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Abstract: Recognizing morphological patterns in lines and segmenting them into homogeneous
segments is critical for line generalization and other applications. Due to the excessive dependence
on handcrafted features in existing methods and their insufficient consideration of contextual infor-
mation, we propose a novel pattern recognition and segmentation method for lines, based on deep
learning and shape context descriptors. In this method, a line is divided into a series of consecutive
linear units of equal length, termed lixels. A grid shape context descriptor (GSCD) was designed
to extract the contextual features for each lixel. A one-dimensional convolutional neural network
(1D-U-Net) was constructed to classify the pattern type of each lixel, and adjacent lixels with the
same pattern types were fused to obtain segmentation results. The proposed method was applied to
administrative boundaries, which were segmented into components with three different patterns.
The experiments showed that the lixel classification accuracy of the 1D-U-Net reached 90.42%. The
consistency ratio was 92.41%, when compared with the manual segmentation results, which was
higher than either of the two existing machine learning-based segmentation methods.

Keywords: line segmentation; pattern recognition; one-dimensional convolutional neural network;
grid shape context descriptor

1. Introduction

In map space, various geographical entities are modeled as points, lines, polygons,
or other element types. Lines are one of the most abundant elements, representing rivers,
roads, administrative boundaries, and coastlines. Due to the heterogeneity inherent in
geographical environments, lines typically differ in terms of their geometric properties and
spatial structures. In particular, an individual line may have different shape pattern charac-
teristics, which reveal the spatial distribution characteristics of the associated geographical
entity. During the processing of line generalization, which simplifies the shape of a line by
removing unwanted small details, it is important to recognize the morphological patterns
of the lines and segment them into homogenous segments [1–7]. A simple example is
shown in Figure 1, where a line consisting of two parts with different pattern characteristics
has been simplified using two popular algorithms (i.e., the bend-based algorithm [8] and
the orthogonality-preserving simplification algorithm [9]). The bend-based algorithm was
appropriate for simplifying segment I with a complex hierarchy of bends, however, it
generated an unsatisfying result for segment II with orthogonal characters. In contrast,
the orthogonality-preserving algorithm performed well to maintain the orthogonality of
segment II; however, it distorted the main bend structures of segment I. This example
indicates that each line generalization algorithm has its own strengths and weaknesses for
differing shape characteristics [10–12].
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shape-analysis-based methods. Critical points, such as inflection points [19], are usually 

detected as break points, thus yielding segmentation results. Additionally, several studies 

implicitly achieved segmentation by applying point-compression models in which the re-

tained points were used as the critical points [3,20]. Shape-analysis-based methods iden-

tify homogeneous segments with geometric measurements. For example, in the approach 

proposed by Plazanet et al. [4], an input line was recursively divided until all parts became 

geometrically homogeneous. The pattern type of each segment was then classified based 

on the shape measurements of the bends. Samsonov and Yakimova [12] proposed several 

procedures, including filtering, segmentation, and squaring, to decompose a line into ho-

mogeneous segments. They identified orthogonal and non-schematic segments based on 

analysis of the angle and distance measurements. 

Intelligent methods have been explored for line segmentation based on shape analy-

sis and geometric measures. For instance, Balboa and López [16,17] attempted to emulate 

expert human segmentation for road lines via a backpropagation artificial neural network 

(BANN). A set of geometric features was used to describe the shape characteristics of each 

road segment. A BANN classification model was then designed to establish mapping be-

tween the descriptive features and the pattern types. Finally, the line segmentation results 

were obtained by applying the classifier to predict the class of each component derived 

from a window moving along the lines. Liu and Yang [18] developed a similar method for 

coastline segmentation that processes the geometrical features of a segment using princi-
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Figure 1. Simplified results (in red) of a line with different shape characteristics using two different
algorithms: (a) the original line; (b) result using the bend-based simplification algorithm; (c) result
using the orthogonality-preserving simplification algorithm.

To overcome this drawback, one promising solution is to develop hybrid generalization
methods which allow each part of the line to be processed using the appropriate algorithm.
Specifically, for each input line, the shape characteristics of the line are first recognized and
then divided into geometrically homogeneous segments. Next, the appropriate algorithm
and parameter settings can be applied to each segment according to its pattern type.
Since a large number of line generalization algorithms have been developed, methods
for line pattern recognition and segmentation have become a focus of current research.
This necessity has been highlighted by researchers during the generalization of various
map features, including building outlines [11,13,14], administrative boundaries [12], road
lines [15–17], coastlines [18], and land-use boundaries [5].

In the past few decades, some studies have been carried out devoted to line segmen-
tation. Broadly, these methods can be classified into two categories: critical-point- and
shape-analysis-based methods. Critical points, such as inflection points [19], are usually
detected as break points, thus yielding segmentation results. Additionally, several studies
implicitly achieved segmentation by applying point-compression models in which the
retained points were used as the critical points [3,20]. Shape-analysis-based methods iden-
tify homogeneous segments with geometric measurements. For example, in the approach
proposed by Plazanet et al. [4], an input line was recursively divided until all parts became
geometrically homogeneous. The pattern type of each segment was then classified based
on the shape measurements of the bends. Samsonov and Yakimova [12] proposed several
procedures, including filtering, segmentation, and squaring, to decompose a line into
homogeneous segments. They identified orthogonal and non-schematic segments based on
analysis of the angle and distance measurements.

