
this assertion. However, the type-checker statically ensures that the assertion is met whenever a message
matches the input pattern. Using this assertion as a precondition for the process continuation, the type-checker
can verify that it is safe to end an (x,A,B)-session. Here is the annotated version of PB:

PB
∆
= inp net {|{|sec(∃x : Secret,B)|}dsA−1 |}dpB−1 [!begun(x,A,B)]; end(x,A,B)

We have yet omitted the type of the tag sec, which gives the type-checker crucial hints for verifying the input
assertion !begun(x,A,B):

sec : (∃x : Secret,∃b : Public)[!begun(x,a,b)] → Auth(∃a : Public,∃b′ : Public)

In this type, x, b, a and b′ are binders whose scope is the entire tag type. Within tag types, existentials scope
both to the left and the right: for instance, the occurrence of a on the left of the arrow is bound by the existential
on the right. The pattern (∃x : Secret,∃b : Public) left of the arrow restricts the tag sec to only be used for
tagging messages that match this pattern. The assertion !begun(x,a,b) further restricts the tag sec to only be
used if a (x,a,b)-session has previously begun. The authentication type Auth(∃a : Public,∃b′ : Public) right
of the arrow expresses that messages tagged by sec require further authentication by principal a (acquired by
a’s digital signature) and may then be encrypted by some other principal b′. Note that the binder b′ is not
mentioned in the assertion !begun(x,a,b). For this reason, the type-checker accepts a public encryption key
for the outer encryption. Because the tagged message contains a secret, the type-checker requires an outer
encryption key whose matching decryption key is secret.

These type annotations, together with the robust safety of our type system, are enough to ensure safety of
this protocol in the presence of opponents.

3 A Spi-calculus with Pattern-matching

3.1 Messages

As usual in spi-calculi, messages are modeled as elements of an algebraic datatype. They may be built from
atomic names and variables by pairing and asymmetric-key encryption. Moreover, there are two special sym-
bolic operators Enc and Dec with the following meanings: if message M represents a key pair, then Enc(M)

represents its encryption and Dec(M) its decryption part. This language of messages is extremely parsi-
monious; below we show how to introduce derived forms for constructs such as symmetric-key encryption,
message tagging and hashing.

Messages:

x,y,z variables

5

m,n, ` names
L,M,N ::= message

n name
x variable
() empty message
(M,N) message pair
{|M|}N M encrypted under encryption key N
{|M|}N−1 M encrypted under inverse of decryption key N
Enc(M) encryption part of key pair M
Dec(M) decryption part of key pair M

Syntactic restriction: No subterms of the form {|M|}
Dec(N)−1 .

Define: A message M is implementable if it contains no subterms {|M|}N−1 .

We write 〈M1, . . . ,Mn〉 as shorthand for (M1,(. . . ,(Mn,()) . . .)) and (M1, . . . ,Mn) for (M1,(. . . ,(Mn−1,Mn) . . .)).
fn(M) and fv(M) are the sets of free names and free variables of M.

In the presentation of messages, we include asymmetric-key encryption {|M|}N, which encrypts plaintext M
with encryption key N. We use such messages to model both public key encryption and digital signing: in the
former case the encryption key N is public and in the latter case N is secret. We also allow messages {|M|}N−1 ,
which represents the encryption of plaintext M with the encryption key that matches decryption key N. This
is clearly not an implementable operation and non-implementable messages are disallowed in processes (as
defined in section 3.3). Technically, this restriction is needed to rule out non-implementable opponents: our
type system does not guarantee safety against non-implementable opponents who, for instance, are capable
of digitally signing messages using signature verification keys. Non-implementable messages are allowed in
patterns (as defined in section 3.2) and types (as defined in section 4.3), however.

The reason for the syntactic restriction disallowing subterms of the form {|M|}
Dec(N)−1 is technical: we

could instead have worked with messages modulo the equation {|M|}Enc(L) = {|M|}
Dec(L)−1 ; however, we prefer

working with syntactic equality and only permit messages that are in a certain normal form for this simple
equational theory. Substitution is defined as usual by induction on the structure of messages (processes, types,
etc.). The definition is mostly standard, but we have to be careful to not build messages {|M|}

Dec(N)−1 . We
display the case where we substitute into a term of the form {|M|}N−1 ; all other cases are as usual.

Substitution into Messages:

({|M|}N−1){σ} ∆
=

{

{|M{σ}|}Enc(L) if N{σ}= Dec(L)

{|M{σ}|}(N{σ})−1 otherwise

The following display shows our definitions for tagging, symmetric encryption, hashing and keyed hashing.
We believe that these definitions capture the properties that we care about in this abstract setting.

Derived Forms for Messages:

L(M)
∆
= {|M|}Enc(L) M tagged by label L

{M}N
∆
= {|M|}Enc(N) M encrypted by symmetric key N

#(M)
∆
= hashtag({|M|}hashkey) hash of M (hashkey, hashtag are fixed global names)

#N(M)
∆
= {|#(M)|}N keyed hash of M with secret N

The definitions for tagging and symmetric encryption are identical. However, the types for tags will differ
from those for symmetric keys: tags are public whereas symmetric keys are secret. Hashing is modeled as

6

encryption under a public hashkey that has no matching decryption key. The encrypted message is then tagged
by a special hashtag. The hashtag is needed to obtain good typing rules for hashing: it alerts the type-checker
to treat the hashtagged message in a special way. Keyed hashing is modeled as symmetric encryption of a
hashed message.

3.2 Patterns and Assertions

Patterns are of the form ∃~x . M[Ā], where Ā is an assertion set. The variables~x act as binders. A message N
matches a pattern ∃~x . M[Ā] if it is of the form N = M{~x←~L} and, in addition, the assertions Ā{~x←~L} are
satisfied. Importantly, the operational semantics for pattern-matching input against ∃~x .M[Ā] only checks that
N matches M and ignores the assertions Ā. Our type system, however, ensures statically that in well-typed
processes Ā is also satisfied. It is important that the operational semantics ignores these assertions, because we
want to model standard security protocols rather than enhancing these protocols by additional dynamic type-
and assertion-checks. The pattern body M may have multiple occurrences of the same variable and it may
contain variables that are not mentioned in ~x: such variables are regarded as constants and must be matched
exactly. For instance, the pattern ∃x . (x,{|x|}y)[] is matched by messages of the form (M,{|M|}y), but not by
messages (M,{|M|}z) or (M,{|N|}y).

Patterns:

X ,Y,Z ::= pattern
∃~x .M[Ā] pattern matching term M binding~x

Syntactic restrictions: ~x⊆ fv(M) and~x distinct.
Define: A pattern ∃~x .M[Ā] is implementable if (fn(M), fv(M)−~x, M ~x). (is defined below).

Assertions:

A,B,C,D ::= assertions
M : T type assertion
begun(M) begun-once assertion
!begun(M) begun-many assertion
fresh(N : T) fresh-once assertion
!fresh(N : T) fresh-many assertions

Assertions. Here are informal interpretations of the different kinds of assertions:

• M : T means M has type T .

• !begun(M) means an M-session has previously begun.

• begun(M) means an M-session has previously begun and has not been ended yet.

• fresh(N : T) means N has been generated with type T and has not been used as a nonce yet.

• !fresh(N : T) is always false.

Begun-many assertions are useful for verifying so-called non-injective agreement (a.k.a. one-to-many corre-
spondences), where a single begin-statement may be ended by multiple end-statements. Begun-once assertions
are useful for verifying injective agreement (a.k.a. one-to-one correspondences), where each begin-statement
may be ended by at most one end-statement. Injective agreement is needed to avoid replay attacks. In addi-
tion to type and begun-assertions, there are freshness assertions. These are used for typing challenge/response

7

protocols where nonces ensure injective agreement. Freshness assertions help ensuring that each nonce is used
at most once. Fresh-many assertions are always false and are included for the technical reason that we want
promotion, as defined below, to be a total function. Technically, begun-once and fresh-once assertions are the
only assertions that are not mapped to themselves by promotion. An assertion A is called copyable whenever
!A = A. Begun-once and fresh-once assertions are not copyable.

Promotion, !E, !Ā, !A:

!(x; Ā)
∆
= (x; !Ā); !(A1, . . . ,An)

∆
= (!A1, . . . , !An); !(M : T)

∆
= (M : T);

!(begun(M))
∆
=!begun(M); !(fresh(M : T))

∆
=!fresh(M : T);

!(!begun(M))
∆
=!begun(M); !(!fresh(M : T))

∆
=!fresh(M : T)

Implementable patterns. Importantly, not all patterns are implementable. For instance, the patterns ∃x,dk .

{|x|}dk−1 [Ā] and ∃x .{|x|}ek[Ā] are not implementable, because they would allow access to the plaintext without
knowing the decryption key. Similarly ∃x . #(x)[Ā] is not implementable, because it would allow inverting a
one-way hash function. On the other hand, ∃x . {|x|}dk−1 [Ā], ∃x . {|x|}Enc(k)[Ā] and ∃x . (x,#(x))[Ā] are imple-
mentable patterns. A syntactic restriction forbids non-implementable input patterns in processes (as defined
in section 3.3). This restriction is needed to rule out non-implementable opponents: our type system does not
guarantee safety against non-implementable opponents who, for instance, are capable of decrypting messages
without knowing decryption keys. Non-implementable patterns are allowed in types (as defined in section 4.3),
however. We formalize the notion of implementable pattern by making use of the Dolev–Yao ‘derivable mes-
sage’ judgment M̄ N̄ meaning ‘An agent who knows messages M̄ can construct messages N̄.’

Dolev–Yao Derivability, M̄ N̄:

(DY True)

M̄

(DY Id)
M̄,N L̄

M̄,N N, L̄

(DY Copy)
M̄ N, L̄

M̄ N,N, L̄

(DY Nil)
M̄ L̄

M̄ (), L̄

(DY Pair)
M̄ N,N ′, L̄

M̄ (N,N ′), L̄

(DY Split)
M̄,N,N ′ L̄

M̄,(N,N ′) L̄

(DY Key)
M̄ N, L̄ k ∈ {Enc,Dec}

M̄ k (N), L̄

(DY Encrypt)
M̄ N,N ′, L̄

M̄ {|N ′|}N , L̄

(DY Decrypt)
M̄ N M̄,N′ L̄

M̄,{|N ′|}N−1 L̄

(DY Unencrypt)
M̄ N M̄,N′ L̄

M̄,{|N ′|}Enc(N) L̄

We use some convenient syntactic abbreviations that treat patterns as if they were messages containing binding
existentials. These ‘derived forms’ for patterns are defined below. For example:

(x, ∃x : Public)[!begun(x)] ≡ ∃x . (x,x)[x : Public, !begun(x)]

{|{|sec(∃x : Secret, B)|}dsA−1 |}dpB−1 [!begun(x,A,B)]

≡ ∃x .{|{|sec(x,B)|}dsA−1 |}dpB−1 [x : Secret, !begun(x,A,B)]

({|#(`(∃m : Public,))|} −1 , ∃a : Un, ∃b : Un)[!begun(m,a,b)]

≡ ∃m,a,b,x,y . ({|#(`(m,x))|}y−1, a, b)[m : Public, a : Un, b : Un, !begun(m,a,b)]

In these derived forms, existentials scope both to the left and the right. The following display contains the
complete definition of the derived forms. Note that no scoping ambiguities arise, by the side conditions on the
clauses for tupling and encryption. For instance, (∃x : T,∃x : U)[begun(x)] is undefined because {x}∩{x} 6= /0.

8

Derived Forms for Patterns:

M
∆
= {M | }; T

∆
= ∃x . x[x : T] for fresh x;

∃x
∆
= ∃x . x[];

∆
= (∃x) for fresh x;

X : T
∆
= ∃~x .M[Ā, M : T], if X = ∃~x .M[Ā];

{|X |}Y
∆
= ∃~x,~y .{|M|}N[Ā, B̄], if X = ∃~x .M[Ā], Y = ∃~y .N[B̄], {~x}∩{~y}= /0;

{|X |}Y−1
∆
= ∃~x,~y .{|M|}N−1 [Ā, B̄], if X = ∃~x .M[Ā], Y = ∃~y .N[B̄], {~x}∩{~y}= /0;

X [B̄]
∆
= ∃~x .M[Ā, B̄], if X = ∃~x .M[Ā];

(X1, . . . ,Xn)
∆
= ∃~x1, . . . ,~xn . (M1, . . . ,Mn)[Ā1, . . . , Ān], if Xi = ∃~xi .Mi[Āi], i 6= j⇒{~xi}∩{~x j}= /0;

〈X1, . . . ,Xn〉
∆
= ∃~x1, . . . ,~xn . 〈M1, . . . ,Mn〉[Ā1, . . . , Ān], if Xi = ∃~xi .Mi[Āi], i 6= j⇒{~xi}∩{~x j}= /0;

Y (X)
∆
= {|X |}Enc(Y); {X}Y

∆
= {|X |}Enc(Y); #(X)

∆
= hashtag({|X |}hashkey); #Y (X)

∆
= {#(X)}Y

3.3 Processes

Processes:

O,P,Q,R ::= process
out N M asynchronous output of M on N
inp N X ;P input from N against pattern X
new n:T ;P name generation
P | Q parallel composition
!P replication
0 inactivity
begin(L); P begin L-session to be ended at most once
begin!(L); P begin L-session to be ended arbitrarily often
end(L); P end L-session

Syntactic restrictions:
• In (out N M), both N and M are implementable messages.
• In (inp N X ;P), N is an implementable message and X is an implementable pattern.

Scope:
• The scope of~x in (inp N ∃~x .M[Ā];P) is M, Ā and P.
• The scope of n in (new n:T ;P) is P.

We often elide 0 from the end of processes and write (out N M; P) for (out N M | P). Note that the standard
Dolev–Yao attacker can be expressed as an implementable process.

We impose some technical restrictions on opponent processes. These restrictions only concern type annota-
tions and correspondence assertions, both of which are ignored at runtime. In other words, for every process P
there is an opponent process O with the same “type- and correspondence-erasure” as P. Thus, the restrictions
on opponents do not impose restrictions on type- and correspondence-free processes. As a consequence, our
definition of opponents includes the Dolev–Yao attacker. The definition of opponent processes makes use of
the type Un—the type of data that may flow to and from opponents.

Definition 3.1 (Opponent Processes) An opponent process is an implementable process that does not contain
correspondence assertions, whose type annotations on new names are all Un, and whose input patterns are all
of the form ∃~x .M[M : Un] for some~x, M.

9

3.4 Semantics

The operational semantics is a reduction semantics that operates on computation states of the form Ā ::: P. The
assertion set Ā keeps track of sessions that have begun. This bookkeeping is needed to recognize authenticity
errors. Remember our convention that overbars indicate multisets, so Ā is a multiset of assertions. We interpret
a !begun(M)-assertion as infinitely many begun(M)-assertions. This is formalized by the rules (Ass Copy
One) and (Ass Copy Many) below.

Structural Equivalence of Assertion Sets, Ā≡ B̄:

Ā≡ Ā (Ass Equiv)
Ā≡ B̄⇒ B̄≡ Ā (Ass Symm)
Ā≡ B̄, B̄≡ C̄⇒ Ā≡ C̄ (Ass Trans)
(Ā, !begun(M)) ≡ (Ā, !begun(M), begun(M)) (Ass Copy One)
(Ā, !begun(M)) ≡ (Ā, !begun(M), !begun(M)) (Ass Copy Many)

Structural Process Equivalence, P≡ Q, and State Equivalence, (Ā ::: P)≡ (B̄ ::: Q):

P≡ P (Struct Refl)
P≡ Q⇒ Q≡ P (Struct Symm)
P≡ Q,Q≡ R⇒ P≡ R (Struct Trans)
Q≡ R⇒ P | Q≡ P | R (Struct Par)
P | 0≡ P (Struct Par Zero)
P | Q≡ Q | P (Struct Par Comm)
(P | Q) | R≡ P | (Q | R) (Struct Par Assoc)
!P≡ P | !P (Struct Repl Par)
Ā≡ Ā′, P≡ P′→ (Ā ::: P)≡ (Ā′ ::: P′) (Struct State)

Our reduction semantics consists of a structural process equivalence relation and a state transition relation. The
reduction rule (Redn IO) formalizes pattern-matching input. The reduction rules (Redn Begin One) and (Redn
Begin Many) keep track of beginning sessions, and the rule (Redn End) checks that a session is only ended if
it has previously begun.

State Transition, (Ā ::: P)→ (B̄ ::: Q):

(Redn Equiv)
(Ā ::: P)≡ (Ā′ ::: P′)→ (B̄′ ::: Q′)≡ (B̄ ::: Q)

(Ā ::: P)→ (B̄ ::: Q)

n 6∈ fn(Ā,Q)⇒ (Ā ::: (new n : T ;P) | Q)→ (Ā, n : T, fresh(n : T) ::: P | Q) (Redn New)
(Ā ::: (out L M{~x←~N} | inp L ∃~x .M[Ā];P) | Q)→ (Ā ::: P{~x←~N} | Q) (Redn IO)
(Ā ::: (begin(M);P) | Q)→ (Ā,begun(M) ::: P | Q) (Redn Begin One)
(Ā ::: (begin!(M);P) | Q)→ (Ā, !begun(M) ::: P | Q) (Redn Begin Many)
(Ā,begun(M) ::: (end(M);P) | Q)→ (Ā ::: P | Q) (Redn End)

Definition 3.2 (Safety for Authenticity) A computation state s is safe for authenticity iff s→∗ Ā ::: end(M);P
implies that Ā≡ (B̄,begun(M)) for some B̄. A process P is safe for authenticity iff (~n : Un ::: P) is safe for
authenticity, where~n = fn(P) and~n distinct.

10

As an example, consider the following process P:

P
∆
= !PA |!PB, where PA

∆
= new m : Public; begin!(m,A,B); out net (m,B)

PB
∆
= inp net (∃x,B)[!begun(x,A,B)]; end(x,A,B)

Process P is safe, by Definition 3.2. However, what we are really interested in is safety in the presence of
opponents.

Definition 3.3 (Closed Processes) A process P is closed iff fv(P) = /0. Closed processes may contain free
names.

Definition 3.4 (Robust Safety for Authenticity) A process P is called robustly safe for authenticity whenever
(O | P) is safe for authenticity for all closed opponent processes O.

Process P is not robustly safe, because (out net (N,B) | P) is not safe. The crucial property of our type system
is that closed, well-typed processes with public free names are robustly safe. The following theorem captures
this property formally. The judgment (~n : ~T ` P) may be read as ‘P is a well-typed process assuming that its
free names~n have types ~T ’.

Theorem 3.1 (Robust Safety for Authenicity) If ~n are distinct names and (~n : Un ` P), then P is robustly
safe for authenticity.

It follows from this theorem that the example process P does not type-check. We can ensure robust safety by
adding encryption. As a prudent engineering practice, we also tag messages before encryption.

Q
∆
= new ` : (∃x : Public,∃b : Public)[!begun(x,a,b)]→Auth〈∃a : Public〉;

new A : Public; new B : Public; new k : SigningKP(A);
(!out net (`,A,B,Dec(k)) | !QA(Enc(k)) | !QB(Dec(k)))

QA(ek : SigningEK(A))
∆
= new m : Public; begin!(m,A,B); out net {|`(m,B)|}ek

QB(dk : SigningDK(A))
∆
= inp net {|`(∃x : Public,B)|}dk−1 [!begun(x,A,B)]; end(x,A,B)

We publish the tag `, the principal names A and B, and the public signature verification key Dec(k), in order to
model that opponents have access to this data. The signing key Enc(k), of course, is not published. Process Q
type-checks, i.e., net : Un `Q. By robust safety of the type system, it follows that Q is robustly safe. The types
of tag ` and key pair k constrain the sender A to only tag-and-encrypt if an (m,A,B)-session has previously
begun. As a consequence, the receiver B obtains this guarantee after decrypting-and-untagging. In comparison,
in protocol P without encryption the receiver obtains no such guarantee, because the received message may be
fake coming from an opponent.

4 The Type System

4.1 Overview of Judgments

As is usual in most type systems, we give our judgments relative to an environment. Environments in our
system are pairs of the form (x; Ā). The component x lists free variables and Ā lists assertions that may be used
as assumptions.

Environments:

E,F,G ::= environments
x; Ā environment

dom(x; Ā)
∆
= x environment domain

11

For instance, this is an environment:

dk,x; dk : SigningDK(A), {|x,B|}dk−1 : Un, !begun(x,A,B)

This environment permits processes with free variables dk and x, and allows the type-checker to use the as-
sumptions dk : SigningDK(A) (meaning that dk is the decryption part of A’s signing key), {|x,B|}dk−1 : Un

(meaning that {|x,B|}dk−1 may come from an opponent) and !begun(x,A,B) (meaning that an (x,A,B)-session
has previously begun). A difference to previous type systems for authenticity [24, 25, 23] is that we are unify-
ing the notions of variable environment and process effect into a common language of environments. In these
previous papers, the above environment would be split into the variable environment dk : SigningDK(A), and
the process effect trust({|x,B|}dk−1 : Un), !begun(x,A,B).

Here are the judgments of our type system:

Judgments:

T :: K type T has kind K
K ≤ H K is a subkind of H
T ≤U T is a subtype of U
E ` � E is a good environment
E ` Ā assertions Ā are valid in E
E ` P process P is well-typed in E
Meta-variable R ranges over right-hand sides, i.e., �, Ā and P.

The good-environment judgment is simple:

Good Environment, E ` �:

(Good Env)
fv(Ā)⊆x

x; Ā ` �

In addition to these judgments, there is an auxiliary judgment for pattern-matching.

Auxiliary Judgments for Pattern-Matching:

E `M ∈ X M matches pattern X in E

This judgment is auxiliary in the sense that it is a shorthand for a formula built from basic judgments:

Pattern-Matching (where X = ∃~x .N[Ā]):

E `M ∈ X
∆
= (∃~L)(M = N{~x←~L} ∧ E `M : Top, Ā{~x←~L})

For example:

• E ` (M,B) ∈ (∃x : Public,B)[!begun(x,A,B)] is defined to be
E ` (M,B) : Top, M : Public, !begun(M,A,B).

Finally, we also allow assertions M ∈ X to occur in environments of auxiliary judgments. We could resolve
such occurrences in the same way as on the right of `:

E, M ∈ X ` R ∆
= (∃~L)(M = N{~x←~L} ∧ E, M : Top, Ā{~x←~L} ` R) (a possible definition)

12

This definition is safe and good enough to type-check many protocols. However, there are some protocols that
require a more liberal definition of pattern-matching on the left: Assume, for instance, the type-checker is faced
with a proof goal of the form (E, x ∈ (∃y,∃z) ` P). Such a goal may arise after parsing an input statement of
the form (inp net {|∃x|}Enc(k);P) where k’s type constrains Enc(k) to only encrypt messages that match (∃y,∃z).
In such a situation, the type-checker knows that at runtime x must refer to a pair. With the above definition of
pattern-matching on the left, however, the assertion x ∈ (∃y,∃z) cannot be resolved: x does not match (∃y,∃z).
A more liberal definition would substitute the pair (y,z) for x in the entire proof goal, resulting in the new proof
goal (y,z,E{x←(y,z)} ` P{x←(y,z)}) (assuming that y and z are fresh variables).

