
I.J. Image, Graphics and Signal Processing, 2016, 3, 19-27
Published Online March 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijigsp.2016.03.03

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 3, 19-27

Pattern Recognition: Invariance Learning in

Convolutional Auto Encoder Network

1
Oyebade K. Oyedotun,

2
Kamil Dimililer

1 ,2
 Near East University, Lefkosa, via Mersin-10, North Cyprus

Email:
1
oyebade.oyedotun.k@ieee.org,

2
kamil.dimililer@neu.edu.tr

Abstract—The ability of the human visual processing

system to accommodate and retain clear understanding or

identification of patterns irrespective of their orientations

is quite remarkable. Conversely, pattern invariance, a

common problem in intelligent recognition systems is not

one that can be overemphasized; obviously, one‘s

definition of an intelligent system broadens considering

the large variability with which the same patterns can

occur. This research investigates and reviews the

performance of convolutional networks, and its variant,

convolutional auto encoder networks when tasked with

recognition problems considering invariances such as

translation, rotation, and scale. While, various patterns

can be used to validate this query, handwritten Yoruba

vowel characters have been used in this research.

Databases of images containing patterns with constraints

of interest are collected, processed, and used to train and

simulate the designed networks. We provide extensive

architectural and learning paradigms review of the

considered networks, in view of how built-in invariance

is learned. Lastly, we provide a comparative analysis of

achieved error rates against back propagation neural

networks, denoising auto encoder, stacked denoising auto

encoder, and deep belief network.

Index Terms—Convolutional neural network, auto

encoders, pattern invariance, character recognition,

Yoruba vowel characters.

I. INTRODUCTION

Computer vision is an interdisciplinary field that deals

with the analysis and understanding of acquired real

world data images. It also involves machines that

simulate the perception of images as in human ability and

processing. The goal of computer vision is to make useful

decisions about real physical objects and scenes based on

sensed images [1]. Generally, the field of computer vision

is not one that can be separated from image processing

and machine learning.

 Image processing usually involves operations or

algorithms that condition images depending on the aims

of applications. Some of the operations include image

filtering, dimension reduction, enhancement,

segmentation, and characteristics evaluation.

Machine learning, a field under artificial intelligence,

deals with the design of adaptive systems that can learn

and improve its performance over time due to acquired

experiential knowledge. The fusion of image processing

and machine learning can be considered the backbone of

computer vision systems.

Furthermore, there has been a significant change in the

task required of computer vision systems recently; a sway

from what can be considered ―heavy‖ image processing

or feature extraction schemes and ―simple‖ machine

learning tasks, to ―low‖ image processing or feature

extraction schemes and ―heavy‖ machine learning tasks.

i.e. demanding more of machine learning in applications.

Lately, it can be seen that machine learning systems and

paradigms which can explore almost raw data have

received significant research attention, of course, this is

evident when we expand the definition of intelligence.

This research reviews some common and important

constraints that occur in computer vision, pattern

invariance, considering some neural networks which

enjoy architectures inspired by the biological visual

processing system. Intelligent recognition systems should

be accommodating of moderate pattern invariances such

as translation, rotation, and scale. Furthermore, it is

desirable that such intelligent systems should have built-

in structure and ability to cope and understand these

invariances.

Convolutional neural network and convolutional auto

encoder neural networks have been considered in this

research for study, as to how their structures and learning

algorithms affect the achievable level of built-in

invariance.

To validate the query of this research, Yoruba vowel

characters have been used as patterns. The remaining

sections in this paper present the structure, learning

algorithms, training, testing, and analysis of achieved

error rates for the considered networks.

II. LITERATURE REVIEW

The three major approaches to the problem of invariant

pattern recognition are discussed below.

(a) Invariant feature extraction approach: This

approach involves the extraction of features which are

insensitive to pattern invariance. The features extracted

remain fairly consistent even when patterns are

moderately distorted. The success of this approach lies in

extracting features that are robust to moderate pattern

invariance, as different extracted features yield different

levels of invariant pattern recognition. i.e. some features

20 Pattern Recognition: Invariance Learning in Convolutional Auto Encoder Network

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 3, 19-27

are more stable or less sensitive to pattern invariance than

others. Common techniques that are applied to invariant

feature extraction include shape orientation, Fourier

transforms, Wavelet transforms, Fourier-Mellin

Descriptors, moment invariants, etc. [2] [3] [4] [5]. The

extracted features are then used to train a classifier which

learns the associative mapping of such features to the

output classes.