Intelligent methods have been explored for line segmentation based on shape analysis
and geometric measures. For instance, Balboa and López [16,17] attempted to emulate
expert human segmentation for road lines via a backpropagation artificial neural network
(BANN). A set of geometric features was used to describe the shape characteristics of each
road segment. A BANN classification model was then designed to establish mapping
between the descriptive features and the pattern types. Finally, the line segmentation
results were obtained by applying the classifier to predict the class of each component
derived from a window moving along the lines. Liu and Yang [18] developed a similar
method for coastline segmentation that processes the geometrical features of a segment
using principal component analysis (PCA). They adopted the Bayesian model to construct
a classifier to predict the pattern types of segments extracted by a moving window, and
output the segmentation results by merging the segments belonging to identical classes.
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Although many methods have been developed for the purpose, the effective analysis and
segmentation of lines remains challenging. First, it is difficult to comprehensively and
objectively reveal the shape characteristics of a line, resulting in a lack of information for
distinguishing segments with different shape characteristics. Second, existing methods
lack an effective mechanism to consider local contextual information, which limits the
performance of pattern recognition and segmentation.

From a visual cognition perspective, the line segmentation problem is similar to the
image segmentation problem (i.e., combining units with similar characteristics to form local
continuous homogeneous structures). In the image segmentation field, convolutional neural
networks (CNNs) have excellent properties, including local perception and multiscale
feature characterization, rendering them the most advanced technology for solving this
problem [21,22]. Recently, CNNs and their variants have been successfully applied to
map data processing, including geographical pattern recognition and classification [23–25],
shape representation and classification [26,27], and cartographical generalization [7,28,29].
In this study, we employed CNN technology to construct a method for pattern recognition
and segmentation of lines. However, unlike image data with grid-topology structures, each
line consisted of a sequence of points with uneven distributions; the distance between two
adjacent points was not identical. Thus, the processing units were not stationary. Therefore,
we divided the lines into a series of consecutive linear units with equal lengths, also known
as lixels [30], which serve as the basic units that compose a line. Based on this, each line
was organized into a list of lixels, sequentially ordered and evenly distributed. In this
manner, the line segmentation problem was transformed into a lixel classification problem,
which could be analyzed and processed using advanced image segmentation techniques,
to solve the shortcomings inherent in existing methods that include excessive dependence
on handcrafted features and insufficient consideration of contextual information.

We propose a grid shape context descriptor (GSCD) to describe the contextual charac-
teristics of each lixel and its neighbors. This descriptor provides a standardized computa-
tion for the contextual features with respect to each lixel, thereby reducing the subjective
impact of manually defined features encountered in previous methods. Subsequently,
with reference to the classic architecture [31], a novel one-dimensional convolutional neu-
ral network (1D-U-Net) that combines operations such as one-dimensional convolution,
pooling, and transposed convolution, was constructed to analyze the extracted contextual
features of the lixels and assign a pattern type to each. Finally, adjacent lixels with the same
pattern types were fused to output the final segmentation results. To verify the proposed
method, administrative boundaries were chosen as the experimental data. This is because
human and natural factors both influence the geometrical morphologies of administrative
boundaries, thus presenting a variety of pattern types conducive to effectively testing the
proposed method.

The remainder of this paper is organized as follows. Section 2 introduces the exper-
imental datasets and pattern types for the administrative boundaries. Section 3 details
the proposed segmentation method using GSCD and 1D-U-Net. Section 4 presents the
experimental design and results, as well as a detailed analysis, comparison, and discussion.
Finally, Section 5 concludes this study.

2. Experimental Datasets and Shape Patterns
2.1. Experimental Datasets

In this study, two sets of administrative boundary data for southern China extracted
from a 1:50,000 land-use database were used as the training and test datasets, respectively
(Figure 2). The training dataset contained 102 administrative boundaries, with a total
length of 927.781 km and an average length of 9.096 km. The test dataset contained
52 administrative boundaries, with a total length of 783.857 km and an average length of
15.074 km. The boundaries of the two datasets had complex and diversified morphological
characteristics, suitable for confirming the effectiveness of the proposed method.
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Figure 2. Experimental data: (a) administrative boundaries in the training dataset, and (b) adminis-
trative boundaries in the testing dataset.

2.2. Administrative Boundary Shape Pattern Types

Numerous variants and combinations of shape patterns for lines were included in this
study. For administrative boundary data, components may derive from natural objects,
such as rivers and coastlines, as well as anthropogenic objects, such as roads and built-up
areas. Natural objects are usually characterized by a hierarchical bend structure, whereas
anthropogenic objects tend to have artificially sharp or right-angled features. Samsonov
and Yakimova [12] demonstrated that these differences in line shape patterns can be
conceptualized in three aspects: smoothness, schematism, and regularity. The degree of
smoothness indicates whether the shape change along a line is smooth (i.e., whether it has
a gradually changing tangent direction or contains a large deviation angle). Schematism
indicates whether the shape composition of a line is simple or if it contains complex
hierarchical curved structures of various sizes. Regularity refers to whether a line shape
has repetitive characteristics.

