
Scientific Programming 11 (2003) 237–261 237
IOS Press

Pattern operators for grid environments

Maria Cecı́lia Gomesa, Omer F. Ranab and José C. Cunhaa

aDepartamento de Informática, Universidade Nova de Lisboa, Portugal
bDepartment of Computer Science, Cardiff University, UK

Abstract. A pattern based approach for developing applications in a Grid computing environment is presented, and is based on
the ability to manage components and their interactions. The approach provides a formal way of combining recurrent themes in
Grid applications, and provides a set of operators that may be used to manipulate the patterns. The operators may be applied to
individual patterns or groups, and may be managed as an independent library. The patterns distinguish between service providers
and users, and may be used to also analyse the properties of a collection of components, or to vary these properties subject to
a set of predefined constraints. Patterns are expressed in the Unified Modelling Language (UML), and operators correspond to
manipulation of components within each pattern.

1. Introduction and related work

Component based software development provides an
effective way to develop applications from a range of
different software libraries, and wrapped legacy codes.
Components can vary in complexity and granularity –
ranging from complete applications to specialised sub-
routines. A number of projects (see a list in [1,15]) have
explored component composition and workflow man-
agement for components in the context of Grid comput-
ing [14,16]. Generally, these environments involve a
user interface which enables components to be selected
from a repository, and combined using an editor. The
interfaces to the components are generally pre-defined,
and often expressed in XML – and these environments
are generally called “Problem Solving Environments”
(PSEs) [17]. Such environments generally consist of
3 tiers: i) a user portal to enable interaction with the
components, (ii) a series of middle tier services – such
as a data management service, one or more compute
services, etc, and (iii) the physical resources on which
the components are to be executed. Manipulating ei-
ther individual components or groups of components is
a useful extension – and little support is directly pro-
vided in existing environments to achieve this. It is also
useful to determine and abstract common interactions
between components, and to make these abstractions
available to a user. One novel theme addressed in this
paper is the ability to view component composition (to

solve a particular problem) as being equivalent to ma-
nipulating a structural pattern using pre-defined opera-
tors. Subsequently, the resulting structure can be ma-
nipulated via behavioural operators that enable multi-
ple data flows to co-exist within a system. A user (ap-
plication developer) may find useful structural or be-
havioural patterns – in particular application contexts –
and record these within a patterns library. These can
then be configured using the operator library.

The approach presented here is primarily aimed
at computational scientists and developers, who have
some understanding of the computational needs of their
application domain. A scientist should be aware about
the likely co-ordination and interaction types between
components of the application (such as a database or
numeric solver etc). The structural and behavioural
patterns presented here will enable such scientists and
developers to utilise common usage scenarios within a
domain (either the use of particular components, such
as database systems, or interactions between compo-
nents, such as the use of streaming).

The features distinguishing Grid environments from
other distributed computing approaches include: het-
erogeneity and dynamicity i.e. the infrastructure can
change significantly over the lifetime of a single ap-
plication, is composed of a range of different plat-
forms, and may be managed by different administrators
(see [21] for a useful survey). As there are likely to be
a range of different users utilising a Grid infrastructure

ISSN 1058-9244/03/$8.00 2003 – IOS Press. All rights reserved

238 M.C. Gomes et al. / Pattern operators for grid environments

with differing abilities – less experienced users may
find it difficult to identify useful architectural models
for interconnecting components. The existence of a
pre-defined set of patterns is therefore particularly use-
ful in this context. Additionally, once components have
been connected together, another major difficulty is the
need to identify suitable coordination mechanisms be-
tween components. Providing a set of operators and
common abstractions at the “behavioural” level is there-
fore important. This work aims to extend Grid applica-
tion development environments with structuring mech-
anisms based on commonly recurring patterns. Using
a library of design templates, a user is able to combine
these with other specialised components that may be
required in a particular application domain – both at
design and execution times.

A number of approaches exist already for modelling
interactions between components in the context of Grid
environments, or for developing formal models of job
submission and management in a Grid [29]. These,
however, do not provide any support for enabling a
user to subsequently utilise the outcome of these mod-
els. Marinescu [3,4] provides a common abstraction
for modelling workflow to support Web and Grid Ser-
vices. The approach is centered on developing graph-
ical abstractions that can be used to model interaction
patterns between components. The graphical patterns
model aspects such as AND/OR/XOR based interac-
tions – and the focus is to support a workflow enactment
engine that may be used to co-ordinate component ex-
ecution. Similarly, a key emphasis in the Fraunhofer
Resource Grid [2] is on developing a Grid Resource and
Job definition language, to enable job submission, re-
source selection, and allow a description of dependen-
cies which exist between resources. In this work, the
Grid Job Definition Language may be mapped to a se-
ries of parameterised Petri Net (PN) blocks. Each block
represents some aspect of the language such as Task
execution and synchronisation, Conditionals and
Choice, and loops (such as the While . . . do loop
etc). Each PN block is encoded in XML based on the
Petri Net Markup Language (PNML) [28]. Both of
these approaches are focused on providing either a spe-
cialised representation scheme, or a workflow manage-
ment approach for components and/or services. Our
approach is more generic, and based on the provision
of a standard pattern library in UML, and associated
operators. Some of these operators may be used to sup-
port workflow, and PN models for patterns may also be
constructed from their UML descriptions, as outlined
in [6]. The PN models are useful to capture the seman-

tics of the operators, and to undertake what-if inves-
tigations when combining operators. The availability
of UML templates makes our approach more widely
deployable, and may be used with a number of existing
toolkits such as Rational Rose or TogetherJ (a survey
can be found in [7]). The utilisation of languages such
as Java (such as the CoG [12] interface to Globus) and
emerging interest in Web Services [11] identifies the
importance of using object-oriented design approaches.
Various tools are currently available which can take
UML diagrams and generate code fragments for these
technologies. We therefore feel that a representation
centered on UML is easier to translate into working
designs.

Alternative related work has been undertaken by the
parallel computing community, and is based on the use
of algorithmic skeletons. The predominant motivation
behind this has been the need to overcome the diffi-
culty of constructing parallel programs – by capturing
common algorithmic forms which may subsequently be
used as components for building parallel programs [23,
24]. Such skeletons are expected to provide param-
eterisable abstractions that may be composed – gen-
erally using a functional programming language. A
skeleton is expected to be transparent to an application
user (and may come with a pre-packaged implementa-
tion). Skeletons are viewed formally as polymorphic,
higher-order functions – which may be repeatedly ap-
plied to achieve various transformations (on data struc-
tures such as lists). Herrmann and Lengauer [25] out-
line the use of a programming language “Higher-order
Divide and Conquer” (HDC) based on a subset of the
functional programming language Haskell. They sug-
gest that the use of a powerful type system in func-
tional languages make them more suitable than other
paradigms. Although useful for specifying programs
in a concise syntax, we believe such approaches are
limited in the context of Grid environments. This is
primarily due to the absence of tools available in such
languages for connecting to Grid middleware, such as
Globus or UNICORE, although skeletons based ap-
proaches do provide a useful prototyping tool for anal-
ysis. Our use of “operators” (discussed in subsequent
sections) borrows from the use of transformation tech-
niques in skeleton based approaches, albeit our focus
is on the use of object-oriented techniques. Further-
more, our design patterns and operators are aimed at
supporting workflow-based PSEs.

A Pattern encodes a commonly recurring theme in
service or component composition. It allows good
practice to be identified, and shared across application

M.C. Gomes et al. / Pattern operators for grid environments 239

domains. A pattern is generally defined in an applica-
tion independent manner, and used to encode particular
useful behaviours. Patterns are particularly useful for
configuring and specifying systems that are composed
of independent sub-domains. Patterns are aimed at cap-
turing some generic attributes of a system – which may
be further refined (eventually) to lead to an implemen-
tation. These are important requirements for Grid com-
puting applications, which generally need to operate in
dynamic environments. Providing patterns will ease
the task of Grid application developers, who may de-
ploy previously generated templates as an initial step,
and then refine these based on our operators. The use of
pattern operators is also particularly important to deal
with dynamicity, because it provides a user the capabil-
ity to modify a pattern at run time. Furthermore, pattern
operators may be applied in an ordered combination –
and may be shared between users. The presented struc-
tural and behavioural operators may be implemented
using a number of different scripting languages (such as
Python or Perl) – and therefore the specified semantics
are not restricted to our Java implementation.

The core of this work is the systematic identifica-
tion of collections of operators that can manage a set
of useful patterns in Grid environments, via a PSE. A
PSE provides a collection of tools necessary to sup-
port problem description, and subsequently execution
of the problem on computational resources. PSEs have
ranged from those based on functional language based
descriptions, to component-based composition tools.
The component repository provides wrapped scientific
codes or specialised components available within a
given application domain – combined together using
an editor, with access to a resource manager for execu-
tion. Patterns can be provided in a repository – and can
include generic patterns (as discussed in this paper), or
those created by a user.