(b) Machine learning approach: In this approach,

invariant pattern recognition is achieved in the learning

system. Generally, the intelligent system is task with

learning features that associate patterns with their

corresponding target classes, even after the distortion of

such patterns. Neural networks have been shown to

suffice for such situations. However, only relatively

moderate pattern invariance is achievable in these

conventional networks. To significantly improve the

performance of these systems on invariant pattern

recognition, the two major techniques used are briefly

discussed below.

 Data manipulation: The intelligent system is

trained with distorted copies of training examples

of the invariant patterns; this allows the system to

learn the association of such distorted patterns

with the corresponding target classes [6]. This can

be considered a trivial approach to achieving

invariant pattern recognition [7]. It is obvious that

the technique requires the collection of labelled

distorted patterns for learning; this increases cost

and the manual input required.

 Hard coding: In many works, invariant pattern

recognition is achieved by configuring and

constraining the structure and weights of neural

networks in some fashion. This has proven quite

successful in many works [8] [9].

(c) Hybrid approach: In other works, the first and

second approaches discussed above are combined to

achieve more invariant pattern recognition. Performances

of neural networks with structures that are apt for pattern

invariance learning are boosted by augmenting the

original training data with manipulated data.

III. CONVOLUTIONAL NEURAL NETWORK (CNN)

Convolutional neural networks benefit from some

biologically inspired architectural build such as the

concept of local receptive fields [10]; similarity in build

can be associated with the neocognitron, by Fukushima

[11]. These networks have built-in architectures that

specially lend themselves to problems encountered in

most computer vision systems. The characteristics of

these networks leveraged on in computer vision are

concepts of local connectivity, weight sharing, and sub-

sampling or pooling. It is somewhat obvious that in real-

life problems of computer vision, we often have to deal

with high-dimensional images, thus requiring enormous

network parameters for computation. Hence, the

optimization of these parameters becomes a major

constraint considering achievable error rates and

associated costs of hardware suitable enough for

performing such computations in reasonable time; also,

required memory is yet another problem to be considered.

Inasmuch as conventional feedforward networks can be

drafted for this purpose, some structural constraints found

in these networks make their adaptability for invariant

pattern recognition and therefore use only second

convolutional networks. Furthermore, it is observable that

feedforward networks ignore the 2D topology of data as it

is found in image applications. [12]. i.e. the training data

elements or attributes can be offset consistently through a

data set without affecting the performance of the network

significantly. Conversely, images have attributes (pixel

values) that are strongly local, as neighbouring pixels are

usually related, hence, the need for architectures that

better simulate the human visual processing of images.

Also, the architecture of convolutional neural networks

makes possible the realization of some built-in invariance

during the learning phase of these networks. The way

attributes are learned from input images using local

receptive fields, weight sharing and pooling operations

incorporate a better understanding of features that make

input images different from one another. A convolutional

network can be ―roughly‖ considered as a feedforward

network with alternating convolution and pooling layers,

while the last layer is usually a fully connected multi-

layer network or any other classifier. The following

subsections describe briefly convolution and pooling

operations.

3.1 Convolution

The first convolution layer generally succeeds the

input layer in a convolutional neural network, this layer

can be viewed as 2D planes of units (neurons); each plane

of units is called a feature map or plane.

Each feature map has units in 2D arrangement and

these units share a common set of weights depending on

the size of the receptive field.

The receptive field is a region (patch) of the input

captured by each unit in any feature map; generally, a

constant receptive field is used at any particular

convolution layer. i.e. all feature maps for each unit have

the same size of receptive field. The receptive field is

measured in pixels along both axes of an input image. e.g.

for an input image of size 64 × 64, the receptive field

could be of size 9 × 9. The receptive field is usually

considered as a filter or kernel which is used to convolve

the whole input image for the convolution layer operation.