Based on the shape pattern space constructed from these three dimensions, as well as
the characteristics of the experimental data, we classified the shape patterns of the bound-
aries into three pattern types: smooth irregular schematic (SIS), sharp regular schematic
(SRS), and sharp irregular non-schematic (SIN), as listed in Table 1. SIS segments were
characterized as smooth, with no repetitive characteristics and uncomplicated curved
structures, and were derived from natural and artificial environments. SRS segments were
characterized by sharp orthogonal regularities similar to building outlines, mainly derived
from artificial environments. SIN segments were characterized as sharp, with no repetitive
characteristics and complex hierarchical bends of various sizes, mainly derived from the
natural environment.
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Table 1. Line characteristics of pattern types for administrative boundary segments.

Pattern Type Example Smoothness Regularity Schematism

Smooth irregular
schematic

(SIS)
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3. Methodology

Figure 3 shows the overall framework of the proposed method, including four main
steps: lixel generation and labeling, lixel feature extraction, classification, and segmentation.
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Figure 3. Framework of the segmentation method for administrative boundaries using the one-
dimensional convolutional neural network (1D-U-Net).

• Lixel generation and labeling: Each administrative boundary was converted into a
series of lixels via equidistant subdivision; the pattern type of each lixel was labeled;

• Feature extraction for lixels: Automatic extraction of the contextual features for each
lixel, using GSCD;

• Lixel classification using 1D-U-Net: Construction of a 1D-U-Net to classify the pattern
type of each lixel based on the extracted features;

• Segmentation: Obtaining the segmentation results by fusing adjacent lixels with the
same pattern type.

3.1. Lixel Generation and Labeling

Figure 4 illustrates the lixel generation and labeling processes. First, each administra-
tive boundary was manually segmented according to its morphological characteristics. The
pattern type of each segment was classified according to the pattern category described
in Section 2.2, and the visual classification was performed at a fixed scale to eliminate
the influence of the data display scale on pattern discrimination. The boundary was then
divided into a series of lixels with a fixed length. Note that the last divided part of the
boundary that did not satisfy the predefined length was considered a lixel.



ISPRS Int. J. Geo-Inf. 2022, 11, 461 6 of 18ISPRS Int. J. Geo-Inf. 2022, 11, 461 6 of 18 
 

 

 

Figure 4. Lixel generation and labeling for each administrative boundary. Blue, red, and black colors 

of the divided segments indicate SIS, SRS, and SIN patterns, respectively. 

The pattern type of each lixel was determined based on the pattern type of the seg-

ment to which it belonged. If a lixel was associated with multiple segments, it was labeled 

with the pattern type of the segment where it had the longest overlap length. Let 𝐸𝑛×1 =

< 𝑒1, 𝑒2, … , 𝑒𝑛 > (𝑛 > 1) denote the sequence of lixels of an administrative boundary. The 

label information was organized as sequence data: 𝑇𝑛×1 =< 𝑡1, 𝑡2, … , 𝑡𝑛 > , where 𝑡𝑖 ∈

{[1,0,0], [0,1,0], [0,0,1]} (𝑖 = 1,2, … , 𝑛) is a three-dimensional one-hot vector that repre-

sents the pattern type of lixel 𝑒𝑖. 

3.2. Extracting Lixel Features Using GSCD 

The morphological characteristics of a lixel were determined by its neighbors within 

a certain range (i.e., the contextual information). In this study, we employed a GSCD com-

monly used for shape analysis and pattern recognition [32] to extract the contextual fea-

tures of the lixels. For each lixel on an administrative boundary, the GSCD was computed 

as follows: 

1. A regular grid centered on the midpoint of the lixel was created. The grid contained 

p × p cells and the cell edges were always horizontal and vertical. The length of the 

cell edges was set to the fixed length of the lixels. 

2. The length of the boundary located in each cell was counted and normalized by di-

viding the total length of the boundary within all cells. 

3. The normalized values of all cells were arranged from left to right and from bottom 

to top into a feature vector that was used to describe the contextual features of the 

lixel. 

Figure 5 shows the GSCDs with 5 × 5 cells for three different lixels. The grayscale 

value of each grid cell represents the normalized feature value. The GSCDs of the three 

lixels in different contexts also significantly varied, indicating that the GSCD method had 

good feature characterization ability. 

 

Figure 5. Grid shape context descriptors (GSCDs) with 5 × 5 cells for describing the contextual char-

acteristics of three different lixels (in green) on an administrative boundary. 

Figure 4. Lixel generation and labeling for each administrative boundary. Blue, red, and black colors
of the divided segments indicate SIS, SRS, and SIN patterns, respectively.

The pattern type of each lixel was determined based on the pattern type of the
segment to which it belonged. If a lixel was associated with multiple segments, it was
labeled with the pattern type of the segment where it had the longest overlap length. Let
En×1 =< e1, e2, . . . , en > (n > 1) denote the sequence of lixels of an administrative bound-
ary. The label information was organized as sequence data: Tn×1 =< t1, t2, . . . , tn >,
where ti ∈ {[1, 0, 0], [0, 1, 0], [0, 0, 1]} (i = 1, 2, . . . , n) is a three-dimensional one-hot vector
that represents the pattern type of lixel ei.