Section 2 introduces an application example where
patterns and operators may be useful for configuring
and reconfiguring a PSE. This example will be used
throughout the paper. Section 3 describes Pattern tem-

plates starting with Structural pattern templates and
ending with Behavioural pattern templates. Section 4
describes the Structural and Behavioural Operators,
and section 5 illustrates operator semantics. Section 6
describes implementation status. Finally, some conclu-
sions are presented.

2. An application example

A PSE configuration example is provided to describe
activities that are commonly required to manage an ap-

plication. This example will be used throughout the pa-
per for explaining the applicability of patterns and op-
erators. Figure 1 shows an example of a PSE combin-
ing different types of services, which appear frequently
in Grid applications. The Problem Solver component
represents a service running some scientific experiment
that continuously produces data. An instance of such a
service may be a wave generator or a matrix solver. Af-
ter receiving some initial input parameters, the service
starts producing data that can be analysed or stored for
“post-mortem” analysis. The Problem Solver service
may be steerable, meaning that its input parameters can
be changed while the service is executing. By adjusting
the input parameters a user may, for example, generate
particular behaviours using this service.

Steering is frequently supported by two types of ser-
vices: a Monitoring Service and a Steering interface.
The Monitoring Service is used to register relevant out-
put data or events produced by the Problem Solver. The
data/events are filtered by the Monitoring Service and
are passed to a Steering Interface that shows them to
the user in a pre-defined format. Consequently, a user
may use the Steering Interface to undertake “what if”
scenarios – generally by defining new values for the
Problem Solver’s input data. Furthermore, one may
consider that several users have access to the Steer-
ing Interface, thus requiring some coordination over
changing the parameters of the Problem Solver.

This type of application may also include another
service, namely a Database System to store all the out-
put produced by the Problem Solver. This enables a
user to reconfigure the PSE using the stored data, with-
out requiring the Problem Solver to be stopped. Alter-
natively, a user may re-examine output data for addi-
tional processing after the Problem Solver terminates
its execution (based on pre-defined behaviour or as a
result of a fault). These are illustrated in Figs 2 and 3:
in Fig. 2 the Monitoring Service is stopped so that it can
be replaced with a more complex tool like the Monitor-

ing and Statistics service in Fig. 3; in the meantime, the
Problem Solver continues its execution and its output
is kept in the Database System. The alternative sce-
nario is illustrated in Fig. 4: after the Problem Solver
terminates its execution, its output can be processed,
either from the beginning or from the point at which
the Monitoring Service was being replaced (and that
would otherwise be lost). In this case, the Database
System acts as a temporary buffer.

The next section describes structural and behavioural
pattern templates and identifies which patterns could
be used to configure a PSE, as outlined in Fig. 1. Sec-

240 M.C. Gomes et al. / Pattern operators for grid environments

Steering Interface
Service

Monitoring Selected dataOutput data

Input data

Database System

Problem

Solver

Fig. 1. A PSE supporting the active steering of a Problem Solver. The arrows represent the flow of data.

Problem

Solver Steering InterfaceService

Monitoring

Database System
Output data

Fig. 2. The Monitoring service is stopped and consequently the Steering interface also stops. The output data is not lost because it is being saved
in the Database system.

Problem

Solver Steering Interface
Monitoring and

Statistics Service

Selected dataOutput data

Input data

Database System

Fig. 3. The initial Monitoring service is replaced with a more complex one (Monitoring and Statistics service), which is activated to continue the
filtering of the output data.

Database System

Problem

Solver Steering Interface
Monitoring and

Statistics Service

Selected data

Saved output data

Fig. 4. After the Problem Solver terminates its execution, data can be re-analysed.

tion 4 subsequently describes the application of struc-
tural operators to build that PSE, and the application of
behavioural operators to control the PSE’s execution.

3. Pattern templates

Patterns capture commonly occurring structural and
behavioural aspects of components. Structural patterns

encode component connectivity, and identify common

ways in which components may be combined within
a given application domain (an example of this is
the data flow pipeline used in rendering, which in-
volves a data input, simulation/rendering, visualisation
pipeline). Structural patterns may also contain a hi-
erarchy, allowing the embedding of a pattern within
another (these embedding are supported through spe-
cialised operators). Structural pattern templates there-
fore consist of component place holders, where each
component is instantiated at run time.

M.C. Gomes et al. / Pattern operators for grid environments 241

Behavioural patterns encode useful required func-
tionality without necessarily identifying the particu-
lar components involved. Components within a be-
havioural pattern primarily identify interaction con-
straints, and not the exact functionality required from
each component. Behavioural patterns can therefore
capture temporal or flow dependencies between com-
ponents. Flow dependencies model data and control
flows, and encode execution ordering on components
(flow dependencies may be used to express synchro-
nisation constraints, for instance). Behavioural pat-
terns may be defined based on interactions between
components (such as Peer-2-Peer or Client/Server), to
schemes used to update the behaviour of each compo-
nent.

Our approach is applied at four different levels. The
lowest level provides Structural Patterns – which enable
static composition of components into a data/control
flow. Structural Patterns enable the description of com-
monly recurring topological aspects of an application –
but do not constrain the flows between these topological
entities in any way. These Structural Patterns may be
manipulated via Structural Operators – which enable a
constrained way to modify the Structural Patterns. The
constraints are defined by the semantics of the opera-
tors – and relate to the result generated after the op-
erator has been applied. Subsequently, flows on these
Structural Patterns need to be specified – and this is
achieved by identifying a Behavioural Pattern over the
structure. Once again, the Behavioural Patterns may be
configured statically or at run-time using Behavioural
Operators. The division into these four stages of design
is based on existing uses of application construction in
PSEs. Based on our approach, a user must first commit
to a structural pattern, and then to a behavioural one.
Structural patterns therefore try to capture how many
machines (for instance) or groups are necessary to exe-
cute a given application – and do not instantiate these to
particular instances until the Behavioural operators are
applied. The four stage approach therefore reflects the
approach adopted by application schedulers – but tries
to abstract this as a collection of patterns and operators
– and brings it closer to the application construction
process.

To use these patterns and operators, a user launches
a PSE visual editor to connect components together.
This PSE tool (as identified in [17]) is augmented with
a Pattern Template (PT) and Operator library. The user
may select a PT from the library, and may apply one or
a combination of operators to modify the structure of
the template. The structural operators provide a trans-

formation between patterns, and are invariant to a given
PT structure. The user can also modify the structure of
a PT directly using the editor. The result may be stored
by the user as a new template in a user-defined PT li-
brary. Once the structure has been defined, the user
now instantiates components to the elements of a PT.
This is then followed by defining interactions between
components – based on the provided Behavioural Pat-
tern Templates. Subsequently, these interactions may
be modified using the Behavioural Operators.

The rest of this section gives examples of structural
and behavioural patterns, as well as which could be
used to configure the example defined in section 2.

3.1. Structural pattern templates: Topological

Topological patterns represent structural shapes that
frequently occur in Grid systems. For illustration pur-
poses, we identify three basic shapes as possible can-
didates within this category: star, pipeline, and ring.

The Star pattern is an aggregation of three compo-
nents: the Nucleus is the center of the star; a Satellite

represents the elements communicating with the star;
and the SimpleChannel binds together a Satellite to the
Nucleus. The Nucleus may be connected to several in-
stances of SimpleChannel, but each SimpleChannel is
only connected to a single Satellite. The Client/Server
model, for example, is simply a specific behavioral
pattern over the Star structural pattern.

The Pipeline pattern is a sequence of stages which
communicate with each other. The pattern occurs fre-
quently in Grid applications. For example, a scientific
application produces data to a sequence of filters (like
Data Analysis Tools), and the pipeline is terminated in a
Visualisation Tool where the user can follow the appli-
cation’s execution. The pattern’s structure was adapted
from the Pipes and Filters pattern [9].

The structure can be generally represented by three
components (see left-hand side of Fig. 5): a Data-

Source produces data to a Connector, and the DataSink

consumes data from the Connector.
The Connector has a recursive structure, as illus-

trated in the right-hand side of Fig. 5. A Connector

may be a SimpleConnector (similar to a Unix pipe or
an event channel) or it may be a CompositeConnector.
The latter is a connected association of a SimpleCon-

nector and a Component. Recursively, the Compos-

iteConnector is connected to another Connector (and
terminates at the SimpleConnector).

The Ring pattern represents, like the pipeline, a se-
quence of stages, with no “first” or “last” stage. The

242 M.C. Gomes et al. / Pattern operators for grid environments

Fig. 5. The Pipeline and the Connector patterns.

structure of the Ring pattern is also based on the Con-

nector structural definition.
The difference is that a Component is always con-

nected to two SimpleConnectors (in the simplest case,
the unique component will have two connections to a
single SimpleConnector). In Grid environments, the
ring topological structure can be found in a number
of applications, both in the context of application ex-
ecution (such as for modelling interactions within a
local area network) to logical topologies such as sup-
porting an authentication chain when approving par-
ticipants with multiple Certificate server. Each server
delegates an authentication request to the next domain,
and the last server replies to the original client. This
chain based mechanism can also be found in resolving
the address/location of an executable using a directory
lookup service (as found in the Globus MDS [10]).

