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ABSTRACT

Ensembles of climate model simulations are commonly used to separate externally forced climate change

from internal variability. However, much of the information gained from running large ensembles is lost in

traditional methods of data reduction such as linear trend analysis or large-scale spatial averaging. This paper

demonstrates how a pattern recognition method (signal-to-noise-maximizing pattern filtering) extracts pat-

terns of externally forced climate change from large ensembles and identifies the forced climate response with

up to 10 times fewer ensemblemembers than simple ensemble averaging. It is particularly effective at filtering

out spatially coherent modes of internal variability (e.g., El Niño, North Atlantic Oscillation), which would

otherwise alias into estimates of regional responses to forcing. This method is used to identify forced climate

responses within the 40-member Community Earth System Model (CESM) large ensemble, including an El

Niño–like response to volcanic eruptions and forced trends in the North Atlantic Oscillation. The ensemble-

based estimate of the forced response is used to test statistical methods for isolating the forced response

from a single realization (i.e., individual ensemble members). Low-frequency pattern filtering is found to

skillfully identify the forced response within individual ensemble members and is applied to the HadCRUT4

reconstruction of observed temperatures, whereby it identifies slow components of observed temperature

changes that are consistent with the expected effects of anthropogenic greenhouse gas and aerosol forcing.

KEYWORDS: Climate change; Climate variability; Pattern detection; Statistical techniques; Climate

models; Ensembles

1. Introduction

The observed increase in global temperatures over the

past century has not been uniform in space or time.

Variability in the rate and pattern of global warming

arises from a combination of anthropogenic influences,

natural external forcing (e.g., from volcanic sulfur emis-

sions), and internal climate variability arising from pro-

cesses within (and interactions between) the atmosphere,

oceans, cryosphere, and land surface. A primary goal of

climate science is to separate the influences of external

forcing and internal variability on the global tempera-

ture record, as is needed to attribute observed climate

changes, to estimate the climate response to future changes

in radiative forcing, and to characterize and understand

internal climate variability.

The separation of externally forced climate change

and internal variability has typically been addressed by

computing the climate response that is robust across an

ensemble of simulations (Harzallah and Sadourny 1995;

Hawkins and Sutton 2009; Ting et al. 2009; Solomon

et al. 2011; Deser et al. 2014; Frankcombe et al. 2015).

Averaging over multiple ensemble members removes in-

ternal variability that varies in phase between realizations.
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Externally forced climate change can be estimated by

the ensemble mean, and internal variability can be esti-

mated by deviations from the ensemble mean. However,

multimodel ensembles such as the Coupled Model

Intercomparison Project (CMIP) conflate model biases

with internal variability. This has motivated the use of

single-model large ensembles (e.g., Kay et al. 2015;

Deser et al. 2020a), where the same model is run mul-

tiple times with the same forcing but small differences in

the initial condition.

Estimating the climate response to forcing from large

ensembles is subject to any model biases in the forced

response. This has led to a wide range of conclusions on,

for example, the extent to whichmultidecadal variability

in Atlantic sea surface temperatures (SSTs) represents

true internal variability or is modified by anthropogenic

forcing (Ting et al. 2009; Booth et al. 2012; Zhang et al.

2013; Tandon and Kushner 2015; Bellucci et al. 2017;

Bellomo et al. 2018;Watanabe and Tatebe 2019) and the

extent to which the observed strengthening of the Pacific

trade winds and east–west SST gradient since the late

1970s is forced or unforced (McPhaden et al. 2011;

England et al. 2014; Takahashi and Watanabe 2016;

Coats and Karnauskas 2017; Kohyama et al. 2017;

Seager et al. 2019). Comparing across multiple climate

models can give insights into which aspects of the forced

response are robust and which are not, but this approach

becomes computationally intensive as large ensembles

are needed for multiple climate models. It is therefore

important to identify how many ensemble members are

needed to identify forced climate responses and what if

anything can be gleaned from individual simulations or

from observations.

Seminal work by Deser et al. (2012b, 2014) empha-

sized that as many as 10–40 ensemble members or more

may be needed to identify regional climate responses on

time scales up to a few decades, particularly for fields

with large internal variability such as precipitation and

sea level pressure (SLP). This has motivated modeling

centers to run large ensembles with between 20 and 100

ensemble members (Jeffrey et al. 2013; Kay et al. 2015;

Rodgers et al. 2015; Kirchmeier-Young et al. 2017; Sun

et al. 2018; Maher et al. 2019; Deser et al. 2020a). Now

that these large ensembles are available as a test bed, it is

possible to revisit the question of how many ensemble

members are needed, in order to inform futuremodeling

efforts.