3.2. Extracting Lixel Features Using GSCD

The morphological characteristics of a lixel were determined by its neighbors within
a certain range (i.e., the contextual information). In this study, we employed a GSCD
commonly used for shape analysis and pattern recognition [32] to extract the contextual
features of the lixels. For each lixel on an administrative boundary, the GSCD was computed
as follows:

1. A regular grid centered on the midpoint of the lixel was created. The grid contained
p × p cells and the cell edges were always horizontal and vertical. The length of the
cell edges was set to the fixed length of the lixels.

2. The length of the boundary located in each cell was counted and normalized by
dividing the total length of the boundary within all cells.

3. The normalized values of all cells were arranged from left to right and from bottom to
top into a feature vector that was used to describe the contextual features of the lixel.

Figure 5 shows the GSCDs with 5 × 5 cells for three different lixels. The grayscale
value of each grid cell represents the normalized feature value. The GSCDs of the three
lixels in different contexts also significantly varied, indicating that the GSCD method had
good feature characterization ability.
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After computing the GSCDs of all lixels along an administrative boundary, we obtained
sequence data, Fn×(p×p), with n lixels and (p× p)-dimensional features, which served as
input for the 1D-U-Net for subsequent pattern classification and segmentation.

3.3. Classifying Lixels Using a 1D-U-Net

This study referred to the classic U-Net [21] to construct the 1D-U-Net for classifying
lixel patterns. The basic idea was to map the input features, Fn×(p×p), into labels, Tn×1,
through multiple 1-D convolution, pooling, and upsampling operations. Figure 6 shows
the detailed architecture of the 1D-U-Net, which consisted of four downsampling blocks
and four upsampling blocks. Each downsampling block contained two 1-D convolutions
and one max pooling; each upsampling block contained one skip connection, one 1-D
transposed convolution, and two 1-D convolutions. The last layer consisted of one 1-D
convolution and one softmax activation function that mapped each feature vector into a
label vector.
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Figure 6. Architecture of the one-dimensional convolutional neural network (1D-U-Net) for classify-
ing lixel pattern types.

The following sections described the operations performed on the sequence data for
the lixels used in this model.

3.3.1. One-Dimensional Convolution and Pooling Operations

One-dimensional convolution and pooling operations were used to extract high-level
multi-scale features for lixel pattern classification from the shallow GSCD features of the
lixels. The convolution operation processes local data in a window through a sliding
kernel and generates new features using a nonlinear activation function. A sequence,
X = {X1, X2, . . . , Xn}, was convolved using a kernel, k =

{
w1, w2, . . . , wl1

}
, with a window

size of l1 to generate a new sequence, C. Each feature, ci, in C was computed as follows:

ci = f
(

k·X
i− (l1−1)

2 :i+ (l1−1)
2

+ b
)

(1)

where f (·) denotes the nonlinear Rectified Linear Unit (ReLU) activation function and b
denotes the bias. The generated sequence is denoted as C = {c1, c2, . . . , c

f loor[ n+2∗d1−l1
s1

]+1
},

where f loor[·] is the largest integer function, d1 is the width of the padding, and s1 is the
stride length of the window.
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The pooling operation obtained coarser-grained features by representing multiple
features in a local window as one feature, which was conducive to reducing parameters,
accelerating computations, and preventing overfitting, thereby improving the characteri-
zation and generalization ability of the model. Max pooling was used in this study. For
multiple features, C(i−1)∗s2+1:(i−1)∗s2+l2 , with a window size of l2, the maximum value was
applied as the output feature, expressed as follows:

pi = maxl2−1
j=0

(
C(i−1)∗s2+1+j

)
(2)

where s2 is the stride length of the window. The generated sequence can be expressed as
P = {p1, p2, . . . , p

f loor[ n−l2
s2 ]+1

}.
Figure 7 provides an example of the convolution and pooling operations, where the

window size l1 of the kernel was three and the window size l2 of the pooling was two. A
sequence C with a size of n and a sequence P with a size of n/2 were obtained after the
convolution and max pooling operations, respectively.
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3.3.2. One-Dimensional Upsampling Operation and Skip Connection

The pooling operation changed the size of the input features. The upsampling opera-
tion, implemented during the transposed convolution, was used to restore the feature size
to the original input size.

The key step in the transposed convolution was to construct a transposed matrix, W,
and multiply it with the feature vector, P. For the input features, P, with size n× 1, the
transposed matrix, W, was obtained by sliding a convolution kernel, k =

{
w1, w2, . . . , wl3

}
,

with a window size of l3 n times, where the vertical stride length of the sliding was s3 and
the horizontal stride length s4 was 1. The transposed matrix W was computed:

Wij =

{
wi−s3∗(j−1), s3 ∗ (j− 1) + 1 ≤ i ≤ s3 ∗ (j− 1) + l3

0, otherwise
(3)

where i = {1, 2, . . . , s3 ∗ (n− 1) + l3} and j = {1, 2, . . . , n} denotes the number of rows and
columns, respectively. The transposed convolution operation can be expressed:

V(s3∗(n−1)+l3)×1 = W(s3∗(n−1)+l3)×n × Pn×1 (4)

where W(s3∗(n−1)+l3)×n denotes the transposed matrix and V(s3∗(n−1)+l3)×1 denotes the
output features.