3.2. Structural pattern templates: Non-topological

The Adapter, Facade, and Proxy design patterns
(adapted from [8]) are examples of non-topological
structural patterns, which are particularly useful in the
context of Grid computing.

The Adapter pattern allows communication between
two elements when they do not have the same interface.
In the Grid environment, the Adapter pattern has appli-
cability, for example, in the adaptation of services, or
as wrappers for legacy codes (such as Fortran binaries).
If the client is expecting a different interface from the
one provided by the server, the adapter can act as a
translator. This pattern is also particularly useful for
providing a mapping between the interface of an exist-
ing code and a pre-defined component data model for
Grids, such as CCA [26].

The Facade pattern (Fig. 6) is used when a sys-
tem may be divided into several sub-systems, and the
communication/entry-point into the system needs to be
restricted. The Facade pattern is present in the struc-
turing of the Grid in “domains”. The access to each
domain (sub-system) in the Grid may be via a Facade

interface.
The Proxy pattern is frequent in distributed systems.

The access to Grid services, for example, is usually
through a proxy (or gatekeeper). The structure of the
pattern consists of an abstract interface (the Subject)
representing the service, the implementation of the ser-
vice (RealSubject), and a surrogate (Proxy) which for-
wards the request to the implementor of the service.

3.3. Structural patterns in use

The PSE example from Fig. 1 can be configured
based on some of the structural patterns described in
the previous sections. As shown in Fig. 7, it is pos-
sible to identify a ring pattern connecting the Problem
Solver, the Monitoring Service and the Steering Inter-
face. There is also a pipeline pattern connecting the
Problem Solver and the Database System. To represent
such a PSE, the user would define a ring template with
three elements, and a pipeline template with two ele-
ments. One way to combine the two patterns would be
to embed the pipeline into one of the ring’s elements
forming an hierarchy.

Figure 8 identifies three more structural patterns,
namely for configuring individual services. For exam-
ple, the star pattern may represent the Database Sys-
tem considering that the system is composed of a set of
distributed Database sub-systems. These sub-systems

M.C. Gomes et al. / Pattern operators for grid environments 243

subsystem classes

Facade

+discover()

+execute()

Domain1

+d1.discover()

+d1.execute()

Domain2

+d2.discover()

+d2.execute()

Subdomain2.1

+d2.d1.discover()

+d2.d1.execute()

+Invokes +Invokes+Invokes+Invokes

Fig. 6. The Facade design pattern. Example: the “Facade” provides a unified interface for accessing domains in the Grid environment, redirecting
the calls to services like “discover” and “execute”.

Fig. 7. Identification of the Ring and Pipeline patterns in the PSE example.

are the Satellites in the ring’s structure, and they are
controlled by a Master Database system acting as a co-
ordinator. The figure shows a star template with three
satellites. The second example in Fig. 8 shows the pos-
sibility of using an adapter pattern for the Monitoring
service. This service may be supported by legacy code
which needs to be adapted to interact with the other
services. This adapter pattern would be embedded in
the second element of the ring. Finally, one way to
represent the sharing of the Steering Interface by mul-
tiple users is through the proxy pattern. Each user has
a proxy to access the central service which controls
concurrent accesses. The figure shows a proxy pattern
template with two proxies for two users.

3.4. Behavioural pattern templates

Behavioural Pattern Templates (B-PT) capture re-
curring themes in component interactions within Grid

applications. Generally, these applications involve dis-
tribution of code from a master, the replication of a code
segment (such as within a loop), or parameter sweeps
over one or more indices. The Parameter-Sweep tem-
plate represents the repeated invocation of a compo-
nent – over a range, and can be found in systems such as
Nimrod [18]. The Master-Slave pattern can be mapped
to many parallel programming libraries, and represents
the division of a task into multiple (usually indepen-
dent) sub-units – and shares some similarities with the
Client-Server pattern – although the control flow in the
latter is more complex.

Figure 9 illustrates the sequence diagram for the Mo-

bile Agent/Itinerary pattern. In this pattern a com-
ponent is initialised at a given location (Home), and
may move to another location based on a pre-defined
itinerary – which may be defined using a structural pat-
tern (for instance). If the itinerary is dynamic, then
new locations may be created via the Increase, Extend

244 M.C. Gomes et al. / Pattern operators for grid environments

Fig. 8. Identification of the Facade, Adapter, and Proxy patterns in the PSE example.

or Embed operators. Each location that a mobile agent
visits, is represented with a component place holder.
Each of these can contain a Proxy pattern, to enable a
chain of forwarders to be established.

3.5. Behavioural patterns in use

Taking as a basis the Structural Patterns illustrated
in Figs 7 and 8 (section 3.3), this section enumerates
some applicable behavioural patterns. See Table 1 in
section 4.4 for a more complete list. Firstly, the Pro-

ducer/Consumer pattern can be used to represent the
control and data flows between the Monitoring service
(producer of selected data) and the Steering Interface
(consumer), in the ring pattern (Fig. 7). Secondly, the
same pattern can represent the interaction between the
Problem Solver and the Monitoring Service. However,
if the Monitoring service only requires a sub-set of the
data produced by the Problem Solver, then such in-
teraction may be represented by the Observer pattern.
Thirdly, the Streaming pattern may be used over the
structural pipeline pattern that connects the Problem
Solver and the Database system, representing the con-
tinuous flow of data from the Problem Solver that needs
to be maintained in the Database System. Fourthly, the
Master/Slave pattern can represent the behaviour of the
Database System (Fig. 8): a master controls and dis-
tributes requests to the slaves. Fifthly, the Client/Server

pattern can represent the interaction between the Steer-
ing Interface (server) and its proxies (clients) that redi-
rect users’ requests to access the Steering service. Fi-
nally, the Adapter structural pattern that gives access

to the legacy code to support the Monitoring service
can be combined with the Service Adapter Pattern [32].
This behavioural pattern “attaches additional properties
or behaviours to an existing application to enable it to
be invoked as a service”.

Having identified the structural and behavioural pat-
terns, in the following sections we describe the avail-
able operators and their application. In particular, we
describe how structural operators are used to configure
the application example described so far, and give a
small example of the use of behavioural operators to
control application execution.

4. Operators

Operators enable constrained manipulation of pat-
terns by a developer, and provide a limited set of meth-
ods to achieve this. Operators provide transformations
between patterns, albeit subject to a set of constraints.
It is possible for a group of operators to be applied (with
a particular ordering). Furthermore, operators may be
combined, leading to “compound operators”, although
this is only allowed if operators from the same category
are chosen – to ensure consistency of the result. Two
kinds of operators exist within our approach: Struc-

tural Operators, and Behavioural Operators. These are
further divided into the following categories, with each
category implemented as a separate class library, and
each operator being a method call within the library:

1. Structuring: These operators are used to modify
the connectivity between components in a tem-
plate.

M.C. Gomes et al. / Pattern operators for grid environments 245

Home : Location1 : Location2 :

 : Init

 : move(Location1)

 : move(Location2)

 : execute

 : return(home)

Itinerary = (static | dynamic)

dynamic = update_itinerary

return_to_home

 : Init

 : move(Location1)

 : move(Location2)

 : execute

 : return(home)

Fig. 9. A Sequence diagram for the Mobile Agent/Itinerary pattern: if itinerary is “dynamic” the user will be able to change it using our existing
operators. If itinerary is “static”, then an existing topological structure may be used, or one created by the user.

2. Grouping: Operators to support grouping allow
patterns to be combined, enabling common op-
erations to be performed on all patterns within a
group. Grouping is also useful to support embed-
ding patterns within each other, thereby provid-
ing support for hierarchy. These operators may
be behavioural or structural.

3. Inquiry: Inquiry operators support comparison
between pattern templates, to check for consis-
tency or compatibility (for instance). Inquiry op-
erators may also be used to verify structural or be-
havioural properties associated with a template,
and return a boolean value on evaluation.

4. Ownership: Ownership operators enable the
modification and access rights of a template to be
controlled. The owner of a template may dele-
gate access to a single user or group of users to
modify the template. Similarly, templates within
a group may have different ownership, requiring
control of access rights to the group. These are
primarily behavioural operators.

