
Journal of Software Engineering and Applications, 2012, 5, 45-50
http://dx.doi.org/10.4236/jsea.2012.51008 Published Online January 2012 (http://www.SciRP.org/journal/jsea)

45

Pattern-Oriented Approach for Enterprise Architecture:
TOGAF Framework

Mohamed Taleb1, Omar Cherkaoui2

1École de Technologie Supérieure (ÉTS), Montreal, Canada; 2University of Quebec at Montreal, Montreal, Canada.
Email: mohamed.taleb.1@ens.etsmtl.ca, cherkaoui.omar@uqam.ca

Received November 5th, 2011; revised December 8th, 2011; accepted December 20th, 2011

ABSTRACT

Design pattern suggests that developers must be able to reuse proven solutions emerging from the best design practices
to solve common design problems while composing patterns to create reusable designs that can be mapped to different
types of enterprise frameworks and architectures such as The Open Group Architecture Framework (TOGAF). Without
this, business analysts, designers and developers are not properly applying design solutions or take full benefit of the
power of patterns as reuse blocks, resulting in poor performance, poor scalability, and poor usability. Furthermore, these
professionals may “reinvent the wheel” when attempting to implement the same design for different types of architec-
tures of TOGAF framework. In this paper, we introduce different categories of design patterns as a vehicle for capturing
and reusing good analyses, designs and implementation applied to TOGAF framework while detailing a motivating
exemplar on how design patterns can be composed to create generic types of architectures of TOGAF framework. Then,
we discuss why patterns are a suitable for developing and documenting various architectures including enterprise archi-
tectures as TOGAF.

Keywords: Design Patterns; Enterprise Architecture; TOGAF; Framework

1. Introduction

In recent years, many industrial firms have adopted ar-
chitectures called enterprise architecture (EA). The En-
terprise Architecture has matured from offering a lot of
functionalities to like providing a clear representation of
business processes and information systems, improving
the IT governance, planning changes and optimizing re-
sources.

Several definitions have been suggested by several
authors. For example, The Institute for Enterprise Archi-
tecture Developments [1] “Enterprise Architecture is a
complete expression of the enterprise; a master plan
which acts as a collaboration force between aspects of
business planning such as goals, visions, strategies and
governance principles; aspects of business operations such
as business terms, organization structures, processes and
data; aspects of automation such as information systems
and databases; and the enabling technological infrastruc-
ture of the business such as computers, operating systems
and networks”, Giachetti and MIT Center [2,3] “Enter-
prise Architecture is a rigorous description of the stru-
cture of an enterprise, which comprises enterprise com-
ponents (business entities), the externally visible proper-
ties of those components, and the relationships (e.g. the
behavior) between them. Enterprise Architecture descri-

bes the terminology, the composition of enterprise com-
ponents, and their relationships with the external en-
vironment, and the guiding principles for the requirement
(analysis), design, and evolution of an enterprise”, the
Enterprise Architecture Center of Excellence [4] “Enter-
prise Architecture explicitly describing an organization
through a set of independent, non-redundant artifacts, de-
fining how these artifacts interrelate with each other, and
developing a set of prioritized, aligned initiatives and
road maps to understand the organization, communicate
this understanding to stakeholders, and move the organi-
zation forward to its desired state”, and Ross et al. [5]
“Enterprise Architecture is the organising logic for busi-
ness processes and information technology (IT) infra-
structure reflecting the integration and standardization re-
quirements of the company’s model”.

All these definitions introduce the main architectural
components (processes, systems, technologies, compo-
nents and their relationships) and covers methods to rep-
resent them, including both functional and non-functional
requirements, by means of a set of views.

Enterprise Architecture provides various benefits, such
as 1) Well-established solutions to architectural prob-
lems of organizations; 2) Help in documenting architec-
tural design and implementation decisions; and 3) Facili-

Copyright © 2012 SciRes. JSEA

Pattern-Oriented Approach for Enterprise Architecture: TOGAF Framework 46

tation of collaboration and communication between users.
A number of industry standard approaches have been

proposed for defining enterprise architecture, such as the
Zachman Framework for Enterprise Architecture [6] and
The Open Group Architecture Framework (TOGAF) [7].

In this technological context, we are borrowing, adap-
ting and refining the so popular and powerful patterns-
oriented development to enterprise architectures. The
following are some of enterprise architectures challenges
that we are addressing specifically while adapting the
pattern-oriented approach to TOGAF framework. Fur-
thermore, for a novice designer or a software engineer
who is not familiar with this mosaic of guidelines, it is
hard to remember all design guidelines, let alone using
them effectively.

