
Pattern Matching with Variables:
A Multivariate Complexity Analysis

Henning Fernau, Markus L. Schmid,

Universität Trier

Presented 19 June 2013 at CPM

Words with Coloured Holes

A word with (coloured) holes. . .

a b� c� c b� b� c a�

. . . can be repaired. . .

a b a→ �

c b→ �

. . . by �lling in new words:

a b a b a c c b c b a b a b c b c a c b

Words with Coloured Holes

A word with (coloured) holes. . .

a b� c� c b� b� c a�

. . . can be repaired. . .

a b a→ �

c b→ �

. . . by �lling in new words:

a b a b a c c b c b a b a b c b c a c b

Words with Coloured Holes

A word with (coloured) holes. . .

a b� c� c b� b� c a�

. . . can be repaired. . .

a b a→ �

c b→ �

. . . by �lling in new words:

a b a b a c c b c b a b a b c b c a c b

A Special Kind of Pattern Matching

For given

α (a word with coloured holes),

w (a word without holes),

is it possible to �ll the holes of α in such a way that we obtain w?

Example 1:

α = a a c b

u = a c a a a b c b a a c a b c b a c b a c

A Special Kind of Pattern Matching

For given

α (a word with coloured holes),

w (a word without holes),

is it possible to �ll the holes of α in such a way that we obtain w?

Example 1:

α =� a a��� c b�

u = a c a a a b c b a a c a b c b a c b a c

A Special Kind of Pattern Matching

For given

α (a word with coloured holes),

w (a word without holes),

is it possible to �ll the holes of α in such a way that we obtain w?

Example 1:

α = a c a a� a c� c b a c

u = a c a a a b c b a a c a b c b a c b a c

A Special Kind of Pattern Matching

For given

α (a word with coloured holes),

w (a word without holes),

is it possible to �ll the holes of α in such a way that we obtain w?

Example 1:

α = a c a a a b c b a a c a b c b a c b a c

u = a c a a a b c b a a c a b c b a c b a c

A Special Kind of Pattern Matching

For given

α (a word with coloured holes),

w (a word without holes),

is it possible to �ll the holes of α in such a way that we obtain w?

Example 2:

α =� a a��� c b�

v = c c b a a c c b c b c c baaaaaaaaa

A Special Kind of Pattern Matching

For given

α (a word with coloured holes),

w (a word without holes),

is it possible to �ll the holes of α in such a way that we obtain w?

Example 2:

α = c c b a a� c c b� c b c c b

v = c c b a a c c b c b c c baaaaaaaaa

A Special Kind of Pattern Matching

For given

α (a word with coloured holes),

w (a word without holes),

is it possible to �ll the holes of α in such a way that we obtain w?

Example 2:

α = c c b a a c c b c b c c b

v = c c b a a c c b c b c c baaaaaaaaa

A Special Kind of Pattern Matching

For given

α (a word with coloured holes),

w (a word without holes),

is it possible to �ll the holes of α in such a way that we obtain w?

Example 3:

α =� a a��� c b�

w = a b b a a b a b c a b c baaaaaaaaa

Some Notations and De�nitions

Σ is a terminal alphabet, Σ = {a, b, c}

X is the set of variables, X = {x1, x2, x3, . . .}

w ∈ Σ∗ is a word abaacba

α ∈ (Σ ∪ X)+ is a pattern α := x1ax2x1bax2x1x3

X → Σ+ is a substitution h(x1) := ab, h(x2) := bcc

Some Notations and De�nitions

Σ is a terminal alphabet, Σ = {a, b, c}

X is the set of variables, X = {x1, x2, x3, . . .}

w ∈ Σ∗ is a word abaacba

α ∈ (Σ ∪ X)+ is a pattern α := x1ax2x1bax2x1x3

X → Σ+ is a substitution h(x1) := ab, h(x2) := bcc

Some Notations and De�nitions

Σ is a terminal alphabet, Σ = {a, b, c}

X is the set of variables, X = {x1, x2, x3, . . .}

w ∈ Σ∗ is a word abaacba

α ∈ (Σ ∪ X)+ is a pattern α := x1ax2x1bax2x1x3

X → Σ+ is a substitution h(x1) := ab, h(x2) := bcc

Some Notations and De�nitions

Σ is a terminal alphabet, Σ = {a, b, c}

X is the set of variables, X = {x1, x2, x3, . . .}

w ∈ Σ∗ is a word abaacba

α ∈ (Σ ∪ X)+ is a pattern α := x1ax2x1bax2x1x3

X → Σ+ is a substitution h(x1) := ab, h(x2) := bcc

Some Notations and De�nitions

Σ is a terminal alphabet, Σ = {a, b, c}

X is the set of variables, X = {x1, x2, x3, . . .}

w ∈ Σ∗ is a word abaacba

α ∈ (Σ ∪ X)+ is a pattern α := x1ax2x1bax2x1x3

X → Σ+ is a substitution h(x1) := ab, h(x2) := bcc

Pattern Matching with Variables

VPatMatch

Instance: A pattern α ∈ (Σ ∪ X)∗, a word w ∈ Σ∗.
Question: Does there exist a substitution h with h(α) = w?

Two variants:

E-VPatMatch Substitution may map variables to the empty word ε.

NE-VPatMatch Substitution can only map to non-empty words.

Pattern Matching with Variables

VPatMatch

Instance: A pattern α ∈ (Σ ∪ X)∗, a word w ∈ Σ∗.
Question: Does there exist a substitution h with h(α) = w?

Two variants:

E-VPatMatch Substitution may map variables to the empty word ε.

NE-VPatMatch Substitution can only map to non-empty words.

A Very Brief History

Three branches:

Learning theory and Language theory (1980 - today):
I Membership problem of Angluin's pattern languages.
I First NE-case, later E-case.
I Word equations, where one side is �variable-free�.

Pattern matching community (1996 - today):
I Baker's parameterised matching (�nding repetitions in program code).
I A. Amir, Y. Aumann, R. Cole, M. Lewenstein: function matching.
I A. Amir, I. Nor: generalized function matching.
I R. Cli�ord, A. W. Harrow, A. Popa, B. Sach: generalised matching.
I Only NE-case.

The �real� world (?? - today):
I Matchtest for regular expressions with backreferences.
I Nowadays a standard tool in text editors (grep, emacs, . . .) and

programming language (Perl, Java, Python, . . .).

A Very Brief History

Three branches:

Learning theory and Language theory (1980 - today):
I Membership problem of Angluin's pattern languages.
I First NE-case, later E-case.
I Word equations, where one side is �variable-free�.

Pattern matching community (1996 - today):
I Baker's parameterised matching (�nding repetitions in program code).
I A. Amir, Y. Aumann, R. Cole, M. Lewenstein: function matching.
I A. Amir, I. Nor: generalized function matching.
I R. Cli�ord, A. W. Harrow, A. Popa, B. Sach: generalised matching.
I Only NE-case.

The �real� world (?? - today):
I Matchtest for regular expressions with backreferences.
I Nowadays a standard tool in text editors (grep, emacs, . . .) and

programming language (Perl, Java, Python, . . .).

A Very Brief History

Three branches:

Learning theory and Language theory (1980 - today):
I Membership problem of Angluin's pattern languages.
I First NE-case, later E-case.
I Word equations, where one side is �variable-free�.

Pattern matching community (1996 - today):
I Baker's parameterised matching (�nding repetitions in program code).
I A. Amir, Y. Aumann, R. Cole, M. Lewenstein: function matching.
I A. Amir, I. Nor: generalized function matching.
I R. Cli�ord, A. W. Harrow, A. Popa, B. Sach: generalised matching.
I Only NE-case.

The �real� world (?? - today):
I Matchtest for regular expressions with backreferences.
I Nowadays a standard tool in text editors (grep, emacs, . . .) and

programming language (Perl, Java, Python, . . .).

NP-Completeness

Theorem (Angluin 1980, Ehrenfeucht and Rozenberg 1979)

If |Σ| ≥ 2, then E- and NE-VPatMatch are NP-complete.