5. Execution: Operators to support execution pro-
vide the mapping between a Problem Solving En-
vironment, and a resource management system,
and provide two core functionalities: (1) man-
aging execution of a pattern instance, (2) man-
aging behavioural properties of pattern instances
dynamically. These operators may connect to
pre-defined scripts for starting, stopping, resum-
ing etc, component execution, or may be mapped
to the protocol between a “Super-Scheduler” and
local Schedulers necessary to reserve and allo-
cate resources in the Grid – being developed by

the GRAAP and Scheduling group within the
Global Grid Forum [5]. The execution opera-
tors are constrained by the functionality available
within a resource management system, and de-
pend on obtaining monitoring information from
such systems also. The mapping between the op-
erators and the particular functionality of the re-
source management system therefore cannot be
pre-defined. We therefore rely on an interme-
diate API (such the Super-Scheduler mentioned
above), to enable our operators to be mapped to
this API.

Each pattern operator takes a pattern object as input,
and returns a pattern, a PT or a boolean result.

4.1. Structuring and grouping operators

These operators are used to modify the structural
(mainly topological) PTs, maintaining the structural
constraints of the original PT, and include:

Rename(P1, P2) A pattern P1 is renamed to pattern
P2. This is a structural transformation, and
the original structural constraints are preserved.
Hence, the constraint when applying this pattern
is that both P1 and P2 must be a member of the
PT class.

Replace(P1, P2) Replace P1, as a single entity, with
pattern P2.

Increase(P, n) The number of elements in a pattern is
increased.

Decrease(P, n) ‘N’ elements are removed from the pat-
tern.

246 M.C. Gomes et al. / Pattern operators for grid environments

Extend(P, element) An element is added to a pattern
and its structure is augmented.

Reduce(P, element) An element is removed from a
pattern and its structure is reduced.

Replicate(P, n) The component “P” is replicated “n”
times, and these replicas are unrelated.

Embed(P1, P2) Includes a pattern P1 into a higher-
level pattern P2. The concept of hierarchy is sup-
ported here by enabling component place holders
to contain other PTs.

Group/Aggregate(P1, . . . , Pn) A group of “n” pat-
terns is seen as a single pattern, and behave as a
single entity.

4.2. Inquiry operators

Inquiry Operators return a boolean result and in-
clude:

IsEqual(P1, P2) Verifies if two patterns have the same
structure.

IsRecursive(P) Identifies if a pattern is recursive.
IsDisjoint(P1, P2) Identifies if the intersection be-

tween two patterns is null. The semantics of what
constitutes a particular or exact match is left to the
implementation of this operator.

IsSubset(P1, P2) Verifies if a pattern P1 is a sub-
structure of another pattern P2.

IsSuperset(P1, P2) Verifies if a pattern contains a sub-
pattern which matches P2.

IsComposite(P) Verifies if a pattern is an aggregation,
i.e. although “P” may be a group of other patterns
it can be manipulated as a single pattern. The
operation “IsComposite” returns true if applied to
a pattern built with the “Aggregate” operation.

IsInComposite(P1, P) Verifies if pattern “P1” belongs
to group “P”. This operator uses existing pattern
templates to perform the comparison.

IsCompatible(P1, P2) Verifies if a pattern is compat-
ible with another one. This operator is used to de-
termine if two patterns are functionally identical.
This analysis is undertaken in stages. The first
involves checking if two patterns are structurally
similar, the second involves checking if the con-
trol and data flows between components within a
pattern are similar, and the final check involves
verifying if all components (or types) within two
patterns are identical. All three checks must be
valid for the compatibility test to pass.

IsOwner(P1, A) Used to confirm if user/group “A” is
the owner of pattern P1.

4.3. Ownership operators

These operators are used to control how a single user
or a group of users is allowed to modify a pattern, and
include:

Owner(P1, A) Used to make user or group “A” the
owner of pattern P1.

OwnerGroup(P1, {A1, . . . , An}) Used to allow all
members of a group to own a pattern. All own-

ers have modification rights to the pattern. Ai

represents a group member.
AssignActivity(P1,{Activity}, A) Enables pattern P1

to be modified according to the set “Activity”, by
owner A. Activity identifies operations that may
be performed on a particular pattern, and may be
general operators such as write, read, etc, or more
complex user defined operations that are bound to
a particular object implementation.

RemoveActivity(P1, Activity, A) Enables a single or
set of activities to be disabled for pattern P1 and
user A.

4.4. Execution operators

Execution operators relate to execution scripts on
the particular resource management system being used
(such as Globus [10]). The types of operators being
supported within this category are constrained by the
operations being supported within the resource man-
agement system, and therefore not all may be usable:

Start(P) Used to start a pattern’s execution.
Terminate(P) Used to terminate a pattern’s execution.
Stop(P) Used to pause a pattern’s execution – with

the side-effect of checkpointing the state of the
execution. Not all resource management systems
may support state checkpointing.

Log(P) Used to log the execution state of a pattern. For
this operation, a monitoring service is assumed
within the resource management system.

Resume(P, pt) Pattern execution is resumed from a
previous logged point “pt” (where “pt” may also
be chosen to start execution from the beginning).

Restart(δT , P) Repeat execution every δT time (peri-
odic execution). Particularly useful for periodic
re-starts of an application.

Limit(δT , P) Limits the execution of pattern “P” to a
period equal to δT . If δT expires, the pattern is
stopped.

Repeat(n, P) The execution of pattern “P” is repeated
“n” times.

M.C. Gomes et al. / Pattern operators for grid environments 247

Steer({parameters},P) Change the set of “{paramet-

ers}” associated with a pattern P.

ChangeDependencies(P1,. . . ,Pn) These type of op-
erations allow the execution environment or a user

to change the connection(s) between a set of pat-
terns. These operators have a direct impact on how

execution of components within a pattern takes
place, and therefore need to interface to existing

resource management and scheduling systems.

– Synchronise(syncRule, P1, . . . , Pn): Change

the time dependencies between a set of pat-
terns P1..Pn, according to a synchronisation rule

“syncRule” (e.g. all patterns have to produce
their results in a synchronous fashion).

– ChangeDataFlow(rule, P1, . . . , Pn): Change
the data flow connecting a set of patterns, ac-
cording to a “rule” (such as reverse the direction

of a data flow in a pipeline PT). The data flow
can specify both the direction of flow and the

associated data types.
– ChangeControlFlow(rule, P1, . . . , Pn): Cha-

nge the control flow (e.g. switch from a push to
a pull strategy), according to “rule”.

– ChangeSharedDataDependencies(rule, P1,

. . . , Pn): Change the way the set of patterns
access a shared resource (e.g. switch from ex-

clusive access to multiple entities).

Coordinate(P, rule) Apply coordination rule “rule” to
pattern “P” (the rule may be constructed as a se-
quence of “Execution Control Operations” like

start/stop, and “Reconfiguration Operations” like
ChangeDependencies).

Combining these operators can lead to power-
ful execution sequences – such as combining the

Steer operator with the Coordinate operator to
control how parameter steering is to be supported
based on a particular context or data rate (supported

through a rule). Each rule can be defined using the
deftemplate-defrule structure found in the Java

Expert System Shell (JESS) [27]. The use of the be-
havioural operators Restart and Limit enables a pattern

to be run periodically, or be restarted after a particular
time interval.

Based on these descriptions, we can classify our de-

sign patterns and operators as outlined in Table 1.
Next section describes the semantics of the structural

and behavioural operators.

5. Operator semantics

The semantics of some of the operators are provided
to illustrate the concepts. We start with the structural
operators and terminate with a description of some of
the behavioural operators.

5.1. Semantics of structural operators

Not all structural operators are applicable to all struc-
tural patterns (Table 2), and the semantics of each op-
erator may vary with the structural patterns. The se-
mantics of the operators Replicate, Replace, Embed,

and Group/Aggregate are independent of the structural
pattern to which they are applied. However, the se-
mantics of applying the operators Increase, Decrease,

Extend, Reduce, and Rename, are dependent on the
pattern template (PT) to which they are applied.

Both the Replicate and Replace are simple operators,
as all PT can be replicated – and each replica will have
a different identifier. The identifiers themselves can
be changed. Likewise, all PT can be replaced with
any other PT. The semantics of the Group/Aggregate

operator is also quite simple. All PTs can be aggregated
in a group template which represents all its members.
For example, after grouping a proxy and a pipeline PT
into a group, it is possible to subsequently replicate the
group PT.

The semantics of the Embed operator defines that
the embedded pattern becomes one of the elements of
the destination pattern. For example, when embedding
a Star into a Pipeline, one of the Pipeline’s compo-
nents will be annotated as having the topological struc-
ture of a Star. This specific embedding operation is
useful when combining different subsystems in a Grid
environment. The user may start by defining a set of
Grid services and tools organised in a pipeline. For
example, a scientific application (head of the pipeline)
generates results for a data analysis tool, which in turn
produces data to a visualisation tool (corresponding to
the last stage of the pipeline). For instance, users may
be familiar with the structure of a problem they are
trying to solve, and use the star topology to model a
central manager – perhaps a parallel machine or high
end server, and a number of sub-servers that interact
with it. Assuming that the behaviour of that sub-system
follows the Master/Slave pattern, that behaviour can be
developed over the star topology.