In this paper, we introduced different categories of de-
sign patterns as a vehicle for capturing and reusing good
analyses, designs and implementation applied to TOGAF
framework.

2. Background Work

Introduced by the architect Christopher Alexander in
1977 [8], design pattern can viewed as a building block
that we compose to create a design. A single pattern de-
scribes a problem, which appears constantly in our envi-
ronment, and thus described the hart of the solution to
this problem, in a way such as one can reuse this solution
for different platform, without ever doing it twice in
same manner [8]. For the cross-platform application de-
velopment, patterns are interesting for three reasons; see
also [9] for a more general discussion on patterns be-
nefits:
 They come from experiments on good know-how and

were not created artificially;
 They are a means of documenting architectures (out

of building or software, enterprise in general);
 They make it possible in the case of a cross-platform

development in team to have a common vision.
Similar to the entire Enterprise Architecture commu-

nity, the TOGAF community has been a forum for vigo-
rous discussion on pattern languages for design, evalua-
tion, and building a good architecture for the enterprises.
The goals of the patterns is to share successful the design
solutions among professionals and practitioners, and to
provide a common ground for anyone involved in the de-
sign, development, enhanced usability testing, or the use
of different systems. Several practitioners and designers
have become interested in formulating various patterns of
the same or different categories in the enterprise archi-
tecture destined to organizations.

The idea of using patterns in TOGAF Framework is
not new. Different pattern collections have been pub-
lished including patterns for layout design [10-12], for
navigation in a large information architecture as well as

for visualizing and presenting information. In our work,
we investigate categories of Patterns as a solution for
cross-platform Enterprise Architecture and in particular,
to solve the following design challenges.

TOGAF [7] is an architecture framework that enables
to design, evaluate, and build the right architecture for an
organization. It is a mature Enterprise Architecture frame-
work that is widely adopted by enterprises. TOGAF
framework doesn’t specify the architecture style—it is a
generic framework TOGAF can be used in developing
architecture. It consists of three main parts: The Enter-
prise Continuum, The TOGAF Resource Base and The
TOGAF Architecture Development Method (ADM).
ADM proposed a number of architectures shown and
described below in Figure 1.
 Preliminary phase: This phase allows defining an Or-

ganization-Specific Architecture framework and the
architecture principles. According the Dave Hamford
[14], this phase is not a phase of architecture develop-
ment;

 Phase A—Vision Architecture: This phase allows de-
fining the scope of the foundation architecture effort,
creating the vision architecture supporting require-
ments and constraints and obtaining approvals to pro-
ceed;

 Phase B—Business Architecture: This phase enables
developing the detailed business architecture for ana-
lysing the gaps results;

 Phase C—Information System Architecture: This
phase enables describing the Information Systems Ar-
chitectures for an architecture project, including the
development of Data and Application Architectures;

 Phase D—Technology Architecture: This phase en-
ables developing a technology infrastructure that is
used as a foundation for identifying all components
that will support the development, implementation
and deployment processes;

 Phase E—Opportunities and Solutions: This phase
enables identifying opportunities and solutions and
implementation constraints to deliver a more consis-
tent architecture implementation;

 Phase F—Migration planning: This phase allows
choosing and prioritizing all work packages, projects
and to create, evolve and monitor the detailed imple-
mentation and migration plan providing necessary
resources to enable the realization of the transition
architectures;

 Phase G—Implementation Governance: This phase
allows providing an architectural oversight of the im-
plementation;

 Phase H—Architecture Change management: This
phase allows establishing procedures for managing
change to the new architecture;

 Phase Requirement Management: This phase allows

Copyright © 2012 SciRes. JSEA

Pattern-Oriented Approach for Enterprise Architecture: TOGAF Framework 47

Figure 1. TOGAF framework [7].

managing architecture requirements throughout the
Architecture Development Method (ADM), i.e., de-
fining a process whereby requirements for enterprise
architecture are identified, stored, and fed into and out
of the relevant ADM phases.

By combining different categories of patterns, the pro-
fessionals and experts can utilize pattern relationships
and combine them in order to produce an effective and
coherence design solution by using fully service-oriented
approach that TOGAF has adopted. As a result, patterns
become a more effective vehicle that supports design
reuse and building organizational capabilities.