Figure 8 presents an example of a transposed convolution operation, where the vertical
stride length s3 was two and the convolution kernel width l3 was two. The size of the
transposed convolution matrix, W, is 2n × n, and thus a new feature vector, V, with a size
of 2n × 1 is obtained.
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We note that the pooling and upsampling operations may omit important spatial
location information from the original input features. To alleviate this problem, a skip
connection operation was put in place between the 1-D convolution and 1-D transposed
convolution. As illustrated in Figure 6, the output feature vectors after the 1-D transposed
convolution were connected to the feature vectors after the 1-D convolution with the same
number of channels. Then, the values of each element in the feature vector were corrected
using a convolution operation to restore the number of channels.

3.3.3. Definition of Loss Function

After convolution processing in the final layer, a sequence the same length as the input
sequence was output; its number of channels was three, corresponding to the three pattern
types. Finally, the softmax function was employed to activate the output features to obtain
the predicted probabilities. For the i-th (i = 1, 2, . . . , n) lixel of the output sequence, the
probability (ai)j (j = 1, 2, 3) that it belongs to the j-th pattern type was computed as follows:

(ai)j =
ezj

∑3
k=1 ezk

(5)

where zj denotes the feature of the j-th channel of the lixel. The output probability vector,
ai = 〈(ai)1, (ai)2, (ai)3〉, for the i-th lixel satisfied ∑3

j=1(ai)j = 1. The pattern type with the
highest probability was considered the predicted pattern for this lixel.

The training process allowed the differences (i.e., the loss value, E) to be minimized
between the predicted probability vectors, a1, a2, . . . , an, and the labeling one-hot vectors,
t1, t2, . . . , tn, where n was the number of lixels. In this study, the cross-entropy function was
applied to measure the difference, expressed as follows:

E = − 1
n

n

∑
i=1

tilog(ai) (6)

The smaller the loss value, E, the closer the predictions were to the labels. Here,
1D-U-Net was trained using a backpropagation algorithm. During training, the predicted
value for each mini-batch of data was obtained via forward propagation and the loss value
was calculated. The trainable parameters were then updated gradually according to the
learning rate and partial derivatives of each parameter relative to the loss value.

3.4. Obtaining Segmentation Results

The trained 1D-U-Net was used to predict the pattern types of all lixels along an
administrative boundary. Homogeneous segments were then obtained by merging adjacent
lixels with the same pattern types. However, there were some predictions for a few lixels
that were incorrect, resulting in extremely short segments after the merging operation. As
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these short segments interfered with the segmentation results, post-processing was required
to eliminate them. In this study, an iterative fusion method was used. As illustrated in
Figure 9, post-processing was implemented as follows:

1. The segmentation results of the administrative boundary were traversed and the
segment zi with the smallest length was identified;

2. If the length of zi was smaller than the predefined threshold S, zi was merged with its
neighbor with a longer length;

3. Steps (1) and (2) were repeated until there were no segments smaller than S.
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4. Experiments

The GSCD to automatically extract the features for lixels was implemented as an
ArcMap add-in (Environmental Systems Research Institute, Redlands, CA, USA) with
C#, and the constructed 1D-U-Net to classify lixels was implemented with Python in
TensorFlow. This section presents the experimental design, lixel classification performance,
line segmentation results and analysis, and a discussion on the parameter sensitivities.

4.1. Experimental Design
4.1.1. Sample Dataset Generation

To generate the samples, two volunteers with specialized knowledge independently
segmented the administrative boundaries in the training and test datasets according to
the criteria listed in Table 1. If the segmentation results from the two volunteers were
different, a third volunteer with extensive cartographic experience rechecked and made the
final decision. To ensure the consistency of cartographical details, the display scale when
segmenting the boundaries was fixed at the data scale (i.e., 1:50,000). Next, each boundary
was divided into a series of lixels, as described in Section 3.1. The setting of lixel size is
critical for perceiving line patterns [33,34]. In this current study, by referring to the concept
of the smallest visual object (SVO) discussed in the work of Li and Openshaw [33], and
their comparative studies on the size settings of this parameter, the length of each lixel
was set to 0.5 mm (map distance), corresponding to a ground distance of 25 m at a scale of
1:50,000. Consequently, there were 37,235 and 31,425 lixels for the training and test datasets,
respectively.

To fully train the lixel classification model, two data augmentation methods were
used to increase the sample size of the training dataset. As illustrated in Figure 10a, each
administrative boundary was first rotated every 30◦; the sample size was increased 11
times. Next, we implemented the sliding window method, sliding a fixed window with a
size of 112 lixels along each boundary at steps of 30 lixels. As shown in Figure 10b, each
window slide yielded a sample; thus, multiple samples with partial overlaps were obtained
from one administrative boundary. Through data augmentation, 9432 training samples
were obtained.
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Figure 10. Two data augmentation methods for the training dataset: (a) rotation transformation
method and (b) sliding window method.

For the test dataset, data augmentation was not applied and the lixel sequence of each
administrative boundary was divided into samples with a length of 112 lixels. If the last
sample did not reach the required length, zeros were added. Finally, 308 test samples were
obtained.