Hence, the user defines a new star PT (with an ad-
equate number of satellites for supporting the slaves),
and embeds this PT in the first position of the pipeline

248 M.C. Gomes et al. / Pattern operators for grid environments

Table 1
Pattern templates and operator summary

Patterns Operators

Structural Pipeline, Star, Rename, Replace, Increase,
Ring, Bus Decrease, Extend, Reduce,
Adapter,Proxy, Facade Replicate, Embed, Group/Aggregate

Behavioural Master-Slave, Streaming, IsEqual, IsRecursive,
Client-Server, Peer-2-Peer, IsDisjoint, IsSubset, IsSuperset,
Mobile Agents/Itinerary, IsComposite, IsInComposite, IsCompatible,
Remote Evaluation, IsOwner, Owner, OwnerGroup,
Code-on-Demand, Contract, AssignActivity, RemoveActivity,
Observer/Subscribe-Publish, Start, Terminate, Stop, Log, Resume,
Parameter Sweep Restart, Limit, Repeat, Steer,

ChangeDependencies.Synchronise,
ChangeDependencies.ChangeDataFlow,
ChangeDependencies.ChangeControlFlow,
ChangeDependencies.ChangeSharedDataDependencies

Table 2
Applicability of structural operators over topological and Non-topological structural patterns

Structural Operators Topological Patterns Non-Topological Patterns

Replicate, Replace, Applicable to all Applicable to all
Embed, Group/Aggregate
Increase, Decrease Applicable to all Non-applicable to

the Adapter pattern
Extend, Reduce Non-applicable Applicable to all
Rename:
– to restructure a pattern into Applicable to all Applicable to all
a topological pattern
– to restructure a pattern into Depends on the cardinality Depends on the cardinality
a non-topological pattern of the pattern templates of the pattern templates

PT, thus producing a hierarchical structure (see Fig. 10).
Similarly, the embedding of a Facade into a Proxy may
result in the subject component in the Proxy pattern
being annotated as being a Facade.

The Increase and Decrease operators can be applied
to all selected structural patterns, except the Adapter

pattern (Table 2).
When applied to the Pipeline and Ring patterns, the

Increase operator increases the number of elements in
the structure (e.g. it is possible to increase a two ele-
ment pipeline to a four element pipeline – see Fig. 11).
Over the Star pattern, the operator increases the num-
ber of satellites in the structure. Similarly, the De-

crease operator reduces the number of elements in the
structure over which it is applied. Both Increase and
Decrease operators may be applied to the Facade pat-
tern, resulting in the increase/decrease of the number
of subsystem classes (see Fig. 6). The same operations
over the Proxy pattern result in the increase/decrease,
respectively, of the proxy elements in the pattern (see
Fig. 11).

For example, the proxy pattern may be extended by
adding a proxy component to an existing proxy (see
Fig. 12). This situation occurs in mobile agent/object

systems, where the sequence of proxies is used for lo-
cating the agent/object (via a chain for message for-
warders, for instance). The message forwarding mech-
anism is also useful when implementing authentication
requests via a “security chain” – whereby each node
forwards requests for authentication to another node
along the path. Likewise, the Facade pattern may be
extended by adding a new facade component which
“hides” an existing facade component, which in turn
becomes a simple subsystem class for the new facade

component (see Fig. 12).
For the Rename operator, the cardinality of the pat-

terns being renamed may be important in determining
whether the operator can or cannot be applied (see Ta-
ble 2). For instance, any topological pattern may be
renamed into any other topological pattern, indepen-
dently of the cardinality of the pattern. For example,
a Pipeline pattern can be transformed into a Ring pat-
tern, by connecting the first and last components of the
Pipeline (see Fig. 13). Similarly, a Pipeline can be
transformed into a Star, by taking one of the Pipeline’s
components as the nucleus of the Star pattern, with the
other components becoming satellites. Similarly, any
non-topological pattern can be restructured into a topo-

M.C. Gomes et al. / Pattern operators for grid environments 249

Fig. 10. An example of a pipeline template with an embedded pattern (a star) in the leftmost component.

Real
Subject

Proxy

Proxy

Proxy

Proxy

Real
Subject

Pattern Increase(Pattern, 2) Result pattern

Fig. 11. The Extend and Reduce operators can be applied to the selected design patterns but not to the topological patterns.

Real
Subject

Proxy
Real

Subject
Proxy a Proxy b

Facade

Facade

Facade

Pattern Result patternExtend(Pattern, element)

Fig. 12. Examples of the Extend operator over the Proxy and Facade Pattern Templates.

logical pattern, as long as the cardinality of the original
pattern is maintained. For example, in Fig. 13, a Proxy
pattern template containing three proxies is renamed
into a star, which will have three satellites. These struc-
tural operators therefore transform one pattern to an-
other one within the same class. Additional transfor-
mation may be undertaken by a user directly using an
editor – although this does not provide any checking
that the transformation will leave a pattern class invari-
ant. Also, when using the Rename operator, the cardi-
nality of the pattern template must be preserved. For
example, it is not possible to rename a pipeline pattern
with five elements into an Adapter, because their car-

dinality is different. However, the same pipeline can
be renamed into a facade by annotating one of the ele-
ments of the pipeline as the facade component, and the
other elements as the sub-system classes (see Fig. 13).

5.2. Structural operators in use

This section gives some examples of the application
of structural operators in the context of the application
introduced in section 2. Figures 14 and 15 describe a
possible sequence of steps to build the PSE configura-
tion shown in Fig. 1, according to the patterns identified
in Figs 7 and 8.

250 M.C. Gomes et al. / Pattern operators for grid environments

Proxy

Proxy

Proxy

Real
Subject

Nucleus

Facade

Rename(proxyPT, starPT)

Rename(pipelinePT, ringPT)

Rename(pipelinePT, facadePT)

Result patternPattern Rename(Pattern, resultPattern)

Fig. 13. Examples of the Rename operator over a Pipeline and a Proxy Pattern Templates.

problem solver and the database system).

two component place holders (for the

Step 2 - Creation of a pipeline PT with

Step 3 - Creation of a star PT for the

database system (the frontend will

be the nucleus and the slaves will be

the satellites).

into the pipeline PT built in step 2.

Step 4 - Embedding of the star PT

Step 1 - Creation of a ring PT with three
component place holders (for the problem

steering interface).

solver, the monitoring service, and the

STEP 2:

STEP3:

STEP 1:

STEP 4:

Fig. 14. Initial steps for building the PSE depicted in Fig. 1.

In step 1 (Fig. 14), the user creates a ring pattern

template (PT) with three place holders to represent the

components connecting the Problem Solver, the Mon-

itoring service, and the Steering Interface. Next, the

user creates a pipeline PT with two component place

holders to represent the connection between the Prob-

lem Solver and the Database System (step 2). This

pipeline will be embedded in the first component place

holder of the ring, but first the user must create a PT

to represent the Database System. In step 3, the user

creates a star PT with three satellites that will be instan-

tiated to the Database sub-systems. In step 4, the user

applies the Embed structural operator over the pipeline

PT with the star PT as argument, to be embedded in the

second component place holder of the pipeline PT.

In step 5 (Fig. 15) the user applies the Embed struc-

M.C. Gomes et al. / Pattern operators for grid environments 251

Real
Subject

Proxy

Proxy

Adapter Adaptee

Database
system

Problem
solver Adapter

Interface
Steering

Proxy

Proxy

structural operator to the proxy PT.

Step 8 - Application of the Increase

Step 9 - Embedding of the adapter

PT (step 6) into the ring defined in.

step 5.

PT into the third element of the

ring PT.

Step 10 - Embedding of the proxy

Step 11 - Instantiation of all PTs

with services.

Step 7 - Creation of a proxy

PT for the steering interface.

Step 6 - Creation of an adapter

PT for the monitoring service.

STEP 5:

Monitoring
service

STEPS 9, 10 and 11:

STEPS 7 and 8:

STEP 6:

Step 5 - Embedding of the pipeline

PT defined in step 4, into the ring

PT defined in step 1.

Fig. 15. Final steps for building the PSE depicted in Fig. 1.

tural pattern to include the pipeline PT obtained in step
4 into the first component place holder of the ring PT
(previously defined in step 1). Next, the user creates
an Adapter PT template to represent the Monitoring
service (step 6). In steps 7 and 8, the user creates the
structure for the Steering Interface (which will be ac-
cessed by other users). To achieve this, the user creates
a Proxy PT and then its proxy elements are increased
by one through the application of the Increase struc-
tural operator. In steps 9 and 10, the user embeds the
Adapter PT and the Proxy PT in the ring’s second and
third component place holders, respectively. Finally, in
step 11, the user instantiates all pattern templates with
the selected services. The user may now apply the ap-
propriate Behavioural Patterns (e.g. as defined in sec-
tion 3.5), and run the application using the Behavioural
Operators to control its execution.