3. The Proposed Patterns Taxonomy for
TOGAF Framework

We propose at least ten categories of design patterns used
to combine them to produce pattern-oriented enterprise
architecture by applying the composition rules described
in Section 4. Together, these patterns with their relation-
ships provide an integrative solution to address the multi-
faces of TOGAF Framework (Figure 2):

1) Specification Patterns. This category of patterns
allows understanding and clarifying the adopted strategy
context, goals, and business architecture principles to the
stakeholders in order to coordinate, and integrate the spe-
cifications of different activities at different levels of the
organization.

2) Vision Patterns. This category of patterns describes
a clear and stimulating vision of architecture to develop

for addressing its requirements and constraints, and to
meet the defined goals and objectives. These patterns
communicate share the information with stakeholders on
the signification of aimed goals by the vision and em-
phasize its importance.

3) Process Patterns. This category of patterns coordi-
nates the actions and operations that related together, in
serial or in parallel manner, in order to reach a common
objective. The actions are the activities executed par hu-
man. The operations are the activities executed and con-
trolled automatically by a software system. When a pro-
cess is composed only with operations, then we called it
an automated process.

4) Governance Patterns. This category of patterns
describes the manner that all architectures of TOGAF
framework are well-governed and managed successfully
by taking into account and addressing both potential risks
and potential value of the enterprise architecture. These
patterns provide and inform the proper functioning of
these various architectures, and specially their deploy-
ment and interaction. Theses architectures are linked by
sequential interdependencies form. Indeed, they exchange
together to produce the desired outcomes. Information
must propagate between the involved architectures dur-
ing the execution to harmonize their efforts to obtain be-
tter governance.

5) Migration Planning Patterns. This category of
patterns describes and explains the important strategies
of migration plan that were proven with execution. This
effective plan consists of four key steps such as defini-
tion of needs, design, implementation, and tests. In addi-
tion, these patterns have to address the details of overall
aspects through these strategies to ensure the optimal
quality of the migrated functionalities of systems by in-
cluding the best practices in order to develop the detail of
the target organizational architecture.

6) Usability Patterns. This category of patterns fo-
cuses on dealing with the relationships between internal
software attributes and externally visible usability factors
and how these patterns can lead to a methodological
framework for improving the “Opportunities and Solu-
tions” architecture, and how these patterns can support
the integration of usability in the software design process.
In addition, these patterns expose knowledge that has
been gained from different projects by many experts over
many years.

7) Architecture Patterns. This category of patterns
describes and gives information about the type of tech-
nological infrastructure to develop. Indeed, these patterns
will support and enable the different business services im-
plementation and deployment by using Service-Oriented
Architecture (SOA) components of TOGAF framework.

8) Information Patterns. This category of patterns
describes different conceptual models and architectures

Copyright © 2012 SciRes. JSEA

Pattern-Oriented Approach for Enterprise Architecture: TOGAF Framework

Copyright © 2012 SciRes. JSEA

48

Figure 2. Pattern-oriented TOGAF framework.

for organizing the underlying content across multiple
pages, servers and computers. Such patterns provide so-
lutions to questions such as which information can be or
should be presented on which device.

the same protocols.
Communication and interoperability patterns are use-

ful for facilitating the mapping of a design between ar-
chitectures of TOGAF framework.

9) Business Patterns. This category of patterns de-
scribes a communication between the vision of organiza-
tion with its business subjects with its objectives and its
environment model such as actors, roles, and business
service or functional or information or decomposition
diagrams, business interaction, business footprint, pro-
duct lifecycle diagram and all business processes in-
volved.

Gamma et al. [13] offer a large catalog of patterns for
dealing with such problems. Examples of patterns appli-
cable to interactive systems include: Adapter, Bridge, Buil-
der, Decorator, Factory Method, Mediator, Memento,
Prototype, Proxy, Singleton, State, Strategy, and Visitor.

4. Pattern Composition Rules

A creation of an Enterprise Architecture pattern oriented
design exploits several relationships between patterns.
Based on previous work [15], we identify five types of
relationships.

10) Interoperability Patterns. This category of pat-
terns is useful for decoupling the organization of these
different categories of patterns as outlined in Figure 2,
for the way information is presented to the user, and for
the user who interacts with the information content. Pat-
terns in this category generally describe the capability of
different architectural programs to exchange data, via a
common set of exchange formats considered as a service,
to read and write under the same file formats, and to use

1) Similar is a relationship, which applies to the same
category of patterns. Two patterns (X, Y) are similar, or
equivalent, if, and only if, X and Y can be replaced by
each other in a certain composition. This means that X
and Y are patterns of the same category and they provide

Pattern-Oriented Approach for Enterprise Architecture: TOGAF Framework 49

different solutions to the same problem in the same con-
text. For example, the Index Browsing and Menu Bar
patterns are similar. They both provide navigational su-
pport in the context of a medium-sized.