3CNF formula (without negated variables)

ψ = (v1 ∨ v2 ∨ v3) ∧ (v2 ∨ v4 ∨ v5) ∧ (v3 ∨ v1 ∨ v3) ∧ (v4 ∨ v1 ∨ v2)

E-VPatMatch instance:

αψ = x1x2x3 b x2x4x5 b x3x1x3 b x4x1x2

wψ = a b a b a b a.

∃ h : h(αψ) = wψ i� ψ is �1-in-3-satis�able�.

NP-Completeness

Theorem (Angluin 1980, Ehrenfeucht and Rozenberg 1979)

If |Σ| ≥ 2, then E- and NE-VPatMatch are NP-complete.

3CNF formula (without negated variables)

ψ = (v1 ∨ v2 ∨ v3) ∧ (v2 ∨ v4 ∨ v5) ∧ (v3 ∨ v1 ∨ v3) ∧ (v4 ∨ v1 ∨ v2)

E-VPatMatch instance:

αψ = x1x2x3 b x2x4x5 b x3x1x3 b x4x1x2

wψ = a b a b a b a.

∃ h : h(αψ) = wψ i� ψ is �1-in-3-satis�able�.

NP-Completeness

Theorem (Angluin 1980, Ehrenfeucht and Rozenberg 1979)

If |Σ| ≥ 2, then E- and NE-VPatMatch are NP-complete.

3CNF formula (without negated variables)

ψ = (v1 ∨ v2 ∨ v3) ∧ (v2 ∨ v4 ∨ v5) ∧ (v3 ∨ v1 ∨ v3) ∧ (v4 ∨ v1 ∨ v2)

E-VPatMatch instance:

αψ = x1x2x3 b x2x4x5 b x3x1x3 b x4x1x2

wψ = a b a b a b a.

∃ h : h(αψ) = wψ i� ψ is �1-in-3-satis�able�.

NP-Completeness

Theorem (Angluin 1980, Ehrenfeucht and Rozenberg 1979)

If |Σ| ≥ 2, then E- and NE-VPatMatch are NP-complete.

3CNF formula (without negated variables)

ψ = (v1 ∨ v2 ∨ v3) ∧ (v2 ∨ v4 ∨ v5) ∧ (v3 ∨ v1 ∨ v3) ∧ (v4 ∨ v1 ∨ v2)

E-VPatMatch instance:

αψ = x1x2x3 b x2x4x5 b x3x1x3 b x4x1x2

wψ = a b a b a b a.

∃ h : h(αψ) = wψ i� ψ is �1-in-3-satis�able�.

Special Cases

OK, so VPatMatch is a hard problem, but what if

we are only interested in texts of size at most 50,

we are only interested in injective substitutions,

in our patterns every variable occurs at most twice,

we are only interested in patterns without any terminal symbols and

we only consider substitutions of the form h : X → {a, b, ε}?
(i. e., for some u over some alphabet Γ and some w ∈ {a, b}∗, can we

obtain w by replacing every x ∈ Γ in u by either a or b or deleting it?)

Special Cases

OK, so VPatMatch is a hard problem, but what if

we are only interested in texts of size at most 50,

we are only interested in injective substitutions,

in our patterns every variable occurs at most twice,

we are only interested in patterns without any terminal symbols and

we only consider substitutions of the form h : X → {a, b, ε}?
(i. e., for some u over some alphabet Γ and some w ∈ {a, b}∗, can we

obtain w by replacing every x ∈ Γ in u by either a or b or deleting it?)

Special Cases

OK, so VPatMatch is a hard problem, but what if

we are only interested in texts of size at most 50,

we are only interested in injective substitutions,

in our patterns every variable occurs at most twice,

we are only interested in patterns without any terminal symbols and

we only consider substitutions of the form h : X → {a, b, ε}?
(i. e., for some u over some alphabet Γ and some w ∈ {a, b}∗, can we

obtain w by replacing every x ∈ Γ in u by either a or b or deleting it?)

Special Cases

OK, so VPatMatch is a hard problem, but what if

we are only interested in texts of size at most 50,

we are only interested in injective substitutions,

in our patterns every variable occurs at most twice,

we are only interested in patterns without any terminal symbols and

we only consider substitutions of the form h : X → {a, b, ε}?
(i. e., for some u over some alphabet Γ and some w ∈ {a, b}∗, can we

obtain w by replacing every x ∈ Γ in u by either a or b or deleting it?)

