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ABSTRACT 
In this paper, we report the results obtained recently by analysing around 400 features measured 
from 23.000 regions segmented in 50 radioscopic images of cast aluminium wheels with defects. 
The extracted features are divided into two groups: geometric features (area, perimeter, height, 
width, roundness, Fourier descriptors, invariant moments, and other shape factors) and grey value 
features (mean grey value, mean gradient in the boundary, mean second derivate in the region, 
radiographic contrasts, invariant moments with grey value information, local variance, textural 
features  based on the co-occurrence matrix, coefficients of the discrete Fourier transform, the 
Karhunen Lòeve transform and the discrete cosine transform). We propose a new contrast feature 
obtained from grey level profiles along straight lines crossing the segmented potential defects. 
Analysing the area Az under the receiver operation characteristic (ROC) curve, this feature 
presents the best individual detection performance yielding an area Az=0.9944. In order to make a 
compact pattern representation and a simple decision strategy, the number of features are reduced 
using feature selection approaches. The relevance of the selected features is evaluated by 
calculation of linear correlation coefficient. The results are shown in tables of the linear correlation 
coefficients between features, and among features and class of defect. In addition, statistical 
classifiers and classifiers based on neural networks are implemented in order to establish decision 
boundaries in the space of the selected features which separate patterns (our segmented regions) 
belonging to two different classes (regular structure or defects). 

 
1. Introduction  
Automatic detection of failures in non-destructive testing is normally carried out by a well known 
pattern recognition technique, the steps of which are illustrated in Figure (1): image formation, pre-
processing, segmentation, extraction of features, and classification (Mery et al, 2003a). In the image 
formation the attempt is made obtain a digital X-ray image of the object under test using flat panel 
detectors or image intesnifier with CCD camera. The pre-processing is devoted to improving the 
quality of the image in order to better recognize flaws (e.g., digital filters, integration, contrast 
enhancement, etc.). The segmentation process divides the digital image into disjoint regions with 
the purpose of separating the parts of interest from the rest of the scene. The present investigation 
uses the segmentation process oriented towards the detection of edges by employing the LoG filter 
(Mery & Filbert, 2002b). As can be seen in Fig. (2), this technique searches for changes in the grey 
values of the image (edges) thus identifying zones delimited by edges that indicate flaws. In the 
inspection of cast pieces, segmentation detects regions that are denominated as 'hypothetical 
defects', which may be flaws or structural features of the object. Subsequently, the feature 
extraction is centred principally around the measurement of geometric properties and on the 
intensity characteristics of regions. Finally, classification orders segmented regions in specific 
regions according to extracted features, assigning each region to one of a number of pre-established 
groups, which represent all possible types of regions expected in the image. Typically the classes 
that exist in detection of flaws in cast pieces are two: 'defects' or 'regular structures'1. 

                                                 
1 A sub-classification of flaws is possible to determine the type of flaw. 
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Figure 1. Pattern recognition in the automatic detection of flaws. 

 

Figure 2: Detection of flaws using edge detection: (a) original image, (b) second derivative, (c) edges using a LoG filter 
(d) and (e) detection of flaws. 

This paper presents an exhaustive analysis of over 400 features extracted from over 23,000 regions 
in 50 noisy radioscopic images. The paper is organised as follows. Section 2 briefly describes the 
features used. Section 3 carries out a feature selection in order to reduce computational cost of 
classification. Section 4 presents the linear correlation method for the selected features. Section 5 
shows the results obtained by using statistical classifiers and classifiers based on neuronal networks, 
using original features and those obtained by an analysis of principal components. Finally, 
conclusions and suggestions for future research are presented2. 

 
Figure 3: Example of a region. (a) X-Ray image, (b) segmented region, (c) 3d representation of the intensity (grey 

value) of the region and its surroundings. 

                                                 
2 A extended version of this paper was recently published in (Mery et al, 2003). 
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Table 1. Extracted features. 