2) Competitor is a relationship that applies to two pat-
terns of the same patterns category. Two patterns (X, Y)
are competitors if X and Y cannot be used at the same
time for designing the same artifact relationship that ap-
plies to two patterns of the same pattern category. Two
patterns are competitors if, and only if, they are similar
and interchangeable. For example, the Web patterns
Convenient Toolbar and Index Browsing are competitors.
The Index Browsing pattern can be used as a shortcut
toolbar that allows a user to directly access a set of com-
mon services from any interactive system. The Conve-
nient Toolbar, which provides the same solution, is gene-
rally considered more appropriate.

3) Super-ordinate is the basic relationship to compose
several patterns of different categories. A pattern X is a
super-ordinate of pattern Y, which means that pattern Y
is used as a building block to create pattern X. An exam-
ple is the Home Page pattern, which is generally com-
posed of several other patterns.

4) Subordinate. If pattern X is super-ordinate of Y
and Z then Y and Z are sub-ordinate of X. This relation-
ship is important in the mapping process of pattern-
oriented design from an architecture to another one. For
example, the Convenient Toolbar pattern is a sub-ordinate
of the Home Page pattern for either a PDA or desktop
platform. Implementations of this pattern are different for
different devices.

5) Neighboring. Two patterns (X, Y) are neighboring
if X and Y belong to the same pattern category. For ex-
ample, the sequential and hierarchical patterns are
neighboring because they belong to the same category of
patterns, and neighboring patterns may include the set of
patterns for designing a specific page such as a home
page

5. An Illustrative Example

This section describes the design patterns illustrating and
clarifying the core ideas of the pattern-oriented approach
and its practical relevance. This case study illustrates
how patterns are used to formalize and design the re-
quirements of various architectures constituent TOGAF
framework.

In what follows, we have introduced some concrete
examples of this mosaic of patterns that we have been
using. These examples have shown also the need to com-
bine several types of patterns to provide solutions to
complex problems. The list of patterns is not exhaustive.
There is no doubt that more patterns are still to be dis-
covered, and that an endless number have yet to be in-

vented.
Interoperability patterns are fundamental patterns to

facilitate the communication between requirements man-
agement phase and other architectures of TOGAF frame-
work. Example of patterns that can be considered to en-
sure the interoperability of architectures include Adapter,
Bridge, Builder, Decorator, Facade, Factory Method,
Mediator, Memento, Prototype, Proxy, Singleton, State,
Strategy, Visitor [13].

The Adapter pattern is very common, not only to re-
mote client/server programming, but to any situation in
which there is one class and it is desirable to reuse that
class, but where the system interface does not match the
class interface. Figure 3 illustrates how an adapter works.
In this figure, the Client wants to invoke the method Re-
quest() in the Target interface. Since the Adaptee class
has no Request() method, it is the job of the Adapter to
convert the request to an available matching method.
Here, the Adapter converts the method Request() call into
the Adaptee method specificRequest() call. The Adapter
performs this conversion for each method that needs
adapting. This is also known as Wrappering.

6. Discussion

The types of TOGAF architectures that are recommended
for some the most popular patterns and which can be
used to redesign of development systems for different
architectures.

In this paper, we have introduced a pattern-oriented
design method that essentially exploits different catego-
ries of patterns. This approach is a significant improve-
ment over non-structured migration methods currently in
use, for the following reasons:
 The method provides a standardized table of patterns,

thereby reducing the redesign effort and ensuring
consistency in redesign.

 The method helps designers in design choices associ-
ated with (1) the size of the source architecture and
target architecture and (2) the amount of information
to maintain in migrating from the source architecture
to the target architecture.

Client

Target

Request()

Adapter

Request()

Adaptee

SpecificRequest()

Adaptee

Figure 3. Adapter pattern.

Copyright © 2012 SciRes. JSEA

Pattern-Oriented Approach for Enterprise Architecture: TOGAF Framework

Copyright © 2012 SciRes. JSEA

50

 The method is simple enough to be used easily by
novice designers, as compared to reengineering which
currently requires a considerable degree of expertise
and abstract reasoning ability.