Our definition of pattern-matching on the left uses unification. The function mgu(x,M,N) takes two mes-
sages M and N where fv(M,N) ⊆x, and returns a most general unifier σ : x→y of M and N, where x is the
domain of σ and y⊇ ∪{fv(σ(x)) | x ∈x} is its range. If M and N are not unifiable, then mgu(x,M,N) = ⊥.
As a shorthand, we write mgu(E,M,N) for mgu(dom(E),M,N). If dom(E) =x, the application of substitution
σ : x→y to environment E is defined by (x; Ā){σ} ∆

= (y; Ā{σ}). (See Appendix A for more detailed definitions
of typed substitutions and most general unifiers.)

Pattern-Matching on the Left (where X = ∃~x .N[Ā] and~x∩dom(E) = /0):

E, M ∈ X ` R ∆
=

false, if fv(R) 6⊆ dom(E)

true, if fv(R)⊆ dom(E) and mgu((~x,E),M,N) =⊥

(~x, E, M : Top, Ā){σ} ` R {σ},
if fv(R)⊆ dom(E) and mgu((~x,E),M,N) = σ

For example:

• E, (M,B) ∈ (∃x : Public,B)[!begun(x,A,B)] ` R is defined to be
E, (M,B) : Top, M : Public, !begun(M,A,B) ` R .

• y, E, y ∈ (∃x : Public,B)[!begun(x,A,B)] ` R is defined to be
x, E{y←(x,B)}, (x,B) : Top, x : Public, !begun(x,A,B) ` R {y←(x,B)}.

• () ∈ ((),()) ` R is defined to be true, because () and ((),()) are not unifiable.

4.2 Kinds

A message is publishable if it may be sent to an untrusted target. For instance, ciphertext {|M|}ek is publishable
if the decryption key for ek is secret. If ek is a signing key, whose corresponding decryption key is public, then
{|M|}ek is only publishable if M is already publishable.

A message is untainted if it has been received from a trusted source. For instance, if dk’s matching en-
cryption key is a trusted agent’s signing key, then M is untainted even if {|M|}dk−1 is tainted. If dk’s matching
encryption key is public, then M is only untainted if {|M|}dk−1 is already untainted.

An important part of the type system is a kinding relation (T :: K) that assigns kinds K to types T . Kinding
is actually a function, so every type will have exactly one kind. Kinds are subsets of the two-element set
{Public,Tainted}. The type system is designed so that the following statements hold:

• If (T :: K) and Public ∈ K, then members of type T are publishable.

• If (T :: K) and Tainted 6∈ K, then members of type T are untainted.

We say that type T is public (respectively tainted) if T :: K 3 Public (respectively T :: K 3 Tainted).
We next define a subkinding relation, which we will use in our definition of subtyping. An important link

between subtyping and subkinding is that the kinding function is monotone with respect to these orders, i.e., if
T is a subtype of U , T :: K and U :: H, then K is a subkind of H.

13

Subkinding:

(Public ∈ H)⇒ (Public ∈ K) (Tainted ∈ K)⇒ (Tainted ∈ H)

K ≤ H

{Public}

{Tainted}

{Public,Tainted} {}

4.3 Types

We next define types and the kinding relation:

Types:

T,U,V ::= types
Top top type
K Top top type for generative types of kind K
K Auth(L) authentication types of kind K
(K,H)KT(X) key type whith encryption kind K and decryption kind H
(K,H)NT(Ā) valid nonce type with challenge kind K and response kind H
Stale stale nonce type

KT ::= key qualifiers
EK encryption key
DK decryption key
KP key pair

NT ::= qualifiers for valid nonces
Chall nonce challenge
Resp nonce response

Syntactic restrictions:
• In (K,H)KT(∃~x .M[Ā]): !Ā = Ā.
• In (K,H)Chall(Ā): Ā = /0 or Public 6∈ K.
• In (K,H)Resp(Ā): Ā = /0 or Tainted 6∈ H or Public 6∈ K ∪H.

Define: A type is generative if it is not of the form Top or (K,H)Resp(Ā) for some K, H, Ā.

Kinding, T :: K:

Top :: {Tainted}; K Top :: K; K Auth(L) :: K;

(K,H)EK(X) :: K; (K,H)DK(X) :: H; (K,H)KP(X) :: K ∩H;

(K,H)Chall(Ā) :: K; (K,H)Resp(Ā) :: H; Stale :: {Public}

Note that for most types their kinds are given by kind annotations. Key types have two kind annotations: the
first annotation is the kind of the encryption part and the second one the kind of the decryption part. The kind
of a key pair is the intersection of these two kind annotations. Nonce types also have two kind annotations: the
challenge kind and the response kind.

Generative types. Our typed treatment of challenge/response protocols requires that nonces get generated with
challenge types. We therefore disallow response types as generative types. (Only generative types may be used
as type annotations on new-generated names.) We define Top to be non-generative in order to avoid equating
modulo subtyping the types Top and K Top.

14

Top types. Top is the largest type of the type hierarchy. In addition, there are four types K Top that are the
largest generative types of kind K. The following derived forms are convenient:

Derived Forms for Generative Top Types:

Secret
∆
= /0Top;

Public
∆
= {Public}Top;

Tainted
∆
= {Tainted}Top;

Un
∆
= {Public,Tainted}Top

Let’s spell out the semantics of generative top types:

• Members of type Secret are untainted but not publishable.

• Members of type Public are untainted and publishable.

• Members of type Tainted are neither untainted nor publishable.

• Members of type Un are publishable but not untainted.

Subtyping. Here is the subtyping relation:

Subtyping, T ≤U:

(Subty Refl)

T ≤ T

(Subty Top)

T ≤ Top

(Subty Top Gen)
T :: K K ≤ H T generative

T ≤ H Top

(Subty Auth)
K ≤ H

K Auth(L) ≤ H Auth(L)

(Subty Public Tainted)
T :: K∪{Public} U :: H ∪{Tainted}

T ≤U

(Subty Stale Nonce)

Stale≤ (K,H)NT(Ā)

The rules (Subty Top) and (Subty Top Gen) formalize our previous informal description of top types. It is
instructive to picture the subtyping relation on generative top types:

Public

Tainted

Un Secret

The rule (Subty Auth) says that authentication types K Auth(L) with identical arguments L inherit their or-
dering from the subkinding ordering on the kind annotations. The rule (Subty Public Tainted) states that any
message of public type also has any tainted type, as in [25]. Technically, this rule is crucial for showing that
opponent processes are well-typed in environments that assign public types to their free names—a property
we call opponent typability. For instance, the rule (Subty Public Tainted) allows us to upcast public types to
tainted key types. As a result, well-typed processes may use members of any public type as (tainted) encryp-
tion keys. Opponent typability is a property that our system has in common with many other type systems for
secrecy or authenticity in the spi-calculus. Opponent typability allows us to easily obtain robust safety from
safety (see Section 7.2). The rule (Subty Stale Nonce) says that it is safe to upcast stale nonce types to valid
nonce types. This is safe because there are other means, namely freshness assertions, for avoiding that stale
nonces are reused (see section 4.7).

15

Key types: kind annotations. Key types are used as types for symmetric keys, public encryption keys, digital
signing keys and message tags. The differences are in the kind annotations. The following table summarizes
how different kinds of key types represent various forms of cryptography:

({Secret},{Secret})KT(X) symmetric key types
({Public},{})KT(X) public encryption key types
({},{Public})KT(X) signing key types

({Public},{Public})KT(X) tag types
Tainted ∈ K ∪H, (K,H)KT(X) needed for opponent typability

Tainted key types are needed for obtaining opponent typability: they allow us to use any public message as a
tainted key.

Authentication Types. Here is an informal generic reading for authentication types:

• Members of K Auth(L) require encryption by keys associated with names mentioned in L. A little
abbreviated: Members of K Auth(L) require authentication by L.

Typically, L is a list of principal names and authentication is acquired by encryption with their signing keys.
We use the following shorthands for authentication types, similar to those for generative top types:

Derived Forms for Authentication Types:

Secret(L)
∆
= /0Auth(L);

Public(L)
∆
= {Public}Auth(L);

Tainted(L)
∆
= {Tainted}Auth(L);

Un(L)
∆
= {Public,Tainted}Auth(L)

Key and Authentication Types. Key and authentication types are closely related. In useful key types (K,H)KT(X),
the pattern X is always of the form X = (Xplain,Xauth). If k is an encryption key of type (K,H)EK(Xplain,Xauth),
it can be used to encrypt messages M that match Xplain and the resulting ciphertext {|M|}k is of type J Auth(L)

where L matches Xauth.1 The type J Auth(L) expresses that {|M|}k requires further authentication by L, which
can be acquired by encryption with a key that is associated with L.

In order to show how the the slot Xauth is used, let us first “switch it off” by setting it to the constant pattern
for the empty message: Xauth = (). Consider the following example, which has Xauth “switched off”:

SigningKT
∆
= ({},{Public})KT(Public(),())

P
∆
= new k : SigningKP; (!out net (Dec(k)) |!QA(Enc(k)) |!QB(Dec(k)))

PA(esA : SigningEK)
∆
= new m : Public; begin!(m,A,B); out net {|snd(m,A,B)|}esA

PB(dsA : SigningDK)
∆
= inp net {|snd(∃x : Public,A,B)|}dsA−1 [!begun(x,A,B)]; end(x,A,B)

In this protocol, A sends to B the signed, public message m. The sender A also includes both her own and the
intended receiver’s identity. This protocol type-checks, if we assign the following type to the tag snd:

snd : ({Public},{Public})KP(Xplain,())

where Xplain
∆
= (∃x:Public,∃a:Public,∃b:Public)[!begun(x,a,b)]

With this tag type and assuming that A and B have type Public both the tagged message snd(m,A,B) and
the signed message {|snd(m,A,B)|}esA have type Public(). Note that this protocol is robustly safe even if the
sender’s identity is omitted ({|snd(m,B)|}esA instead of {|snd(m,A,B)|}esA), because the sender’s identity is

1The kind J of {|M|}k’s authentication type depends on the kinds (K,H) of the key type and the kind of the plaintext type; see Section 4.5
for the precise rule how to determine J.

16

associated with her signing key and a receiver of a signed message can infer her identity from the signature.
An optimized protocol omits A’s identity:

SigningKT(A)
∆
= ({},{Public})KT(Public(A),())

Q
∆
= new k : SigningKP(A); (!out net (Dec(k)) |!QA(Enc(k))! | QB(Dec (k)))

QA(esA : SigningEK(A))
∆
= new m : Public; begin!(m,A,B); out net {|snd(m,B)|}esA

QB(dsA : SigningDK(A))
∆
= inp net {|snd(∃x : Public,B)|}dsA−1 [!begun(x,A,B)]; end(x,A,B)

Note that we have modified the type of A’s signing key. The new key type expresses that the key may be used
for encrypting messages of type Public(A), i.e., messages that require authentication by A. We have to modify
the type of snd correspondingly and make use of the slot Xauth:

snd : ({Public},{Public})KP(Xplain,Xauth)

where Xplain
∆
= (∃x:Public,∃b:Public)[!begun(x,a,b)] and Xauth

∆
= ∃a

Note that the scope of the existential binder for a in Xauth includes the occurrence of a in Xplain. Now, snd(m,B)

has type Public(A) and {|snd(m,B)|}esA has type Public().

4.4 Output and Input

The interesting typing rules for processes are for input and output. We assume that every channel is untrusted.
Accordingly, in our typing rules for I/O we require that channels are of type Un.2 Untrusted channels may
transmit messages of type Un. In the output rule (Proc Out), message M has to be of type Un in order to be
sent out on the untrusted channel N. Note that M may also be sent out if M’s type is any other public type,
because each public type is a subtype of Un. In the input rule (Proc In), the received message M is assumed
to be of type Un. This assumption is used to establish the assertions B̄, which are then used as assumptions
to check the process continuation P. So B̄ is a post-condition for input and a pre-condition for the process
continuation. Note that in (Proc In) we split the non-copyable part of the environment into Ā1 and Ā2. This
avoids that the type-checker uses a single non-copyable assertion multiple times.

(Proc Out)

E ` N : Un, M : Un

E ` out N M

(Proc In)
~x∩dom(!E) = /0 fv(M)⊆ dom(~x, !E)

!E, Ā1, Ā2 ` N : Un ~x, !E, Ā1, M : Un ` B̄ ~x, !E, Ā2, B̄ ` P

!E, Ā1, Ā2 ` inp N ∃~x .M[B̄];P

4.5 Encryption

There are two typing rules for encryption. Depending on the kind attributes of the encryption key type, exactly
one of these is applicable. The rule (Encrypt Trusted) applies when the encryption key is untainted and the
matching decryption key is not public. In this situation, it is always safe to publish the ciphertext, hence, the
ciphertext has a public type:

(Encrypt Trusted)
Tainted 6∈ K ∪H−1

E ` N : (K,H)EK(X), (M,L) ∈ X , B̄

E ` {|M|}N : Public(L), B̄

Public−1 ∆
= Tainted

Tainted−1 ∆
= Public

K−1 ∆
= {k−1 | k ∈ K}

Otherwise, the rule (Encrypt Untrusted) is used for encryption:

2In order to model protocols with trusted channels, one could encode these using symmetric encryption.

17

(Encrypt Untrusted)
Tainted ∈ K ∪H−1 J = (J′−{Tainted})∪ (K−{Public})

E ` N : (K,H)EK(X), (M,L) ∈ X , M : J′Top, B̄

E ` {|M|}N : J Auth(L), B̄

Note that here the ciphertext type J Auth(L) is only public if the plaintext type J ′Top is already public, and is
tainted if the encryption key is tainted.

4.6 Decryption

There are two typing rules for decryption. Depending on the kind attribute of the ciphertext type, at most one
of these is applicable. The rule (Decrypt Trusted) applies if both the ciphertext and the decryption key are
untainted. It is the “inverse” of the encryption rule (Encrypt Trusted):

(Decrypt Trusted)
Tainted 6∈ H ∪ J
E ` N : (K,H)DK(X) E,(M,L) ∈ X ` B̄

E,{|M|}N−1 : J Auth(L) ` B̄

The rule (Decrypt Untrusted) applies if the ciphertext is tainted. In this case, we do not know who has encrypted
the ciphertext. We therefore instantiate the authentication slot of the decryption key type’s pattern parameter X
by a fresh eigenvariable x, which acts a placeholder for the “real” authenticator.

(Decrypt Untrusted)
Tainted ∈ J x 6∈ dom(E)∪ fv(B̄) E ` N : (K,H)DK(X)

(x, E, (M,x) ∈ X ` B̄) ∨ (Public,Tainted ∈ K ∪H−1)

(E, M : J Top ` B̄) ∨ (Public 6∈ K∪H−1)

E,{|M|}N−1 : J Top ` B̄

The rule sometimes requires to prove the assertion set B̄ in two different environments. This is necessary if
K = {Public} and H = /0, i.e. if the ciphertext has been encrypted by a public encryption key. Intuitively, the
environment (x, E, (M,x) ∈ X) covers the case when the ciphertext has been formed by an honest agent, and
the environment (E, M : J Top) when it has been formed by an opponent. If K = /0 and H ⊆ {Public} (i.e. the
encryption key is a symmetric key or signing key), it is enough to show B̄ in environment (x, E, (M,x) ∈ X).
If K = H = {Public} (i.e. the “encryption key” is a tag), it is enough to show B̄ in environment (E, M : J Top).

4.7 Nonce Types

There are four important typing rules for nonces, which can be classified into responder’s and challenger’s
rules. The rules (Weaken Chall), (Nonce Cast) and (Strengthen Resp) are usefully applied by responders in
order to turn challenge types into response types: A responder will first use the rule (Weaken Chall) to turn
the type of a nonce challenge into an empty challenge type. In order to do that, he has to be able to offer
all assertions that the challenger requested. Then the responder uses the (Nonce Cast) rule to turn the empty
challenge type into an empty response type before adding additional offers into the response type’s assertion
set using (Strengthen Resp).

Responder’s Nonce Rules:

(Weaken Chall)
E ` N : (K,H)Chall(Ā,B), B, C̄

E ` N : (K,H)Chall(Ā), C̄

(Nonce Cast)
E ` N : (K,H)Chall(), B̄

E ` N : (K,H)Resp(), B̄

(Strengthen Resp)
E ` N : (K,H)Resp(Ā), B, C̄

E ` N : (K,H)Resp(Ā,B), C̄

18

The rule (Nonce Use) is usefully applied by challengers after receiving a response: A challenger may add
the assertions from the challenge and response types into his environment. To do that, he has to remove the
nonce’s freshness assertion from the environment and replace it by an assertion that the nonce has now become
stale.

Challenger’s Nonce Rule:

(Nonce Use)
E, N : Stale, Ā, B̄ ` C̄

E, fresh(N : (K,H)Chall(Ā)), N : (K,H)Resp(B̄) ` C̄

Let’s look back at the syntactic restrictions on types: Note first that, by syntactic restriction, the pattern
argument of key types may contain copyable assertions only. Thus, without nonce types it is impossible to
communicate non-copyable assertions and establish one-to-one correspondences. Note, furthermore, that the
syntactic restrictions on challenge and response types prohibit unsafe nonce handshakes. An example of an
unsafe handshake is one where both the challenge and response are sent in the clear. In this case, the challenge
and response types must both have kind {Public,Tainted} and then, by syntactic restriction, both types must
have empty assertion sets. Therefore, an unsafe nonce handshake of this kind is useless.

Following Gordon and Jeffrey’s article [25], we distinguish between POSH (“Public Out Signed Home”),
SOPH (“Secret Out Public Home”) and SOSH (“Secret Out Secret Home”) nonces. Note that, by syntactic
restriction, POSH challenge types and SOPH response types must have empty assertion sets.

Derived Forms for Nonce Types:

PoshNT(Ā)
∆
= ({Public,Tainted},{Public})NT(Ā);

SophNT(Ā)
∆
= ({Tainted},{Public,Tainted})NT(Ā);

SoshNT(Ā)
∆
= ({Tainted},{Tainted})NT(Ā)

Our treatment of challenge and response types for pattern-matching spi builds on Gordon and Jeffrey’s
treatment from [25]. We have modified their nonce rules to make nonce casts implicit and to allow the verifi-
cation of additional protocols:

Implicit nonce casts and nonce checks. Nonce casting and nonce checking in pattern-matching spi is achieved
implicitly, rather than by explicit syntactic operators as in [25].

Encrypting SOPH challenges with public keys. In pattern-matching spi, we can verify SOPH challenges
that are encrypted by public encryption keys, whereas, in [25], SOPH challenges had to be encrypted
by symmetric keys. Technically, we achieve this by additional kind annotations on nonce types and by
having freshness assertions keep track of the original nonce challenge types.

Multiple responders. We have split the single nonce cast rule from [25] into the three rules (Nonce Cast),
(Weaken Chall) and (Strengthen Resp). As a result, a single nonce challenge may be passed through
several responders authenticating each of them. As an example, consider the following fragment of the

19

Yahalom protocol:3

A→ B A, Na

B begins “B acknowledging receipt of Na to A”
B→ S B, {msg2(A,Na)}Kbs

S begins “S providing Kab to A shared with B”
S→ A {msg3(B,Kab,Na)}Kas

A ends “B acknowledging receipt of Na to A”
A ends “S providing Kab to A shared with B”

Here, Alice generates a POSH challenge Na of type PoshChall() and sends it to Bob. Bob casts the
challenge to an empty response type, strengthens the response by the begun-assertion that he has to
offer, and then forwards Na to server S. When the server receives Na, it has the following type where
ack(B,Na,A) = “B acknowledging receipt of Na to A”:

PoshResp(begun(ack(B,Na,A)))

The server then further strengthens the response, before forwarding it on to Alice. When Alice receives
Na, it has the following type where prvd(S,Kab,A,B) = “S providing Kab to A shared with B”:

PoshResp(begun(ack(B,Na,A)), begun(prvd(S,Kab,A,B)))

Now, Alice can safely end both correspondences.

4.8 Secrecy and Integrity

In addition to robust safety for authenticity, our type system also satisfies robust safety theorems for secrecy
(“robust write-safety”) and integrity (“robust read-safety”). These theorems formally confirm our informal
semantics of public and tainted types from Section 4.2. Like robust safety for authenticity, robust write- and
read-safety are simple corollaries of a type preservation theorem. Proving these theorems therefore hardly
requires any additional work. They are a byproduct of the proof work that we had to do anyways in order to
show robust safety for authenticity.

The robust write-safety theorem says that well-typed processes never leak names that are meant to be kept
secret. A name is meant to be kept secret, if at name generation it is annotated by a non-public type that is not
a challenge type.4 For instance, in the following protocol fragment the name n is meant to be kept secret:

PA
∆
= new n : Secret; out net {|{|sec(n, B)|}esA|}epB

Definition 4.1 (Write-Safety) A computation state s is write-safe iff s→∗ Ā, n : T ::: out L n | P implies that
T is public or a challenge type. A process P is write-safe iff (~n : Un ::: P) is write-safe, where~n = fn(P) and
~n distinct.

Definition 4.2 (Robust Write-Safety) A process P is robustly write-safe iff (P | O) is write-safe for every
closed opponent process O.

Theorem 4.1 (Robust Write-Safety) If~n are distinct names and (~n : Un ` P), then P is robustly write-safe.

The robust read-safety says that input variables that are annotated by untainted types that are not response
types never receive names that have been generated by opponents. Remember that opponents only generate

3See Section 6.2 for a typed specification of the BAN–Yahalom protocol.
4Challenge types are excluded, because the system is not designed to preserve their secrecy. The rule (Nonce Cast) changes the kind

of challenge types. For instance, SOPH nonces are generated as secret challenges and turn into public responses by (Nonce Cast).

20

names of type Un (by our definition of opponent processes in Section 3.3). For instance, in the following
protocol fragment the type annotation Secret on variable x specifies that names received through x have not
been generated by opponents:

PB
∆
= inp {|{|sec(∃x : Secret, B)|}dsA−1 |}dpB−1 ;

Definition 4.3 (Read-Safety) A computation state s is read-safe iff (s→∗ Ā, n : Un ::: out L M{x←n,~y←~N} |
(inp L ∃x,~y . M[x : T, Ā]; P) | Q) implies that T is tainted or a response type. A process P is read-safe iff
(~n : Un ::: P) is read-safe, where~n = fn(P) and~n distinct.