Type Variable # Description Ref. 
geo I  1 number of the image  
geo ),( ji  2-3 centre of gravity Castleman, 1996 
geo h , w  4-5 height and width Castleman, 1996 
geo A , L  6-7 area and perimeter Castleman, 1996 
geo R  8 roundness Castleman, 1996 
geo 

71 φφ L  9-15 Hu's moments Sonka et al, 1998 

geo 70 DFDF L  16-23 Fourier descriptors Zahn & Roskies, 1971
geo 41 FMFM L  200-203 Flusser and Suk invariant moments Sonka et al, 1998 
geo 31 FZFZ L  204-206 Gupta and Srinath invariant moments Sonka et al, 1998 
geo ),( ee ba  207-208 major and minor axis of fitted ellipse Fitzibbon et al, 1999 
geo ee ba /  209 ratio major to minor axis of fitted ellipse Fitzibbon et al, 1999 
geo α  210 orientation of the fitted ellipse Fitzibbon et al, 1999 
geo ),( 00 ji  211-212 centre of the fitted ellipse Fitzibbon et al, 1999 
geo dG  213 Danielsson form factor Danielsson, 1978 
int G  24 mean grey value Castleman, 1996 
int C  25 mean gradient in the boundary Mery & Filbert, 2002b
int D  26 mean second derivative  Mery & Filbert, 2002b
int 31 KK L  27-29 radiographic contrasts Kamm, 1998 
int σK  30 deviation contrast Mery & Filbert, 2002b
int K  31 contrast based on CLP3 at 0º and 90º Mery & Filbert, 2002b
int Q∆  32 difference between maximum and minimum of BCLP3 Mery, 2003 
int Q∆′  33 )1ln( +∆Q  Mery, 2003 

int 
Qσ  34 standard deviation of BCLP3 Mery, 2003 

int 
Q∆ ′′  35 Q∆  normalised with average of the extreme of BCLP3 Mery, 2003 

int Q  36 mean of BCLP3 Mery, 2003 
int 151 FF L  37-51 first components of DFT of BCLP3 Mery, 2003 
int 71 '' φφ L  52-58 Hu moments with grey value information Sonka et al, 1998 
int 2

gσ  59 local variance Mery & Filbert, 2002b

int 1Tx  60-87 mean and range of 14 texture features4 with d=1  Haralick et al, 1973 
int 2Tx  88-115 mean and range of 14 texture features 4 with d=2  Haralick et al, 1973 
int 3Tx  116-143 mean and range of 14 texture features 4 with d=3  Haralick et al, 1973 
int 4Tx  144-171 mean and range of 14 texture features 4 with d=4  Haralick et al, 1973 
int 5Tx  172-199 mean and range of 14 texture features 4 with d=5  Haralick et al, 1973 
int KLY  214-277 64 first components of the KL transform5 Castleman, 1996 
int DFTY  278-341 64 first components of the DFT transform5 Castleman, 1996 
int DCTY  342-405 64 first components of the DCT transform 5 Castleman, 1996 

 
2. Feature extraction 
As mentioned above, segmentation is performed using an edge detection technique. All regions 
enclosed by edges in the binary image are considered 'hypothetical defects' (see example in Fig. 
(3)). During the feature extraction process the properties of each of the segmented regions are 
measured. The idea is to use the measured features to decide whether the hypothetical defect 
corresponds to a flaw or a regular structure. 

                                                 
3 CLP: Crossing line profile, grey value function along a line that crosses the region at its centre of gravity. The term BCLP refers to the best t CLP, 
in other words the CLP that presents the best homogeneity at its extremes (Mery et al, 2003b). 
4 The following features are extracted based on a co-ocurrence matrix: second angular moment, contrast, correlation, cum of squares, inverse 
difference moment, mean sum, variance of the sum, entropy of the sum, entropy, variance of the difference, entropy of the difference, 2 measures of 
correlation information, and maximum correlation coefficient, for a distance of d pixels. 
5 The transformation takes a re-sized window of 32 × 32 pixels which includes the region and its surroundings. 
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The features extracted in this investigation are described below, and have been grouped in two 
categories: geometric (geo) and intensity (int) features. Geometric features provide information 
relative to the size and form of the segmented hypothetical flaws. Intensity features, on the other 
hand, provide information about the grey value of the segmented regions. Table (1) presents the set 
of features used in this investigation. The details of how these are calculated can be found in the 
references. 
The total number of features extracted is 405 divided into 37 geometric features, and 368 intensity 
features. 
3. Feature Selection 
In order to reduce the computational time required for classification it is necessary to select 
features; this way the classifier only works with non-correlated features that provide flaw detection 
information. There are a variety of methods for evaluating the performance of the extracted 
features. The present Section includes the ROC analysis and the Fisher discriminator while the 
following Section explains the linear correlation analysis. 
The ROC (receiver operation characteristic) analysis is commonly used to measure the 
performance of a two-class classification. In our case, each feature is analysed independently using 
a threshold classifier. This way, a hypothetical flaw is classified as a 'regular structure' (or 'defect') 
if the value of the feature is below (or above) a threshold value. The ROC curve represents a 
'sensitivity' (Sn) versus '1-specificity' (1-Sp), defined as: 