Pattern-oriented approach offers the very useful abi-
lity of easily building multiple architecture-specific de-
signs. However, the current state of the art in patterns
and cross-architecture research is not yet mature enough
to handle all the requirements of pattern-oriented design.
More research must be addressed to define the multiple
levels of abstraction of patterns and to create a clear, well-
structured taxonomy of patterns. The simplified taxon-
omy presented in Section 3 is a starting point. Thus,
within a pattern-oriented framework, the simplified “re-
design and design” method proposed here is currently the
most practical approach for migration of systems be-
tween architectures.

7. Conclusions

In this paper, we have identified and proposed ten cate-
gories of patterns, providing examples, for a pattern-
oriented architecture for TOGAF framework to demon-
strate when a pattern is applicable or required during the
design process, how it can be reused and the underlying
best practices to come up with reusable design solutions.

Our experiences highlighted also that in order to ren-
der the patterns understandable by novice designers and
engineers who are unfamiliar with enterprise architecture,
patterns should be presented to developers using a flexi-
ble structure to represent patterns, to make it easy for
both the pattern authors, reviewers and users.

One of the major problems we can find is that master-
ing and applying several types of patterns require in-
depth knowledge of both the problems and forces at play
and most importantly must ultimately put forth battle-
tested solutions. As such, it is inconceivable that pattern
hierarchies will evolve strictly from theoretical conside-
rations. Practical research and industry feedback are cru-
cial in determining how successful a pattern-oriented de-
sign framework is at solving real-world problems. It is
therefore essential to build an “academia-industry bridge”
by establishing formal communication channels between
industrial specialists in patterns, enterprise architecture
design patterns such as TOGAF framework as well as
pattern researchers. Such collaboration will lead, at to a
common terminology which essential making the large
diversity of patterns accessible to common TOGAF
framework designers.

Future work will require the classification of each pat-
tern and the illustration of each of them in UML class
and sequence diagrams for each architecture of TOGAF
framework. Next, some relationships will have to be de-

fined between patterns so that they can be combined to
create models based on the resulting patterns. Also, the
design patterns need to be evaluated using different eva-
luation standards and methods and the formal descrip-
tions of the proposed patterns using the formal language
such as XML and its derivatives to increase the number
of these formal descriptions which is also conducive to
the future engineering application.

REFERENCES
[1] Institute for Enterprise Architecture Developments, 2011.

http://www.enterprise-architecture.info/

[2] R. E. Giachetti, “Design of Enterprise Systems, Theory,
Architecture, and Methods,” CRC Press, Boca Raton,
2010.

[3] P. Weill, “Innovating with Information Systems: What
Do the Most Agile Firms in the World Do?” 6th
e-Business Conference, Barcelona, 2007.

[4] Enterprise Architecture Center of Excellence, 2011.
http://eacoe.org/index.shtml

[5] J. W. Ross, P. Weill and D. C. Robertson, “Enterprise
Architecture as Strategy,” Harvard Business Press, Bos-
ton, 2006.

[6] J. A. Zachman, “A Framework for Information Systems
Architecture,” IBM Systems Journal, Vol. 26, No. 3, 1987,
pp. 276-292. doi:10.1147/sj.263.0276

[7] Open Group, 2008.
http://pubs.opengroup.org/architecture/togaf9-doc/arch/in
dex.html

[8] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I.
Fiskdahl-King and S. Angel, “A Pattern Language,” Ox-
ford University Press, New York, 1977.

[9] F. Buschmann, “What is a Pattern?” Object Expert, Vol. 1,
No. 3, 1996, pp. 17-18.

[10] J. Tidwell, “Common Ground: A Pattern Language for
Human-Computer Interface Design,” 1997.
http://www.mit.edu/~jtidwell/common_ground.html

[11] T. Coram and J. Lee, “Experiences—A Pattern Language
for User Interface Design,” 1998.
http://www.maplefish.com/todd/papers/experiences

[12] M. V. Welie, “The Amsterdam Collection of Patterns in
User Interface Design,” 1999.
http://www.cs.vu.nl/~martijn/patterns/index.html

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “De-
sign Patterns: Elements of Reusable Object-Oriented
Software,” Addison-Wesley, Reading, 1995.

[14] Dave Hornford, SOA/TOGAF Tutorial, 2010.
https://www.opengroup.org/conference-live/uploads/40/2
2062/hornford.pdf

[15] F. J. Budinsky, M. A. Finnie, J. M. Vlissides and P. S. Yu,
“Automatic Code Generation from Design Patterns,” IBM
Systems Journal, Vol. 35, No. 2, 1996, pp. 151-171.
doi:10.1147/sj.352.0151

http://dx.doi.org/10.1147/sj.352.0151