Definition 4.4 (Robust Read-Safety) A process P is robustly read-safe iff (P |O) is read-safe for every closed
opponent process O.

Theorem 4.2 (Robust Read-Safety) If~n are distinct names and (~n : Un ` P), then P is robustly read-safe.

4.9 All Typing Rules

After having discussed the most interesting rules we now display the complete set of typing rules:

Right Rules, E ` Ā:

(True)

E `

(Id)
E, !A ` B̄

E, !A `!A, B̄

(Lift)
E ` B̄

E,A ` A, B̄

(Derelict)
E `!A, B̄

E ` A, B̄

(Copy)
E `!A, B̄

E `!A, !A, B̄

(Sub)
E `M : T, B̄ T ≤U fv(U)⊆ dom(E)

E `M : U, B̄

(Empty)
E ` B̄

E ` () : K Top, B̄

(Pair)
E `M : K Top, N : K Top, B̄

E ` (M,N) : K Top, B̄

(Enc Part)

E `M : (K,H)KP(X), B̄

E ` Enc(M) : (K,H)EK(X), B̄

(Encrypt Trusted)
Tainted 6∈ K ∪H−1

E ` N : (K,H)EK(X), (M,L) ∈ X , B̄

E ` {|M|}N : Public(L), B̄

(Dec Part)

E `M : (K,H)KP(X), B̄

E `Dec(M) : (K,H)DK(X), B̄

(Encrypt Untrusted)
Tainted ∈ K∪H−1 J = (J′−{Tainted})∪ (K−{Public})

E ` N : (K,H)EK(X), (M,L) ∈ X , M : J′Top, B̄

E ` {|M|}N : J Auth(L), B̄

(Nonce Cast)
E ` N : (K,H)Chall(), B̄

E ` N : (K,H)Resp(), B̄

(Weaken Chall)
E ` N : (K,H)Chall(Ā,B), B, C̄

E ` N : (K,H)Chall(Ā), C̄

(Strengthen Resp)
E ` N : (K,H)Resp(Ā), B, C̄

E ` N : (K,H)Resp(Ā,B), C̄

Left Rules, E, Ā ` B̄:

(Unsub)
E, M : U ` B̄ T ≤U fv(U)⊆ dom(E)

E, M : T ` B̄

(Split)
E, M : K Top, N : K Top ` B̄

E, (M,N) : K Top ` B̄

(Decrypt Untrusted)
Tainted ∈ J x 6∈ dom(E)∪ fv(B̄) E ` N : (K,H)DK(X)

(x, E, (M,x) ∈ X ` B̄) ∨ (Public,Tainted ∈ K∪H−1)

(E, M : J Top ` B̄) ∨ (Public 6∈ K∪H−1)

E, decrypt(M,N) : J Top ` B̄

(Decrypt Trusted)
Tainted 6∈ H ∪ J
E ` N : (K,H)DK(X) E,(M,L) ∈ X ` B̄

E, decrypt(M,N) : J Auth(L) ` B̄

21

where decrypt(M,N)
∆
=

{

{|M|}Enc (L) if N = Dec(L)

{|M|}N−1 otherwise

(Nonce Use)
E, N : Stale, Ā, B̄ ` C̄

E, fresh(N : (K,H)Chall(Ā)), N : (K,H)Resp(B̄) ` C̄

(Discard Chall)
E, N : Stale ` B̄

E, fresh(N : (K,H)Chall(Ā)) ` B̄

Well-typed Processes, E ` P:

(Proc Out)

E ` N : Un, M : Un

E ` out N M

(Proc In)
~x∩dom(!E) = /0 fv(M)⊆ dom(~x, !E)

!E, Ā1, Ā2 ` N : Un ~x, !E, Ā1, M : Un ` B̄ ~x, !E, Ā2, B̄ ` P

!E, Ā1, Ā2 ` inp N ∃~x .M[B̄];P

(Proc New)
E, n : T, fresh(n : T) ` P n 6∈ fn(E), T generative

E ` new n:T ; P

(Proc Par)
!E, Ā1 ` P !E, Ā2 `Q

!E, Ā1, Ā2 ` P |Q

(Proc Repl)
!E ` P

!E, Ā ` !P

(Proc Stop)

E ` 0

(Proc Begin)
E, begun(M) ` P

E ` begin(M); P

(Proc Begin Many)
E, !begun(M) ` P

E ` begin!(M); P

(Proc End)
!E, Ā1 ` begun(M) !E, Ā2 ` P

!E, Ā1, Ā2 ` end(M); P

5 Derived Forms

In the previous section, we have introduced the core language and type system for pattern-matching spi. In this
section, we define the customized derived forms that we work with when specifying and checking protocols.
We accompany each of the derived forms by derived typing rules that are easier to work with than the core
language rules. These derived rules are sometimes a bit weaker than the core language rules, but we think
that they are sufficient to type-check most practical protocols that can be checked with the core language rules
directly.

5.1 Tagging

In previous type systems for cryptographic protocols [24, 25, 23], message tags were introduced using tagged
union types. These types are sound, and they allow a key to be used in more than one protocol, but they require
the protocol suite to be known before the key is generated, since the plaintext type of the key is given as the
tagged union of all the messages in the protocol suite. In this paper, we adopt a variant of dynamic types to
allow a key to be generated with no knowledge of the protocol suite it will be used for. In our system, we give
message tags a type of the form ` : X→ Auth(Y), which can be used to tag messages M of kind (J∪Tainted)

to get tagged messages `(M) : J Auth(L), if (M,L) matches the pattern (X ,Y). For example:

Example 5.1 (Simple Signing)

snd : (∃x : Public,∃b : Public)[!begun(x,a,b)]→Auth(∃a : Public,)

P
∆
= new k : SigningKP(A); (!out net (Dec (k)) | !PA(Enc(k)) | !PB(Dec(k)))

PA(esA : SigningEK(A))
∆
= new m : Public; begin!(m,A,B); out net {|snd(m,B)|}esA

PB(dsA : SigningDK(A))
∆
= inp net {|snd(∃x : Public,B)|}dsA−1 [!begun(x,A,B)]; end(x,A,B)

In the type of snd, the scope of ∃a includes the entire tag type. Thus, the a inside the begun-assertion is bound
by the ∃a on the right.

22

Remember that in pattern-matching spi-calculus, tagging is not primitive but defined as symmetric encryp-
tion with public keys, i.e., `(M)

∆
= {|M|}Enc(`). We define tag types by the following translation to our core

language of types.

X→ Auth(Y)
∆
= ({Public},{Public})KP(X ,Y)

We obtain the following derived typing rules for tagging:

(Tag)
E ` ` : X→ Auth(Y), M : (J∪{Tainted})Top, (M,L) ∈ (X ,Y), B̄

E ` `(M) : J Auth(L), B̄

(Untag Untainted)
Tainted 6∈ J E ` ` : X→ Auth(Y) E, (M,L) ∈ (X ,Y) ` B̄

E, `(M) : J Auth(L) ` B̄

(Untag Tainted)
Tainted ∈ J E ` ` : X→ Auth(Y) E, M : J Top ` B̄

E, `(M) : J Top ` B̄

5.2 Signing Keys

A goal of this type system is to allow principals to have just one signing key, which can be used for any
protocol, rather than requiring different signing key types for different protocols. Message tags are then used
to ensure the correctness of each protocol.

The type for a signing key is designed to support nested signatures, for example {|{|M|}esA|}esB is a message
M signed by A (using her signing key esA : SigningEK(A)) and B (using his signing key esB : SigningEK(B)).
This message can be given type {|{|M|}esA|}esB : Secret as long as M : Secret(A,B,y) for some y, and type
{|{|M|}esA|}esB : Public as long as M : Public(A,B,y) for some y. This form of nested signing was not supported
by [24, 25, 23].

SigningKT(L)
∆
= (/0,{Public})KT(Secret(L,y),∃y)

The derived type rules for signing keys are:

(Sign)
Tainted 6∈ J E ` N : SigningEK(L), M : J Auth(L,L′), B̄

E ` {|M|}N : J Auth(L′), B̄

(Unsign Untainted)
Tainted 6∈ J E ` N : SigningDK(L) E, M : Secret(L,L′) ` B̄

E, {|M|}N−1 : J Auth(L′) ` B̄

(Unsign Tainted)
Tainted ∈ J E ` N : SigningDK(L) x, E, M : Secret(L,x) ` B̄

E, {|M|}N−1 : J Top ` B̄

These type rules are enough to verify Example 5.1: The critical bit of the sender’s type derivation is the proof
that {|snd(m,B)|}esA has type Un. The critical bit of the receiver’s type derivation is the proof that the post-
condition !begun(x,A,B) for the pattern-matching input holds. These parts of the type derivation are sketched
in Figure 1. The (shortcut) in this figure merges applications of the rule for pattern-matching, the pair formation
rule (Pair) and the subsumption rule (Sub).

23

X
∆
= (∃x : Public,∃b : Public)[!begun(x,a,b)], Y

∆
= (∃a : Public,), E0

∆
= (net : Un, A : Public, B : Public, snd : X→

Auth(Y)), Esnd
∆
= (E0, esA : SigningEK(A), m : Public, !begun(m,A,B)), Ercv

∆
= (E0, dsA : SigningDK(A)), C̄(x)

∆
=

(x : Public, !begun(x,A,B))

Checking that {|snd(m,B)|}esA is publishable:

(Id)
Esnd ` esA : SigningEK(A)

(Id)
Esnd ` m,B,A : Public, !begun(m,A,B)

(shortcut)
Esnd ` (m,B) : Un, ((m,B),(A,())) ∈ (X ,Y)

(Tag)
Esnd ` snd(m,B) : Public(A,())

(Sign)
Esnd ` {|snd(m,B)|}esA : Public()

(Sub)
Esnd ` {|snd(m,B)|}esA : Un

Checking the input post-condition C̄(x):

(Id)
x,Ercv ` dsA : SigningDK(A)

(Id)
y,x,Ercv, x,B,A : Public, !begun(x,A,B) ` C̄(x)

(pattern match)
y,x,Ercv, ((x,B),(A,y)) ∈ (X ,Y) ` C̄(x)

(Untag Untainted)
y,x,Ercv, snd(x,B) : Secret(A,y) ` C̄(x)

(Unsign Tainted)
x,Ercv, {|snd(x,B)|}dsA−1 : Un ` C̄(x)

Figure 1: Important parts of the type derivation for Example 5.1

5.3 Public Encryption Keys

Public key encryption is dual to signing: the encryption key is public, and the decryption key is kept secret.
One crucial difference is that although our type system supports nested uses of signatures, it does not support
similar nested uses of public-key encryption. As a result, the type system does not support encrypt-then-
sign applications. It is well-known that encrypt-then-sign protocols are problematic, because a receiver of
an encrypted-then-signed message cannot be sure that the signature is the original—a compromised principal
may have removed the original signature and replaced it by his own. This is a well-known problem that results
in security flaws for some encrypt-then-sign applications (see, for instance, the analysis of the CCITT X.509
protocol in [15]).

PublicCryptoKT(L)
∆
= ({Public}, /0)KT(Secret(L),)

The derived type rules for public encryption keys are:

(Pub Encrypt)
E ` N : PublicCryptoEK(L), M : Secret(L), B̄

E ` {|M|}N : Public, B̄

(Prv Decrypt Tainted)
Tainted ∈ J E ` N : PublicCryptoDK(L)

E, M : J Top ` B̄ E, M : Secret(L) ` B̄

E,{|M|}N−1 : J Top ` B̄

(Prv Decrypt Untainted)
Tainted 6∈ J E ` N : PublicCryptoDK(L) E, M : Secret(L) ` B̄

E,{|M|}N−1 : J Auth(L′) ` B̄

The rule (Prv Decrypt Tainted) requires to prove assertions B̄ in two different environments. This is necessary,
because a tainted ciphertext under a public encryption key may have been encrypted either by an opponent
or by an honest agent. The first premise of (Prv Decrypt Tainted) accounts for the former possibility and the
second premise for the latter. We can now verify the sign-then-encrypt protocol:

24

X
∆
= (∃x : Secret,∃b : Public)[!begun(x,a,b)], Y

∆
= (∃a : Public,), SEK(L)

∆
= SigningEK(L), SDK(L)

∆
= SigningDK(L),

PEK(L)
∆
= PublicCryptoEK(L), PDK(L)

∆
= PublicCryptoDK(L), E0

∆
= (net : Un, A,B : Public, sec : X→Auth(Y)),

Esnd
∆
= (E0, esA : SEK(A), epB : PEK(B), m : Secret, !begun(m,A,B)), Ercv

∆
= (E0, dsA : SDK(A), dpB : PDK(B)),

C̄(x)
∆
= (x : Secret, !begun(x,A,B))

Checking that {|{|sec(m,B)|}esA|}epB is publishable:

Esnd ` epB : PEK(B)

Esnd ` esA : SEK(A)

Esnd `m : Secret, B,A : Public, !begun(m,A,B)
(shortcut)

Esnd ` (m,B) : Tainted, ((m,B),(A,B)) ∈ (X ,Y)
(Tag)

Esnd ` sec(m,B) : Secret(A,B)
(Sign)

Esnd ` {|sec(m,B)|}esA : Secret(B)
(Sub),(Pub Encrypt)

Esnd ` {|{|sec(m,B)|}esA|}epB : Un

Checking the input post-condition C̄(x):

x,Ercv ` dpB : PDK(B) Duntrusted Dtrusted (Prv Decrypt Tainted)
x,Ercv, {|{|sec(x,B)|}dsA−1 |}dpB−1 : Un ` C̄(x)

Subderivation Duntrusted:

x,Ercv ` dsA : SDK(A)

(Id)
y,x,Ercv, x : Secret, B,A : Public, !begun(x,A,B) ` C̄(x)

(pattern match)
y,x,Ercv, ((x,B),(A,y)) ∈ (X ,Y) ` C̄(x)

(Untag Untainted)
y,x,Ercv, sec(x,B) : Secret(A,y) ` C̄(x)

(Unsign Tainted)
x,Ercv, {|sec(x,B)|}dsA−1 : Un ` C̄(x)

Subderivation Dtrusted:

x,Ercv ` dsA : SDK(A)

(Id)
x,Ercv, x : Secret,B,A : Public, !begun(x,A,B) ` C̄(x)

(pattern match)
x,Ercv, ((x,B),(A,B)) ∈ (X ,Y) ` C̄(x)

(Untag Untainted)
x,Ercv, sec(x,B) : Secret(A,B) ` C̄(x)

(Unsign Untainted)
x,Ercv, {|sec(x,B)|}dsA−1 : Secret(B) ` C̄(x)

Figure 2: Important parts of the type derivation for Example 5.2

Example 5.2 (Sign-Then-Encrypt)

sec : (∃x : Secret,∃b : Public)[!begun(x,a,b)]→Auth(∃a : Public,)

P
∆
= new k : SigningKP(A); new h : PublicCryptoKP(B);

(!out net (Dec(k),Enc (h)) | !PA(Enc(k)) | !PB(Dec (k)))

PA(esA : SigningEK(A), epB : PublicCryptoEK(B))
∆
=

new m : Secret; begin!(m,A,B); out net {|{|sec(m,B)|}esA|}epB

PB(dsA : SigningDK(A), dpB : PublicCryptoDK(B))
∆
=

inp net {|{|sec(∃x : Secret,B)|}dsA−1 |}dpB−1 [!begun(x,A,B)]; end(x,A,B)

The most important parts of the type derivation are sketched in Figure 2. In the derivation of Esnd ` {|{|sec(m,B)|}esA|}epB : Un,
note that {|sec(m,B)|}esA has type Secret(B). This was impossible in [24, 25, 23], where all ciphertexts have
type Un. This limitation of [24, 25, 23] is the reason why sign-then-encrypt fails to type-check in these earlier
systems.

5.4 Symmetric Cryptography

Recall that symmetric encryption is not a primitive but defined as asymmetric encryption with a shared, secret
key pair, i.e., {M}N

∆
= {|M|}Enc(N). We define a type for symmetric keys as follows:

SymK(L)
∆
= (/0, /0)KP(Secret(L),)

25

The derived type rules are:

(Sym Encrypt)
E ` N : SymK(L), M : Secret(L), B̄

E ` {M}N : Public, B̄

(Sym Decrypt)
E ` N : SymK(L) E, M : Secret(L) ` B̄

E, {M}N : Un ` B̄

The key type parameter L may be instantiated by the tuple of all principals that share the symmetric key. It is
also legal to include the symmetric key itself in L. (Name declarations of the form n : T (n) are legal.) Including
a symmetric key in the parameter of its own key type is sometimes useful, for instance, when the reception of a
new session key is acknowledged by encrypting a nonce with the session key itself. In Section 6.2, we present
the types for the BAN–Yahalom protocol. These types instantiate the parameter L in that way.

5.5 Hashing

Recall that we define hashing as encryption with a public encryption key that has no matching decryption key.
The encrypted message is then tagged by a special hashtag, which is needed to alert the type-checker to treat
the hashtaged message in a special way. Our definition of hashing was #(M)

∆
= hashtag({|M|}hashkey). Here are

our types for hashkey and hashtag:

hashkey : ({Public}, /0)EK(); hashtag : {|Secret(y)|}hashkey→ Auth(∃y)

The derived type rules for hashing are:

(Hash)
E `M : Secret(L), B̄

E ` #(M) : Public(L), B̄

(Unhash)
E, M : Secret(L) ` B̄

E, #(M) : Secret(L) ` B̄

We assume that each environment E is implicitly extended by the above type assertions for the special global
names hashkey and hashtag. We can then adapt Example 5.1 to allow A to sign the message digest of M rather
than signing the entire message:

Example 5.3 (Message Digest)

A begins! (M,A,B)

A→ B M,{|#(snd(M,B))|}esA

B ends (M,A,B)

This example uses the same types as Example 5.1.

5.6 Keyed Hashing

Keyed hashing is commonly used in message authentication codes. Recall that we encode keyed hashing as a
composite of hashing and symmetric cryptography, i.e., #N(M)

∆
= {#(M)}N . Here is our definition of types for

the hash keys:
HashKey(L)

∆
= (/0, /0)KP(#(Secret(L)),)

The derived typing rules are:

(Keyed Hash)
E ` N : HashKey(L), M : Secret(L), B̄

E ` #N(M) : Public, B̄

(Keyed Unhash)
E ` N : HashKey(L) E, M : Secret(L) ` B̄

E, #N(M) : Un ` B̄

We can now type-check the following example:

26

Example 5.4 (Keyed Hashing)
A begins! (M,A,B)

A→ B M,#k(snd(M))

B ends (M,A,B)

Consider the types k : HashKey(A,B) and snd : (∃x : Public)[!begun(x,a,b)]→Auth(∃a : Public, ∃b : Public).
With these types, we can type-check a system that restricts each principal to act in only one of the two roles. A
bit more precisely: If Snd1(a,b,k) and Rcv1(b,a,k) are the obvious spi-calculus implementations of the sender
process on behalf of a and the receiver process on behalf of b, then the following system type-checks:

new k : HashKey(A,B);(!Snd1(A,B,k) | !Rcv1(B,A,k))

If we want to allow each principal to act in both roles, the above protocol is unsafe. An opponent can simply
play a message M from A straight back to her, making her believe M originated from B. Note that it is
impossible to type-check new k : HashKey(A,B);(!Rcv1(B,A,k) | !Rcv1(A,B,k)).

We can modify the protocol by including the principal identities in the message:

A begins! (M,A,B)

A→ B M,#k(snd(M,A,B))

B ends (M,A,B)

Now, if Snd2(a,b,k) and Rcv2(b,a,k) are the spi-calculus implementations for the modified sender and receiver
processes, we can type-check the following system where each principal acts both as a sender and a receiver.

new k : HashKey();(!Snd2(A,B,k) | !Snd2(B,A,k) | !Rcv2(A,B,k) | !Rcv2(B,A,k))

The type for the snd-tag is (∃x : Public, ∃a : Public, ∃b : Public)[!begun(x,a,b)]→Auth().

5.7 Matching

In pattern-matching spi, we have replaced multiple destructors from other spi-calculi by a single pattern-
matching input primitive. This primitive can be used to directly destruct a message as part of an input statement.
Sometimes, however, pattern-matching at the initial input is not possible, because constants needed for the
pattern-match only become known later in the protocol. Examples are protocols where a receiver first obtains
a ciphertext and only later gets to know the decryption key. In such a case, decryption of the ciphertext cannot
be part of the initial pattern-matching input. It is also sometimes necessary to bind a ciphertext to a variable
before destroying the ciphertext. This is necessary if the ciphertext is still needed later, like for instance in the
following protocol.

Example 5.5 (Signed Message Digest with Acknowledgment) Suppose esA and esB are A and B’s signing
keys.

A begins! (snd,M,A,B)

A→ B A, M, {|#(snd(M,B))|}esA

B ends (snd,M,A,B)

B begins! (ack,M,A,B)

B→ A {|ack({|#(snd(M,B))|}esA, A)|}esB

A ends (ack,M,A,B)

Note that B’s acknowledgment contains A’s signed message digest. If B does not save A’s signed message
digest before decrypting it, he will not be able to construct his acknowledgment.

27

It is not hard to encode general pattern-matching, using pattern-matching input and symmetric encryption. The
derived form (match M is X ; P) attempts to match message M against pattern X and then executes P under the
resulting substitution:

match M is ∃~x .N[Ā]; P
∆
= new c : Un; new k : (/0, /0)KP(M);

out c {M}k; inp c ∃~x .{N}k[Ā, {N}k : Un]; P

We obtain the following derived typing rule:

~x∩dom(!E) = /0 fv(N)⊆ dom(~x, !E)

~x, !E, B̄1, N ∈M ` Ā ~x, !E, B̄2, Ā, N ∈M ` P

!E, B̄1, B̄2 `match M is ∃~x .N[Ā]; P

We can use this derived form to express B’s side of Example 5.5:

PB(esB : SigningEK(B), dsA : SigningDK(A))
∆
= inp net (a : Un, x : Un, ctext : Un);

match ctext is {|#(snd(x,B))|}dsA−1 ;
end(snd,x,a,B);
begin!(ack,x,a,B);
out net {|ack(ctext,a)|}esB

This protocol is interesting because the type-checker needs our general definition of pattern-matching on the
left (see Section 4.1). Under the less general alternative definition presented in Section 4.1, which uses match-
ing instead of unification, this protocol does not type-check. We will explain why the more general definition
is needed here: The protocol type-checks with the following tag type.

ack : X(b)→Auth〈∃b : Public〉

where X(b)
∆
= ({|#(snd(∃x : Public,))|} −1 , ∃a : Public)[!begun(ack,x,a,b)]

In order to type-check the output statement in PB’s last line, it is necessary to prove a judgment of the following
form.

E, ctext : Un, ctext ∈ {|#(snd(x,B))|}dsA−1 , !begun(ack,x,a,B) ` {|ack(ctext,a)|}esB : Un

Using (Sign) and (Tag), this proof obligation gives rise to the following subgoal.