It is also noteworthy that each feature map in the

convolution layer extracts a distinct feature about the

input image depending on the particular kernel that is

applied on a feature map. Thus, it is possible that a

feature map may extract horizontal edges, another

extracts vertical edges, while still, another extracts points,

etc. It can therefore be inferred that the number of

different kernels used in the convolution layer will be the

number of the feature maps in that particular convolution

 Pattern Recognition: Invariance Learning in Convolutional Auto Encoder Network 21

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 3, 19-27

Fig.1. Convolutional neural network

layer. Also, all feature maps have the same number of

units. All units in a feature map have interconnections to

the input through the receptive field, with the number of

interconnections being the size of the kernel used. e.g. if

the kernel size is 4 × 4, then each unit has 16

interconnections. The values of the kernel used are the

connection weights of units when the network has just

been initialized.

The idea of convolving a distinct kernel all over the

input image for a particular feature map is such that the

same feature may be extracted all over the image for that

feature map, and that parameter sharing can also be

achieved. This operation also greatly reduces the number

of trainable weights, and therefore computation that

would have been required as is evident in conventional

feedforward network; since, there is full interconnection

between layers. In contrast, convolutional networks use

local connectivity and parameter sharing.

To illustrate this significance, consider an input image

of size 120 × 120, the typical feedforward network, with

say 60 hidden neurons will require (14,400 × 60 + 60) or

864,060 trainable weights including the biases of the

hidden layer, while a convolutional neural network with

local receptive field of size 10 × 10 and 15 feature maps

in the convolution layer will require (100 × 15 + 15) or

1,515 trainable weights, including the biases during

computation.

Fig. 1 above shows a typical convolutional neural

network; this paper has opted for the denotation of

grouping corresponding convolution and pooling layers

together as a layer, as can be seen in fig.1.

From Fig.1, it is assumed that the input image is of size

K × L, a kernel of size a × a is used for convolution

operation in C1 (first convolution layer), the number of

feature maps is n, and the number of units in each feature

map is i × i, as conceived in 2D. There are two

approaches to shifting the kernels all over the image

during convolution.

(a) No padding approach: In this approach, the kernel

is shifted all over the image, without allowing the

kernel to go outside the image borders. This

means that some pixels that are close to the edges

of the images will be left out during the

convolution operation, depending on the size of

the kernel used. Hence, the size of each resulting

feature map is smaller than the input image.

(b) Zero padding approach: This approach allows the

kernel to go over all pixels in the input, by

padding with zeros, regions that fall outside the

border of the input image during convolution.

Hence, the whole input pixels can be convolved.

The relationship between the number of units in each

feature map and the size of the kernel used in the

convolution operation is given below.

1
1

1

L

x

L

x

L

xL

x
S

KM
M (1)

1
1

1

L

y

L

y

L

yL

y
S

KM
M (2)

Where, (
L

xM ,
L

yM) is the feature map size of each

plane, (
L

xK ,
l

yK) is the kernel size shifted over the valid

input image region, (
L

xS ,
L

yS) is the skipping factor of

kernels in x and y-directions between subsequent

convolutions, and L indicates the layer. Each map in Ln is

connected to at most ML-1 maps in layer L-1 [13].

The convolution operation outcome, g(i,j), for a 2D

input function f(i,j), and kernel, v, also in 2D can be

achieved using Equation 3.

n

nk

n

nl

ljkiflkvvjifjig),(),(),(),((3)

22 Pattern Recognition: Invariance Learning in Convolutional Auto Encoder Network

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 3, 19-27

The convolution, combination and implementation of

feature maps can be achieved by using the relation in

Equation 4.

jMi

l

j

l

ij

l

i

l

j bkxfx)(1 (4)

Where j is the particular convolution feature map, Mj is

a selection of input maps, kij is the convolution kernel, bj

is the bias of each feature map, l is the layer in the

network, and f is the activation function [14].

In layer 2 of the network (Fig.1), convolution operation

is performed on sub-sampling layer S1, as we go deeper

into the network, the number of feature maps

implemented in each successive convolution layer

increases. i.e. m > n. This compensates for the fact that

spatial pooling operation reduces the dimensionality of

the convolution feature maps each time. The particular

sub-sampling feature maps that the convolution kernels

will be convolved with in the layer preceding the

classifier stage may be determined by building a

convolution table, since there are now so many possible

inputs (sub-sampling maps) to the convolution layer C3.