As a final remark, the user may eventually apply the
structural operators again to reconfigure the applica-
tion. For example, to perform a post-mortem analysis
of the data produced by the Problem Solver as illus-
trated in Fig. 4 (see section 2), the user may apply the
Rename structural operator to transform the ring into
a pipeline, and define the Database system as the first
element of the pipeline.

5.3. Semantics of behavioural operators

In this sub-section we focus on the semantics of the
Execution Operators which act upon pattern instances.

Pattern instances are structural pattern templates which
have been assigned a behaviour pattern, and within
which components have been already bound to exe-
cutable component instances.

The Execution Operators can be divided into two
groups. The first group controls the execution of a
pattern instance, and includes: Start, Terminate, Stop,

Log, Resume, Repeat, Restart, Limit, and Steer. As pre-
viously mentioned, the applicability of these operators
depends on the kind of runtime environment available.
For instance, the Globus system may support particular
execution mechanisms that are not supported in Legion,
etc. For now, we assume the existence of at least the
following operations – and the ability to communicate
these requests to the underlying runtime system: to
start running the component instance; to suspend/stop
the current execution by temporarily saving the exe-
cution status; to resume the execution from the saved
status; and to terminate the execution of the component
instance. The second group of Execution Operators al-
lows changes to the coordination and reconfiguration of
pattern instances, and includes: ChangeDependencies

and Coordinate. Currently, we limit these changes to
the pattern interactions. The examples that follow are
restricted to the first group of execution operators.

For illustration purposes we describe the semantics
of the execution operators using a synchronous model,
namely the CO OPN/2 formalism [30,31]. For in-
stance, we assume that the operators Start, Terminate,

252 M.C. Gomes et al. / Pattern operators for grid environments

and Stop act synchronously over all component in-
stances contained within a pattern. Hence, the invo-
cation of the Start operator would imply invoking, si-
multaneously, the start operation on all component in-
stances. It is also possible to consider cases where the
invocation of components is asynchronous – however,
we restrict our analysis for now for the synchronous
case – primarily because of the particular benefit the
CO OPN/2 tool we use offers in undertaking such an
analysis.

Figure 16 gives an application example of the Start

and Terminate operators over a particular instance of
a pattern. The notation used is adapted from the
CO OPN/2 formalism [30], which provides Object-
Oriented abstractions for modelling systems,and where
synchronisation between object invocations can be
modelled. Moreover, the CO OPN/2 formalism allows
the functionality of each object to be represented as a
Petri-Net – where data flow in the Petri-Net can model
abstract data types. The objects in CO OPN/2 are seen
by us as components. Figure 16 shows an example
of a pipeline instance with three components, where
each component is represented as an ellipse. As we are
not, at this stage, concerned with the internal behaviour
of components, we do not show Petri-Net blocks for
these. The input ports (method calls) available on a
component are represented by black rectangles along
the border of the ellipse. Similarly, the output ports
(or Gates) are represented as white rectangles. Syn-
chronisation between components is achieved if there
are arrow transitions connecting the component ports.
This means that the methods associated with the ports
are invoked synchronously. As such, the figure shows
that the output port (Output(d)) of the leftmost compo-
nent in the pipeline instance is synchronised with one
of the input ports (Input(d)) of the middle component.
As soon as the Output method is invoked, the Input

method in the other component is invoked as well, and
data is exchanged in the process. Likewise, the output
port (Output(d)) of the middle component is synchro-
nised with the port Input(d) of the rightmost compo-
nent. In this way we represent a simplified kind of
Producer/Consumer behaviour between the com-
ponents of the pipeline.

Another important aspect of modelling with CO OP
N/2 is the notion of a context – which in the figure
is represented as a rectangle with round corners. A
context is an entity encapsulating a set of components
and the coordination rules that constrain those compo-
nents. As with components, contexts also have input
and output ports. Using the CO OPN/2 formalism, we

represent context’s ports as bi-coloured rectangles. In
the inport ports, the dark part of the rectangle is on the
outside of the context and the white part is on the in-
side, and in the output ports is the opposite. In Fig. 16
there is a single context which represents a pipeline
instance encapsulating three components. The invoca-
tion of the Start method over the pipeline context im-
plies the simultaneous invocation of the Start method
of every component. We represent this simultaneous
invocation by the simultaneity symbol // which belongs
to the CO OPN/2 formalism. The simultaneity symbol
is one of the synchronisation policies that the formal-
ism provides. The other two policies are the sequence

(the methods are invoked in sequential order) and the
alternative or nondeterminism (the method to be exe-
cuted is selected in a non-deterministic way among a
set of available alternatives).

The Terminate operator has a similar behaviour to
the Start operator, as shown in Fig. 16. The invocation
of Terminate over the pipeline implies the simultaneous
invocation of the Terminate method at all component
instances.

The semantics of the Stop operator implies the im-
mediate suspension of the execution of all component
instances – hence it is similar to the Terminate operator.
Using this operator, however, also causes the state of all
component instances to be recorded. Figure 16 could
be extended to represent the Stop operator by including
an extra component in the pipeline context. This extra
component would be responsible for collecting, simul-
taneously, the execution state of all components – prior
to terminating the execution of a component.

The semantics of the Resume and Log operators are
related. While the latter implies saving the execution
state at well identifiable points, the former is used to
continue the execution of the pattern from one of sev-
eral points identified by the Log operator. Figure 17
represents an example of the Log operator for storing
data flowing in the pipeline instance of Fig. 16. In the
example, we assume that the Log operator is invoked at
the same time as the Start operator, and that the logging
operations are realised by the Log component instance.
The figure shows a Petri-Net representing a possible
behaviour for the component supporting the Log func-
tionality. The component used for logging data must be
started simultaneously with the execution of other com-
ponents – hence the Init logging method call. Subse-
quently, whenever an output is generated by a pipeline
stage, the Log data method is invoked, causing data to
be stored into a Repository. The identity of the com-
ponent which generated the output in the pipeline is

M.C. Gomes et al. / Pattern operators for grid environments 253

Output port
(Gate)

Simultaneity//

Legend:

Input port
(Method)

Synchronisation

Pattern
instance
(Context)

Component
instance

Start

//

//

Terminate

Output(d)

Start

Input(d)

StartStart

Input(d) Output(d)

Terminate Terminate Terminate

Fig. 16. Example of the Start and Terminate operators over a pipeline pattern instance.

Fig. 17. Example of the Log operator invoked simultaneously with the Start operator over a pipeline instance.

also recorded via Saved data (the c parameter in the
Log data method identifies the component).

For the Repeat operator it is necessary to provide a
counter to record the number of times a pattern instance
has been executed so far. It is also necessary to identify
when the execution must terminate. Such an operator
is particularly useful for supporting loops in scientific
codes. An example of the Repeat operator can be pro-
vided by extending Fig. 16 with the following elements:
the pipeline context would have a new output port,
e.g. end of execution, which would be automatically
invoked at the end of the pipeline instance’s execution;
a new context encapsulating the pipeline context would

be added; another component would be created in the
outmost context that would represent the behaviour of
the Repeat operator. This component would imple-
ment a counter, initialised with the number of times
the pipeline pattern would have to be repeated. The
counter would be decremented synchronously with the
invocation of the output port “end of execution”.

The Restart and Limit operators are similar in the
sense that both depend on the notion of time for con-
trolling a pattern. The Limit operator waits until the
time value received as input expires – followed by the
termination of the pattern instance managed by this op-
erator. The Restart operator waits for the expiration of

254 M.C. Gomes et al. / Pattern operators for grid environments

the value held by the input time token, and invokes the
start operation over the pattern it manages. Figure 18
gives an example of the semantics of the Restart op-
erator when applied over the pipeline instance of the
example in Fig. 16. Figure 18 adds a new context
(Restart context) to Fig. 16, which encapsulates two
components: one component is a timer which generates
a tick at a specific time interval (e.g. a second); the sec-
ond component represents the steps necessary for the
restart operator. One of the transitions in the Petri-Net
in this second component decrements the time interval
received as argument at each tick of the timer, and keeps
the result in place counter. When the counter reaches
zero, a second transition is fired which launches the
restart of the pipeline’s execution and initialises again
the place counter with the original time interval (kept
in the place time).

5.4. Behavioural operators in use

Figures 2 and 3 (section 2) describe a re-configuration
example where the Monitoring service is replaced with
a more complex service (Monitoring and Statistics Ser-

vice). Applying the Stop behavioural operator enables
the complete workflow to be terminated. Alternatively,
the user might also apply the Stop operator over in-
dividual patterns – such as the Proxy pattern instance
that represents the Steering interface. The user must
then replace the Adapter pattern with an instance of the
Monitoring and Statistics Service. Finally, the Restart

operator is applied to this new service (and eventually
also to the Proxy pattern instance that represents the
Steering Interface).