Many studies diagnose the forced response based on

the ensemble average of a linear trend or large-scale

spatial average. However, this ignores spatiotemporal

covariance information that can be valuable in sepa-

rating forced climate responses from internal variability.

A number of studies have demonstrated spatiotemporal

analysis methods for isolating the forced climate re-

sponse from a single realization (Schneider and Held

2001;Wallace et al. 2012; Smoliak et al. 2015; Deser et al.

2016; Frankignoul et al. 2017; Wills et al. 2018; Sippel

et al. 2019), with the ultimate goal of isolating the forced

component of observed climate changes. However,

there has been less focus on the best way to extract

forced climate responses from small ensembles (2–10

ensemble members). In this study, we use large ensem-

bles to test statistical methods for isolating forced cli-

mate responses, with the goal of identifying the forced

response from small ensembles and/or from a single

realization. We demonstrate how pattern recognition

methods (e.g., Déqué 1988; Allen and Smith 1997;

Schneider and Griffies 1999; Ting et al. 2009) can be

used to separate patterns of forced response (i.e., pat-

terns with high signal-to-noise ratios) from patterns of

internal variability (i.e., patterns with low signal-to-

noise ratios) within climate model ensembles, reducing

the number of ensemble members needed to skillfully

estimate the forced response.

Spatiotemporal analysis methods to estimate the

forced response within individual realizations fall into

two categories: 1) time-scale separation methods and

2) dynamical adjustment. Taking advantage of the fact

that forced climate change operates on a longer time

scale than most internal variability, time-scale separation

methods seek to identify the slowest evolving anomaly

patterns and use them to estimate the forced response

(Schneider and Held 2001; Frankignoul et al. 2017; Wills

et al. 2018). For example, low-frequency component

analysis (LFCA; Wills et al. 2018) filters out patterns of

anomalies that exhibit primarily high-frequency vari-

ability (i.e., that have a small ratio of low-pass filtered

variance to total variance). Dynamical adjustment in-

stead estimates the influence of atmospheric internal

variability on a target variable by regression against a

variable that is representative of the atmospheric circu-

lation (e.g., SLP). This approach has been successful,

especially for removing the influence of internal vari-

ability on temperature and precipitation changes at

midlatitudes (Wallace et al. 2012; Smoliak et al. 2015;

Deser et al. 2016; Saffioti et al. 2016; Merrifield et al.

2017; Lehner et al. 2017; Sippel et al. 2019; Guo et al.

2019) and on snowpack or glacier mass balance changes

(Christian et al. 2016; Siler et al. 2019; Bonan et al. 2019).

However, in cases where atmospheric circulation changes

are important to the forced response (see, e.g., Palmer

1999), dynamical adjustment requires a separatemethod

to estimate forced circulation changes (e.g., the mean

over a large ensemble). We are interested in a more

general method that could, for example, be applied directly

to estimate forced changes in atmospheric circulations.
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We therefore focus on time-scale separation methods

rather than dynamical adjustment in this paper. We re-

fer the reader to Sippel et al. (2019) for a thorough

discussion of how to approach this problem using dy-

namical adjustment.

This paper is organized as follows. In section 2, we

describe the pattern recognition methods considered in

this study and the climate model simulations and ob-

servational data analyzed. In section 3, we demonstrate

how identifying signal-to-noise-maximizing patterns im-

proves estimates of the forced climate response within

climatemodel ensembles compared to a simple ensemble

average. We show that it isolates forced responses in

quantities with low signal-to-noise ratios such as the east–

west SST gradient across the equatorial Pacific, SLP over

the North Pacific, and precipitation over the southwest

United States. In section 4, we show that this method can

identify many aspects of the forced response with less

than five ensemble members. In section 5, we demon-

strate how identifying low-frequency patterns can be used

to estimate the forced climate response from a single

ensemble member and apply this method to characterize

long-term changes in observed temperatures that are

consistent with the expected responses to external forc-

ing. In section 6, we summarize our conclusions and dis-

cuss the generalizability and applications of the statistical

methods presented herein.

2. Methods and data

In this paper, we use statistical methods that identify

patterns of externally forced or low-frequency changes.