3.2 Pooling/Sub-sampling

Generally, this layer directly follows the convolution

layer, its basic functions are to further reduce the

dimensions of the feature maps and aggregate some

features from the preceding layer. It is in this layer that

the network develops some built-in invariance and

covariance to features that are present in the input.

Pooling is the primary source of dimension reduction and

of local translation invariance in convolutional networks

[15]. In pooling, a mask size determining what region of

the preceding layer feature map is captured and operated

on is chosen. There are as many sub-sampling maps as

the convolution feature maps in any layer. i.e. each

convolution feature map has its corresponding sub-

sampling map or plane. The sub-sampling layer can be

seen as S1 in Fig.1.

There are two common pooling operations, and are

briefly described below.

 Average pooling: This method involves taking the

average of the activation values of units in the

preceding convolution feature map masked by the

pooling window.

 Max pooling: This method involves taking the

maximum value of the activation values of units in

the preceding convolution feature map masked by

the pooling window.

This research also aligns with the idea that the max

pooling method aggregates features that are less sensitive

to moderate invariance in the inputs; position invariance

is achieved over larger local regions and the input image

dimension is reduced along each direction [16]. Max-

pooling leads to faster convergence rate by selecting

superior invariant features which improve generalization

performance [17].

Since overlap is usually not allowed in pooling

operations, it therefore follows that dimension of sub-

sampling feature maps is a fraction of the preceding

convolutional feature map size by the pooling mask size.

From Fig.1, it can be said that the size of sub-sampling

maps in S1 is i/b × i/b, where i × i is the dimension or

size of the preceding convolution feature maps and b × b

is the size of the pooling window or mask. Furthermore,

we can now infer that the number of units in each sub-

sampling feature map can be obtained as i/b multiplied

with i/b in 2D.

The last layer in convolutional neural networks is a

regular classifier, which accepts the aggregated features

of the preceding layer; the operation of the classifier is as

obtains with any supervised learning classifier. For this

research, a single hidden layer feedforward neural

network is used in the classifier layer (module).

IV. AUTO ENCODER

An auto encoder is a generative neural network model;

it can be used to explore underlying features that are

present in data. These networks are ‗grossly‘ feedforward

networks, but in contrast, are not discriminative. They

employ an unsupervised learning algorithm; hence, the

fact that most data in real life are unlabelled can be

leveraged on. In these networks, the input data also serve

as the target data correspondingly; an auto encoder is

required to learn the reconstruction of input data in the

output layer. Thus, these networks build prior knowledge

of features that do contribute to the successful

reconstruction of the input data. i.e. the network is

sensitive to redundant features in the input data. The auto

encoder network can be seen as an encoder-decoder

module; the encoder being the input-hidden layer

interconnection, and the decoder, hidden-output layer

interconnection [18].

Fig.2. Auto encoder [18]

Fig. 2 shows an auto encoder, the equations relating

the activations in the hidden and output layers are given

below in Equations 5 & 6 [18].

Encoder:

 Pattern Recognition: Invariance Learning in Convolutional Auto Encoder Network 23

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 3, 19-27

(1) (1)1() (()) ()L L

encoderL x g m x sigm b W x (5)

Decoder:

() (1)(()) (1())y L

decodery z n x sigm b W L x (6)

Where, m(x) and n(x) are the pre-activations of the

hidden and output layers L1 and y respectively; b
(L1)

 and

b
(y)

 are biases of the hidden and output layers, L1 and y

respectively. Sometimes, (1)L

encoderW and (1)L

decoderW are tied using

the relation (1) (1)()L L T

decoder encoderW W , where T is the transpose

function.

The network can be constrained, similar to what is

achieved in the sparse coding approach, by making the

number of neurons in the hidden layer smaller than the

number of neurons in the output. i.e. the input features

are compressed into the hidden layer, and thereafter

expanded into the output layer again.

Learning is achieved by minimizing a cost function;

for binary input variables, the sum of Bernoulli cross

entropies is used as described by the equation 7.

k

kkkk yxyxyxC
1

))1log()1()log((),((7)

Where, xk is the k-th binary variable of the input data,

and yk is the corresponding network output, k is the

number of elements in the input and reconstructed output

data. The MSE (Measn Squared Error) function can be

used for real value inputs.