E, ctext : Un, ctext ∈ {|#(snd(x,B))|}dsA−1 , !begun(ack,x,a,B) ` 〈(ctext,a), B〉 ∈ 〈X(b), ∃b : Public〉

At this point, we would be stuck if our left pattern-matching rule did not use unification, because ctext does
not match the constant pattern {|#(snd(x,B))|}dsA−1 . Fortunately, our left pattern-matching rule allows us to
unify ctext and {|#(snd(x,B))|}dsA−1 and then attempt to prove the judgment under the most general unifier.
Obviously, the most general unifier is (ctext← {|#(snd(x,B))|}dsA−1). Applying this unifier to the above proof
goal yields the following new goal:

E, {|#(snd(x,B))|}dsA−1 : Un, !begun(ack,x,a,B) ` 〈({|#(snd(x,B))|}dsA−1 , a), B〉 ∈ 〈X(b), ∃b : Public〉

This new goal is derivable, assuming that E contains the type assertion B : Public.

6 More Examples

In the previous section, we have seen typing rules for checking sign-then-encrypt, nested signing, hashing and
keyed hashing. None of these constructs could be verified by Gordon and Jeffrey’s earlier type systems, nor

28

(to the best of our knowledge) by other type systems for cryptographic protocols. In particular, Examples 5.2,
5.3, 5.4 and 5.5 could not be verified using the type systems from [24, 25, 23]. Although these examples are
small, it is clear that constructs like hashing, keyed hashing and sign-then-encrypt are common ingredients of
realistic protocols.

In this section, we analyze two additional protocols: the (three-message version of the) Needham–Schroeder–
Lowe protocol (NSL) and the BAN–Yahalom protocol. NSL could already be type-checked by Gordon and
Jeffrey’s system [25]. However, our new type system allows us to verify optimizations of NSL that avoid
encryption of some nonces, if the secrecy of these nonces is not a security goal. These optimizations could
not be verified by [25]. NSL is a good example to show how, in our system, public key encryption inter-
acts with nonce types. For the BAN–Yahalom protocol our new type system allows us to verify additional
correspondence assertions that Gordon and Jeffrey’s [24, 25, 23] could not verify.

It is tedious to construct type derivations by hand and we have therefore implemented the automatic type-
checker Cryptyc, which is available from [22]. We will present complete typed specifications for the NSL and
BAN–Yahalom protocols using a language that is almost identical to the Cryptyc input language. (We have
slightly modified the Cryptyc input by hand, so that it is consistent with the syntax used in this paper.)

6.1 The Needham-Schroeder-Lowe Protocol

We first analyze a variant of NSL, which includes in the second message a secret m generated by principal B.
This variant of NSL is convenient for explaining several aspects of the type system. The protocol uses A and
B’s public encryption keys epA and epB.

A→ B {|msg1(na, A)|}epB

B begins (B authenticating m to A)
B→ A {|msg2(na, nb, m, B)|}epA

A ends (B authenticating m to A)
A begins (A authenticating to B)
A→ B {|msg3(nb)|}epB

B ends (A authenticating to B)

Figure 3 shows our typed specification of NSL, using syntax that closely resembles the input language for
our automatic type-checker Cryptyc [22]. It contains a series of type definitions (introduced by the keyword
type), pattern definitions (introduced by the keyword pattern) and tag declarations (introduced by the key-
word tag), followed by the process definitions for the initiator and the responder (introduced by the keyword
process).

The nonce na is a SOSH nonce and accounts both for the authentication of (b,m) to a and the secrecy
of m. Note, in particular, that the type assertion m:Secret is contained in the response type for na. This
links the secrecy of m to the nonce na. The fact that m’s secrecy is associated with the nonce is no surprise,
because without this nonce principal B would have no way of knowing that m comes from an honest agent. The
nonce nb is a SOPH nonce that accounts for a’s authentication to b.

Figure 4 shows an interesting bit of the type derivation for NSL, namely, the proof of the initiator’s input
post-condition. We invite you to read the type derivation upwards in a goal-directed fashion. Here are a few re-
marks: In order to prove the input post-condition Āpost, we need to construct two subderivations Duntrusted and
Dtrusted. Intuitively, Duntrusted covers the case where the ciphertext comes from the opponent, whereas Dtrusted

covers the case where the ciphertext comes from an honest agent. Dtrusted and Duntrusted share a common sub-
derivation Duse−na, which applies the (Nonce Use) rule to na. The (Nonce Use) rule unwraps the assertions
Āna wrapped inside na’s response type. Note that this is only allowed if the environment contains a freshness
assertion for na. The derivation Duntrusted contains two interesting uses of subtyping: Firstly, the type Un of nb
is upcast to the challenge type SophChall(Ānb). Intuitively, such a type cast is safe because assertions wrapped

29

/* Nonce types for nA. */

type ChallengeAToB = SoshChall ();

type ResponseBToA (a:Public, b:Public, m:Top)

= SoshResp (m:Secret, begun(b authenticating m to a));

/* Nonce types for nB. */

type ChallengeBToA (a:Public, b:Public)

= SophChall (begun(a authenticating to b));

type ResponseAToB = SophResp ();

/* Message patterns. */

pattern Msg1 = (ChallengeAToB, Public);

pattern Msg2 (a:Public)

= (na : ResponseBToA(a,b,m),

nb : ChallengeBToA(a,b),

m : Top,

b : Public);

pattern Msg3 = ResponseAToB;

/* Message tags. */

tag msg1 : Msg1 -> Auth(b:Public);

tag msg2 : Msg2(a) -> Auth(a:Public);

tag msg3 : Msg3 -> Auth(b:Public);

process Initiator (a:Public, dpA:PublicCryptoDK(a), b:Public, epB:PublicCryptoEK(b)) {

new (na:ChallengeAToB);

out net {| msg1(na,a) |}epB;

inp net {| msg2(na, nb:ChallengeBToA(a,b), m:Secret, b) |}dpA^-1

[begun(b authenticating m to a)];

end(b authenticating m to a);

begin(a authenticating to b);

out net {| msg3(nb) |}epB;

}

process Responder (b:Public, dpB:PublicCryptoDK(b), a:Public, epA:PublicCryptoEK(a)) {

inp net is {| msg1(na:ChallengeAToB, a) |}dpB^-1;

new (m:Secret);

new (nb:ChallengeBToA(a,b));

begin(b authenticating m to a);

out net {| msg2(na,nb,m,b) |}epA;

inp net {| msg3(nb) |}dpB^-1

[begun(a authenticating to b)];

end(a authenticating to b);

}

Figure 3: The Needham–Schroeder–Lowe protocol

30

E0
∆
= some environment such that a,b ∈ dom(E0) and E0 ` dpa : PublicCryptoDK(a)

E
∆
= (E0, fresh(na : SoshChall()))

Āna
∆
= (m : Secret, begun(auth(b,m,a))) Ānb

∆
= begun(auth(a,b)) Āpost

∆
= (nb : SophChall(Ānb), Āna)

Checking the initiator’s input post-condition:

nb,m,E ` dpa : PublicCryptoDK(a) Duntrusted Dtrusted (Prv Decrypt Tainted)
nb,m,E, {|msg2(na,nb,m,b)|}dsA−1 : Un ` Āpost

Subderivation Dtrusted:
Duse−na

(Id),(Weaken)
nb,m,E, na : SoshResp(Āna), nb : SophChall(Ānb), m : Top, b : Public ` Āpost

(Untag Untainted)
nb,m,E, msg2(na,nb,m,b) : Secret(a) ` Āpost

Subderivation Duntrusted:
Duse−na

(Unsub)
nb,m,E, na : Un ` Āna (Id),(Weaken)

nb,m,E, na : Un, nb : SophChall(Ānb) ` Āpost
(Unsub),(Weaken)

nb,m,E, na : Un, nb : Un, m : Un, b : Un ` Āpost
(Untag Tainted),(Split)

nb,m,E, msg2(na,nb,m,b) : Un ` Āpost

Subderivation Duse−na:
(Lift),(Id)

nb,m,E0, na : Stale, Āna ` Āna (Nonce Use)
nb,m,E0, fresh(na : SoshChall()), na : SoshResp(Āna) ` Āna

Figure 4: Checking the initiator’s input post-condition for NSL

inside a challenge type represent obligations. The upcast introduces additional obligations, and adding obliga-
tions is harmless. Assertions wrapped inside response types, on the other hand, represent benefits. The second
use of (Unsub) in Duntrusted upcasts Un to SoshResp(Āna). On first sight, this seems unsafe because adding
benefits is certainly not safe in general. However, names that are generated as SOSH challenges never become
public. Consequently, a type environment that contains both an assertion fresh(na : SoshChall(B̄)) and a type
assertion na : Un does not correspond to a feasible runtime configuration. Therefore, if the type environment
(nb,m,E, na : Un) represents a feasible runtime configuration, then the (Nonce Use) rule is not applicable to
(nb,m,E, na : SoshResp(Āna)). In this sense, Āna is a useless benefit. The upcast from Un to SoshResp(Āna)

introduces a useless benefit, and adding useless benefits is harmless.
Note that nb has a SOPH nonce type. For SOPH nonces the response may be public. We can therefore

modify the protocol and avoid the encryption of the third message. The resulting protocol still type-checks
and is thus robustly safe. This optimized protocol does not type-check in Gordon and Jeffrey’s earlier system
[25], because that system requires SOPH challenges to be encrypted by symmetric keys. If we omit the secret
message m from the protocol, we can also turn na into a SOPH nonce and omit the encryption of na’s response.
So the following two variations of NSL now type-check:

A→ B {|msg1(na, A)|}epB

B begins (B authenticating m to A)
B→ A {|msg2(na, nb, m, B)|}epA

A ends (B authenticating m to A)
A begins (A authenticating to B)
A→ B nb
B ends (A authenticating to B)

A→ B {|msg1(na, A)|}epB

B begins (B authenticating to A)
B→ A na, {|msg2(nb, B)|}epA

A ends (B authenticating to A)
A begins (A authenticating to B)
A→ B nb
B ends (A authenticating to B)

Note that, for a simple scoping reason, we cannot omit principal name B from msg2. An attempt to type-
check this modified protocol would force us to also modify the definition of the message pattern for the second

31

message:

pattern Msg2 (a:Public)

= (na : ResponseBToA(a,b,m),

nb : ChallengeBToA(a,b), // scoping error: b is not bound

m : Top);

This means that the original Needham–Schroeder Public Key protocol (NSPK) does not type-check. Moreover,
our type system guides us towards the fix that protects against Lowe’s attack [31]. The obvious way to fix the
scoping error is the inclusion of B’s identity in msg2, which is exactly Lowe’s fix. Like Gordon and Jeffrey’s
previous systems, our pattern-matching variant of dependent types enforces Abadi and Needham’s engineering
principle 3 [8]:

If the identity of a principal is essential to the meaning of a message, it is prudent to mention the
principal’s name explicitly in the message.

It is interesting that Lowe’s attack is not captured by our attacker model, which does not include attacks
by compromised principals. We currently do not know of any protocol that passes our type-checker but is
vulnerable to an attack by a compromised principal. It is conceivable that our type system guarantees robust
safety even in the presence of compromised principals. Unfortunately, we do not currently know whether or
not this is the case.

6.2 The BAN–Yahalom Protocol

In their BAN logic article [15], Burrows, Abadi and Needham propose the following slightly modified version
of the Yahalom protocol. The goal of this protocol is that A and B establish a session key kab using the
long-term keys kas and kbs they share with a server S.5

A→ B A, na
B→ S B, nb, {msg2(A,na)}kbs

S→ A nb, {msg3(B,kab,na)}kas, {msg4a(A,kab,nb)}kbs

A→ B {msg4a(A,kab,nb)}kbs, {msg4b(nb)}kab

Figure 5 shows the type, pattern and tag definitions for BAN–Yahalom and Figure 6 the process definitions.
They contain four correspondence specifications:

(a) The server begins a one-one correspondence begin(s providing kab to a for b).

(b) The server begins a one-one correspondence begin(s providing to kab b for a).

(c) The initiator begins a one-one correspondence begin!(a acknowledging receipt of kab to b).

(d) The responder begins a one-many correspondencebegin(b acknowledging receipt of na to a).

Correspondences (a) and (b) say that upon successful completion of a protocol run both principals know that
the server has issued kab to be shared with the other principal. These two correspondences do not guarantee
that the other principal has actually received kab. The responder gets this guarantee when receiving msg4b
encrypted by kab. This is formally captured by correspondence (c). The initiator only gets a weaker guarantee.
She never knows that the responder has received the session key, but when receiving msg3 she does know that

5Our model does not distinguish between long- and short-term keys. Key distribution protocols are usually designed to be safe, even if
distributed session keys can be cracked given enough time. This can for instance be verified using a type system for a timed spi-calculus
(see [27]).

32

/* Challenge type. */

type Challenge = PoshChall ();

/* Response types for na. */

type ResponseBToA (a:Public, b:Public, na:Top)

= PoshResp (begun(b acknowledging receipt of na to a));

type ResponseSToA (a:Public, b:Public, s:Public, kab:SymK(a,b,kab), na:Top)

= PoshResp (begun(s providing kab to a for b),

begun(b acknowledging receipt of na to a));

/* Response type for nb. */

type ResponseSToB (a:Public, b:Public, s:Public, kab:SymK(a,b,kab))

= PoshResp (begun(s providing kab to b for a));

/* Message patterns. */

pattern Msg2 (b:Public)

= (a:Public,

nA:ResponseBToA(a,b,nA));

pattern Msg3 (a:Public, s:Public)

= (b:Public,

kab:SymK(a,b,kab),

nA:ResponseSToA(a,b,s,kab,nA));

pattern Msg4a (b:Public, s:Public)

= (a:Public,

kab:SymK(a,b,kab),

nB:ResponseSToB(a,b,s,kab));

pattern Msg4b (a:Public, b:Public, kab:SymK(a,b,kab))

= Top [!begun(a acknowledging receipt of kab to b)];

/* Message tags. */

tag msg2 : Msg2(b) -> Auth(b:Public, s:Public, kbs:SymK(b,s,kbs));

tag msg3 : Msg3(a,s) -> Auth(a:Public, s:Public, kas:SymK(a,s,kas));

tag msg4a : Msg4a(b,s) -> Auth(b:Public, s:Public, kbs:SymK(b,s,kbs));

tag msg4b : Msg4b(a,b,kab) -> Auth(a:Public, b:Public, kab:SymK(a,b,kab));

Figure 5: Types, patterns and tags for BAN–Yahalom

33

process Initiator (a:Public, b:Public, s:Public, kas:SymK(a,s,kas)) {

new (nA:Challenge);

out net (a,nA);

inp net (nB:Challenge, { msg3(b, kab:SymK(a,b,kab), nA) }kas, ticket:Un)

[begun(s providing kab to a for b),

begun(b acknowledging receipt of nA to a)];

end(s providing kab to a for b);

end(b acknowledging receipt of nA to a);

begin!(a acknowledging receipt of kab to b);

out net (ticket, { msg4b(nB) }kab);

}

process Responder (a:Public, b:Public, s:Public, kbs:SymK(b,s,kbs)) {

inp net (a, nA:Challenge);

new (nB:Challenge);

begin(b acknowledging receipt of nA to a);

out net (b, nB, { msg2(a,nA) }kbs);

inp net ({ msg4a(a, kab:SymK(a,b,kab), nB) }kbs, { msg4b(nB) }kab)

[begun(s providing kab to b for a),

!begun(a acknowledging receipt of kab to b)];

end(s providing kab to b for a);

end(a acknowledging receipt of kab to b);

}

process Server (s:Public, a:Public, kas:SymK(a,s,kas), b:Public, kbs:SymK(b,s,kbs)) {

inp net (b, nB:Challenge, { msg2(a, nA:ResponseBToA(a,b,nA)) }kbs);

new (kab:SymK(a,b,kab));

begin(s providing kab to a for b);

begin(s providing kab to b for a);

out net ({ msg3(b,kab,nA) }kas, { msg4a(a,kab,nB) }kbs);

}

Figure 6: Initiator, responder and server for BAN–Yahalom

the responder is “in the protocol loop”. This is formally captured by correspondence (d). Correspondences (a)
and (b) could already be verified by Gordon and Jeffrey’s systems [24, 23], but correspondences (c) and (d)
could not be verified by these systems.

For verifying correspondence (c), it is important that the type of session key kab:SymKey(a,b,kab)

refers to kab itself. This is needed because encryption with kab proves a correspondence that refers to kab.
In Gordon and Jeffrey’s earlier systems, the type of a name n could not refer to n itself. Note that correspon-
dence (c) even type-checks if the tag msg4b tags the empty message instead of nb, i.e., {msg4b()}kab instead
of {msg4b(nb)}kab. On the other hand, it is not so hard to see that the presence of nonce nb in msg4b al-
lows to strengthen the one-to-many correspondence (c) to a one-to-one correspondence. This, however, cannot
currently be verified by our type system—an evidence of its incompleteness.6

The nonce na serves to prove two correspondences, namely, correspondences (a) and (d). Correspon-
dence (d) is begun by the responder and correspondence (a) is begun by the server. Correspondingly, na
changes its type twice: the responder casts na’s type from Challenge to ResponseBToA(a,b,na) (using the

6The problem is that our system does not allow the same nonce to be used twice in the same protocol run, even if the two nonce uses
account for distinct one-one correspondences.

34

typing rules (Nonce Cast) and (Strengthen Resp)), and the server casts na’s type from ResponseBToA(a,b,na)

to ResponseSToA(a,b,s,kab,na) (using the typing rule (Strengthen Resp)). As we already discussed in
Section 4.7, Gordon and Jeffrey’s earlier type systems do not support incremental strengthening of response
types by multiple responders. This is why a type-checker based on these systems could either verify corre-
spondence (a) or correspondence (d), but not both.

7 The Robust Safety Proof

In this section, we give an overview of the most interesting formal properties of the system and explain how
to put these properties together to show robust safety. In order to make the forest behind the trees visible, we
omit many proof details and instead deliver those in Appendix B. Here is a coarse map of the overall proof
architecture towards robust safety:

safety + opponent typability ⇒ robust safety
type preservation + cut ⇒ safety

substitutivity + cut ⇒ type preservation
inversion lemmas + key uniqueness + nonce safety ⇒ cut

7.1 Opponent Typability

Safety theorems for type systems are often corollaries of type preservation theorems (a.k.a. subject reduction
theorems). A type preservation theorem says that the reduction rules of the operational semantics preserve
well-typedness. In type systems for cryptographic protocols, we are interested in the safety of processes P |O,
where P models the cryptographic protocol and O is an opponent. In order to be able to obtain robust safety as
a corollary of type preservation, it is therefore important that not only P but also the opponent O is well-typed.
For this reason, type system for cryptographic protocols are typically designed so that opponent processes that
have access to public names are well-typed. We call this property opponent typability.

Theorem 7.1 (Opponent Typability) If O is an opponent process, fn(O)⊆~n and fv(O)⊆~x, then (~x;~n : Un,~x : Un`

O).

For opponent typability to hold, it is important that opponent processes are Dolev–Yao implementable. For in-
stance, the following non-implementable process P, which decrypts a message without knowing the decryption
key, is not well-typed, i.e., net : Un 6` P.

P
∆
= inp net ∃x,y .{|x|}y−1[{|x|}y−1 : Un];out net x

The proof of Theorem 7.1 makes use of the following lemma:

Lemma 7.1 (Dolev–Yao⇒ Typability) If (~M ~N), then (~M : Un ` ~N : Un).

The proofs of Theorem 7.1 and Lemma 7.1 are pretty direct and can be found in Appendix B.3.

7.2 Safety + Opponent Typability⇒ Robust Safety

Given that opponent processes are typable, robust safety of the type system follows easily from the fact that
well-typed processes are safe in isolation and the fact that the type system works compositionally. Lemma 7.2
below states that well-typed processes are safe in isolation. We postpone its proof to Section 7.6. We show in
this section how to prove robust safety of the type system from its safety and opponent typability. To follow
the robust safety proof, you merely need to recall that P is defined to be robustly safe iff P | O is safe for all
closed opponent processes O.

35

Definition 7.1 (Closed Types) A type T is closed iff fv(T) = /0 (but not necessarily fn(T) = /0).

Lemma 7.2 (Safety for Authenticity) If ~n are distinct names, ~T are closed types and (~n : ~T ` P), then
(~n : ~T ::: P) is safe for authenticity.

Proof of Theorem 3.1 (Robust Safety for Authenticity) If~n are distinct names and (~n : Un ` P), then P is
robustly safe for authenticity.

Proof Suppose~n distinct and (~n : ~T ` P). Let O be a closed opponent process. Let ~m be a vector of names
that occur free in (P |O) but are not already contained in~n. Then (~m : Un,~n : Un `O), by opponent typability
(Theorem 7.1) and weakening. Then (~m : Un,~n : Un ` P | O), by (Proc Par). Then (~m : Un,~n : Un ::: P | O)

is safe for authenticity, by Lemma 7.2. �

Robust write- and read-safety follow from safety lemmas for write- and read-safety in essentially the same
way (see Appendices B.8 and B.9).

7.3 Substitutivity

Substitutivity is a crucial property of many type systems and is needed to show that substituting reduction
rules, like our (Redn IO), preserve well-typedness. Usually, substitutivity roughly says that applying well-
typed substitutions to typing judgments preserves derivability. Our type system is a bit peculiar in that it allows
composite terms on the left hand side of typing judgments. For this reason, we do not even need substitutions
to be well-typed. In our system, applying arbitrary substitutions to typing judgments preserves derivability.
Our substitutivity lemma even says a bit more, namely that applying a substitution does not increase the height
of a type derivation. This fact is needed in the (Cut) proof, in order to deal with the placeholder x for the
unknown authenticator in typing rule (Decrypt Untrusted).

To conveniently state the substitutivity lemma, we introduce some notation: Let J range over judgments.
Let D range over type derivations. If D is a derivation, we write D B J to indicate that D is a derivation for
judgment J . If D is a derivation, we write D = ((D1, . . . ,Dn),J ,(Rule)) to indicate that D BJ , D’s immediate
subderivations are D1, . . . ,Dn, and D’s last rule is (Rule). For a derivation D = ((D1, . . . ,Dn),J ,(Rule)) we
inductively define D’s height as follows:

height(D)
∆
= 1+

n
_

i=1

height(Di);

where
W

is the least upper bound function on non-negative integers.

Lemma 7.3 (Substitutivity) If E ` �, dom(E) = dom(σ) and D B (E ` R), then there exists D ′ such that
D ′B (E{σ} ` R {σ}) and height(D ′)≤ height(D).