FNTP
TPSn +

= ,  
FPTN

FPS p +
=−1        (1) 

in which TP is the number of true positives (correctly classified defects), TN is the number of true 
negatives (correctly classified regular structures), FP is the number of false positives (false alarms, 
or regular structures classified as defects) and FN false negatives, (flaws classified as regular 
structures)6. A graphic representation is presented in Fig. (4). Ideally, Sn = 1 and 1-Sp = 0, this 
means that all defects were found without any false alarms. The ROC curve makes it possible to 
evaluate the performance of the detection process at different points of operation (as defined for 
example by means of classification thresholds). The area under the curve (Az) is normally used as a 
measure of this performance as it indicates how flaw detection can be carried out: a value of Az = 1 
indicates an ideal detection, while a value of Az = 0.5 corresponds to random classification (Egan, 
1975). 

Another method for evaluating classifier performance is the Fisher discriminator, which evaluates 
the following function: 

( )bwJ CC 1spur −=            (2) 

where bC  and wC  represent the selected features’ interclass (between) and intraclass (within) 
covariances respectively. A large value for J indicates a good separation of classes as it ensures a 
small intraclass variation and a large interclass variation in the feature space (Fukunaga, 1990). 
The results presented in this article are derived from the analysis of 50 radioscopic images of cast 
aluminium pieces. The images have a high noise component due to the fact that they were taken 
without using averaging techniques. In these images a total of 22,936 regions were segmented. 
Visual inspection determined that 60 of these were real flaws corresponding to blow holes in the 
piece. These flaws were located in areas of the piece in which detection is very difficult (see 
examples in (Mery & Filbert, 2002b)). The 405 features mentioned in Table (1) were extracted from 
each one of the almost 23,000 regions. 
 
                                                 
6 In the literature the following terms are also known False Acceptance Rate (FAR) and False Rejected Rate (FRR) defined as 1-Sp and 1-Sn 
respectively (Jain et al, 2000; Mery & Filbert, 2002a). 
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Figure 4: Defect Classification. a) Distribution of classes using a single feature x. b) Confusion matrix. c) ROC curve 

varying the threshold θ. 
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Figure 5: ROC curve and class distribution for the best contrast feature (# 37). 

 
Table 2. Values of the area under the ROC curve Az and Fischer discriminator J for the 28 pre-selected features. 

 
# var Az J # var Az J # var Az J # var Az J 
4 h  0.94 1.5 59 2

gσ  0.95 1.8 139 3Tx  0.87 1.5 186 5Tx  0.96 3.9 

8 R  0.91 2.0 85 1Tx  0.93 2.9 156 4Tx  0.92 1.9 190 5Tx  0.90 1.5 
25 C  0.93 2.0 87 1Tx  0.83 1.9 162 4Tx  0.89 1.4 195 5Tx  0.94 3.0 
30 σK  0.99 3.0 100 2Tx  0.97 4.6 167 4Tx  0.91 2.2 208 eb  0.96 1.7 
31 K  0.99 6.8 101 2Tx  0.83 1.6 170 4Tx  0.90 1.9 285 DFTY  0.96 1.4 
33 Q∆′  0.99 4.6 113 2Tx  0.92 2.5 179 5Tx  0.97 3.6 360 DCTY  0.95 2.5 

37 1F  0.99 1.9 128 3Tx  0.96 3.2 182 5Tx  0.94 2.8 376 DCTY  0.94 1.7 
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(a)                                                                                      (b) 

Figure 6: Selection of the first 10 features 10 by means of the SFS method using a) Fisher discriminator (J) and b) 
sensitivity specificity = 100%. 