Auto encoders have significant usefulness in hybrid

networks, where they are used as a pre-training technique

in the initialization of feedforward network weights. It

has been shown that the pre-training of multilayer

networks initializes such networks in a weights space that

is favourable for convergence to a better local minimum;

this effect is important, and suffices even more in deep

networks [19].

V. CONVOLUTIONAL AUTO ENCODER (CAE)

These networks leverage on the structure of

conventional convolutional neural networks and auto

encoders in overcoming the problems associated with

either of the individual networks. i.e. as discussed in the

section 2 and 3. Convolutional networks are well adapted

to computer vision problem, while auto encoders are

suited to optimization and regularization of deep

networks through greedy layer-wise training. These two

main features are combined in convolutional auto encoder.

In contrast to typical convolutional neural networks,

where the weights are initialized randomly, a

convolutional auto encoder network initializes it weights

through an auto encoder. All features such as local

connectivity, weight sharing, and pooling found in the

conventional convolutional neural network remain valid

in convolutional auto encoder networks. Hence, we can

adapt some of the previous equations on convolutional

neural networks and auto encoders to the learning of

convolutional auto encoders using the tied weights

approach.

(1) (1)1() (()) (())n L n L

encoderL x g m x sigm b W x (8)

() (1)(()) (() () 1())n y n L T

encodery z n x sigm b W L x (9)

Where, n denotes the n-th feature map in a convolution

layer L1, and (1)L

encoderW is the kernel weight matrix, while

(1)()L nb and ()()y nb are the biases of the n-th feature map

for auto encoder convolution layer L1 [20].

VI. NETWORK TRAINING AND TESTING

6.1 Data analysis

The two neural network architectures described above

are trained on databases of Yoruba vowel characters.

Hundreds of handwritten images of the characters are

collected employing different people; they are then

processed into the respective databases described below

[18].

-Training database of Yoruba vowel characters: A1

-Validating database of Yoruba vowel characters: A2

-Translated database of Yoruba vowel characters: A3

-Rotated database of Yoruba vowel characters: A4

-Scale different database of Yoruba vowel characters:

A5

Images in all the databases are processed as necessary.

Networks are trained and validated on processed

databases A1 and A2 respectively. Furthermore, we

simulated or tested all the different trained networks with

databases A3, A4, and A5 to obtain networks‘

performances on pattern invariance learning.

Fig.3. Unprocessed character images

Fig. 3 above shows the 7 unprocessed handwritten

Yoruba vowel characters. These images are processed

through the sequence: binarization of images, conversion

to negatives, 10 × 10 median filtering, rescaling to 32 ×

32 pixels using pattern averaging, and cropping of pattern

occupied region of images. i.e. patterns centered. See Fig

4.

Fig.4. Processed characters

24 Pattern Recognition: Invariance Learning in Convolutional Auto Encoder Network

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 3, 19-27

 Database A1:

The database samples used for the training of networks

is shown in Fig. 5; the original handwritten characters are

rotated in order to generate more samples for training.

Fig.5. Training database characters

 Database A2:

This database is created to observe if over-fitting

occurred during training of the networks. The database

contains similar sample character images as in the

training database A1. It is to be noted that none of the

images found in this database is part of the training

database A1. Samples of the characters in this database

are shown in Fig.6.

Fig.6. Validation database characters

 Database A3:

Fig. 7 show samples of the training and validation

characters, but now translated spatially, vertically and

more significantly horizontally in the images.

Fig.7. Translated characters database

This database is meant to test the performance of the

trained networks on translation tolerance. i.e. built-in

capability in recognizing translated versions of training

samples. It is to be noted that the number of image pixels

remains 32 × 32, as for all other databases within this

work.

 Database A4:

In order to further investigate the built-in capability of

the trained networks in recognizing rotated copies of the

character samples, database A4, which is not part of the

training and validation sets is used for testing. i.e. Fig.8.

Fig.8. Rotated database characters

 Database A5:

This database contains characters essentially in the

training and validation databases, but now with various

different scalings; the characters in this database have

either been blown up or scaled down, as can be seen in

Fig.9.

Fig.9. Scale variant database characters

6.2 CNN training

Input images are of size 32×32, and a kernel size or

receptive field of 5×5 pixels is used in the first

convolution layer (C1) to extract local features; 6 feature

maps are extracted. The number of pixels for each feature

map can be calculated as 28 × 28 using Equations 1 & 2

from section 3.1. A 2 × 2 sub-sampling mask with max

pooling is used in the pooling layer of the first layer (S1).