Proof This lemma holds because applying a substitution to an instance of a typing rule results in an instance
of the same typing rule. Note, in particular, that this is also true for the axiom (Id), because we permit en-
vironments to contain non-atomic type assertions of the form (M : T) (unlike in many other type systems
where environments are functions from variables to types). Formally, the proof is by induction on the structure
of D. The only cases that require some care are where D ends in a rule that involves unification, i.e., (De-
crypt Trusted) or (Decrypt Untrusted). In these cases, one factorizes σ by the most general unifier and then
applies the resulting mediating substitution to the subderivation. This application of the mediating substitution
preserves derivability, by induction hypothesis. We omit the details. �

36

7.4 Cut

Just as importantly as substitutivity, our type system is designed to satisfy (Cut):

Theorem 7.2 (Cut) If E is nominal, (E `!B̄0, B̄1, B̄2) and (!B̄0, B̄1 ` C̄), then (E `!B̄0, B̄2,C̄).

We will discuss the proof of (Cut) in Section 7.7 and present the proof details in Appendix B.7. Note that (Cut)
requires nominality of environment E. Nominal environments satisfy a number of sanity conditions. Most
prominently, every type assertion in a nominal environment has to be of the form n : T , i.e., type assertions of
the forms M : T or x : T are not allowed in nominal environments.

Definition 7.2 (Nominal Environments) An environment E is called nominal iff all of the following state-
ments hold:

• Variable freeness: dom(E) = /0 and E ` �.

• Nominal type assertions: If E = (E ′, M : T) or E = (E ′, fresh(M : T)), then M is a name.

• Weak functionality: If E = (E ′, n : T, n : U), then Stale≤ T .

• Fresh-linearity: Neither E = (E ′, fresh(n : T), fresh(n : U)) nor E = (E ′, !fresh(n : T)).

• Type-consistency for fresh-assertions: If E = (E ′, fresh(n : T), n : U), then T ≤U .

The following lemma collects closure properties of nominal environments. These closure properties imply that
all typing rules (when read upwards) preserve nominality of the environment. This is needed for inductively
proving statements of the form “If E is nominal and (E ` R), then . . .”.

Lemma 7.4 (Closure Properties of Nominal Environments)

(a) If (E, A) is nominal, then so is E.

(b) If (E, Ā) is nominal and Ā≡ B̄, then (E, B̄) is nominal.

(c) If (E, n : T) is nominal, (T ≤U) and fv(U) = /0, then (E, n : U) is nominal.

(d) If (E, fresh(n : (K,H)Chall(Ā)), n : (K,H)Resp(B̄)) is nominal, then Ā = B̄ = /0.

(e) If (E, fresh(n : (K,H)Chall(Ā))) is nominal, then so is (E, n : Stale).

Proof Parts (a), (b) (c), and (e) are easily checked. To prove part (d), let T = (K,H)Chall(Ā) and U =

(K,H)Resp(B̄) and assume that (E, fresh(n : T), n : U) is nominal. Then (T ≤U), by type consistency for
fresh-assertions. This is only possible if T is public and U is tainted. Then Ā = B̄ = /0, by the syntactic
restrictions on challenge and response types. �

7.5 Type Preservation

Well-typed computation states are defined by the following rule:

Well-typed Computation States, ` Ā ::: P:

(State)
Ā nominal Ā ` B̄ B̄ ` P

` Ā ::: P

37

Using (Cut) and substitutivity, it is now not hard to show that our state transition rules preserve well-typedness.

Lemma 7.5 (Structural Equivalence Preserves Typing)

(a) If P≡ Q, then (E ` P) iff (E ` Q).

(b) If Ā≡ B̄, then (E, Ā ` R) iff (E, B̄ ` R).

(c) If (Ā ::: P)≡ (B̄ ::: Q), then (` Ā ::: P) iff (` B̄ ::: Q).

Proof Part (a) is proved by induction on (P≡Q)’s derivation. One uses that the typing rules for processes are
invertible. To prove part (b), one first proves the following two auxiliary statements, separately by induction
on height(D).

(a) If D B (E, !begun(M), begun(M) ` R), then (E, !begun(M) ` R).

(b) If D B (E, !begun(M), !begun(M) ` R), then (E, !begun(M) ` R).

Given these two auxiliary statements, it is straightforward to prove part (b) of the lemma by induction
on (Ā ≡ B̄)’s derivation. Part (c) is a simple consequence of parts (a) and (b), and the fact that structural
equivalence of assertion sets preserves nominality. �

Theorem 7.3 (Type Preservation) If ` Ā ::: P and (Ā ::: P)→ (B̄ ::: Q), then ` B̄ ::: Q.

Proof By induction on (Ā ::: P)→ (B̄ ::: Q)’s derivation. Suppose ` Ā ::: P and D B(Ā ::: P)→ (B̄ ::: Q).
(D is a derivation tree whose nodes are applications of the (Redn Equiv) rule.) By inverting the typing judgment
` Ā ::: P, we obtain that Ā is nominal and (Ā ` Ā′) and (Ā′ ` P) for some Ā′.

Suppose D ends in (Redn Equiv). Then (Ā ::: P) ≡ (Ā′ ::: P′)→ (B̄′ ::: Q′) ≡ (B̄ ::: Q) for some Ā′,
P′, B̄′, Q′. By Lemma 7.5, it is the case that ` Ā′ ::: P′. Then, by induction hypothesis, ` B̄′ ::: Q′. Then
` B̄ ::: Q, by Lemma 7.5.

Suppose in the remainder that D does not end in (Redn Equiv). Then P = (P1 | P2) and Q = (P′1 | P2) for
some P1, P2, P′1, by inspection of the reduction rules.

Suppose D ends in (Redn New). Then P1 = (new n:T ;P′1), n 6∈ fn(Ā,Q) and B̄ = (Ā, n : T, fresh(n : T)) for
some n, T . Let B̄′ = (Ā′, n : T, fresh(n : T)). By inverting the last typing rules of (Ā′ ` P)’s derivation, we get
that Ā′ = (!Ā′0, Ā

′
1, Ā
′
2), (!Ā0, Ā′1, n : T, fresh(n : T) ` P′1) and (!Ā0, Ā′2 ` P2) for some !Ā′0, Ā′1, Ā′2. By (Proc

Par), we get that (B̄′ ` Q). Applying (Lift) twice to (Ā ` Ā′), we get (B̄ ` B̄′). From (B̄ ` B̄′) and (B̄′ ` Q) we
get ` B̄ ::: Q, by (State).

Suppose D ends in (Redn Begin One). Then P1 = (begin(M);P′1) and B̄ = (Ā, begun(M)). Let B̄′ =
(Ā′, begun(M)) for some M. By inverting the last typing rules of (Ā′ ` P)’s derivation, we get that Ā′ =
(!Ā′0, Ā

′
1, Ā
′
2), (!Ā0, Ā′1, begun(M) ` P′1) and (!Ā0, Ā′2 ` P2) for some !Ā′0, Ā′1, Ā′2. Then (B̄′ `Q), by (Proc Par).

Applying (Lift) to (Ā ` Ā′), we get that (B̄ ` B̄′). From (B̄ ` B̄′) and (B̄′ ` Q) we get ` B̄ ::: Q, by (State).
The proof case for (Redn Begin Many) is essentially identical to the previous proof case.
Suppose D ends in (Proc End). Then P1 = (end(M);P′1) and Ā = (B̄, begun(M)) for some M. By inverting

(Ā′ ` P)’s last rules, we get that Ā′ = (!Ā′0, Ā
′
1, Ā
′
2, Ā
′
3), (!Ā′0, Ā

′
1 ` begun(M)), (!Ā′0, Ā

′
2 ` P′1) and (!Ā′0, Ā

′
3 ` P2)

for some !Ā′0, Ā′1, Ā′2, Ā′3. Let B̄′ = (!Ā′0, Ā
′
2, Ā
′
3). From (!Ā′0, Ā

′
2 ` P′1) and (!Ā′0, Ā

′
3 ` P2), we obtain (B̄′ ` Q),

by (Proc Par). On the other hand, cutting (Ā ` Ā′) with (!Ā′0, Ā1 ` begun(M)) results in (Ā ` B̄′, begun(M)).
Then, by Lemma B.16, either (B̄ ` B̄′) or !begun(M) ∈ B̄. In the second case B̄ ≡ Ā, and we obtain (B̄ ` B̄′)
from (Ā ` Ā′) by Lemma 7.5 and weakening. Thus, we have established that (B̄ ` B̄′) and (B̄′ ` Q). Then
` B̄ ::: Q, by (State).

Suppose D ends in (Redn IO). Then P1 = (out L M{~x←~N} | inp L ∃~x . M[C̄];P′′1) and P′1 = P′′1 {~x←~N}
and B̄ = Ā. Inverting the last rules of (Ā′ ` P), we get that there exist !Ā′0, Ā′1, Ā′2, Ā′3, Ā′4, Ā′5, ~x such that

38

Ā′ = (!Ā′0, Ā
′
1, Ā
′
2, Ā
′
3, Ā
′
4, Ā
′
5) and the following statements hold:

(1) !Ā′0, Ā
′
1 ` L : Un, M{~x←~N} : Un

(2) !Ā′0, Ā
′
2 ` L : Un

(3) ~x, !Ā′0, Ā′3, M : Un ` C̄
(4) ~x, !Ā′0, Ā′4, C̄ ` P′′1
(5) !Ā′0, Ā

′
5 ` P2

Let B̄′= (!Ā′0, Ā
′
4, Ā
′
5,C̄{~x←~N}). Applying the substitution {~x←~N} to judgment (4) results in (!Ā′0, Ā′4, C̄{~x←~N} `

P′1). From this judgment and (5), we obtain (B̄′ ` Q), by (Proc Par). On the other hand, applying substitution
{~x←~N} to judgment (3) results in (!Ā′0, Ā′3, M{~x←~N} : Un ` C̄{~x←~N}). Cutting (Ā ` Ā′) with this judg-
ment and then applying weakening results in (Ā ` B̄′). We have, thus, established (B̄ = Ā ` B̄′) and (B̄′ ` Q).
Therefore, ` B̄ ::: Q, by (State). �

7.6 Safety

Recall Definition 3.2 of safety for authenticity. This definition roughly says that a process is safe if it can
never reach a state where the next process instruction ends a session but the computation state contains no
record that such a session has previously begun. Such a state is not a well-typed computation state. By the
type preservation theorem, a well-typed process can therefore never reach such a state. This observation is
essentially the safety proof for authenticity. Here is the precise proof:

Proof of Lemma 7.2 (Safety for Authenticity) If ~n are distinct names, ~T are closed types and (~n : ~T ` P),
then (~n : ~T ::: P) is safe for authenticity.

Proof Suppose ~n are distinct, ~T are closed types and (~n : ~T ` P). Suppose that (~n : ~T ::: P)→∗ (Ā :::
(end(M);Q) | Q′). Because (~n : ~T ` P), it is the case that `~n : ~T ::: P, by (State). Then ` Ā ::: (end(M);Q) |

Q′, by type preservation (Theorem 7.3). By inverting the last rules of this judgment, we obtain (Ā ` Ā′) and
(Ā′ ` begun(M)) for some Ā′. Cutting (Ā ` Ā′) with (Ā′ ` begun(M)) results in (Ā ` begun(M)). Then
begun(M) ∈ Ā or !begun(M) ∈ Ā, by inverting this judgment (as justified by Lemma B.16). �

7.7 Inversion Lemmas + Key Uniqueness + Nonce Safety⇒ Cut

In this section, we explain how the (Cut) proof works and tell you what lemmas are needed. The full proof can
be found in Appendix B.7.

Recall (Cut):

If E is nominal, (E `!B̄0, B̄1, B̄2) and D B (!B̄0, B̄1 ` C̄), then (E `!B̄0, B̄2,C̄).

We prove (Cut) by induction on height(D). To this end, we need to make sure that, for every possible last rule
of D, the left judgment (E `!B̄0, B̄1, B̄2) can be transformed to match D’s last rule’s premise. Suppose, for
instance, D ends in (Split) as shown in this picture:

E `!B̄′0, (M,N) : K Top, B̄1, B̄2

...
!B̄′0, M : K Top, N : K Top, B̄1, B̄2 ` C̄

(Split)
!B̄′0, (M,N) : K Top, B̄1, B̄2 ` C̄

In this situation, we need to know that the we can transform the left judgment into (E `!B̄′0, M : K Top, N : K Top, B̄1, B̄2).
In other words, we need to know that we can invert the (Pair) rule. This will allow us to match the premise of
(Split) and apply the induction hypothesis.

39

Inversion lemmas. Appendix B.4 states and proves a number of inversion properties. As we have just ex-
plained, these are needed to prove (Cut). For example, here are special cases of the inversion properties for
pairing and encryption. They hold under the assumption that E is nominal.

• Suppose (E ` B̄, (M,N) : K Top).
Then (E ` B̄, M : K Top, N : K Top).

• Suppose (E ` B̄, {|M|}N : Secret(L)).
Then there exist K,H,X such that (E ` B̄, N : (K,H)EK(X), (M,L) ∈ X) and Tainted 6∈ K.

• Suppose (E ` B̄, {|M|}N : Un).
Then there exist K,H,X ,L such that (E ` B̄, N : (K,H)EK(X), (M,L) ∈ X).
Moreover, if Tainted ∈ K or Public ∈ H then (E ` B̄, M : Un).

Note that some of these properties do not hold if E is allowed to contain type assertions for composite terms.
For instance, if E = (n : Top, k : Top, {|n|}k : Un), then E ` {|n|}k : Un by (Id), but E 6` k : (K,H)EK(X). Thus,
the nominality of environment E is a crucial assumption for these inversion lemmas to hold.

Key Uniqueness. Suppose, in the (Cut) proof, we want to handle the case where the derivation of the right
judgment ends in (Decrypt Trusted). In particular, consider the following situation (where B̄

∆
=!B̄′0, B̄1, B̄2):

E ` B̄, {|M|}Enc (N) : Secret(L)

...
B̄ `Dec(N) : (K′,H ′)DK(X ′)

...
B̄, (M,L) ∈ X ′ ` C̄ (Decrypt Trusted)

Tainted 6∈ H ′B̄, {|M|}Enc (N) : Secret(L) ` C̄

By the inversion property from above, we can transform the left judgment into (E ` B̄, Enc(N) : (K,H)EK(X),

(M,L) ∈ X) for some K,H,X such that Tainted 6∈ K. By weakening this judgment in three ways, we obtain
(E ` Enc(N) : (K,H)EK(X)), (E ` B̄) and (E ` B̄, (M,L) ∈ X). Cutting (E ` B̄) with the first premise of
(Decrypt Trusted), namely (B̄ ` Dec(N) : (K ′,H ′)DK(X ′)), results in (E ` Dec(N) : (K ′,H ′)DK(X ′)). Now,
we would like to cut (E ` B̄, (M,L) ∈ X) with the second premise of (Decrypt Trusted), namely (B̄, (M,L) ∈

X ′ ` C̄). In order to be able to do this, we need to know that X = X ′.
The following lemma is what is needed. It says that in nominal environments different types of the same

key pair are closely related. In particular, untainted key types are unique.

Lemma 7.6 (Key Uniqueness) If E is nominal, E `Enc(N) : (K,H)EK(X) and E `Dec(N) : (K ′,H ′)DK(X ′),
then (K,H,X) = (K ′,H ′,X ′) or Tainted ∈ (K∩K ′−1)∪ (H−1∩H ′)∪ (K∩H ′)

Not surprisingly, the proof of this lemma makes crucial use of the weak functionality condition on nominal
environments. Without weak functionality, the environment could assign two distinct untainted key types to
the same name, which would lead to a violation of key uniqueness. The proof of the key uniqueness lemma is
given in Appendix B.5.

Nonce Safety. Suppose, in the (Cut) proof, we want to handle the case where the right judgment ends
in (Nonce Use). So we are in the following situation (where Ch(Āch)

∆
= (K,H)Chall(Āch) and Rp(Ārp)

∆
=

(K,H)Resp(Ārp) and B̄
∆
=!B̄′0, B̄

′
1, B̄2):

E ` B̄, fresh(N : Ch(Āch)), N : Rp(Ārp)

...
B̄, N : Stale, Āch, Ārp ` C̄

(Nonce Use)
B̄, fresh(N : Ch(Āch)), N : Rp(Ārp) ` C̄

We need the following lemma:

Lemma 7.7 (Nonce Safety) If E is nominal and (E ` B̄, fresh(N : (K,H)Chall(Āch)), N : (K,H)Resp(Ārp)),
then (E ` B̄, N : Stale, Āch, Ārp).

40

The nonce safety lemma is proven in Appendix B.6. For it to hold, the typing rules (Discard Chall) and (Subty
Stale Nonce) are needed. Without either of these rules the following judgment would not be derivable:

fresh(n : Ch()), n : Ch(), begun() ` begun(), n : Rp(begun())

By the nonce safety lemma, this judgment is a consequence of the following judgment:

n : Ch(), begun() ` n : Rp(begun()), n : Rp(begun())

To derive the former judgment from the latter, first apply (Lift) to introduce the fresh-assertion on both sides,
then apply the nonce safety lemma, and then apply weakening to drop the stale-assertion from the right.
To derive the latter judgment, use (Nonce Cast), (Strengthen Resp) and then (Copy) to duplicate the type
assertion n : Rp(begun()). Note that, whereas the bare assertion begun() is not copyable, the type assertion
n : Rp(begun()) is.

8 Conclusion

8.1 Related Work

Gordon and Jeffrey’s type systems for authenticity verify one-to-one correspondences for symmetric [24] and
asymmetric cryptography [25] and one-to-many correspondences for symmetric cryptography [23]. Our type
system builds on these systems and the differences are summarized in the introduction (Section 1) and the
summary (Section 8.2).

Abadi’s seminal type system [1] deals with symmetric cryptography protocols and verifies secrecy. The
notion of secrecy in [1] is different from ours: whereas [1] considers secrecy based on noninterference, we
consider secrecy based on the Dolev–Yao intruder (see [2] for a comparison of these two notions of secrecy).
In [3], Abadi and Blanchet present a secrecy type system for public key cryptography. Their system deals with
the half of asymmetric cryptography where the encryption key is public and the decryption key is private, but
not with the other half. Their notion of secrecy is based on the Dolev–Yao intruder and similar to ours. A dif-
ference is that Abadi and Blanchet’s system does not have explicit type annotations. Therefore, it is not obvious
how to transform their type system into a type-checking algorithm. It is not straightforward to enhance their
system with explicitly type annotations either, because their typing rule for destructing ciphertexts under public
encryption keys checks the process continuation twice in different environments. In contrast, our correspond-
ing typing rule only checks the input post-condition twice (instead of the entire process continuation). Here
pattern-matching input helps. Because our type system processes an entire input pattern in one batch, it can
essentially look ahead a few destructors, which would be messy in a process calculus with destructors. In [4],
Abadi and Blanchet present a generic process calculus with constructors and destructors and a secrecy type
system (without explicit type annotations) of which their system [3] is an instance of. Our pattern-matching
spi-calculus is not an instance of their generic process calculus, because it uses pattern-matching input instead
of destructors. Moreover, our type system is explicitly typed, whereas Abadi and Blanchet’s generic system
is not and cannot be easily turned into an explicitly typed system for the same reason as [4]. They describe
how to translate processes into verification condition sets and prove that their verification condition generator
is relatively complete with respect to the type system: if secrecy is provable by the type system, then it is
also provable from the generated verification conditions. The verification conditions are Horn clauses and can
be solved by resolution provers. Abadi and Blanchet report that, although resolution provers do not always
terminate, in practice Blanchet’s tool [11] terminates on numerous example protocols.

Bugliesi, Focardi and Maffei present an explicitly typed system for authenticity [14]. One of their goals is
to replace dependent types from Gordon and Jeffrey’s type systems by additional dynamically checked tags in
order to simplify type annotations. In their system, not only the plaintext inside an encryption must be tagged,

41

but each component of this plaintext must be tagged separately. These additional tags correspond to dynamic
checks that are unnecessary for protocol security, as one tag inside each ciphertext suffices to avoid type flaw
attacks. We deliberately avoided such spurious dynamic checks. It was not Bugliesi, Focardi and Maffei’s
goal to verify additional protocols beyond what Gordon and Jeffrey’s type system could already verify. For
instance, their system cannot verify sign-then-encrypt protocols, as our new system can. In their system,
nonces only account for public messages. As a result, their system cannot verify message authentication
for key establishment protocols, which is possible with both Gordon and Jeffrey’s and our system. Overall,
Bugliesi/Focardi/Maffei’s system perhaps requires simpler type annotations than Gordon/Jeffrey’s and ours,
but looses some degree of completeness that way. A nice feature is that they show robust safety against internal
attackers with an associated identity. In that respect, their robust safety result is stronger than Abadi/Blanchet’s,
Gordon/Jeffrey’s and ours, but see [26] for a recent secrecy type system that allows to model compromised
hosts.

Bodei, Buchholz, Degano, Nielson and Nielson present a control flow analysis for verifying one-to-many
entity authentication and secrecy [12]. They use their process calculus Lysa, which is a variant of the spi-
calculus. Lysa has pattern-matching input and pattern-matching decryption and is tailored to make their static
analysis convenient. Their analysis tool is fully automatic; it only requires the specification of security prop-
erties but no additional protocol annotations beyond that. In contrast, our language requires type annotations
to specify a type discipline and make automatic checking simple. In particular, in our system the protocol
specifier is required to explicitly provide the exact format of plaintexts and the semantic guarantees that are
obtained by successfully decrypting messages. Both approaches have advantages: control flow analysis is fully
automatic, whereas type annotations provide tighter guidance for protocol developers and documentation why
protocols are correct.

The applied pi calculus by Abadi and Fournet [6] is a generic process calculus similar to the one by
Abadi and Blanchet [4], but allows arbitrary equational theories on messages and does not distinguish be-
tween constructors and destructors. We are not aware of secrecy or authenticity type systems for the applied
pi calculus. Marchignoli and Martinelli’s Crypto-CCS [33, 35] is another generic process calculus for cryp-
tographic protocols. Like [6] and [4], it is parametric in the cryptographic primitives. Crypto-CCS has an
inference operator that has a similar effect as destructors in the spi-calculus and as pattern-matching in our
calculus. Martinelli presents a partial model-checking algorithm that can verify security properties, including
secrecy, for a bounded number of sessions and bounded message size. In comparison to [6], [4] and [35], our
pattern-matching spi-calculus seems less generic on first sight, because asymmetric cryptography is its only
interesting primitive and is hardwired into the calculus. However, we achieve some degree of genericity by
encoding other cryptographic primitives (like symmetric cryptography, hashing and keyed hashing) in terms of
asymmetric cryptography. These encodings seem legitimate in a model that assumes perfect cryptography. We
cannot, however, encode primitives with associated algebraic equalities, like Diffie-Hellman key agreement,
which is possible in the applied pi calculus and to some extent perhaps in Abadi and Blanchet’s calculus.