A pre-selection of features was obtained by eliminating those that presented an area under the ROC 
curve Az< 0.8 and a Fischer discriminator J < 0.2 Jmax, where Jmax corresponds to the maximum 
Fisher discriminator obtained upon evaluation of each of the features. Additionally, if two features 
present a correlation coefficient with an absolute value greater than or equal to 0.95 then the feature 
with a lower Az is eliminated. In this manner of the 405 features, 376 were eliminated. Table (2) 
shows the 28 pre-selected features. As can be seen, the best results were obtained with features 
belonging to the contrast family. Texture also performed well. Additionally, some of the features 
were geometric, although better results were obtained with intensity features. Figure (5) shows the 
best ROC curve obtained for F1, the contrast feature based on a Fourier analysis of grey values 
along the straight lines that cross the regions (Mery, 2003). In this case the area under the curve is 
Az = 0.9944. The good class separation offered by this feature can also be appreciated.  
Following the pre-selection of features a selection process was carried out based on the Sequential 
Forward Selection (SFS) method (Jain, et al, 2000). This method requires an objective function f 
that evaluates the performance of the classification using m features. This function could be, for 
example, the Fisher discriminator defined in Eq. (2). The method begins with one feature (m =1), 
and a search is performed for the feature that maximises the function f. Subsequently a second 
search is carried out for that feature that maximises the function f with two features (m =2). This 
method ensures that neither features that are correlated with the already selected feature nor those 
that do not maximise f are considered. This process is repeated until the best n features are obtained. 
This approach works best with normalised features, i.e. those that have been linearly transformed in 
such a way as to obtain a mean value equal to zero, and a variance equal to one. 
It is also possible to use another objective function to evaluate separation between classes. An 
alternative function would be to evaluate the specificity for a threshold classification that obtains a 
sensitivity of 100%, known in the literature as Sp @ Sn=100%. The first 10 features selected with 
the SFS method are shown in Fig. (6) for both objective functions. As can be seen the objective 
function increases in the measure that new features are added with the SFS method. For example, 
and using only one feature, feature # 31 ( K ) maximises function J, thus obtaining a value of J=6.8 
(see first column in Figure (6a)). Likewise, when using this feature with feature # 101 ( 2Tx ) the 
objective function J increases to 8.5 (see second column in Fig. (6a)). It should be mentioned that 
this texture is the feature that most increases J in combination with feature K . This process is 
repeated until the 10 best features are found. 
It can be concluded that there are a number of selected features that show a significant performance. 
An appropriate mixture of contrast and texture features obtains the best separation of classes. When 
designing a classifier it is also necessary to consider the computational cost of calculating the 
features. It is recommended that the selected features should be able to be computed quickly in 
order that the detection of flaws can be carried out in the time required for the automated inspection 
process. 
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                                         (a)                                                                                                   (b) 
Figure 7: a) Histogram of the correlation coefficients between features and the 'defect' and 'regular structure' classes b) 