The same kernel size and sub-sampling mask as above

are used for convolution maps (C2) and sub-sampling

feature maps (S2) in the second layer. 12 convolution

maps of size 5 × 5 are used in the layer preceding the

classifier module. Many experiments were carried out to

determine the suitable training parameters. A dual core,

intel (R) Pentium (R) (2.00 GHz) CPU with 3GB RAM is

used for all trainings and simulations. The final training

parameters for the network are shown below in Table 1.

Table 1. Training parameters of CNN

Number of training samples 14,000

Activation function Log-Sigmoid

Learning rate 0.65

Epochs 4,758

Training time (secs) 308

Mean Squared Error (MSE) 0.010

14,000 training samples are used, and after 4758 epochs,

the network converged to a MSE of 0.010. The learning

curve is shown in Fig. 10.

Also, a 10-fold cross-validation scheme is used to stop

training. i.e. reducing the chances over-fitting.

 Pattern Recognition: Invariance Learning in Convolutional Auto Encoder Network 25

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 3, 19-27

Fig.10. CNN learning curve

6.3 CAE training

The convolutional auto encoder network learnable

weights are initialized as discussed in section 5, and the

training parameters are shown below. A 5×5 filter was

used for convolving the input and sub-sampling window

of size 2×2 for pooling; 12 feature maps are extracted for

the hidden layer.

Table 2. Training parameters of CAE

Number of training samples 14,000

Activation function Log-Sigmoid

Learning rate 0.58

Epochs 1,189

Training time (secs) 158

Mean Squared Error (MSE) 0.008

The CAE is later fine-tuned discriminately for

classification of the characters using the back propagation

algorithm. The learning curve is shown in Fig 11. Also, a

10-fold cross-validation scheme is used to stop training.

Fig.11. CAE learning curve

6.4 Network testing and discussion

The performances of the CNN and CAE are presented

in this section. The networks are trained as described

above using training database A1, validated using

database A2; and then simulated with databases A3, A4,

and A5, with each containing images with a particular

invariance of interest as described in section 5. Table 3

summarizes the error rates achieved by the trained

networks, including run times to simulate all databases

for each network. Error rates (E.R) can be calculated

using Equation 10.

samplestestofNo

samplesiedmisclassifofNo
RE

.

.
. (10)

Table 3. Error rates for network testing

Networks Samples CNN CAE

Validation data: A2 2,500 2.78% 1.51%

Translated data: A3 700 67.14% 65.29%

Rotated data: A4 700 13.71% 12.71%

Scale varied data: A5 700 28.00% 26.57%

Run time (s) 4,600 8.67 5.58

For comparative analysis, we have compared the

results obtained in this work with network performances

achieved in an earlier published work on Yoruba

character recognition using the same databases. The

results obtained in the earlier work are given in Table 4

[18].

Table 4. Error rates for other networks [18]

Networks Samples BPNN DAE SDAE DBN

Validation

data

2,500 6.39% 6.79% 5.67% 3.77%

Translated

data

700 82.86% 80.00% 74.29% 81.43%

Rotated

data

700 27.29% 24.86% 22.14% 19.86%

Scale varied
data

700 36.58% 30.57% 27.43% 23.29%

Where, BPNN is a back propagation neural network

with 2 hidden layers, DAE is a denoising auto encoder,

SDAE is a stacked denoising auto encoder with 2 hidden

layers, and DBN is a deep belief network with 2 hidden

layers.

It will be seen from table 3 & 4 that the CAE and CNN,

on the average, outperform other networks in the earlier

work, considering achieved error rates. Also, from Table

3, it can be seen that the CAE slightly outperforms the

CNN on all the invariances considered; and has a lower

average run time for testing compared to the CNN.

Since the training database, A1, contains rotated

images, it follows that some prior knowledge about

character rotation was built into the networks during the

training phase of the networks due to the data

manipulation just described above. Nevertheless,

networks were still tested on rotational invariance using

26 Pattern Recognition: Invariance Learning in Convolutional Auto Encoder Network

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 3, 19-27

database A4. In contrast, all the networks have no prior

knowledge on translation and scale invariance.