Special Cases

OK, so VPatMatch is a hard problem, but what if

we are only interested in texts of size at most 50,

we are only interested in injective substitutions,

in our patterns every variable occurs at most twice,

we are only interested in patterns without any terminal symbols and

we only consider substitutions of the form h : X → {a, b, ε}?
(i. e., for some u over some alphabet Γ and some w ∈ {a, b}∗, can we

obtain w by replacing every x ∈ Γ in u by either a or b or deleting it?)

Some More Notation

For any pattern α (e. g., α := x1ax2x1bax2x1x3),

var(α) is the set of variables in α var(α) = {x1, x2, x3}

|α|x is the number of Occ. of x in α |α|x1 = 3

Some More Notation

For any pattern α (e. g., α := x1ax2x1bax2x1x3),

var(α) is the set of variables in α var(α) = {x1, x2, x3}

|α|x is the number of Occ. of x in α |α|x1 = 3

Some More Notation

For any pattern α (e. g., α := x1ax2x1bax2x1x3),

var(α) is the set of variables in α var(α) = {x1, x2, x3}

|α|x is the number of Occ. of x in α |α|x1 = 3

Di�erent Versions

Types of VPatMatch:

Substitutions can be erasing or must be non-erasing.

Substitutions can be non-injective or must be injective.

Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:

| var(α)| Number of variables.

|w | word length.

|h(x)| Max. length of substitution words.

|α|x Max. occ. per variable.

|Σ| Alphabet size.

23 types, 25 combinations of parameters → 256 versions of VPatMatch.

Di�erent Versions

Types of VPatMatch:

Substitutions can be erasing or must be non-erasing.

Substitutions can be non-injective or must be injective.

Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:

| var(α)| Number of variables.

|w | word length.

|h(x)| Max. length of substitution words.

|α|x Max. occ. per variable.

|Σ| Alphabet size.

23 types, 25 combinations of parameters → 256 versions of VPatMatch.

Di�erent Versions

Types of VPatMatch:

Substitutions can be erasing or must be non-erasing.

Substitutions can be non-injective or must be injective.

Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:

| var(α)| Number of variables.

|w | word length.

|h(x)| Max. length of substitution words.

|α|x Max. occ. per variable.

|Σ| Alphabet size.

23 types, 25 combinations of parameters → 256 versions of VPatMatch.

Di�erent Versions

Types of VPatMatch:

Substitutions can be erasing or must be non-erasing.

Substitutions can be non-injective or must be injective.

Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:

| var(α)| Number of variables.

|w | word length.

|h(x)| Max. length of substitution words.

|α|x Max. occ. per variable.

|Σ| Alphabet size.

23 types, 25 combinations of parameters → 256 versions of VPatMatch.

Di�erent Versions

Types of VPatMatch:

Substitutions can be erasing or must be non-erasing.

Substitutions can be non-injective or must be injective.

Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:

| var(α)| Number of variables.

|w | word length.

|h(x)| Max. length of substitution words.

|α|x Max. occ. per variable.

|Σ| Alphabet size.

23 types, 25 combinations of parameters → 256 versions of VPatMatch.

Di�erent Versions

Types of VPatMatch:

Substitutions can be erasing or must be non-erasing.

Substitutions can be non-injective or must be injective.

Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:

| var(α)| Number of variables.

|w | word length.

|h(x)| Max. length of substitution words.

|α|x Max. occ. per variable.

|Σ| Alphabet size.

23 types, 25 combinations of parameters → 256 versions of VPatMatch.

Di�erent Versions

Types of VPatMatch:

Substitutions can be erasing or must be non-erasing.

Substitutions can be non-injective or must be injective.

Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:

| var(α)| Number of variables.

|w | word length.

|h(x)| Max. length of substitution words.

|α|x Max. occ. per variable.

|Σ| Alphabet size.

23 types, 25 combinations of parameters → 256 versions of VPatMatch.