histogram of correlation coefficients between features. 
4. Linear correlation analysis and relevance criterion 
The analysis of the two linear correlation coefficients is a method for evaluating the correlation that 
exists between selected features, and also the correlation between features and the ideal 
classification supervision variable yk, in which yk is 1 (or 0) if the sample k belongs to the class 
'defect' (or ‘regular structure'). A detailed explanation for calculating linear correlation coefficients 
is given in (Silva et al, 2002a). 
In the present investigation, after the pre-selection of the 28 most relevant features according to the 
Fisher and ROC criteria, (summarised in Table (2)), a linear correlation analysis was performed on 
a set of the 60 existing samples from the 'defective' class, and 180 randomly selected samples taken 
from 22,786 samples belonging to the 'regular structure' class. The limiting value for a variable to 
have a 95% probability of being correlated with another is given by N2  where N is the number of 
samples of the variable (Silva et al, 2002a). Thus the limiting values are 602  = 0.26 for 
correlation in the 'defect' class, and 1802  = 0.15 for correlation in the 'regular structure' class, 
while for correlation between classes the limiting value was 180602 +  = 0.13. Figure (7a) shows 
the resulting histogram for the correlation coefficients found between the features and the variable 
yk. Likewise, Fig. (7b) shows the histogram of the correlation coefficients obtained between all 
features. It is evident from Fig. (7a) that the 28 features are correlated with the ideal classification 
supervision variable yk, because the limits of 0.26 or 0.15 are surpassed by the minimum value of 
0.56 (obtained for feature # 25). The maximum correlation coefficient, 0.81, was obtained for 
feature # 100. 
Figure (7b) shows that there exists a strong correlation between the majority of the features because 
the limit of 0.13 is surpassed by all the correlation coefficients found. The graph also shows that 
some features are highly correlated, and therefore their use as classifiers would be redundant. 
A recommended method of feature selection is to use those that show a good cost-benefit ratio, in 
other words those whose extraction does not imply a high computational cost while at the same time 
show a good performance in classification. The present investigation selects those features that 
satisfy the previously mentioned criteria, and are easy to extract. The objective is to reduce the 
dimensions of the input data of the classifiers, and to reduce the computation time necessary for the 
extraction of features, thus reducing total inspection process time.  
5. Classification 
This Section presents the results obtained when using statistical classifiers and classifiers based on 
neuronal networks. The principal problem manifested in the design of these classifiers is the paucity 
of information regarding the 'defect' class. This is due to the fact that in data obtained from 
segmentation there are approximately 381 samples in the 'regular structure' class for every sample 
in the 'defect' class. In this type of classification, performance cannot be optimised by minimising 
classification error because a classifier that indicates that all samples belong to the 'defect' class will 
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have, in our case, a success rate of 381/382 = 99.74%. Nevertheless, this classifier will have 
detected none of the defects. For this reason classification performance must be measured according 
to the sensitivity and specificity values explained in Section 3. During training the Neyman-Pearson 
criterion is recommended (Kay, 1998), in which sensitivity is maximised for a given specificity. 
In order to train classifiers, the data sets shown in Table (3) were used. These sets were taken from 
the total of samples in the 'defect' class. Set I corresponds to the entire sample. In sets II, III, IV and 
V the quantity of samples from the 'regular structure' class were reduced. In these cases, the samples 
from the 'regular structure' class were selected randomly and there are no common elements among 
the selected sets. In sets V and VI the samples from the 'defect' class were repeated until they were 
equal in number to the samples from the 'regular structure' class.  

Table 3: Data sets used in the experiments. 
 

 Set I Set II Set III Set IV Set V Set VI 
Defects 60 60 60 60 2,0007 22,8767 

Regular structures 22,876 180 500 2,000 2,000 22,876 
 
5.1 Statistical classifiers 
In the statistical pattern recognition, classification is achieved using the concept of similarity: 
patterns that are similar are assigned to the same class (Jain et al, 2000). Although this methodology 
is quite simple it is necessary to establish a good metric of similarity. Using a representative sample, 
in which the expected classification is known, it is possible to perform a supervised classification 
by finding a discriminating function that can supply information about the degree of similarity 
between the n features to be evaluated (contained in the vector of features x = [x1,..., xn]T) and the 
features that represent each class. In this investigation experiments are carried out with the 
following statistical classifiers threshold-, linear-, nearest neighbour- and Mahalanobis-classifier 
(Mery & Filbert, 2002a; Mery et al, 2003b). 
The experiments first used a threshold based statistical classifier. Using a single feature (# 37), the 
rule is to classify a region as 'defect' if the feature is above a threshold value. In this way a value for 
Sn = 95.0% is obtained, with a specificity of 1-Sp = 1.4% using Set I of the data. This means that of 
the 60 existing real flaws, TP = 57 have been identified correctly, nonetheless FP (false alarms) = 
325 are also obtained. A threshold classifier with two features classifies a region as a 'defect' if each 
feature exceeds a threshold value independently. The vector space as well as the decision lines for 
this classification can be seen in Figure (8). The performance obtained is Sn = 95.0%, 1-Sp = 1.0% 
(TP = 57 and FP = 230) using Set I of the data. The use of more sophisticated statistical classifiers 
did not improve classification performance. This is because the classes are superimposed on the 
feature space. The results obtained with the different statistical classifiers are summarised in Table 
(4), Groups 1 to 5. 

 
Figure 8: Vector space of features 1F  (# 37) and 

σK (# 30), the lines represent the thresholds. 