4.1.2. Parameter Settings

After preparing all the samples, the contextual features of each lixel were computed
using the GSCD; a grid of 5 × 5 cells was used to construct the GSCD in the experiments.
Therefore, each lixel was described using 25 dimensional features. The model was trained
using the Adam optimizer for 50 epochs, with a learning rate of 0.0001.

Two existing segmentation methods based on machine learning were implemented
for comparison; the backpropagation artificial neural network (BANN) [16,17] and naïve
Bayesian (NB) [18] methods. Both methods used the sliding window method to generate
samples from the administrative boundaries. The key step was to cut the administrative
boundaries according to the fixed-size window which moved with an increment of a certain
length. Referring to the experimental parameter settings discussed in the literature [17,18],
the window size and length of the increment were set to 1500 and 150 m, respectively. Ten
features were extracted to describe the morphological structures of the samples, including
the segment length and baseline length ratio, mean of the bend lengths, median vertical
distance from each point to the baseline, coefficient of variance of the bend baseline length,
coefficient of variance of the bend length and baseline length ratio, median distance between
two continuous points, coefficient of variance of the bend area and squared baseline length
ratio, median ratio of the bend length to baseline length, fractal dimension, and mean of
the turning angles. For more information on the definitions and computations of these
features, please refer to the works of Ariza López and Balboa [16,17] and Liu et al. [18].
Based on principal component analysis (PCA), seven features with a sum of information
greater than 90% were used as the inputs for the BANN and NB models. The number of
neurons in the hidden layer of BANN was set to 15 and the ReLU activation function was
used. A Gaussian model was used for the NB method.

4.2. Lixel Classification Performance Using 1D-U-Net

Figure 11 presents the accuracy and loss values of 1D-U-Net for lixel classification
during the training phase. The classification accuracy and training loss changed rapidly
during the first five rounds, gradually stabilized after ten epochs, and reached a peak after
50 epochs. After the training converged, the classification accuracy of the model on the
training set reached 99.04%. Subsequently, the trained model was used to classify the
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lixels in the test samples, with a classification accuracy of 90.42%. This result indicates that
1D-U-Net can classify the pattern types of lixels with high accuracy.

ISPRS Int. J. Geo-Inf. 2022, 11, 461 12 of 18 
 

 

lixels in the test samples, with a classification accuracy of 90.42%. This result indicates that 

1D-U-Net can classify the pattern types of lixels with high accuracy. 

 

Figure 11. Training accuracy and loss in 1D-U-Net for lixel classification. 

The Precision, Recall, and 𝐹1-score were used to quantitatively evaluate the classifica-

tion results. For each pattern type, the three metrics are defined as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃𝑛𝑢𝑚

𝑇𝑃𝑛𝑢𝑚 + 𝐹𝑃𝑛𝑢𝑚
× 100% (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝑃𝑛𝑢𝑚

𝑇𝑃𝑛𝑢𝑚 + 𝐹𝑁𝑛𝑢𝑚
× 100% (8) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (9) 

where 𝑇𝑃𝑛𝑢𝑚 denotes the number of lixels that were both automatically predicted and 

manually labeled with the same pattern type; 𝐹𝑃𝑛𝑢𝑚 is the number of lixels that were 

automatically predicted to be this pattern type but were manually identified as a different 

pattern type; and 𝐹𝑁𝑛𝑢𝑚 denotes the number of lixels that were manually identified as 

this pattern type but were incorrectly predicted as a different pattern types. 

Table 2 lists the confusion matrix of the lixel classification results for the test samples 

using the trained model, and the three metrics. The 𝐹1-score value for the SIN pattern 

reached 0.96 while the 𝐹1-score values for the SIS and SRS patterns were slightly lower, at 

0.90 and 0.88, respectively. This is because misclassification occurred mainly between the 

SIS and SRS lixels. Overall, the proposed model could extract the shapes’ contextual fea-

tures and achieve lixel classification for the test boundaries with relatively high accuracy. 

Table 2. Confusion matrix and three evaluation metrics for lixel classification of the test samples 

using 1D-U-Net. 

Automatically 

Predicted 

Manually Labeled 

SIS Pattern SRS Pattern SIN Pattern 
Precision 

(%) 

Recall 

(%) 
𝑭𝟏-Score 

SIS pattern 11,642 1277 184 90.76 88.85 0.90 

SRS pattern 1083 9851 157 86.92 88.82 0.88 

SIN pattern 102 206 6923 95.31 95.74 0.96 

  

Figure 11. Training accuracy and loss in 1D-U-Net for lixel classification.

The Precision, Recall, and F1-score were used to quantitatively evaluate the classification
results. For each pattern type, the three metrics are defined as follows:

Precision =
TPnum

TPnum + FPnum
× 100% (7)

Recall =
TPnum

TPnum + FNnum
× 100% (8)

F1-score = 2× Precision× Recall
Precision + Recall

(9)

where TPnum denotes the number of lixels that were both automatically predicted and
manually labeled with the same pattern type; FPnum is the number of lixels that were
automatically predicted to be this pattern type but were manually identified as a different
pattern type; and FNnum denotes the number of lixels that were manually identified as this
pattern type but were incorrectly predicted as a different pattern types.