8.2 Summary and Future Work

In this paper, we have shown how pattern-matching types can be used to express complex data dependencies,
in particular how they can be used to provide authenticity typings for nested uses of cryptography and hashing.
We have shown how a combination of tag types and authentication types can be used to obtain protocol-
independent key types and reusable long-term keys. We have refined the typing rules for encryption and
decryption from Gordon and Jeffrey’s earlier systems, so that sign-then-encrypt protocols and nested digital
signatures are now typable. We have also refined the nonce rules to now also permit SOPH challenges that
are encrypted with public encryption keys (instead of symmetric keys) and nonce challenges with multiple
responders. Our technical approach was to define a small core language with only asymmetric cryptography,
while obtaining other cryptographic constructions, like symmetric cryptography, message tagging, hashing

42

and keyed hashing by translation to the core language. Interestingly, the translations that are operationally
sensible also yield sensible derived typing rules. We have used the type system from this paper as the basis
for the new version of the Cryptyc type-checker [22], which extends the previous Cryptyc implementation
for symmetric cryptography to also handle asymmetric cryptography, nested cryptography and hashing. Our
pattern-matching spi-calculus is explicitly typed, and so the implementation of an automatic type checker is
not so difficult, although a number of decisions had to be made, for instance about the order in which to apply
typing rules.

In the future, we want to try to develop a type system for cryptographic primitives that have associated
algebraic equations. In particular, we would like to verify protocols that make use of Diffie-Hellman key
establishment. To this end, we will have to modify our type system to allow composite keys. (With our current
type system, all interesting keys in well-typed protocols are atomic names). An interesting question to answer
is whether or not the system presented in this paper guarantees robust safety against internal compromised
principals. This would strengthen our robust safety theorem, which guarantees robust safety against external
opponents with no associated identity. See the end of Section 6.1 on the Needham–Schroeder–Lowe protocol
for a short discussion on this subject.

Appendices

A Unification

A.1 Typed Substitution

We view substitutions as “typed” entities with explicit domain and range, as proposed, for instance, in [21]. A
substitution is a triple of the form σ = (σmap : σdom→ σran) where σdom and σran are finite sets of variables,
σmap is a function from σdom to the set of messages and fv(σmap(x)) ⊆ σran for all x in σdom. The meta-
variables σ, ρ range over substitutions. We say that σ is a substitution from σdom to σran, and write dom(σ)

for σdom and ran(σ) for σran. The application M{σ} of substitution σ to message M is defined iff fv(M) ⊆

dom(σ). In this case, M{σ} is defined inductively in the obvious way, with the case for M = {|M ′|}N−1 as
in Section 3.1. If ~x = (x1, . . . ,xn) are distinct and ~M = (M1, . . . ,Mn), the updated substitution σ[~x←~M] is

defined as follows: (σ[~x←~M])dom
∆
= σdom ∪~x, (σ[~x←~M])ran

∆
= σran∪ fv(~M), (σ[~x←~M])map(y)

∆
= Mi, if y = xi

and 1≤ i≤ n, and (σ[~x←~M])map(y)
∆
= σ(y), if y∈ (σdom−~x). Whenever we write M{σ}with fv(M) 6⊆ dom(σ),

this is to be interpreted as M{σ[~x←~x]} where ~x = fv(M)− dom(σ). We inductively extend the definition of
substitution application to types, patterns, assertion sets and processes. The cases for the binding constructs
involve variable renaming and domain extension: For instance, ∃~x . M[Ā]{σ} ∆

= ∃~y . M{σ′}[Ā{σ′}], where
σ′= σ[~x←~y] and~y∩σran = /0. The application of substitution σ to environment (x; Ā) is defined iff dom(σ) =x:

(x; Ā){σ} ∆
= (σran; Ā{σ}). The empty substitution /0 has empty domain, empty range and empty map. For

n≥ 0,~x = (x1, . . . ,xn) distinct and ~M = (M1, . . . ,Mn), we define the enumerated substitution~x←~M
∆
= /0[~x←~M].

For ran(σ) = dom(ρ), we define the substitution composition (σ;ρ): (σ;ρ)dom
∆
= σdom, (σ;ρ)ran

∆
= ρran and

(σ;ρ)map(x)
∆
= (σmap(x)){ρ}. If M{σ;ρ} is defined, then so is M{σ}{ρ} and M{σ}{ρ}= M{σ;ρ}. The same

equation holds (up to α-equivalence), if message M is replaced by a type, pattern, assertion set, process or
environment.

A.2 Unification

If fv(M,N) ⊆x, then a unifier of M and N from x is a substitution σ from x such that M{σ} = N{σ}. Such
a unifier σ is called most general whenever for all such unifiers ρ there exists a mediating substitution ρ′

from ran(σ) to ran(ρ) such that ρ = (σ;ρ′). Without proof, we claim that most general unifiers exist. More

43

precisely, if fv(M,N)⊆x and a unifier of M and N from x exists, then a most general unifier of M and N from x
exists. In our typing rules, we make use of a fixed total function mgu for computing most general unifiers. This
function takes in a variable set x and two messages M, N such that fv(M,N)⊆x. It either returns a substitution
σ from x, or a special element ⊥, and has the following properties:

(a) If a unifier of M and N from x exists, then mgu(x,M,N) = σ for some σ.

(b) If mgu(x,M,N) = σ, then σ is a most general unifier of M and N from x.

As shorthand, we write mgu(E,M,N) for mgu(dom(E),M,N). An implementation of mgu can be derived from
a set of transformation rules for simplifying sets of equations. Almost all transformation rules are exactly as
in syntactic unification (see, for instance, [10]). Here is the only rule that differs:

{{|M|}K = {|N|}L−1} ∪ S −→ {M = N, K = Enc(x), L = Dec(x)} ∪ S where x is fresh

B Technical Properties and their Proofs

B.1 Properties of Subkinding, Kinding and Subtyping

Lemma B.1 Subkinding is a partial order.

Proof Immediate from the definition of subkinding. �

Lemma B.2 (Uniqueness of Kinding) If (T :: K) and (T :: H), then (K = H).

Proof Immediate from the definition of kinding. �

Definition B.1 (Public and Tainted Types) A type T is called public iff there exists K such that (T :: K ∪
{Public}). A type T is called tainted iff there exists K such that (T :: K∪{Tainted}).

Lemma B.3 (Tainted Up-Closed, Public Down-Closed)

(a) If T is tainted and (T ≤U), then U is tainted.

(b) If U is public and (T ≤U), then T is public.

Proof Immediate from the definitions of subtyping, kinding and subkinding. �

For the next lemma, remember that a nonce type is a type of the form (K,H)Chall(Ā), (K,H)Resp(Ā) or
Stale.

Lemma B.4 (Sub- and Supertypes of Nonce Types)

(a) If T is a nonce type and U ≤ T , then T = U or U is public.

(b) If T is a response type and T ≤U, then T = U or U is tainted.

Proof By inspection of the possible reasons for T ≤ U . Note that for part (b), we need the restriction to
generative types in (Subty Top Gen). �

Lemma B.5 (Monotonicity Properties)

(a) If (K ≤ H), then (K Top≤ H Top) and (K Auth(M)≤ H Auth(M)).

44

(b) If (T ≤U), (T :: K) and (U :: H), then (K ≤ H).

(c) If (K,H)Chall(Ā)≤ (K,H)Chall(B̄), then Ā = B̄.

(d) If (K,H)Resp(Ā)≤ (K,H)Resp(B̄), then Ā = B̄.

Proof Parts (a) and (b) are obvious, by inspection of the subkinding definition and the subtyping rules.
To prove part (c), suppose that (K,H)Chall(Ā) ≤ (K,H)Chall(B̄). There are two possible reasons for this
judgment, namely, (Subty Refl) and (Subty Public Tainted). In the first case, Ā = B̄. In the second case,
(K,H)Chall(Ā) is public. Then Public ∈ K and, therefore, (K,H)Chall(B̄) is public, too. Then Ā = B̄ = /0, by
the syntactic restriction on public challenge types. The proof of part (d) is similar. �

Lemma B.6 Subtyping is a preorder.

Proof We need to show transitivity. Let T ≤U by (RuleTU) and U ≤V by (RuleUV). The proof proceeds by
inspecting all possible instantiations of these rulesand uses Lemmas B.3 and B.5. We omit the details. �

Lemma B.7 (Substitution Invariance)

(a) (T :: K) iff (T{σ} :: K).

(b) (T ≤U) iff (T{σ} ≤U{σ}).

Proof Immediate. �

B.2 Elementary Properties

Lemma B.8 (Domain Soundness) If E ` � and (E ` R), then fv(R)⊆ dom(E).

Proof By induction on (E ` R)’s derivation. �

Lemma B.9 (decrypt(M,N)){σ} = decrypt(M{σ},N{σ}).

Proof If N = Dec(L), then both sides of the equation evaluate to {|M{σ}|}Enc(L{σ}). If N is not of this form nor
a variable, then both sides evaluate to {|M{σ}|}(N{σ})−1. If N = x and σ(x) is not of the form Dec(L), then both
sides evaluate to {|M{σ}|}(N{σ})−1. If N = x and σ(x) = Dec(L), then both sides evaluate to {|M{σ}|}Enc(L). �

Lemma B.10 (Weakening)

(a) If D B (E `R) and x 6∈ dom(E), then there exists D ′ such that (x,E `R) and height(D ′)≤ height(D).

(b) If D B (E ` R), then there exists D ′ such that D ′B (E,A ` R) and height(D ′) = height(D).

(c) If D B (E ` Ā,B), then there exists D ′ such that D ′B (E ` Ā) and height(D ′) < height(D).

Proof Part (a) is a corollary of substitutivity. Here is its proof: Suppose (E ` R) and x 6∈ dom(E). Let σ be
such that dom(σ) = dom(E), ran(σ) = dom(E)∪{x} and σ(y) = y for all y in dom(E). Then (E{σ} `R {σ}),
by substitutivity. Moreover, E{σ}= (x,E) and R {σ}= R . Parts (b) and (c) are proved by separate inductions
on the structure of D. �

We next prove a simple (Cut) lemma. This lemma is quite restrictive, because it only permits cutting over
atomic type assertions. We will later prove a second, complementary (Cut) theorem that permits cutting over
arbitrary assertions, but requires nominality of the environment.

45

Lemma B.11 (Atomic Cut) If (~x; Ā `~n : ~U ,~x : ~V , B̄) and (~x;~n : ~U ,~x : ~V ` C̄), then (~x; Ā `~n : ~U ,~x : ~V , B̄, C̄).

Proof By induction on (~x;~n : ~U ,~x : ~V ` C̄)’s derivation height. Suppose (~x; Ā `~y : ~U ,~x : ~V , B̄) and D B

(~x;~n : ~U ,~x : ~V ` C̄). Suppose D ends in (Lift). Then C̄ = (C0,C̄′) and C0 is contained in (~n : ~U ,~x : ~V) for some
C0, C̄′. Suppose that C0 is contained in (~x : ~V); the other case is similar. Thus, we assume that C0 = (x0 : V0),
~x = (~x′,x0), ~V = (~V ′,V0) and (~x;~n : ~U ,~x′ :~V ′ ` C̄′) for some~x′, x0,~V ′, V0. By weakening, (~x;~n : ~U ,~x : ~V ` C̄′).
Because weakening does not increase the derivation height, we may apply the induction hypothesis, obtaining
(~x; Ā `~n : ~U ,~x : ~V , B̄, C̄′). Then (~x; Ā `~n : ~U ,~x : ~V , B̄, C̄), by (Copy). The proof cases for the other right rules
are all straightforward. If D’s last rule is a left rule, then this can only be (Unsub). In this case one applies
(Sub) to the left judgment and then uses the induction hypothesis. �

Our definition of matching uses a fixed function mgu that returns a particular most general unifier for every
given environment and disagreement pair. The next lemma implies that derivability does not depend on the
choice of this unification function. The lemma states that the following rules (Decrypt Trusted′) and (Decrypt
Untrusted′) are admissible. These rules permit to pick the most general unifier arbitrarily.

Rules with Arbitrary Mgu:

MGU(E,M,N)
∆
= set of all most general unifiers of M and N from dom(E)

For X = ∃~x .N[Ā] where~x∩dom(E) = /0, define:

E, M ∈′ X ` R ∆
= (fv(R)⊆ dom(E)) ∧

((MGU((~x,E),M,N) = /0) ∨

(∃σ ∈MGU((~x,E),M,N)) ((~x, E, M : Top, Ā){σ} ` R {σ}))

(Decrypt Untrusted′)
Tainted ∈ J x 6∈ dom(E)∪ fv(B̄) E ` N : (K,H)DK(X)

(x, E, (M,x) ∈′ X ` B̄) ∨ (Public,Tainted ∈ K∪H−1)

(E, M : J Top ` B̄) ∨ (Public 6∈ K∪H−1)

E, decrypt(M,N) : J Top ` B̄

(Decrypt Trusted′)
Tainted 6∈ H ∪ J
E ` N : (K,H)DK(X) E,(M,L) ∈′ X ` B̄

E, decrypt(M,N) : J Auth(L) ` B̄

Lemma B.12 The rules (Decrypt Trusted′) and (Decrypt Trusted′) are admissible.

Proof We prove (Decrypt Trusted′). The proof for (Decrypt Untrusted′) is similar. Let ~x∩ dom(E) = /0,
Tainted 6∈ H ∪ J and assume:

(1) E ` N : (K,H)DK(∃~x .M0[Ā]) assumption
(2) E, (M,L) ∈′ ∃~x .M0[Ā] ` B̄ assumption .

We want to construct a derivation of (E, decrypt(M,N) : J Auth(L) ` B̄) whose last rule is (Decrypt Trusted).
To this end, we need to show:

(3) E, (M,L) ∈ ∃~x .M0[Ā] ` B̄ goal

We apply the definition of ∈′ to assumption (2): First note that fv(B̄) ⊆ dom(E), by this definition. If
MGU((~x,E),(M,L),M0) = /0, then mgu((~x,E),(M,L),M0) =⊥ and goal (3) follows, by definition of match-
ing. So assume there exists a σ in MGU((~x,E),(M,L),M0) such that:

(4) (~x, E, (M,L) : Top, Ā){σ} ` B̄{σ}
Because (M,L) and M0 are unifiable, there exist a ρ such that:

(5) mgu((~x,E),(M,L),M0) = ρ
Because σ is a most general unifier, there exists a mediating substitution ρ′ such that (σ; ρ′) = ρ. By substitu-
tivity, we may apply ρ′ to judgment (4) obtaining:

46

(6) (~x, E, (M,L) : Top, Ā){σ; ρ′} ` B̄{σ; ρ′}
(7) (~x, E, (M,L) : Top, Ā){ρ} ` B̄{ρ} because (σ; ρ′) = ρ

Now, our proof goal (3) follows from (5) and (7), by definition of matching. �

B.3 Opponent Typability

Lemma B.13 (Opponent Rules)

(a) If (E `M : Un, B̄) and k ∈ {Enc,Dec}, then (E ` k (M) : Un, B̄)

(b) If (E ` N : Un, M : Un, B̄), then (E ` {|M|}N : Un, B̄).

(c) If (E ` N : Un) and (E, M : Un ` B̄), then (E, decrypt(M,N) : Un ` B̄).

Proof Part (a): Suppose (E `M : Un, B̄) and k∈{Enc,Dec}. Let K = H = {Public,Tainted}, T = (K,H)KP()

and Uk = (K,H)kK(). By (Sub), (E ` M : T, B̄). Then (E ` k (M) : Uk, B̄), by (k Part). Then (E `
k (M) : Un, B̄), by (Sub).

Parts (b) and (c) are proved similarly. �

For ~M = (M1, . . . ,Mk), let (~M : T) denote the assertion set (M1 : T, . . . ,Mk : T). For ~M = (M1, . . . ,Mk) and
~T = (T1, . . . ,Tk), let (~M : ~T) denote the assertion set (M1 : T1, . . . ,Mk : Tk).

Proof of Lemma 7.1(Dolev–Yao⇒ Typability) If (~M ~N), then (~M : Un ` ~N : Un).

Proof By induction on (~M ~N)’s derivation, using Lemma B.13. �

Lemma B.14 (Message Typability) If ~M are implementable messages, fv(~M)⊆~x and fn(~M)⊆~n, then (~n : Un,~x : Un`
~M : Un).

Proof By induction on the structure of ~M, using Lemma B.13. �

Lemma B.15 (Properties of)

(a) If (M̄ N̄), then (M̄,L N̄). (Weaken Left)

(b) If (M̄ N̄,L), then (M̄ N̄). (Weaken Right)

(c) If (M̄1 N̄1,n,x) and (M̄2,n,x N̄2), then (M̄1,M̄2 n,x, N̄1, N̄2). (Atomic Cut)

Proof The first two parts are proved, separately, by induction on the derivations. Both inductions are straight-
forward. (Atomic Cut) is proved by induction on (M̄2,n,x N̄2)’s derivation height. The proof is very similar
to the proof of Lemma B.11. �

Proof of Theorem 7.1 (Opponent Typability) If O is an opponent process, fn(O) ⊆~n and fv(O) ⊆~x, then
(~x;~n : Un,~x : Un ` O).

Proof We show the following more general statement by induction on the structure of P:

If P is an opponent process, fn(P)⊆~n, fv(P)⊆~x and (~M ~n,~x), then (~x; ~M : Un ` P).

47

Suppose P is an opponent process, fn(P)⊆~n, fv(P)⊆~x and (~M ~n,~x).
Suppose P = (out N L) for some N, L. By Lemma 7.1, (~x; ~M : Un `~n : Un,~x : Un). By Lemma B.14,

(~x;~n : Un,~x : Un ` N : Un, L : Un). Then (~x; ~M : Un ` N : Un, L : Un), by atomic cut (Lemma B.11). Then
(~x; ~M : Un ` P), by (Proc Out).

Suppose P = (inp N ∃~y . L[L : Un];Q), where ~y∩~x = /0. By Lemma 7.1, (~x; ~M : Un `~n : Un,~x : Un).
By Lemma B.14, (~x;~n : Un,~x : Un ` N : Un). Then (~x; ~M : Un ` N : Un), by atomic cut (Lemma B.11).
Trivially, (~x,~y; ~M : Un, L : Un ` L : Un). Because ∃~y .L[L : Un] is an implementable pattern, (~n,~x,L ~y). By
Lemma B.15, we may cut (~M ~n,~x) with (~n,~x,L ~y), obtaining (~M,L ~n,~x,~y). Then, by induction hypoth-
esis, (~x,~y; ~M : Un, L : Un ` Q). At this point, we have shown that (~x; ~M : Un ` N : Un), (~x,~y; ~M : Un, L : Un `

L : Un) and (~x,~y; ~M : Un, L : Un ` Q). Therefore, (~x; ~M : Un ` P), by (Proc In).
The other proof cases are straightforward. �

B.4 Inversion Properties

Lemma B.16 (Inverting Begun- and Fresh-Assertions) If E is nominal, then all of the following statements
hold:

(a) (E `!fresh(N : T), B̄) is false.

(b) If (E ` fresh(N : T), B̄), then E = (E ′, fresh(N : T)) and (E ′ ` B̄) for some E ′.

(c) If (E `!begun(M), B̄), then E = (E ′, !begun(M)) and (E ` B̄) for some E ′.

(d) If (E ` begun(M), B̄), then either E =(E ′, !begun(M)) and (E ` B̄) or E =(E ′, begun(M)) and (E ′ ` B̄)

for some E ′.

Proof For part (a), one proves the following statement by induction on D: If D B (E ` A, B̄), then A 6=
!fresh(N : T) for all N, T . The other three parts are proved separately and in order by inductions on the
derivations. �

The following lemma is a straightforward consequence of Lemma B.16.

Lemma B.17 (Inverting Sets of Non-Copyables) If E is nominal, (E ` Ā, B̄) and no member of B̄ is copy-
able, then there exist B̄0, B̄1, E0 such that B̄ = (B̄0, B̄1), E = (E0, B̄1), !C0 ∈ E0 for all C0 in B̄0, and (E0 ` Ā).

Proof By induction on the size of B̄, using Lemma B.16. �

Lemma B.18 (Inverting Type Assertions for Composite Messages) If E is nominal, then all of the follow-
ing statements hold:

(a) If (E ` (M,N) : K Top, B̄), then (E `M : K Top, N : K Top, B̄).

(b) If (E ` Enc(M) : (K,H)EK(X), B̄),
then there exist K ′,H ′,X ′ such that (E `M : (K ′,H ′)KP(X ′), B̄)

and either (K ′,H ′,X ′) = (K,H,X) or (Public ∈ K ′∩K−1).

(c) If (E ` Dec(M) : (K,H)DK(X), B̄),
then there exist K ′,H ′,X ′ such that (E `M : (K ′,H ′)KP(X ′), B̄)

and either (K ′,H ′,X ′) = (K,H,X) or (Public ∈ H ′∩H−1).

(d) If (E `M : (K,H)KP(X), B̄),
then either (Tainted ∈ K∩H) or E = (E ′, M : (K,H)KP(X)) for some E ′.

48

(e) (E ` {|M|}N−1 : T, B̄) is false.

(f) If (E ` {|M1|}N : J Auth(M2), B̄), then there exist K,H,X ,M′2 such that the following statements hold:

• E ` N : (K,H)EK(X), (M1,M′2) ∈ X , B̄

• (Tainted 6∈ J) ⇒ (M′2 = M2)

• (Tainted ∈ K ∪H−1)

⇒ (E ` N : (K,H)EK(X), (M1,M′2) ∈ X , M1 : (J∪{Tainted})Top, B̄)

• (Tainted ∈ K) ⇒ (Tainted ∈ J)

(g) If (E ` {|M1|}N : J Top, B̄), then there exist K,H,X ,M2 such that the following statements hold:

• E ` N : (K,H)EK(X), (M1,M2) ∈ X , B̄

• (Tainted ∈ K ∪H−1)

⇒ (E ` N : (K,H)EK(X), (M1,M2) ∈ X , M1 : (J∪{Tainted})Top, B̄)

• (Tainted ∈ K) ⇒ (Tainted ∈ J)

Proof Part (a): This part follows from the first of the following two auxiliary statements, which we prove
simultaneously by induction on D: If E is nominal and D B (E ` (M,N) : T, B̄), then the following statements
hold:

(a) If T ≤ K Top, then (E `M : K Top, N : K Top, (M,N) : T, B̄).

(b) If T 6∈ {Top}∪{K Top | K is a kind}, then (E `M : Un, N : Un, (M,N) : T, B̄).

We omit the proof details.
Part (b): This part follows from the second of the following two auxiliary statements: If E is nominal and

D B (E ` Enc(M) : T, B̄), then the following statements hold:

(a) If T ≤U and U is a nonce type,
then (E `M : (K ′,H ′)KP(X ′), Enc(M) : T, B̄) for some K ′, H ′, X ′ such that Public ∈ K ′.