It can be explained that CNN and CAE, which

implement convolution operations, achieved more

invariance learning in comparison to BPNN, DAE, and

SDAE, due to learning paradigms such as local receptive

fields, weight sharing, and pooling operations.

In CNN, kernel weights are initialized randomly, hence,

the weights may start out in a weight space that makes

convergence less favourable. In contrast, the kernel

weights in the CAE are learned by the auto encoder

through an unsupervised pre-training scheme described in

sections 3 and 4. The kernels learned in this manner have

weights that are favourable to achieving both better

optimization and regularization effects during training

[19] [21], hence, the observed lower error rates obtained

from the CAE network. Furthermore, it will be seen that

the CAE took lesser training epochs and time for proper

learning of the characters, compared to the CNN. Also,

the run time for the CAE is lesser than the CNN. i.e.

Table 3.

VII. CONCLUSION

This work investigates invariance learning in pattern

recognition, an important constraint in many applications.

We explore the achievable built-in invariance in neural

networks which implement convolution operations, CNN

(Convolutional Neural Network) and CAE

(Convolutional Auto Encoder). Presented results show

that CNN and CAE achieve better invariance learning

compared to BPNN (Back Propagation Neural Network),

DAE (Denoising Auto Encoder), SDAE (Stacked

Denoising Auto Encoder) and DBN (Deep Belief

Network).

Furthermore, we show that by leveraging on learned

kernels through pre-training, better results can be

obtained for the CAE as against the CNN.

It is to be noted that the classification task described in

this work is quite hard considering that the characters to

be recognized have diacritical marks, hence, an increase

in the number of variations or achievable samples from

each character; which when combined with the different

writing styles of people, the problem may be seen as

exponentially complex. The use of convolution based

networks is more suited since the relative positions of

diacritical marks can be captured during learning.

Lastly, it is the hope that advances in biological visual

processing may suggest modifications or new

architectures of neural networks that better lend

themselves to intelligent recognition, and pattern

invariance learning.

REFERENCES

[1] L.G. Shapiro and G.C. Stockman: Computer Vision,

Prentice-Hall, Inc., New Jersey, pp. 1-4. 2001.

[2] R.F. Abdel-Kader, R.M. Ramadan, F.W. Zaki: Rotation-

Invariant Pattern Recognition Approach Using Extracted

Descriptive Symmetrical Patterns, International Journal of

Advanced Computer Science and Applications, vol. 3(5),

pp. 151-158. 2012.

[3] Chen Guangyi, and Tien D. Bui: Invariant Fourier-

wavelet descriptor for pattern recognition, Pattern

Recognition, vol. 32(7), pp. 1083-1088. 1999.

[4] Prevost, Donald, et al.: Rotation, scale, and translation

invariant pattern recognition using feature extraction,

AeroSense 97, International Society for Optics and

Photonics, pp. 255-264. 1997.

[5] S.K. Ranade, S. Anand: Empirical Analysis of Rotation

Invariance in Moment Coefficients, International Journal

of Computer Applications, vol. 119 (15), 2015.

[6] A. Khashman, B. Sekeroglu, K. Dimililer: Intelligent

Rotation-Invariant Coin Identification System, WSEAS

Transactions on Signal Processing, ISSN 1790-5022,

Issue 5, vol. 2. 2006.

[7] J.Z. Leibo, et al.: Learning generic invariances in object

recognition: translation and scale, Computer Science and

Artificial Intelligence Laboratory Technical Report, pp. 1-

6. 2010.

[8] D. Ciresan, U. Meier, & J. Schmidhuber: Multi-column

deep neural networks for image classification, In

Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 3642-3649. 2012.

[9] Wersing, Heiko, and Edgar Körner: Learning optimized

features for hierarchical models of invariant object

recognition, Neural computation vol. 15(7), pp. 1559-

1588. 2003.

[10] C. Neubaurer.: Recognition of Handwritten Digits and

Human Faces by Convolutional Neural Networks,

International Computer Science Institute, 1996, pp. 1-9.

[11] K. Fukushima and T. Imagawa, Recognition and

Segmentation of Connected Characters with Selective

Attention, Neural Networks (6), 33-41. 1993.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner:

Gradient-Based Learning Applied to Document

Recognition, Proceedings of the IEEE, pp. 6-10. 1998.