Table 2 lists the confusion matrix of the lixel classification results for the test samples
using the trained model, and the three metrics. The F1-score value for the SIN pattern
reached 0.96 while the F1-score values for the SIS and SRS patterns were slightly lower,
at 0.90 and 0.88, respectively. This is because misclassification occurred mainly between
the SIS and SRS lixels. Overall, the proposed model could extract the shapes’ contextual
features and achieve lixel classification for the test boundaries with relatively high accuracy.

Table 2. Confusion matrix and three evaluation metrics for lixel classification of the test samples
using 1D-U-Net.

Manually
Labeled

Automatically
Predicted

SIS Pattern SRS Pattern SIN Pattern Precision
(%)

Recall
(%)

F1-Score

SIS pattern 11,642 1277 184 90.76 88.85 0.90
SRS pattern 1083 9851 157 86.92 88.82 0.88
SIN pattern 102 206 6923 95.31 95.74 0.96

4.3. Segmentation Result Evaluation
4.3.1. Qualitative Evaluation

Based on the classification results, homogeneous segments were obtained by merging
adjacent lixels with the same pattern types. To make the comparison fairer, the iterative
fusion method was also employed in the BANN and NB methods after classifying each
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increment. In all three methods, the length threshold S for the short segment needing to
be fused was set to 900 m (i.e., 36 lixels in the proposed method and six increments in the
BANN and NB methods). Figure 12 shows the segmentation results for the test boundaries
using different methods.
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Figure 12. Segmentation results for the test administrative boundaries: (a) manual segmentation,
(b) 1D-U-Net method, (c) BANN method, and (d) NB method.

All three methods performed well in the segmentation of the test boundaries. By using
the iterative fusion method, many short segments were removed and the segmentation
results became more coherent. Careful comparison revealed that the proposed method had
fewer segmentation errors than the BANN and NB methods. For example, the segment
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marked by the green ellipse in Figure 12a was manually labeled as an SRS pattern, but both
the BANN and NB methods incorrectly predicted it as SIS or SIN; only the results of the
proposed method were consistent with the manual labeling.

Figure 13 shows the differences between the manual and predicted results based on
different methods, where predictions that coincided with manual results are rendered in
gray while colored results indicate inconsistent results. There were significantly fewer
inconsistent segments in the results of the proposed method than in the other two methods.
The length of the inconsistent segments in the results of the proposed method was 59.5 km
while the BANN and NB methods produced totals of 167.64 and 184.18 km of inconsistent
segments, respectively.
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Figure 13. Differences in the manual segmentation results and predicted results of different methods
for the test administrative boundaries: (a) 1D-U-Net, (b) BANN method, and (c) NB method. Gray
indicates that the segmentation results are consistent; blue, red, and black denote the segments with
inconsistent predictions as SIS, SRS, and SIN patterns, respectively.

Inconsistent segmentation can be divided into two classes. The first class is charac-
terized by inconsistent segments that are short. This type of inconsistency was produced
by deviations in the segment points; deviations within a certain range had a negligible
impact on subsequent analyses. Instances in the second class included long inconsistent
segments, produced by the incorrect classification of pattern types. As shown in Figure 13,
both classes of inconsistencies in the results obtained by the BANN and NB methods were
significantly greater than those of the proposed method.

To further investigate the two classes of inconsistencies that occurred in the segmen-
tation results using different methods, we analyzed the inconsistencies in four typical
boundaries, as shown in Figure 14. The deviations in the segmentation points occurred
mainly at the junctions of the SIS and SRS segments. In terms of incorrect classification,
the identification of SRS segments generated the worst performances, particularly in the
results of the BANN and NB methods. Lines with SRS patterns may have long straight
segments on both sides or may exhibit consecutive bends. In the former case, the local
characteristics are similar to those of SIS lines in gently sloping areas, whereas in the latter
case, SRS and SIN lines exhibit overall similarity. Overall, accurately identifying the SRS
segments requires understanding the local and global characteristics of the lines.
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Figure 14. Segmentation results for four typical test boundaries (numbered 1–4) using different
methods: (a) manual identification, (b) 1D-U-Net, (c) BANN method, and (d) NB method. Boxes
highlight incorrect classifications and circles mark deviations in the segmentation points.

4.3.2. Quantitative Evaluation

A consistency ratio (CR) metric was defined to quantitatively analyze the segmentation
performance of the different methods. For the i-th pattern type, the CRi metric was
computed as follows:

CRi =
Lci
Lti
× 100% (10)

where Lci and Lti denote the total length of the segments correctly identified as the i-th
pattern type and the total length of the segments labeled as the i-th pattern type, respectively.
The overall CR (OCR) was calculated as follows:

OCR =
∑i Lci

Lt
× 100% (11)

where Lt denotes the total length of all test boundaries. Table 3 lists the CR and OCR
metrics for the segmentation results obtained using different methods. The OCR of the
1D-U-Net method reached 92.41%, which was higher than for either of the two existing
methods. Moreover, the identification of SIN segments had the highest CR, reaching 97%
using all three methods. In contrast, the three methods each had the lowest CR for SRS
segments, with CRs for the two existing methods that were less than 60%; the CR of the
proposed method approached 90%. Overall, the proposed method demonstrated the best
segmentation performance in terms of CR and OCR metrics; it was advantageous in the
identification of SRS segments, compared with the traditional BANN and NB methods.