(b) If (T ≤ (K,H)EK(X)),
then there exist K ′,H ′,X ′ such that (E `M : (K ′,H ′)KP(X ′), Enc(M) : T, B̄)

and either (K ′,H ′,X ′) = (K,H,X) or (Public ∈ K ′∩K−1).

We prove these two statements, separately but in order, by induction on D. We omit the details.
Part (c): This proof is very similar to the proof of part (b).
Part (d): By a straightforward induction on (E `M : (K,H)KP(X), B̄)’s derivation. In the proof cases for

(Sub) and (Unsub), one uses that only tainted key types have proper subtypes.
Part (e): One shows the following statement by induction on D: If E is nominal and D B (E `M : T, B̄),

then M is not of the form M = {|N|}L−1 for any N,L. The proof of this statement is entirely straightforward.
Observe, however, that it requires the nominality of E. Without nominality, E could contain type assertions of
the form ({|N|}L−1 : T).

Parts (f) and (g): To prove these, we show the following statements simultaneously by induction on D: If
E is nominal and D B(E ` {|M1|}N : T, B̄), then there exist K,H,X ,M′2 such that all of the following statements
hold:

(a) E ` N : (K,H)EK(X), (M1,M′2) ∈ X , {|M1|}N : T, B̄

(b) If (T ≤ J Auth(M2)) and (Tainted 6∈ J), then (M′2 = M2).

49

(c) If (T ≤ J Top) and (Tainted ∈ K∪H−1),
then (E ` N : (K,H)EK(X), (M1,M′2) ∈ X , M1 : (J∪{Tainted})Top, {|M1|}N : T, B̄).

(d) If (T ≤U), U is a nonce type and (Tainted ∈ K∪H−1),
then (E ` N : (K,H)EK(X), (M1,M′2) ∈ X , M1 : Un, {|M1|}N : T, B̄).

(e) If (T ≤ J Top) and (Tainted ∈ K), then Tainted ∈ J.

Suppose E is nominal and D B (E ` {|M1|}N : T, B̄). The left rules do not cause a problem for the induction,
because none of the statements requires or claims any properties of the environment. Because E is nominal,
(Id) and (Lift) are unproblematic. The rule (Sub) is unproblematic, because the premises of statements (a)
to (d) are closed under subtyping T and the conclusions of these statements are closed under supertyping
T . The rule (Copy) is unproblematic, because the judgments that occur in (a), (c) and (d) keep the type
assertion ({|M1|}N : T). Thus, the only interesting proof cases are (Nonce Cast), (Weaken Chall), (Strengthen
Resp), (Encrypt Trusted) and (Encrypt Untrusted). For convenience, we define the following predicate P: Let
P(T,K,H,X ,M′2, B̄) be true iff statements (a) through (d) hold (for E and M1 as fixed above).

Suppose D ends in (Nonce Cast), T = (K ′,H ′)Resp() and (E ` {|M1|}N : (K′,H ′)Chall(), B̄) for some K ′,
H ′. Let T ′ = (K ′,H ′)Chall(). By induction hypothesis, there exist K,H,X ,M ′2 such that P(T ′,K,H,X ,M′2, B̄).
We will show P(T,K,H,X ,M′2, B̄): Part (a) of P(T,K,H,X ,M′2, B̄) follows from part (a) of P(T ′,K,H,X ,M′2, B̄)

by (Nonce Cast), where (Nonce Cast) is used to convert T ′ to T . Similarly, part (d) of P(T,K,H,X ,M′2, B̄) fol-
lows from part (d) of P(T ′,K,H,X ,M′2, B̄) by (Nonce Cast). Because proper supertypes of response types are
tainted, by Lemma B.4, parts (e) and (b) of P(T,K,H,X ,M′2, B̄) obviously hold. Part (c) of P(T,K,H,X ,M′2, B̄)

follows from part (d) of P(T,K,H,X ,M′2, B̄) by (Sub), where (Sub) is used to convert Un to (J∪{Tainted})Top.
Suppose D ends in (Weaken Chall), T = (K ′,H ′)Chall(Ā) and (E ` {|M1|}N : (K′,H ′)Chall(Ā,C), C, B̄)

for some K ′, H ′, Ā, C. Let T ′ = (K ′,H ′)Chall(Ā,C). By induction hypothesis, there exist K,H,X ,M′2 such that
P(T ′,K,H,X ,M′2,(C, B̄)). We will show P(T,K,H,X ,M′2, B̄): Part (a) of P(T,K,H,X ,M′2, B̄) follows from
part (a) of P(T ′,K,H,X ,M′2,(C, B̄)) by (Weaken Chall). Similarly, part (d) of P(T,K,H,X ,M′2, B̄) follows
from part (d) of P(T ′,K,H,X ,M′2,(C, B̄)) by (Weaken Chall). Parts (e) and (b) of P(T,K,H,X ,M′2, B̄) fol-
low from the same parts of P(T ′,K,H,X ,M′2,(C, B̄)), because T < U implies T ′ ≤U for all U . Part (c) of
P(T,K,H,X ,M′2, B̄) follows from part (d) of P(T,K,H,X ,M′2, B̄) by (Sub), where (Sub) is used to convert Un

to (J∪{Tainted})Top.
The proof case (Strengthen Resp) is essentially identical to proof case (Weaken Chall).
Suppose D ends in (Encrypt Trusted), T = Public(M′2), (E ` N : (K,H)EK(X), (M1,M′2) ∈ X , B̄) and

Tainted 6∈ K∪H−1 for some K, H, X , M′2. We show P(T,K,H,X ,M′2): By (Copy) and (Encrypt Trusted), we
obtain part (a). Parts (c), (e) and (d) holds vacuously, because Tainted 6∈ K. To prove part (b), suppose that
T ≤ J Auth(M2). There are three possible reasons for T ≤ J Auth(M2), namely, (Subty Refl), (Subty Auth)
and (Subty Public Tainted). In the first two cases, M′2 = M2, and in the third case, Tainted ∈ J.

Suppose D ends in (Encrypt Untrusted), T = J ′Auth(M′2), (E `N : (K,H)EK(X), (M1,M′2)∈X , M1 : J′′Top, B̄),
J′ = (J′′−{Tainted})∪ (K−{Public}), and Tainted ∈ K ∪H−1. We show P(T,K,H,X ,M′2): By (Copy) and
(Encrypt Untrusted), we obtain:

(1) E ` N : (K,H)EK(X), (M1,M′2) ∈ X , M1 : J′′Top, {|M1|}N : T, B̄

By weakening, we get part (a). Now observe that J ′′ ≤ J′ ∪ {Tainted}. To see this, note, on the one hand,
that Tainted ∈ J′′ implies Tainted ∈ J′ ∪{Tainted}, trivially. On the other hand, it follows from J ′ = (J′′−
{Tainted})∪ (K−{Public}) that Public ∈ J ′∪{Tainted} implies Public ∈ J ′′.

To show parts (c) and (e), suppose T ≤ J Top for some U . Then J ′ ≤ J, by monotonicity of kinding.
Then J′∪{Tainted}≤ J∪{Tainted}. Therefore, J ′′Top≤ (J′∪{Tainted})Top≤ (J∪{Tainted})Top. Thus,
part (c) follows from (1), by (Sub). To show part (e), suppose, in addition, that Tainted ∈ K. Then Tainted ∈

(J′′−{Tainted})∪ (K−{Public}) = J ′. Then Tainted ∈ J, because J ′ ≤ J.

50

To show part (d), suppose that T ≤U for some nonce type U . Then Public ∈ J ′, because proper subtypes
of nonce types are public. Therefore, J ′′Top ≤ (J′ ∪{Tainted})Top = {Public,Tainted}Top = Un. Thus,
part (d) follows from (1), by (Sub).

Finally, to show part (b), suppose that T ≤ J Auth(M2). The possible reasons for T ≤ J Auth(M2) are
(Subty Refl), (Subty Auth) and (Subty Public Tainted). In the first two cases, M ′2 = M2, and in the third case,
Tainted ∈ J. �

We still have to deal with judgments for name type assertion, i.e., judgments of the form (E ` n : T, B̄).
One may expect that (E ` n : T, B̄) implies E = (E ′, n : U) and U ≤ T for some E ′, U . This is not quite true
in our type system, because (n : T) may have been obtained from a type assertion (n : U) by the rules (Nonce
Cast), (Weaken Chall) and (Strengthen Resp). Moreover, our weak functionality requirement on nominal
environments permits the assignment of several different types to the same name (as long as all of these are
supertypes of Stale).

Definition B.2 (n-stale Environments) A nominal environment E is called n-stale iff it only assigns super-
types of Stale to n, i.e., E = (E ′, n : T) implies Stale≤ T .

Definition B.3 (n-ambiguous Environments) A nominal environment E is called n-ambiguous iff either E =

(E ′, n : T, n : U) or E = (E ′, fresh(n : (K,H)Chall(Ā))) for some E ′, T , U , K, H, Ā.

Lemma B.19 (Inverting Type Assertions for Names) If E is nominal, then all of the following statements
hold:

(a) If (E ` n : T, B̄), then E = (E ′, n : U) for some E ′, U.

(b) If E is n-stale and (E ` n : T, B̄), then Stale≤ T .

(c) If E = (E ′, n : T) and (E ` n : U, B̄), then T ≤U, or T is a challenge type, or U is a response type, or
E is n-ambiguous, Stale≤ T and Stale≤U.

Proof Parts (a) and (b) are proved separately by straightforward inductions on the derivation. Part (c) requires
to first prove a sequence of auxiliary claims. To state these, we make the following definition: A nominal
environment E is called n-unique iff it only assigns one type to n, i.e., E = (E ′, n : T, n : U) is false. Note
that there is only one typing rule that may turn n-unique nominal environments into environments that are not
n-unique, namely, the rule (Discard Chall). Essentially, the proof strategy is to first show Lemma B.19(c) for
n-unique environments and for derivations that do not make critical use of the rule (Discard Chall). We prove
the following statements, the last of which is part (c) of the lemma:

(a) If D B (E ` Ā) and D makes use of rule (Discard Chall) with the rule scheme’s meta-variable N instan-
tiated by n, then E = (E ′, fresh(n : (K,H)Chall(B̄))) for some E ′, K, H, B̄.

(b) If E = (E ′, n : T) is nominal and n-unique, D B(E ` n : U0, B̄), U0 ≤U and D does not make use of rule
(Discard Chall) with the rule scheme’s meta-variable N instantiated by n, then T ≤U or T is public or
T is a challenge type.

(c) If T ≤ T0, E = (E ′, n : T0) is nominal and n-unique, D B (E ` n : U, B̄) and D does not make use of rule
(Discard Chall) with the rule scheme’s meta-variable N instantiated by n, then T ≤U or U is tainted or
U is a response type.

(d) If E = (E ′, n : T) is nominal and n-unique, D B(E ` n : U, B̄) and D does not make use of rule (Discard
Chall) with the rule scheme’s meta-variable N instantiated by n, then T ≤U or T is a challenge type or
U is a response type.

51

(e) If E = (E ′, n : T) is nominal and (E ` n : U, B̄), then T ≤U, or T is a challenge type, or U is a response
type, or E is n-ambiguous, Stale≤ T and Stale≤U.

Statements (a), (b) and (c) are proved separately by inductions on D. Statement (d) is proved by an induction
on D and uses (b) and (c). �

B.5 Key Uniqueness

Proof of Lemma 7.6 (Key Uniqueness) If E is nominal, E `Enc(N) : (K,H)EK(X) and E `Dec(N) : (K ′,H ′)DK(X ′),
then (K,H,X) = (K ′,H ′,X ′) or Tainted ∈ (K∩K ′−1)∪ (H−1∩H ′)∪ (K∩H ′)

Proof Suppose E is nominal. We first show the following auxiliary statements.

(a) If (E ` Enc(N) : (K,H)EK(X)) and Tainted 6∈ K, then E = (E ′, N : (K,H)KP(X)) for some E ′.

(b) If (E ` Dec(N) : (K,H)DK(X)) and Tainted 6∈ H, then E = (E ′, N : (K,H)KP(X)) for some E ′.

(c) If E = (E ′, n : (K,H)KP(X)) and (E ` Enc(n) : (K ′,H ′)EK(X ′)), then Tainted ∈ K ′ ∩ (K−1 ∪H) or
(K,H,X) = (K ′,H ′,X ′).

(d) If E = (E ′, n : (K,H)KP(X)) and (E ` Dec(n) : (K ′,H ′)DK(X ′)), then Tainted ∈ H ′∩ (H−1 ∪K) or
(K,H,X) = (K ′,H ′,X ′).

Auxiliary statement (a): Let (E ` Enc(N) : (K,H)EK(X)) and (Tainted 6∈ K). Let T = (K,H)KP(X).
Then (E ` N : T), by Lemma B.18(b). Then E = (E ′, N : T) for some E ′, by Lemma B.18(d).

Auxiliary statement (b) is proved similarly.
Auxiliary statement (c): Let T = (K,H)KP(X), T ′= (K ′,H ′)EK(X ′), E = (E ′, n : T) and (E `Enc(n) : T ′).

By Lemma B.18(b), there exist T ′′,K′′,H ′′,X ′′ such that T ′′ = (K ′′,H ′′)KP(X ′′), (E ` n : T ′′) and either
(K′′,H ′′,X ′′) = (K ′,H ′,X ′) or (Public ∈ K ′′∩K′−1). By Lemma B.19(c), either T ≤ T ′′ or both Stale≤ T and
Stale≤ T ′′.

Suppose first that both Stale ≤ T and Stale ≤ T ′′. Then Tainted ∈ K ′′ ∩H, because the only possible
reason for key types being supertypes of Stale is (Subty Public Tainted). Suppose, towards a contradiction,
that Tainted 6∈ K ′. Then K ′′ = K ′, because (Public 6∈ K ′′ ∩K′−1). Then Tainted ∈ K ′′ = K ′, a contradiction.
Thus Tainted ∈ K ′∩H.

Suppose now that T ≤ T ′′. It suffices to show that (Public 6∈ K) implies (K,H,X) = (K ′,H ′,X ′) and that
(Tainted 6∈ K ′) implies (K,H,X) = (K ′,H ′,X ′). Suppose first that (Public 6∈ K). Then the only possible
reason for (T ≤ T ′′) is reflexivity. Thus, (T = T ′′). From (T = T ′′) it follows that (K,H,X) = (K ′′,H ′′,X ′′).
Thus, (Public 6∈ K ′′). Then (K ′′,H ′′,X ′′) = (K ′,H ′,X ′), because (Public 6∈ K ′′ ∩K′−1). Thus, (K,H,X) =

(K′′,H ′′,X ′′) = (K ′,H ′,X ′). Suppose now that (Tainted 6∈ K ′). Then (K ′′,H ′′,X ′′) = (K ′,H ′,X ′), because
(Public 6∈ K ′′ ∩K′−1). Then Tainted 6∈ K ′′. Then the only possible reason for (T ≤ T ′′) is reflexivity. Thus,
(T = T ′′). Thus, (K,H,X) = (K ′′,H ′′,X ′′) = (K ′,H ′,X ′).

Auxiliary statement (d) is proved similarly.
Main statement: Let (E `Enc(N) : (K,H)EK(X)), (E `Dec(N) : (K ′,H ′)DK(X ′)), (K,H,X) 6= (K ′,H ′,X ′)

and Tainted 6∈ K ∩H ′. We will show that Tainted ∈ (K ∩K ′−1)∪ (H−1∩H ′). Suppose first that Tainted 6∈ K.
Then E = (E ′, N : (K,H)KP(X)) for some E ′, by auxiliary statement (a). Then Tainted ∈ H ′∩H−1, by aux-
iliary statement (d). Suppose now that Tainted 6∈ H ′. Then E = (E ′, N : (K ′,H ′)KP(X ′)) for some E ′, by
auxiliary statement (b). Then Tainted ∈ K ∩K ′−1, by auxiliary statement (c). �

52

B.6 Nonce Safety

A name that was generated with a challenge type can have many different types due to the subsumption
rules (Sub) and (Unsub) and the nonce rules (Weaken Chall), (Nonce Cast) and (Strengthen Resp). It is, for
instance, possible to apply a sequence of several nonce casts to the same nonce challenge: First cast a nonce’s
challenge type to a response type using (Nonce Cast), then cast the response type back to a challenge type by
the subsumption rule (Sub), then apply (Nonce Cast) to get a response type again, and so on. A rule sequence
like this may also be combined with intermediate applications of (Weaken Chall) and (Strengthen Resp). Such
undirected combinations of nonce-casting and subsumption are quite pointless. However, our safety proof has
to deal with these possibilities. In the inductive proof of the nonce safety lemma (Lemma 7.7), it is sometimes
necessary to skip inside a derivation to a previous use of (Nonce Cast). Technically, this is achieved by case (f)
of the following Lemma B.20. Cases (a), (b) and (c) collect possible types of a nonce challenge before the first
nonce cast and if (d) does not hold. Case (e) accounts for the (Copy) rule.

Lemma B.20 (Possible Challenge Types) If (E, fresh(n : (K,H)Chall(Ā))) is nominal and D B(E ` n : T, B̄),
then one of the following holds:

(a) T = (K,H)Chall(C̄) for some submultiset C̄ of Ā.

(b) T = K ′Top and (K,H)Chall(Ā) :: K ≤ K ′ for some K ′.

(c) T = Top.

(d) Ā = /0.

(e) B̄ = (B̄′, n : U) and Stale≤U for some B̄′, U.

(f) D ′B (E ` n : (K,H)Chall(), B̄) and height(D ′) < height(D) for some D ′.

Proof By induction on D. �

The following lemma is a consequence of the fact that the subtyping rule (Subty Public Tainted) does not
apply to SOSH nonce types.

Lemma B.21 (Possible SOSH Nonce Types) If (E, fresh(n : (K,H)Chall(Ā))) is nominal, Public 6∈ K ∪H
and (E ` n : T, B̄), then one of the following holds:

(a) T = (K,H)Chall(C̄) for some C̄.

(b) T = (K,H)Resp(C̄) for some C̄.

(c) T = {Tainted}Top or T = Top.

Proof By a straightforward induction on (E ` n : T, B̄)’s derivation. For proof case (Sub), one uses that the
only proper supertypes of SOSH nonce types are {Tainted}Top and Top. �

Proof of Lemma 7.7 (Nonce Safety) If (E ` fresh(N : (K,H)Chall(Ā)), N : (K,H)Resp(B̄), C̄) and E is
nominal, then (E ` N : Stale, Ā, B̄, C̄).

Proof Fix K and H. Define Ch(Ā)
∆
= (K,H)Chall(Ā) and Rp(Ā)

∆
= (K,H)Resp(Ā) for all Ā. We first prove

the following auxiliary statements:

(a) If (E, fresh(n : Ch(Ā, B̄))) is nominal, D B (E ` n : T, C̄) and T ≤ Ch(Ā),
then (E, n : Stale ` B̄,C̄).

53

(b) If (E, fresh(n : Ch(Ā))) is nominal, D B (E ` n : T, C̄) and T ≤ Rp(B̄),
then (E, n : Stale ` Ā, B̄,C̄).

We first prove auxiliary statement (a) and then (b). The proof of (b) uses statement (a).
Proof of auxiliary statement (a): By induction on height(D). Suppose (E, fresh(n : Ch(Ā, B̄))) is nominal,

D B (E ` n : T, C̄) and T ≤ Ch(Ā). Our proof is structured as follows: Before distinguishing proof cases by
D’s last rule, we consider three special cases in order avoid repeating the same argumentation for multiple last
rules of D. Here are the three special cases:

Suppose D ′B (E ` n : Ch(), C̄) and height(D ′) < height(D) for some D ′. Then, by induction hypothesis,
(E, n : Stale ` Ā, B̄,C̄). Then (E, n : Stale ` B̄,C̄), by weakening.

Suppose C̄ = (C̄′, n : U) and Stale ≤ U for some U , C̄′. Then, by weakening, D ′ B (E ` n : T, C̄′)
and height(D ′) < height(D) for some D ′. Then, by induction hypothesis, (E, n : Stale ` B̄,C̄′). Then
(E, n : Stale ` B̄,C̄), by (Id) and (Sub).

Suppose B̄ = /0. Then (E, n : Stale ` B̄,C̄) is obtained from (E ` n : T, C̄) by weakening.

(*) In the remainder of the proof of statement (a), suppose that D ′B (E ` n : Ch(), C̄) implies height(D ′) ≥
height(D), and that C̄ = (C̄′, n : U) implies Stale 6≤U, and that B̄ 6= /0.

We now distinguish cases by D’s possible last rules:
Suppose D ends in (Id) or (Lift) and E contains (n : T). Then Ch(Ā, B̄)≤ T ≤ Ch(Ā), by type consistency

of (E, fresh(n : Ch(Ā, B̄))). Then B̄ = /0, by Lemma B.5(c). This contradicts assumption (*).
Suppose D ends in (Copy), C̄ = (n : T, C̄′) and (E ` C̄) for some C̄′. Note that E is n-stale, by type

consistency of (E, fresh(n : Ch(Ā, B̄))) and (Subty Stale Nonce). Therefore Stale ≤ T , by Lemma B.19(b).
This contradicts assumption (*).

Suppose D ends in (Nonce Cast) or (Strengthen Resp) and T = (K ′,H ′)Resp(D̄) for some K ′, H ′, D̄. But
this is impossible, by Lemma B.20 and assumption (*).

Suppose D ends in (Weaken Chall), T = (K ′,H ′)Chall(D̄′) and (E ` n : (K ′,H ′)Chall(D̄′,D), D, C̄) for
some K ′, H ′, D̄′, D. By Lemma B.20 and assumption (*), it is the case that (K ′,H ′) = (K,H) and (D̄′,D)

is a submultiset of (Ā, B̄). From Ch(D̄′) = T ≤ Ch(Ā), it follows that D̄′ = Ā, by Lemma B.5(c). From the
fact that (Ā,D) = (D̄′,D) is a submultiset of (Ā, B̄), it follows that B̄ = (D, B̄′) for some B̄′. By substituting
(K′,H ′) = (K,H) and D̄′ = Ā into the rule premise (E ` n : (K ′,H ′)Chall(D̄′,D), D, C̄), we obtain (E `
n : Ch(Ā,D), D, C̄). Moreover, fresh(n : Ch(Ā, B̄)) = fresh(n : Ch(Ā,D, B̄′)), by B̄ = (D, B̄′). Therefore, by
induction hypothesis, (E, n : Stale ` B̄′,D,C̄). Substituting (B̄′,D) = B̄ back into this judgment, we obtain
(E, n : Stale ` B̄,C̄).

Proof of auxiliary statement (b): The proof is by induction on (E ` n : T, C̄)’s derivation height, using
statement (a). This proof is similar to the proof of (a) and we omit it.