[13] D. C. Cires a̧n, U. Meier, J. Masci, L. M. Gambardella,

and J. Schmidhuber: Flexible, High Performance

Convolutional Neural Networks for Image Classification,

Proceedings of the Twenty-Second International Joint

Conference on Artificial Intelligence (2011), 1238-1243.

[14] J. Bouvrie, Notes on Convolutional Neural Networks,

Center for Biological and Com-putational Learning,

Massachusetts Institute of Technology, Cambridge, MA

02139, pp. 3-6. 2010.

[15] N. Sauder, Encoded Invariance in Convolutional Neural

Networks, University of Chicago, pp. 2-6. 2006.

[16] D. Scherer, A. Muller, and S. Behnke, Evaluation of

pooling operations in convolutional architectures for

object recognition, Proc. of the Intl. Conf. on Artificial

Neural Networks (2010), 92–101.

[17] J. Nagi, F. Ducatelle, G.A. Di Caro, at el.: Max-Pooling

Convolutional Neural Networks for Vision-based Hand

Gesture Recognition, IEEE International Conference on

Signal and Image Processing Applications (2011), 343-

349.

[18] O.K. Oyedotun, E.O. Olaniyi, and A. Khashman, Deep

Learning in Character Recognition considering Pattern

Invariance Constraints, International Journal of

Intelligent Systems and Applications, 7 (7), pp. 1-10. 2015.

DOI: 10.5815/ijisa.2015.07.01.

[19] L. Deng, An Overview of Deep-Structured Learning for

Information Processing, Asia-Pacific Signal and

Information Processing Association: Annual Summit and

Conference (2014), 2-4.

 Pattern Recognition: Invariance Learning in Convolutional Auto Encoder Network 27

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 3, 19-27

[20] J. Masci, U. Meier, D. Cire şan, and J. Schmidhuber.:

Stacked Convolutional Auto-Encoders for Hierarchical

Feature Extraction: ICANN 2011, T. Honkela et al., ed.,

Part I, Springer-Verlag Berlin Heidelberg, LNCS 6791, pp.

52–59. 2011.

[21] D. Erhan at el.: Why Does Unsupervised Pre-training

Help Deep Learning?,Appearing in Proceedings of the

13th International Conference on Artificial Intelligence

and Statistics (AISTATS), Chia Laguna Resort, Sardinia,

Italy (2010): Vol. 9 of JMLR: W&CP 9, 1-7.

Authors’ Profiles

Oyebade K. Oyedotun in 2015 received

M.Sc. degree in Electrical & Electronic

Engineering (major: machine learning) from

Near East University, Lefkosa, Turkey. From

2013-2014 he was a member of the

Intelligent Systems Research Group (ISRG)

at Near East University, Lefkosa, Turkey.

Between 2014-2015, he was a member of the Centre of

Innovation for Artificial Intelligence (CiAi) at British

University of Nicosia, in Girne, Turkey. Since 2015, he is a

senior member of the European Centre for Research and

Academic Affairs (ECRAA) in Lefkosa, Turkey. Research

interests include artificial neural networks, pattern recognition,

machine learning, vision systems, fuzzy systems, swarm

intelligence, cognition modeling and robotics. PH:

+905428892591. E-mail: oyebade.oyedotun@ecraa.com,

oyebade.oyedotun.k@ieee.org.

Kamil Dimililer received B.Sc. and MSc.

degrees in Electrical and Electronic

Engineering from Near East University, N.

Cyprus. After a short period of time, he

started his PhD. and he received the PhD.

Degree in the same field in 2014. He has

been assigned as Deputy Chairman in

Automotive Engineering for a short period of time and currently

he is an Assistant Professor in the Department of Automotive

Engineering as Chairman in 2015. Assist. Prof. Dr. Kamil

Dimililer has 9 International Journal Publication, 16 Conference

Publications, 3 Book Chapters in International Books and 7

publications in National Journals. His research interests include

image processing, pattern recognition and intelligent systems.

E-mail: kamil.dimililer@neu.edu.tr

How to cite this paper: Oyebade K. Oyedotun, Kamil Dimililer,"Pattern Recognition: Invariance Learning in

Convolutional Auto Encoder Network", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.8,

No.3, pp.19-27, 2016.DOI: 10.5815/ijigsp.2016.03.03