                                                 
7 The 60 samples of the 'defect' class were duplicated until they equalled the number of samples in the 'regular structure' class. 

regular structures ( ) 

defects ( ) 
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Figure 9: Model of the supervised network with retro-propagation of error. The network has only one neurone for 

implementation of linear classifiers 
 
5.2 Linear classifiers using neuronal networks (NN) 
When neuronal networks are used for pattern recognition criteria, it is usual to start with a study of 
linear classifiers with the purpose of establishing the possibility of linear separation of the classes. 
This is due to the operational and developmental simplicity of these classifiers compared those that 
are non-linear. Linear classifiers’ functioning can be explained as follows: A linear discriminator 
decides if the sample, represented by its features grouped in a vector x, belongs to the class 'defect' 
if d(x) > 0 where 
 

d(x) = w Tx + b.           (3) 
 
If this is not the case, x is assigned to the class 'regular structure'. As can be seen, the discriminator 
is defined by the vector w, which weights the input x, and b which represents an off-set value. In the 
domain of the input, the discriminating function represents the geometric space of the points that 
satisfy d(x) = 0, which form a hyperplane perpendicular to the vector w and at a distance (in the 
direction of w) of -b / ||w|| from the origin. Usually it is normalised so that ||w||=1, adjusting the 
value of b so as to not alter the inequality d(x) > 0. In this case d(x) measures the distance from the 
input x to the hyperplane, and is a measure of the probability of success of the classification for that 
specific input (Silva et al, 2001). An optimal discriminator is one that maximises the probability of 
success of classification. Optimal linear discriminators are a much-used technique in statistics 
known as Fisher Discriminators. A practical way of implementing these is through a neuronal 
network with one layer, where this layer contains one unique neurone per class, as described by 
Haykin (1994). In our work, linear classifiers were implemented using a supervised network with 
only neurone of the hyperbolic tangent type: ))(tanh( xdU = . Learning was carried out using the 
error retro-propagation algorithm with cascade training (Haykin, 1994). Figure (9) illustrates the 
neuronal implementation model of the classifier that was used. 
As the neuronal learning process used minimises the total mean quadratic error, training in which 
there are many samples of the 'regular structure' class and very few of the 'defect' class (in our case 
the ratio is 381:1) is not recommended because the 'regular structure' class would be dominant in 
this learning process, and logically the network would focus on learning to minimise the error in the 
'regular structure' instead of the 'defect' class. There are two solutions for this problem: the number 
of samples of the 'regular structure' class can be reduced (but thus losing the network’s capacity to 
generalise), or duplicate the samples from the smaller class thus diminishing the dominant tendency 
of the larger class (Haykin, 1994). In our case both possibilities were tested. 
Table (4), Groups 6, 7 and 8, present the results of Sn and 1-Sp obtained with the linear classifiers 
for the three sets of data using the 28 features from Table (2). As can be seen, all defects were 
detected in all three cases. Additionally the number of false alarms (FP) is only 2 for sets II and IV, 
and zero for set III, which implies that the value of 1-Sp is very low for all cases. These are excellent 
results and show that linear separation using neuronal networks is possible between both classes 
when using the 28 features from Table (2). 
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Table 4: Performance of the statistical classifiers and neuronal networks in diverse experiments. 
 

Group Features Classifier Set TP FP Sn 1-Sp 
1 # 37 threshold I 57 / 60 324 / 22,876 95.0% 1.42%
2 # 30, 37 threshold I 57 / 60 230 / 22,876 95.0% 1.00%
3 # 30, 31, 37 linear I 57 / 60 310 / 22,876 95.0% 1.33%
4 # 30, 37, 101 Euclidean I 57 / 60 326 / 22,876 95.0% 1.59%
5 # 30, 37, 101 Mahalanobis I 57 / 60 363 / 22,876 95.0% 1.59%
6 28 features of Table (2) NN II 60 / 60 0 / 180 100.0% 0.00%
7 28 features of Table (2) NN III 60 / 60 0 / 500 100.0% 0.00%
8 28 features of Table (2) NN IV 60 / 60 2 / 2,000 100.0% 0.10%
9 # 25, 30, 31, 33, 37, 101, 186, 208, 360, 376 NN IV 60 / 60 2 / 2,000 100.0% 0.10%
10 # 4, 8, 25, 30, 31, 33, 37 NN IV 58 / 60 8 / 2,000 99.6% 0.40%
11 # 30, 37 NN IV 52 / 60 7 / 2,000 86.5% 0.35%
12 # 30, 37 NN V 60 / 60 2 / 2,000 100.0% 0.10%
13 # 30, 37 NN VI 60 / 60 558 / 22,876 100.0% 2.44%
14 P1, P2 of PCA of 28 features NN IV 60 / 60 2 / 2,000 100.0% 0.10%
15 P1 of PCA of features # 30 and 37 NN IV 60 / 60 2 / 2,000 100.0% 0.10%