Table 3. Consistence ratios (CRs) and overall CRs (OCRs) of the segmentation results for the test
boundaries using different methods.

Method
CR (%)

OCR (%)
SIS Pattern SRS Pattern SIN Pattern

BANN 91.59 50.28 98.51 78.61

NB 83.51 54.26 97.87 76.50

1D-U-Net 91.23 90.54 97.40 92.41

4.4. Discussion

As previously mentioned, the GSCD can capture the local contextual features of each
lixel and alleviate the subjective influence of artificially defined features. However, the grid
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size (i.e., the number of cells) had a significant impact on the lixel feature extraction and
may have affected the segmentation performance. For descriptors with different grid sizes,
the extracted features differed (Figure 15).
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Figure 15. Grid shape context descriptors (GSCDs) with different sized grids for each lixel: (a) grid
size of 3 × 3; (b) grid size of 5 × 5; (c) grid size of 7 × 7.

To discuss the sensitivity of the proposed method to the size of the GSCD, an experi-
ment was conducted by varying the grid sizes from 3 × 3 to 7 × 7. Table 4 lists the lixel
classification accuracies. With an increase in grid size, the lixel classification accuracy of the
model initially increased and then decreased. The model performed best when the grid
cell size was 5 × 5. A possible reason for this result is that as the number of cells increased
from 3 × 3, the receptive field gradually increased; therefore, the contextual features of the
lixels were enriched, thus improving the classification performance. However, when the
grid size was greater than 5 × 5, many features were zero (Figure 15c) and the contextual
information may have been disturbed by long-distance boundaries, thus leading to the
degradation of classification performance.

Table 4. Classification accuracies of the proposed model using GSCDs with different grid sizes.

Length of Cell Edge
(m)

Grid Size
(Lixel × Lixel)

Classification Accuracy
(%)

25

3 × 3 89.17
4 × 4 89.58
5 × 5 90.42
6 × 6 89.68
7 × 7 88.53

5. Conclusions and Outlook

This study proposed a novel deep-learning approach for pattern recognition and
segmentation of administrative boundaries, based on 1D-U-Net. In the model, a lixel was
used as the basic processing unit and a GSCD was employed to extract the descriptive
features of each lixel. Subsequently, a 1D-U-Net architecture was constructed to predict the
lixels’ pattern types. Finally, the predicted results were iteratively fused to obtain the final
segmentation results for the administrative boundaries. The experimental results showed
that the lixel classification accuracy of 1D-U-Net reached 90.42% for the test administrative
boundaries; the OCR of the segmentation results for the test samples was 92.41%, which
was higher than that of the BANN- and NB-based segmentation methods.

Unlike existing methods, the proposed method is derived from image segmentation.
It transforms the line segmentation problem into lixel classification by representing un-
structured vector-based data as regular lixel-based sequence data. Additionally, the GSCD
provides a promising means for characterizing local contextual information in lixels. These
two advantages allow the proposed method to effectively identify the shape characteristics
of a line, which significantly improves segmentation performance. Follow-up studies
should focus on certain aspects. The method should be applied to other geographical lines,
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such as coastlines, rivers, and roads. Model optimization and parameter settings for the
method, such as lixel size, should be further investigated. In addition, high-quality sample
libraries should be constructed to further improve the model.
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34. Karsznia, I.; Gołębiowska, I.M.; Korycka-Skorupa, J.; Nowacki, T. Searching for an optimal hexagonal shaped enumeration unit
size for effective spatial pattern recognition in choropleth maps. ISPRS Int. J. Geo-Inf. 2021, 10, 576. [CrossRef]

http://doi.org/10.3138/FM57-6770-U75U-7727
http://doi.org/10.1109/TPAMI.2021.3059968
http://www.ncbi.nlm.nih.gov/pubmed/33596172
http://doi.org/10.1016/j.isprsjprs.2019.02.010
http://doi.org/10.1080/13658816.2021.2024195
http://doi.org/10.1016/j.jag.2022.102696
http://doi.org/10.1080/13658816.2020.1768260
http://doi.org/10.3390/ijgi10100687
http://doi.org/10.3390/ijgi8060258
http://doi.org/10.3390/ijgi9050338
http://doi.org/10.1080/13658816.2017.1298768
http://doi.org/10.3115/v1/D14-1181
http://doi.org/10.3390/ijgi10050279
http://doi.org/10.1080/02693799208901921
http://doi.org/10.3390/ijgi10090576

	Introduction 
	Experimental Datasets and Shape Patterns 
	Experimental Datasets 
	Administrative Boundary Shape Pattern Types 

	Methodology 
	Lixel Generation and Labeling 
	Extracting Lixel Features Using GSCD 
	Classifying Lixels Using a 1D-U-Net 
	One-Dimensional Convolution and Pooling Operations 
	One-Dimensional Upsampling Operation and Skip Connection 
	Definition of Loss Function 

	Obtaining Segmentation Results 

	Experiments 
	Experimental Design 
	Sample Dataset Generation 
	Parameter Settings 

	Lixel Classification Performance Using 1D-U-Net 
	Segmentation Result Evaluation 
	Qualitative Evaluation 
	Quantitative Evaluation 

	Discussion 

	Conclusions and Outlook 
	References