Proof of lemma: Suppose (E ` fresh(N : Ch(Ā)), N : Rp(B̄), C̄) and E is nominal. Then E = (E ′, fresh(N : Ch(Ā)))

and (E ′ ` N : Rp(B̄), C̄), by Lemma B.16. Moreover, N is a name, by atomicity of E. Then (E ′, N : Stale `

Ā, B̄,C̄), by auxiliary statement (b). Then (E ′, N : Stale`N : Stale, Ā, B̄,C̄), by (Id). Then (E `N : Stale, Ā, B̄,C̄),
by (Discard Chall). �

B.7 Cut

The following technical lemma helps to deal with pattern matching in the (Cut) proof.

Lemma B.22 (Expanding Pattern-Matching) If E is nominal, (E `M ∈X , B̄), D B(M ∈ X , B̄` C̄) and X =

∃~x .N[Ā], then M = N{~x←~L}, (E `M : Top, Ā{~x←~L}, B̄), D ′B (M : Top, Ā{~x←~L}, B̄ ` C̄) and height(D ′)≤
height(D) for some~L, D ′.

Proof This follows from the definitions of right and left pattern-matching. �

54

We are now prepared to prove (Cut).

Proof of Theorem 7.2 (Cut) If E is nominal, (E `!B̄0, B̄1, B̄2) and (!B̄0, B̄1 ` C̄), then (E `!B̄0, B̄2,C̄).

Proof We first prove the following auxiliary statement:

(a) If E is nominal, (E `!B̄0, B̄1), D B (!B̄0, B̄1 ` C̄) and no member of B̄1 is copyable,
then (E `!B̄0,C̄).

Proof of auxiliary statement (a): By induction on height(D). Suppose E is nominal, (E `!B̄0, B̄1), D B

(!B̄0, B̄1 ` C̄) and no member of B̄1 is copyable.
Suppose D ends in (Id). Then C̄ = (!D,C̄′), !B̄0 = (!B̄′0, !D) and (!B̄0, B̄1 ` C̄′) for some !D, C̄′, B̄′0. By

induction hypothesis, (E `!B̄0,C̄′). Then (E `!B̄0,C̄), by (Copy).
Suppose D ends in (Lift). Then C̄ = (D,C̄′), (!B̄0, B̄1) = (B̄′,D) and (B̄′ ` C̄′) for some D, C̄′, B̄′. Suppose

first that !D 6= D. Then either !D ∈ E or E = (E ′,D) and (E ′ ` B̄′) for some E ′, by Lemma B.17. Suppose
first that !D ∈ E. From (E `!B̄0, B̄1) we obtain (E ` B̄′), by weakening. From (E ` B̄′) and (B̄′ ` C̄′) we
obtain (E `!B̄0,C̄′), by induction hypothesis. Because !D ∈ E, we obtain (E `!B̄0,C̄), by (Id). Suppose now
that E = (E ′,D) and (E ′ ` B̄′) for some E ′. By induction induction hypothesis, we obtain (E ′ `!B̄0,C̄′). Then
(E `!B̄0,C̄), by (Lift). Suppose finally that !D = D. Then !B̄0 = (!B̄′0, !D) for some B̄′0. By weakening, we
obtain (B̄ ` C̄′) from (B̄′ ` C̄′). From (E ` B̄) and (B̄ ` C̄′), we obtain (E `!B̄0,C̄′), by induction hypothesis.
Then (E `!B̄0,C̄), by (Copy).

Suppose D ends in (Unsub). Then !B̄0 = (!B̄′0, M : T), T ≤U , fv(U) = /0 and (!B̄′0, M : U, B̄1 ` C̄) for
some !B̄′0, M, T , U . From (E `!B̄0, B̄1) we obtain (E `!B̄′0, M : U, B̄1), by (Sub). From (E `!B̄′0, M : U, B̄1)

and (!B̄′0, M : U, B̄1 ` C̄), we obtain (E `!B̄′0, M : U, C̄), by induction hypothesis. Then (E `!B̄0,C̄), by (Sub).
Suppose D ends in (Pair). Then !B̄0 = (!B̄′0, (M,N) : K Top) and (!B̄′0, M : K Top, N : K Top, B̄1 `

C̄). From (E `!B̄0, B̄1) we obtain (E `!B̄′0, M : K Top, N : K Top, B̄1), by Lemma B.18(a). From this and
(!B̄′0, M : K Top, N : K Top, B̄1 ` C̄) we obtain (E `!B̄′0, M : K Top, N : K Top, C̄), by induction hypothesis.
Then (E `!B̄0,C̄), by (Pair).

Suppose D ends in (Decrypt Trusted). Then !B̄0 = (!B̄′0, decrypt(M1,N) : J Auth(M2)) and (!B̄′0, B̄1 `

N : (K,H)DK(X)) and (!B̄′0, B̄1, (M1,M2) ∈ X ` C̄) and Tainted 6∈ H ∪ J for some !B̄′0, M1, M2, N, J,
K, H, X . From (E `!B̄0, B̄1) it follows, by Lemma B.18(e), that decrypt(M1,N) is not a decryption pat-
tern, i.e., N = Dec(N ′) and decrypt(M1,N) = {|M1|}Enc(N′) for some N ′. From (E `!B̄0, B̄1) it follows, by
Lemma B.18(f), that there exist K ′,H ′,X ′,M′2 such that the following statements hold:

(1) E ` N : (K ′,H ′)EK(X ′), (M1,M′2) ∈ X ′, !B̄′0, B̄1

(2) (Tainted 6∈ J) ⇒ (M′2 = M2)

(3) (Tainted ∈ K ′) ⇒ Tainted ∈ J.

Because Tainted 6∈ H ∪ J, we obtain from (2) and (3):

(4) M′2 = M2

(5) Tainted 6∈ K ′

By induction hypothesis, we may cut (E `!B̄′0, B̄1) with (!B̄′0, B̄1 `N : (K,H)DK(X)), obtaining (E `N : (K,H)DK(X)).
Then, by key uniqueness (Lemma 7.6), either (K,H,X) = (K ′,H ′,X ′) or Tainted∈ (K ′∩K−1)∪ (H ∩H ′−1)∪

(K′∩H). Because Tainted 6∈H∪J and Tainted 6∈ K ′, it follows that (K,H,X) = (K ′,H ′,X ′). Now we can use
Lemma B.22 and the induction hypothesis, in order to cut (1) with (!B̄′0, B̄1, (M1,M2)∈X , N : (K ′,H ′)EK(X ′)`
C̄), obtaining (E ` N : (K ′,H ′)EK(X ′), (M1,M′2) ∈ X ′, !B̄′0). Then (E `!B̄0,C̄), by (Encrypt Trusted).

Suppose D ends in (Decrypt Untrusted). Then there exist !B̄′0, M1, N, J, K, H, X , x such that !B̄0 =

(!B̄′0, decrypt(M1,N) : J Top) and (!B̄′0, B̄1 ` N : (K,H)DK(X)) and Tainted ∈ J and both the following hold:

(1) (x, !B̄′0, B̄1, (M1,x) ∈ X ` C̄) ∨ (Public,Tainted ∈ K∪H−1)

(2) (!B̄′0, B̄1, M : J Top ` C̄) ∨ (Public 6∈ K∪H−1)

55

From (E `!B̄0, B̄1) it follows, by Lemma B.18(e), that decrypt(M1,N) is not a decryption pattern, i.e., N =

Dec(N ′) and decrypt(M1,N) = {|M1|}Enc(N′) for some N ′. From (E `!B̄0, B̄1) it follows, by Lemma B.18(g),
that there exist K ′,H ′,X ′,M2 such that the following statements hold:

(3) E ` N : (K ′,H ′)EK(X ′), (M1,M2) ∈ X ′, !B̄′0, B̄1

(4) (Tainted ∈ K ′∪H ′−1)

⇒ (E ` N : (K ′,H ′)EK(X ′), (M1,M2) ∈ X ′, M1 : (J∪{Tainted})Top, !B̄′0, B̄1)

By induction hypothesis, we may cut (E `!B̄′0, B̄1) with (!B̄′0, B̄1 `N : (K,H)DK(X)), obtaining (E `N : (K,H)DK(X)).
Then, by key uniqueness (Lemma 7.6), we get:

(5) (K,H,X) = (K ′,H ′,X ′) ∨ Tainted ∈ (K ′∩K−1)∪ (H ∩H ′−1)∪ (K ′∩H)

We will now consider two cases, namely, {Public,Tainted} ⊆ K ∪H−1 and Public 6∈ K∪H−1:
Suppose first that {Public,Tainted} ⊆ K ∪H−1. We claim that Tainted ∈ K ′ ∪H ′−1. If (K,H,X) =

(K′,H ′,X ′), then this is a consequence of {Public,Tainted} ⊆ K ∪H−1. Otherwise, by (5), Tainted ∈ (K ′ ∩
K−1)∪ (H ∩H ′−1)∪ (K ′ ∩H) ⊆ K ′∪H ′−1. So, in any case, Tainted ∈ K ′ ∪H ′−1. Then, by (4), it is the case
that

(E ` N : (K ′,H ′)EK(X ′), (M1,M2) ∈ X ′, M1 : (J∪{Tainted})Top, !B̄′0, B̄1)

Moreover, (!B̄′0, B̄1, M : J Top ` C̄), by (2). Because Tainted ∈ J, it is the case that (J ∪{Tainted})Top =

J Top, and we can use Lemma B.22 and the induction hypothesis to cut these two judgments, obtaining
(E ` N : (K ′,H ′)EK(X ′), (M1,M2) ∈ X ′, M1 : J Top, !B̄′0,C̄). Applying (Encrypt Untrusted) and (Sub) to
this judgment results in (E `!B̄0,C̄).

Suppose now that Public 6∈K∪H−1. Then (x, !B̄′0, B̄1, (M1,x)∈X ` C̄), by (1). By substitutivity (Lemma 7.3),
we get (!B̄′0, B̄1, (M1,M2) ∈ X ` C̄). From Public 6∈ K ∪H−1 it follows that Tainted 6∈ (K ′ ∩K−1)∪ (H ∩
H ′−1)∪ (K ′ ∩H). Therefore, (K,H,X) = (K ′,H ′,X ′), by (5). If Tainted ∈ K ′ ∪H ′−1, we now cut (4) with
(!B̄′0, B̄1, (M1,M2) ∈ X ` C̄) followed by an application of (Encrypt Untrusted) to obtain the desired result. On
the other hand, if Tainted 6∈ K ′∪H ′−1, we cut (3) with (!B̄′0, B̄1, (M1,M2)∈ X ` C̄) followed by an application
of (Encrypt Trusted) to obtain the desired result.

Suppose D ends in (Nonce Use). We have !B̄0 = (!B̄′0, N : (K,H)Resp(D̄2)), B̄1 = (B̄′1, fresh(N : (K,H)Chall(D̄1)))

and (!B̄′0, B̄′1, N : Stale, D̄1, D̄2 ` C̄) for some !B̄′0, B̄′1, K, H, D̄1, D̄2. From (E `!B̄0, B̄1) we obtain (E `
!B̄′0, B̄′1, N : Stale, D̄1, D̄2), by nonce safety (Lemma 7.7). Then we get (E `!B̄′0, N : Stale, C̄), by induction
hypothesis and weakening. From this we get (E `!B̄0,C̄), by (Subty Stale Nonce) and (Sub).

Suppose D end in (Discard Chall). We have B̄1 = (B̄′1, fresh(N : (K,H)Chall(D̄))) and (!B̄0, B̄′1, N : Stale`

C̄) for some B̄′1, N, K, H, D̄. Then E = (E ′, fresh(N : (K,H)Chall(D̄))) and (E ′ `!B̄0, B̄′1), by Lemma B.16(b).
Then (E ′, N : Stale `!B̄0, B̄′1, N : Stale), by (Lift). Then (E `!B̄0, B̄′1, N : Stale), by (Discard Chall). From
(E `!B̄0, B̄′1, N : Stale) and (!B̄0, B̄′1, N : Stale ` C̄) we obtain (E `!B̄0, N : Stale, C̄), by induction hypothesis.
Then (E `!B̄0,C̄), by weakening.

All other proof cases are straightforward.
Proof of theorem: Suppose E is nominal, (E `!B̄0, B̄1, B̄2) and (!B̄0, B̄1 ` C̄). For i = 1,2, decompose B̄i into
B̄i = (!B̄i1, B̄i2) such that no member of B̄i2 is copyable. By Lemma B.17, there exist B̄220, B̄221, E0 such that
B̄22 = (B̄220, B̄221), E = (E0, B̄221), !D ∈ E0 for all D in B̄220, and (E0 `!B̄0, B̄1, !B̄21). From (!B̄0, B̄1 ` C̄) we
obtain (!B̄0, B̄1, !B̄21 ` C̄), by weakening. From (E0 `!B̄0, B̄1, !B̄21) and (!B̄0, B̄1, !B̄21 ` C̄), we obtain (E0 `

!B̄0, !B̄11, !B̄21,C̄), by auxiliary statement (a). Then (E0 `!B̄0, !B̄21,C̄), by weakening. Then (E `!B̄0, B̄2,C̄),
by (Id) and (Lift). �

B.8 Secrecy

For the following simple auxiliary lemma, recall Definition B.3 of n-ambiguous environments.

56

Lemma B.23 If~n are distinct, (~n : ~T ::: P)→∗ (Ā, m : U ::: Q) and (Ā, m : U) is m-ambiguous, then U is a
challenge type.

Proof By inspection of the state transition rules, Ā does not contain a type assertion of the form m : V . Then,
by Definition B.3 of m-ambiguity, Ā must contain an assertion of the form fresh(m : C) for some challenge
type C. This is only possible if C = U , by inspection of the state transition rules. �

Recall Definition 4.1 of write-safety.

Lemma B.24 (Write-Safety) If ~n are distinct, ~T are closed types and (~n : ~T ` P), then (~n : ~T ::: P) is
write-safe.

Proof Suppose~n are distinct, ~T are closed types and (~n : ~T ` P). Suppose that (~n : ~T ::: P)→∗ (Ā, m : U :::
out L m | Q) and U is not a challenge type. Because (~n : ~T ` P), it is the case that `~n : ~T ::: P, by (State).
Then, by type preservation, ` Ā, m : U ::: out L m | Q. By inverting the last rules of this typing judgment,
we obtain that (Ā, m : U ` Ā′) and (Ā′ ` m : Un) for some Ā′. Cutting these two judgments, we get that
(Ā, m : U ` m : Un). Then U ≤ Un, by Lemmas B.19(c) and B.23. Then U is public, because subtypes of Un

are public. �

Proof of Theorem 4.1 (Robust Write-Safety) If ~n are distinct names and (~n : ~T ` P), then P is robustly
write-safe.

Proof Same as proof of Theorem 3.1 in Section 7.2. �

B.9 Integrity

Recall Definition 4.3 of read-safety.

Lemma B.25 (Read-Safety) If~n are distinct, ~T are closed types and (~n : ~T ` P), then (~n : ~T ::: P) is read-
safe.

Proof Suppose~n are distinct, ~T are closed types and (~n : ~T ` P). Suppose that (~n : ~T ::: P)→∗ (Ā, m : Un :::
out L M{x←m,~y←~N} | (inp L ∃x,~y .M[x : U, Ā]; P′) |Q) and U is not a response type. Because (~n : ~T ` P), it
is the case that `~n : ~T ::: P, by (State). Then, by type preservation, ` Ā, m : Un ::: out L M{x←m,~y←~N} |
(inp L ∃x,~y .M[x : U, Ā]; P′) |Q. By inverting the last rules of this typing judgment, we obtain that (Ā, m : Un`

Ā′), (!Ā′0, Ā
′
1 `M{x←m,~y←~N} : Un), and (x,~y; !Ā′0, Ā′2, M : Un` x : U) for some Ā′, !Ā′0, Ā′1, Ā′2 such that Ā′=

(!Ā′0, Ā
′
1, Ā
′
2). By cutting the first two of these judgments, we obtain (Ā, m : Un`!Ā′0, !Ā′2, M{x←m,~y←~N} : Un).

Applying the substitution {x←m,~y←~N} to the third judgment, we obtain (!Ā′0, Ā′2, M{x←m,~y←~N} : Un `

m : U). Another cut results in (Ā, m : Un ` m : U). Then Un ≤U , by Lemmas B.19(c) and B.23. Then U is
tainted, because supertypes of Un are tainted. �

Proof of Theorem 4.2 (Robust Read-Safety) If~n are distinct and (~n : Un ` P), then P is robustly read-safe.

Proof Same as proof of Theorem 3.1 in Section 7.2. �

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–786, September 1999.

[2] M. Abadi. Security protocols and their properties. 20th Int. Summer School on Foundations of Secure
Computation, pages 39–60, 1999.

57

[3] M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. In Foundations of Software
Science and Computation Structures, volume 2030 of Lecture Notes in Computer Science, pages 25–41.
Springer, 2001.

[4] M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic programs. In 29th
ACM Symposium on Principles of Programming Languages, pages 33–44, 2002.

[5] M. Abadi and L. de Alfaro, editors. Proceedings of the International Conference on Concurrency Theory
- CONCUR, volume 3653 of Lecture Notes in Computer Science. Springer, 2005.

[6] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In 28th ACM Sympo-
sium on Principles of Programming Languages, pages 104–115, 2001.

[7] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi calculus. Information and
Computation, 148:1–70, 1999.

[8] M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols. IEEE Transactions
on Software Engineering, 22(1):6–15, 1996.

[9] R. Amadio and W. Charatonik. On name generation and set-based analysis in the Dolev-Yao model.
In Proceedings of the International Conference on Concurrency Theory - CONCUR, volume 2421 of
Lecture Notes in Computer Science, pages 499–514. Springer, 2002.

[10] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[11] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In Proceedings of the
Computer Security Foundations Workshop - CSFW, pages 82–96. IEEE Computer Society Press, 2001.

[12] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic validation of protocol
narration. In Proceedings of the Computer Security Foundations Workshop - CSFW, pages 126–140.
IEEE Computer Society Press, 2003.

[13] D. Bolignano. An approach to the formal verification of cryptographic protocols. In Third ACM Confer-
ence on Computer and Communications Security, pages 106–118, 1996.

[14] M. Bugliesi, R. Focardi, and M. Maffei. Authenticity by tagging and typing. In FMSE ’04: Proceedings
of the 2004 ACM workshop on Formal methods in security engineering, pages 1–12. ACM Press, 2004.

[15] M. Burrows, M. Abadi, and R.M. Needham. A logic of authentication. Proceedings of the Royal Society
of London A, 426:233–271, 1989.

[16] I. Cervesato. Typed MSR: Syntax and examples. In First International Workshop on Mathematical
Methods, Models and Architectures for Computer Network Security, volume 2052 of Lecture Notes in
Computer Science, pages 159–177. Springer, 2001.

[17] I. Cervesato, N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. A meta-notation for protocol
analysis. In CSFW, pages 55–69, 1999.

[18] E. Cohen. TAPS: A first-order verifier for cryptographic protocols. In Proceedings of the Computer
Security Foundations Workshop - CSFW, pages 144–158. IEEE Computer Society Press, 2000.

[19] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, IT–29(2):198–208, 1983.

58

[20] N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security protocols. In
Workshop on Formal Methods and Security Protocols (FMSP99), 1999.

[21] J. Goguen. What is unification? In M. Nivat and H. Ait-Kaci, editors, Resolution of Equations in
Algebraic Structures, volume 1, pages 217–261. Academic Press, 1989.

[22] A.D. Gordon, C. Haack, and A. Jeffrey. Cryptyc: Cryptographic protocol type checker. At
http://cryptyc.cs.depaul.edu/, 2004.

[23] A.D. Gordon and A. Jeffrey. Typing one-to-one and one-to-many correspondences in security protocols.
In Proc. Int. Software Security Symp., volume 2609 of Lecture Notes in Computer Science, pages 263–
282. Springer-Verlag, 2002.

[24] A.D. Gordon and A. Jeffrey. Authenticity by typing for security protocols. J. Computer Security,
11(4):451–521, 2003.

[25] A.D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic protocols. J. Computer
Security, 12(3/4):435–484, 2003.

[26] A.D. Gordon and A. Jeffrey. Secrecy despite compromise: Types, cryptography, and the pi-calculus. In
Abadi and de Alfaro [5], pages 186–201.

[27] C. Haack and A. Jeffrey. Timed spi-calculus with types for secrecy and authenticity. In Abadi and
de Alfaro [5], pages 202–216.

[28] J. Heather. ‘Oh! . . . Is it really you?’ Using rank functions to verify authentication protocols. PhD thesis,
Royal Holloway, University of London, 2000.

[29] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security protocols. In
Proceedings of the Computer Security Foundations Workshop - CSFW, pages 255–268. IEEE Computer
Society Press, 2000.

[30] J. Heather and S. Schneider. Towards automatic verification of authentication protocols on an unbounded
network. In Proceedings of the Computer Security Foundations Workshop - CSFW, pages 132–143. IEEE
Computer Society Press, 2000.

[31] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using CSP and FDR. In Tools
and Algorithms for the Construction and Analysis of Systems, volume 1055 of Lecture Notes in Computer
Science, pages 147–166. Springer, 1996.

[32] G. Lowe. Casper: A compiler for the analysis of security protocols. Journal of Computer Security,
6:53–84, 1998.

[33] Davide Marchignoli and Fabio Martinelli. Automatic verification of cryptographic protocols through
compositional analysis techniques. In TACAS, volume 1579 of Lecture Notes in Computer Science,
pages 148–162. Springer, 1999.

[34] W. Marrero, E.M. Clarke, and S. Jha. Model checking for security protocols. In DIMACS Workshop on
Design and Formal Verification of Security Protocols, 1997. Preliminary version appears as Technical
Report TR–CMU–CS–97–139, Carnegie Mellon University, May 1997.

[35] Fabio Martinelli. Analysis of security protocols as open systems. Theor. Comput. Sci., 290(1):1057–1106,
2003.

59

[36] L.C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer Secu-
rity, 6:85–128, 1998.

[37] A.W. Roscoe. Modelling and verifying key-exchange protocols using CSP and FDR. In Proceedings
of the Computer Security Foundations Workshop - CSFW, pages 98–107. IEEE Computer Society Press,
1995.

[38] S.A. Schneider. Verifying authentication protocols in CSP. IEEE Transactions on Software Engineering,
24(9):741–758, 1998.

[39] F.J. Thayer Fábrega, J.C. Herzog, and J.D. Guttman. Strand spaces: Why is a security protocol correct?
In IEEE Computer Society Symposium on Research in Security and Privacy, pages 160–171, 1998.

[40] T.Y.C. Woo and S.S. Lam. A semantic model for authentication protocols. In IEEE Computer Society
Symposium on Research in Security and Privacy, pages 178–194, 1993.

60