 
With the purpose of finding a classifier that uses fewer features, the ten most important features 
found with the SFS method using the Fisher discriminator (see Fig. (6a)) and the variable Sp @ 
Sn=100% (see Fig. (6b)), a set of 10 features made up of the 6 first features of each method, were 
selected (as can be seen in Fig. (6) features # 30 and #360 are common to both selections). The 
performance of these features on a linear classifier with Set IV of the data, was evaluated. As seen 
in Table (4), Group 9, the results obtained were also Sn = 100% and 1-Sp = 0.1% (TP = 60, FP = 2). 
Therefore, with a dimensional reduction from 28 to 10 features, the results are identical, showing 
that a reduction in the dimensions of the input data is both possible and recommendable.  
Subsequently, a new training set was developed from Set IV of the data, using the first 8 features in 
Table (2) that represent the lowest computational cost. The results obtained are shown in Table (4), 
Group 10. As can be seen Sn = 96.6% and 1-Sp = 0.4% (TP = 58, FP = 8), which represents a 
slightly inferior index from that obtained with the 28 features used initially. Nevertheless, the 
percent reduction is small compared to the difficulty represented by the extraction of the totality of 
the features. 
Figure (8), which illustrates the vector space with features # 30 and # 37, shows the good separation 
achieved between classes using these features. For this reason a new experiment was carried out 
using Set III, but using only the two features mentioned. Initially, for this set of data, the results 
were only Sn = 86.5% and 1-Sp = 0.35% (see Table (4), Group 11). In this case the reduction in 
sensitivity is quite significant. The reason for this reduction is probably due to the difference in the 
number of samples per class, which is accentuated even more by the elimination of 26 features. In 
order to test this hypothesis the number of 'defect' data were doubled until 2.000 samples sere 
obtained (Set 4 of the data), thus equalling the data belonging to the 'regular structure' and giving 
equal importance to both classes during the network training process. The results can be seen in 
Table (4), Group 12. Surprisingly, the performance was the same as that obtained with the set 
composed of the 28 features, that is Sn = 100% and 1-Sp = 0.1%. Thus it is evident that the reduction 
in the input data is satisfactory. 
As a final test, the neuronal network was trained using Set IV composed of 22,876 samples from the 
class 'defect' (duplicates) and 22,876 samples from the 'regular structure' class. As the training of 
this network represents an elevated computational cost, only two features were considered, # 30 and 
# 37 which showed a very good performance in their evaluation. The results were Sn = 100% and 1-
Sp = 2.44% (see Table (4), Group 13). 
5.3 Principal Components of Linear Discrimination 
It is difficult to visualize the vector space of the features when the system has more than three 
dimensions. This is the case shown in Table (2) in which there is a set of 28 features. One way of 
visualising this space is by means of its projection onto another two or three-dimensional space. 
Commonly this reduction is achieved by means of the Karhunen-Lòeve Transformation, also known 
as Principal Component Analysis (PCA) (Castleman, 1996). 
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Figure 10: Two-dimensional graph of the two principal components (P1 and P2) of linear discrimination based on the 28 

features of Table (2). 
 