Having illustrated the application of structural and
behavioural operators, next section describes the cur-
rent implementation status.

6. Implementation Issues

This section describes the existing implementation
of structural patterns and structural operators over the
Triana environment. It also points out the continua-
tion of the work on the implementation of behavioural
patterns and operators.

6.1. The triana environment

Triana [19] is a Java-based workflow environment
that supports application construction based on dis-
tributed components. Application execution results

from the collaboration between various network Peers
(see [20]), which act both as clients (for local users’
requests) and as servers (for remote peers’ execution
requests). Locally, each peer may access existing Grid
services to execute high-throughput computations.

Through the Graphical User Interface (Fig. 19) pro-
vided with Triana, users have access to services/tools
(e.g. components for Signal Processing, Mathematical
Calculations, etc.) that can be easily composed for
building scientific applications. Users drag and drop
components from the toolbox onto the scratch pad on
the right side, and create a workflow by dragging cables
that connect components together. Sender components
are connected through output ports (or nodes) on the
right-side, to receivers’ input ports (on the left-side).
Users may also group selected components together
into a component which represents the entire set. This
“group component” also has input and output ports for
connecting the group (and some of its hidden elements)
with other components.

In Triana, execution follows the data-flow model: as
soon as data arrives to a component’s input port, the
service it represents is launched. Moreover, users may
define which parts of the workflow may be executed
remotely. The local Peer makes the necessary requests
to remote Peers, collects the results, and displays them
through the GUI. Execution may be supported by each
Peer itself or may be realised by accessing a local re-
source manager (e.g. Globus GRAM [13]).

6.2. Structural patterns and operators in triana

Structural Patterns are available in Triana’s toolbox
as normal components (from a graphical perspective).
The user just has to drag and drop them into the scratch
pad and initialise them. For example, Fig. 19 shows a
Ring PT and a Star PT that resulted from the initiali-
sation of DrawRing and DrawStar, respectively. Each
pattern template represents a set of component place
holders called DummyUnits, which can be instantiated
to other PTs or tools from the toolbox. DummyUnits

are connected together according to the PT’s specific
structural Pattern (i.e. ring, star, etc).

Structural Operators are available as parameters to
pattern templates. For example, Fig. 20 shows the ap-
plication of the Embed structural operator to the Ring
PT. To use this, the user must invoke the Ring’s PT pa-
rameter window to specify that the Pipeline PT should
be embedded into the first Ring PT’s place holder
(called DummyUnit). The Pipeline PT already has an
an embedded Star PT. This example shows one of the

M.C. Gomes et al. / Pattern operators for grid environments 255

Pipeline context

//

//

Terminate

Output(d)

Start

Input(d)

StartStart

Input(d) Output(d)

Terminate Terminate Terminate

Start

Restart(time_interval, pipeline)

Time_ticker

tick

Restart context

get_tick

get_interval

counter

decrement_
interval

launch_
restart

tt

t

do_restart

pred(t)

t
0 t

t

time

Fig. 18. Example of the Restart operator over a pipeline instance.

steps to build the structure shown in the example de-
scribed throughout the paper.

Structural pattern templates are implemented as
groups in Triana. The group contains: a) the connected
DummyUnits, and b) a control task that keeps track
of the number of component place holders (and their
connections), listens to relevant events (like requests to
instantiate DummyUnits), and supports the execution
of the structural operators.

The user may now compose an application by com-
bining PTs with existing components, and may save
them as a group component in the toolbox for later
reuse. Once an application has been constructed – one
or more behavioural patterns may be used to specify
the data and control flows between components.

6.3. Usage scenario: Galaxy simulation

To illustrate the use of PTs in Triana, we utilise a
“Galaxy Formation” code example. The example in-
volves generating the position of particles and sub-
sequently animating these – using a combination of

“DataReader” and “Animation” modules from Triana.

A data file is loaded by a single Data Reader Unit within

Triana, and passed to all the Triana nodes. Nodes then

buffer the data for future calculations. Note that the

data file could be copied beforehandand distributed in a

parallel way also. The loaded data is then separated into

frames, distributed amongst the various Triana servers

on the available network and processed to calculate the

column density using smooth particle hydrodynamics.

These types of simulations can usually generate large

data files containing snapshots of an evolving system.

They are therefore quite representative of the types of

applications that may be executed over Grid infrastruc-

ture. In this particular example, after undertaking a

simulation run, a snapshot is produced – and which is

independent of others over time. This suggests that

any data analysis on frames can be carried out indepen-

dently. Grid resources are used in this instance to dis-

tribute and remotely process data frames, which finally

return a small image to the visualisation/controlling

client. The images can be subsequently re-assembled

256 M.C. Gomes et al. / Pattern operators for grid environments

Fig. 19. The Triana Graphical User Interface.

Fig. 20. Application of the Embed Structural Pattern to the Ring Pattern Template.

in real-time into the correct chronological order to gen-
erate a smooth animation.

Galaxy and star formation simulation codes gener-
ate binary data files that represent a series of particles,
along with their associated properties as a snap shot in
time. The user of such codes would like to visualise

this data as an animation in two dimensions, with the
ability to vary the perspective of view, and project that
particular two dimensional slice and re-run the anima-
tion. Due to the nature of the data, each frame or snap
shot is a representation at a particular point in time of
the total data set. It is possible to distribute each time

M.C. Gomes et al. / Pattern operators for grid environments 257

Fig. 21. The animation is supported by a pipeline PT which is embedded in the nucleus of the star PT.

Fig. 22. An example of a component place holder instantiation.

slice or frame over a number of processes and calcu-
late the different views based on the point of view in
parallel.

The Galaxy formation example may be represented
by a Star PT, where the nucleus contains the actions
necessary to generate and control the animation exe-
cution, and the satellites represent image processing
and analysis actions. In this way, the same animation
can be simultaneously analysed/processed in different
ways. Figure 21 shows a Star PT with three compo-
nent place holders – the satellites (DummyUnit1 and
DummyUnit2), and the nucleus (DummyUnit). As the

animation is developed in stages, these are represented
by a Pipeline PT. Figure 21 shows the Pipeline PT em-
bedded in the nucleus of the star by selecting the embed

structural operator, and by identifying the embedding
position (DummyUnit).

Figure 22 shows the Star PT with the embedded
Pipeline PTs, to support the image processing activities
required to generate the animation. The next step in-
volves instantiating the place holder (named DummyU-

nit) of the pipeline (in this case a DataFrameReader

is selected from the Triana toolbox) – as illustrated in
Fig. 22. Figure 23 shows the final configuration, with

258 M.C. Gomes et al. / Pattern operators for grid environments

Fig. 23. A possible final configuration for the image processing of the “Galaxy Formation example”.

all component place holders instantiated with units.
Hence, the binary data file produced by the simula-
tion code is loaded by the DataFrameReader unit. The
frames are sent to the SequenceBuffer unit – a media
controller that allows the replay of the application. The
user may stop the animation, rewind it, restart it, etc.
The ViewPointProjection unit takes the 3D data and
projects this onto a 2D space outputting a standard Pix-
elMap. The user may change the point of projection by
changing parameters representing the (x,y) coordinates.
The resulting animation images are analysed/processed
in parallel in Pipeline1 and Pipeline2. The Gradient-

Edge unit selects images based on a gradient edge de-
tector, and subsequently displays these using the Im-

ageView unit. In Pipeline2, the number of non-black
objects in each image are counted by CountBlobs unit
and displayed in ConstView unit.

Figure 24 shows the output of units ImageView and
ConstView, and shows the parameter interface panel for
unit SequenceBuffer.

Alternative Configuration: A possible alternative
configuration decouples the view point projection of
the simulation, from the reading of data, allowing par-
allel animations with different view points. A Star PT
supports the configuration (Fig. 25): the data is read
at the nucleus by unit DataFrameReader (the unit Se-

quenceBuffer was omitted for simplification) and sent
to the satellites Pipeline PT and Ring PT to be pro-

cessed. The DataFrameReader unit may interact with
the satellites according to a Streaming behavioural pat-
tern. In the satellite supporting the Pipeline PT (see
Fig. 25), a user may select the appropriate viewpoint
through the ViewPointProjection unit. The resulting
images may be scaled by the ScaleImage unit and sub-
sequently displayed by the ImageView unit. The Pro-

ducer/Consumer behavioural pattern may represent the
interaction between the ScaleImage (the producer) and
the ImageView unit.

In the satellite with the Ring PT (Fig. 25), the view-
point is automatically selected according to the number
of non-black objects in each image. For the Pipeline1

stage contained within the Ring PT (see Fig. 26), the
images produced by ViewPointProjection are visualised
in the ImageView unit. In the next stage of the ring,
the CountBlobs unit counts the number of non-black
objects in each image, followed by a stage (Pipeline1)
which evaluates if it is necessary to change the view
point. If this is the case, the Scroller unit is triggered
and inputs the new value to the “x” coordinate parame-
ter for the unit ViewPointProjection, closing the ring in
this way.