Di�erent Versions

Types of VPatMatch:

Substitutions can be erasing or must be non-erasing.

Substitutions can be non-injective or must be injective.

Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:

| var(α)| Number of variables.

|w | word length.

|h(x)| Max. length of substitution words.

|α|x Max. occ. per variable.

|Σ| Alphabet size.

23 types, 25 combinations of parameters → 256 versions of VPatMatch.

Di�erent Versions

Types of VPatMatch:

Substitutions can be erasing or must be non-erasing.

Substitutions can be non-injective or must be injective.

Patterns can contain terminal symbols or must be terminal-free.

Parameters of VPatMatch:

| var(α)| Number of variables.

|w | word length.

|h(x)| Max. length of substitution words.

|α|x Max. occ. per variable.

|Σ| Alphabet size.

23 types, 25 combinations of parameters → 256 versions of VPatMatch.

Research Questions

256 Questions of the following form:

Main Research Question

For any type X of VPatMatch and for any subset P of parameters, can

we bound the parameters in P by constants, such that type X of

VPatMatch is still NP-complete?

First Observations

Theorem (Geilke, Zilles, 2011)

If

| var(α)| ≤ c or

|w | ≤ c,

for some constant c, then all variants of VPatMatch are in P.

So we focus on the parameters |h(x)|, |α|x and |Σ|.

Observation

If

|α|x = 1 or

|Σ| = 1,

then all variants of VPatMatch are in P .

First Observations

Theorem (Geilke, Zilles, 2011)

If

| var(α)| ≤ c or

|w | ≤ c,

for some constant c, then all variants of VPatMatch are in P.

So we focus on the parameters |h(x)|, |α|x and |Σ|.

Observation

If

|α|x = 1 or

|Σ| = 1,

then all variants of VPatMatch are in P .

First Observations

Theorem (Geilke, Zilles, 2011)

If

| var(α)| ≤ c or

|w | ≤ c,

for some constant c, then all variants of VPatMatch are in P.

So we focus on the parameters |h(x)|, |α|x and |Σ|.

Observation

If

|α|x = 1 or

|Σ| = 1,

then all variants of VPatMatch are in P .

The Non-injective Case

Theorem

Erasing, non-injective VPatMatch is NP-complete,

even if

|h(x)| ≤ 1 ,
|α|x ≤ 2 ,
|Σ| ≤ 2 .

even if terminal-free and

|h(x)| ≤ 1 ,
|α|x ≤ 8,
|Σ| ≤ 2 .

The Non-injective Case

Theorem

Erasing, non-injective VPatMatch is NP-complete,

even if

|h(x)| ≤ 1 ,
|α|x ≤ 2 ,
|Σ| ≤ 2 .

even if terminal-free and

|h(x)| ≤ 1 ,
|α|x ≤ 8,
|Σ| ≤ 2 .

The Non-injective Case

Theorem

Erasing, non-injective VPatMatch is NP-complete,

even if

|h(x)| ≤ 1 ,
|α|x ≤ 2 ,
|Σ| ≤ 2 .

even if terminal-free and

|h(x)| ≤ 1 ,
|α|x ≤ 8,
|Σ| ≤ 2 .

The Non-injective Case

Theorem

Erasing, non-injective VPatMatch is NP-complete,

even if

|h(x)| ≤ 1 ,
|α|x ≤ 2 ,
|Σ| ≤ 2 .

even if terminal-free and

|h(x)| ≤ 1 ,
|α|x ≤ 8/ 2,

|Σ| ≤ 2 .

The Non-injective Case

Theorem

(Non-)Erasing, non-injective VPatMatch is NP-complete,

even if

|h(x)| ≤ 1 ,
|α|x ≤ 2 ,
|Σ| ≤ 2 .

even if terminal-free and

|h(x)| ≤ 1 ,
|α|x ≤ 8/ 2,

|Σ| ≤ 2 .

The Non-injective Case

Theorem

(Non-)Erasing, non-injective VPatMatch is NP-complete,

even if

|h(x)| ≤ 1 (3),
|α|x ≤ 2 (2),
|Σ| ≤ 2 (2).

even if terminal-free and

|h(x)| ≤ 1 (3),
|α|x ≤ 8/ 2 (3),

|Σ| ≤ 2 (4).