In this investigation the two principal linear discrimination components with independent activity 
were used, implemented by an error retro-propagation type network with only one neurone, (Silva 
et al, 2003), to visualise the discrimination between both classes using Set IV of the data. Figure 
(10) shows the two-dimensional graph made up of the two principal components (P1 and P2) 
obtained from the 28 features. As can be seen it is possible to separate both classes using a simple 
linear classifier. In this case there are only two false alarms, and the results are summarised in Table 
(4), Group 14.  
Another application of principal discrimination components is the reduction in the dimensions of 
the classifier input data; in our case the candidate features total 405 (see Table (1)). These features 
can be substituted by the principal discrimination components reducing the system’s dimensions to 
2, 3 or 4 dimensions8. In this case the classification result obtained showed that # 30 and # 37 are 
extremely important and sufficient for obtaining a high success index. On the basis of a principal 
component analysis for these two features, and using the first principal component as an input 
variable for the linear classifier, a new experiment can be carried out. In other words with the first 
resulting component, defined as the projection of the input in the principal direction of linear 
discrimination (Silva et al, 2003), we now have a new feature which is the linear combination of the 
first two. A new performance evaluation was carried out using this component and the result 
indicates the same Sn = 100% and Sp = 99.9% (see Table (4), Group 15). Summarising, on the basis 
of an initial 405 features, we arrive at only one. These results show once more what Silva et al 
(2002b) concluded in their work: what is important is the quality and not the quantity of the features 
used. 
6. Conclusions 
This work presents an exhaustive analysis of segmented regions of noisy radioscopic images with 
the purpose of carrying out an automatic detection of flaws in cast aluminium pieces. This study 
presents over 400 features extracted from approximately 23,000 regions. The analysis of the 
extracted features indicates that information about flaws is found more often in intensity features, 
especially contrast and texture features, and less so in geometric features. Diverse experiments were 
                                                 
8 This reduction implies a simplification only in the design of the classifier. It should be remembered that to obtaing the principal components it is 
necessary to have access to all the original features. In the example mentioned, to obtain the two, three, or four components, it is necessary to first 
extract the 405 initial features. 
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carried out under different conditions, evaluating the performance of statistical classifiers and those 
based on neuronal networks in varied combination of features and training data sets. The results are 
similar, and in almost all experiments it was possible to detect a large number of real flaws with a 
small number of false alarms (Sn > 95%, 1-Sp<2.5%). Although it is true that these results are very 
good in percentage terms, they are not so in absolute terms in that the number of false alarms 
remains high. Considering that there are approximately 23,000 hypothetical flaws in 50 images, a 
value of 1-Sp = 1% indicates that on average there are approximately 5 false alarms per image, 
which is unacceptable in industry. Nevertheless, these results are a substantial improvement over 
those presented by Mery & Filbert (2002a), in which, for the same images, the results obtained had 
a value of 1-Sp = 8% which indicates approximately 15 false alarms per image. The improvement in 
performance is due principally to the development of new contrast features presented in (Mery, 
2003). This leads us to the conclusion previously mentioned that it is the quality and not the 
quantity of the features used that is of importance. 
This line of investigation belongs to the area of detection of flaws without a priori knowledge of the 
structure of the image and with noisy images, i.e., images taken without using integration 
techniques. It is known that for these images false alarms can be eliminated using a posterior 
analysis based on image sequence analysis (Mery & Filbert, 2002b). Nonetheless, is would be 
interesting to test the methods described in this article on the analysis of radioscopic images in 
which noise has been reduced by means of an integration process by averaging various images of 
the same scene. It is quite probable that false alarms could be further diminished using this process. 
In future work we plan to investigate the relevance of the extracted features according to relevance 
criteria using neuronal networks described in (Silva et al, 2002b); delve into other feature selection 
techniques (Jain et al, 2000); implement other classifiers (based on more complex neuronal 
networks, or on fuzzy logic, or a fusion of classifiers) and experiment with new features that 
improve classification performance.  
It is also necessary to find new data with the purpose of having access to a more representative 
sample of the 'defect' class as this would allow a better training of classifiers and access to separate 
data sets for training and independent tests. Given that in the present investigation the number of 
samples in the 'defect' class was very small, tests were performed on the same data set that was used 
for training. 
In order that other members of the NDT community can make contributions in this area, the data 
used in this investigation are available in: 

http://www.diinf.usach.cl/~dmery/papers/DATA_PANNDT2003a.zip 

The data are in a plain text format. The table contains 22,936 rows and 29 columns. Each row is one 
sample. The first 28 columns correspond to the 28 features of Table (2). For example column 7 is 
feature F1. Column 29 constitutes the ideal classification supervision variable yk, where yk is 1 (or 0) 
if the sample k (k=1...22,936) belongs to the class 'defect' (or 'regular structure'). 
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