6.4. Ongoing work

The continuation of this work is to extend Triana to
support different behavioural patterns. The behavioural

M.C. Gomes et al. / Pattern operators for grid environments 259

Fig. 24. Execution snapshot for the selected configuration.

Fig. 25. Parallel animation execution with different view points.

patterns will be stored as Java classes, and will be ap-

plied to a pattern template visible on the scratch pad. In

case of multiple pattern templates, the particular tem-

plate should be explicitly identified. In an application

composed of both structural PTs and components, the

behavioural patterns may only be applied to the struc-

tural PTs. This is achieved by having the user annotat-

ing a start-point and an end-point on the structural PT,

and then running the appropriate behavioural pattern

(e.g. selection of the first and second elements in a Ring

PT and application the Observer behavioural PT). The

implementation of behavioural patterns will require the

260 M.C. Gomes et al. / Pattern operators for grid environments

Fig. 26. Detail of the stage named Pipeline in the Ring PT from Fig. 25.

challenging task of supporting the switching between
the Triana’s dataflow execution model, and more com-
plex control flows. The subsequent step will be the
implementation of behavioural operators for execution
control and reconfiguration (e.g. management of the
flow within the PT).

7. Conclusion

This paper outlines an approach for constructing
Grid based applications, using a set of Pattern Tem-
plates and Operators. Pattern templates are specified
in UML, and consist of a collection of class libraries
which describe properties associated with each type of
pattern. Operators are of two types: structural and be-
havioural, and enable a developer to modify the tem-
plate itself, or data/control flows within it, respectively.
UML descriptions of common structural patterns are
provided, along with the definition and semantics of
the operators. The operators are aimed at being used
within an existing Problem Solving Environment, and
to extend the functionality of the environment. Some
transformations between operators also require the PSE
to label/annotate elements of the Pattern Template, to
enable appropriate associations. These annotations are
used to aid operator semantics. The need for software
engineering support of this kind arose from our investi-
gation on existing work on Grid computing – which has
primarily focused on implementing workflow-based
environments, and lacked a more systematic investiga-
tion on understanding or abstracting common themes
that underpin these. Having extended Triana to support
our approach, we have opened the way to apply the
described patterns and operators to Grid environments.

Acknowledgements

Simulation data courtesy of A. Nelson, N. White, P.
Williams, and R. Philp, Galaxy Formation Group, De-

partment of Physics and Astronomy,Cardiff University,

UK. We would also like to thank Matthew Shields and

Ian Wang for support on Triana programming. Special

thanks are due to Ian Taylor for access to the Triana

source code.

References

[1] Grid Computing Environments Working Group, See Web site
at: http://www.computingportals.org/. Last visited: August
2002.

[2] A. Hoheisel, Fraunhofer Resource Grid – Grid Application

Definition Language, Global Grid Forum, Edinburgh, July,
2002.

[3] Dan A. Marinescu, Internet Based Workflow Management:

Towards a Semantic Web, Wiley, New York, 2002.
[4] Dan A. Marinescu, A Grid Workflow Management Archi-

tecture, Global Grid Forum Working Document (submitted),
School of Electrical and Computer Engineering, University of
Central Florida, Orlando, Florida 32816, USA.

[5] J. Mclaren, V. Sander and W. Ziegler, Grid Resource Al-

location Agreement Protocol (GRAAP), See web site at:
http://www.people.man.ac.uk/z̃zcgujm/GGF/graap-wg.html.
See also the general Scheduling area of the Global Grid Fo-
rum, led by Bill Nitzberg and Jenny Shopf, at: http://www-
unix.mcs.anl.gov/ schopf/ggf-sched/. Last visited: August
2002.

[6] O.F. Rana and D. Jennings, Automating Performance Analysis

from UML Design Patterns (Research Note), Proceedings of
EuroPar 2000, Munich, Germany.

[7] UML Tools, See Web site at: http://www.cetus-links.org/oo
uml.html#oo uml utilities tools. Last visited: August 2002.

[8] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

[9] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and
M. Stal, Pattern-Oriented Software Architecture: A System of

Patterns, John Wiley & Sons, 1998.
[10] I. Foster and C. Kesselman, The Globus Project: A Sta-

tus Report, Proc. IPPS/SPDP ’98 Heterogeneous Comput-

ing Workshop, 1998, pp. 4–18. Globus related publica-
tions can also be obtained from Web site at: http://www.
globus.org/research/papers.html. Last visited: February 2003.

[11] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham and
C. Kesselman, Grid Service Specification, Open Grid Ser-
vice Infrastructure WG, Global Grid Forum, Toronto, Canada,
February 2002.

M.C. Gomes et al. / Pattern operators for grid environments 261

[12] G. von Laszewski, I. Foster, J. Gawor and P. Lane, A Java

Commodity Grid Toolkit, Concurrency: Practice and Experi-
ence, 13, 2001.

[13] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin,
W. Smith and S. Tuecke, A Resource Management Architecture

for Metacomputing Systems, Proc. IPPS/SPDP ’98 Workshop
on Job Scheduling Strategies for Parallel Processing, 1998,
pp. 62–82.

[14] Rajkumar Buyya, Grid Computing InfoCentre, See Web site
at: http://www.gridcomputing.com/. Last visited: August
2002.

[15] G. Fox, D. Gannon and M. Thomas, A Summary of Grid Com-

puting Environments, Concurrency and Computation: Prac-
tice and Experience, 2002.

[16] The Global Grid Forum. See Web site at: http://www. gridfo-
rum.org/. Last visited: August 2002.

[17] D.W. Walker, M. Li, O.F. Rana, M. Shields and Y. Huang,
The Software Architecture of a Problem Solving Environment,
Concurrency: Practice and Experience, December 2000.

[18] D. Abramson et al., A Tool for Distributed Parametric Mod-

elling, See Web site at: http://www.csse.monash.edu.au/
davida/nimrod.html/. Last visited: August 2002.

[19] I. Taylor et al., TRIANA, See Web site at: http://www.triana.
co.uk/. Last visited: October 2002.

[20] I. Taylor, O.F. Rana, R. Philp, I. Wang and M. Shields, Sup-

porting Peer-2-Peer Interactions in the Consumer Grid, 8th
International Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS) at IPDPS, Nice,
France, April 2003. IEEE Computer Society Press.

[21] C. Lee, S. Matsuoka, D. Talia, A. Sussman, N. Karonis, G.
Allen and J. Saltz, A Grid Programming Primer, Program-
ming Models Working Group, Global Grid Forum meeting,
Washington DC, July 16–18, 2001.

[22] I. Murray, Cole and Andrea Zavanella, Coordinating Hetero-

geneous Parallel Systems with Skeletons and Activity Graphs,
Journal of Systems Integration 10(2) (2001), 127–143.

[23] I. Murray, Cole, Algorithmic Skeletons: A Structured Ap-

proach to the Management of Parallel Computation, Pitman,
1989

[24] S. Gorlatch, Extracting and implementing list homomor-
phisms in parallel program development, Science of Computer

Programming 33(1) (1998), 1–27.
[25] C.A. Herrmann and C. Lengauer, Transforming Rapid Pro-

totypes to Efficient Parallel Programs, book chapter in Pat-

terns and Skeletons for Parallel and Distributed Computing,
A. Rabhi and Sergei Gorlatch, eds, Springer Verlag, 2002.

[26] The Common Component Architecture Forum. See Web site
at: http://www.cca-forum.org/. Last visited: August 2002.

[27] E. Friedman-Hill, The Rule Engine for the Java Platform, See
Web site at: http://herzberg.ca.sandia.gov/jess/. Last visited:
August 2002.

[28] Michael Weber, Ekkart Kindler, The Petri Net Markup Lan-

guage (PNML), See Web site at: http://www.informatik.hu-
berlin.de/top/pnml/. Last visited: November 2002.

[29] Z. Nemeth and V. Sunderam, A Formal Framework for Defin-

ing Grid Systems, Proceedings of IEEE CCGrid 2002, Berlin,
Germany

[30] D. Buchs and N. Guelfi, A Formal Specification Framework
for Object-Oriented Distributed Systems, IEEE Transactions

on Software Engineering 26(7) (July 2000).
[31] G. Di Marzo Serugendo, D. Mandrioli, D. Buchs and N.

Guelfi, Adding Real-Time Constraints to Synchronised Petri

Nets, Technical report 2000/341, EPFL, Lausanne, Switzer-
land, 2000.

[32] O.F. Rana and D.W. Walker, Service Design Patterns for
Computational Grids, in: Patterns and Skeletons for Parallel

and Distributed Computing, F. Rabhi and S. Gorlatch, eds,
Springer, 2002.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