The Injective Case 1/2

Theorem

Let c1, c2 ∈ N. All injective variants of VPatMatch, restricted to

|h(x)| ≤ c1,

|Σ| ≤ c2,

are in P.

The Injective Case 2/2

For all other injective variants, we have NP-completeness, but the

constants are a bit larger.

Theorem

Injective, erasing or non-erasing, terminal-free or non-terminal-free
VPatMatch is NP-complete,

even if

|h(x)| ≤ 19,
|α|x ≤ 4,

even if

|α|x ≤ 9,
|Σ| ≤ 5.

The Injective Case 2/2

For all other injective variants, we have NP-completeness, but the

constants are a bit larger.

Theorem

Injective, erasing or non-erasing, terminal-free or non-terminal-free
VPatMatch is NP-complete,

even if

|h(x)| ≤ 19,
|α|x ≤ 4,

even if

|α|x ≤ 9,
|Σ| ≤ 5.

Further Research 1/2

Main Research Question

For any variant X of VPatMatch and for any subset P of parameters,

can we bound the parameters in P by constants, such that variant X of

VPatMatch is still NP-complete?

Dichotomy Result for Erasing and Non-injective Case

Let c1, c2, c3 ∈ N. Erasing, non-injective VPatMatch, restricted to

|h(x)| ≤ c1,

|α|x ≤ c2,

|Σ| ≤ c3,

is NP-Complete if and only if c1 ≥ 1, c2 ≥ 2, c3 ≥ 2.

Dichotomy Result

Let c1, c2, c3 ∈ N. Erasing, non-injective VPatMatch, restricted to

|h(x)| ≤ c1,

|α|x ≤ c2,

|Σ| ≤ c3,

is NP-Complete if and only if c1 ≥ 1, c2 ≥ 2, c3 ≥ 2.

Further Research 1/2

Main Research Question

For any variant X of VPatMatch and for any subset P of parameters,

can we bound the parameters in P by constants, such that variant X of

VPatMatch is still NP-complete?

Dichotomy Result

For any variant X of VPatMatch, for any subset P of parameters and for

any set C of speci�c bounds for the parameters in P , is the variant X of

VPatMatch still NP-complete if the parameters of P are bounded by the

constants in C?

Dichotomy Result for Erasing and Non-injective Case

Let c1, c2, c3 ∈ N. Erasing, non-injective VPatMatch, restricted to

|h(x)| ≤ c1,

|α|x ≤ c2,

|Σ| ≤ c3,

is NP-Complete if and only if c1 ≥ 1, c2 ≥ 2, c3 ≥ 2.

Dichotomy Result

Let c1, c2, c3 ∈ N. Erasing, non-injective VPatMatch, restricted to

|h(x)| ≤ c1,

|α|x ≤ c2,

|Σ| ≤ c3,

is NP-Complete if and only if c1 ≥ 1, c2 ≥ 2, c3 ≥ 2.

Further Research 1/2

Main Research Question

For any variant X of VPatMatch and for any subset P of parameters,

can we bound the parameters in P by constants, such that variant X of

VPatMatch is still NP-complete?

Dichotomy Result for Erasing and Non-injective Case

Let c1, c2, c3 ∈ N. Erasing, non-injective VPatMatch, restricted to

|h(x)| ≤ c1,

|α|x ≤ c2,

|Σ| ≤ c3,

is NP-Complete if and only if c1 ≥ 1, c2 ≥ 2, c3 ≥ 2.

Dichotomy Result

Let c1, c2, c3 ∈ N. Erasing, non-injective VPatMatch, restricted to

|h(x)| ≤ c1,

|α|x ≤ c2,

|Σ| ≤ c3,

is NP-Complete if and only if c1 ≥ 1, c2 ≥ 2, c3 ≥ 2.

Further Research 2/2

Parameterized Complexity

Consider the parameters (| var |, |Σ|, . . .) as parameters in terms of

parameterized complexity theory and investigate the parameterized

complexity of the corresponding parameterized problems.

Thank you very much for your attention.