These methods rely on a pattern recognition method

called linear discriminant analysis (a type of supervised

machine learning) to find spatial patterns, or linear

combinations of empirical orthogonal functions (EOFs),

that maximize a particular type of variance representing

a ‘‘signal’’ compared to ‘‘noise’’ that exists within in-

ternal variability or among realizations (Déqué 1988;

Allen and Smith 1997; Schneider and Griffies 1999;

Venzke et al. 1999; Schneider and Held 2001; Ting et al.

2009; DelSole et al. 2011; Wills et al. 2018). This broad

category of analyses has variously been referred to as

optimal filtering, predictable component analysis, or

signal-to-noise-maximizing EOF analysis.

We use two types of such analyses, which differ in

their definition of what type of variance constitutes a

signal and what type of variance constitutes noise. In

signal-to-noise-maximizing pattern (S/NP) filtering,

signal is defined by the mean over an ensemble of sim-

ulations; therefore, at least two ensemble members are

required. Noise is defined as differences between en-

semble members and includes all internal variability,

regardless of time scale. It is based on earlier work by

Schneider and Griffies (1999, hereafter SG99) and Ting

et al. (2009, hereafter T09). Similar to mulitvariate

analysis of variance (MANOVA)methods (e.g., Harzallah

and Sadourny 1995; Stern and Miyakoda 1995; Zwiers

1996), it tests whether anomaly patterns within an en-

semble are distinct in periods with different external

forcing (i.e., predictability of the second kind; Lorenz

1975). In low-frequency pattern (LFP) filtering, signal is

defined as variance that makes it through a low-pass

filter. Noise is defined as all variability at time scales

shorter than the low-pass cutoff. It has also been called

low-frequency component analysis and is based on

earlier work by Wills et al. (2018, hereafter W18); see

also Schneider and Held (2001, hereafter SH01).

In both cases, ‘‘filtering’’ refers to the retention of only

the leading-order patterns (i.e., S/NPs or LFPs), such

that patterns of (high-frequency) internal variability are

removed from the dataset. These methods thus use the

spatial structure of covariance in climate noise to opti-

mally filter it out.

a. S/N-maximizing pattern filtering

The goal of S/NP filtering is to find anomaly patterns

(S/NPs) for which different ensemble members agree on

the temporal evolution [i.e., patterns with a high signal-

to-noise ratio (S/N); SG99; T09]. The variability not

described by these patterns can then be truncated, such

that patterns of ensemble member disagreement (i.e.,

noise from internal variability) do not alias into the

ensemble average.

We seek anomaly patterns associated with time series

tk that maximize the ratio of (ensemble mean) signal to

total variance:

s
k
5

ht
k
iTht

k
i

tTk tk
: (1)

Here, angle brackets denote an ensemble average. These

time series are determined by the projection of a finger-

print pattern uk onto the ensemble data matrix X:

t
k
5Xu

k
: (2)

The n � ne 3 p ensemble data matrix X is constructed by

concatenating the n 3 p data matrices Xi from each

ensemble member in the time dimension, where n is the

length of time series, ne is the number of ensemble

members, and p is the spatial dimension. Each ensemble

member data matrix Xi is weighted by the square root of

grid cell area, such that the covariance matrix is area

weighted.

To ensure that the identified patterns correspond to

variability that actually occurs within the ensemble, the
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fingerprint patterns uk are required to be linear combi-

nations of the N leading ensemble EOFs ak, with nor-

malized weight vectors ek:

u
k
5

�
a
1

s
1

a
2

s
2

� � �
a
N

s
N

�
e
k
: (3)

The ensemble EOFs ak are eigenvectors of the ensemble-

mean covariance matrix hCi,

hCia
k
5s

2
kak, (4)

where s
2
k is the variance associated with the kth EOF.

The ensemble-mean covariance matrix hCi (i.e., the

pooled covariance matrix) can be computed as

hCi5 n21
E �

nE

i51

C
i
, (5)

where Ci 5 (n2 1)21
X
T
i Xi are the individual ensemble

member climatological covariance matrices. The en-

semble EOFs are normalized such that jjakjj5 1 and the

principal components ck 5s
21
k Xak have unit variance

over the entire ensemble.

We can solve for the linear-combination coefficients

ek that give uk and tk that maximize sk by plugging (2)

and (3) into (1) and using the definition of a principal

component ck 5s
21
k Xak to turn this into an eigenvalue

problem, Sek 5 skek, where

S
mn

5 hc
m
iThc

n
i, m, n 2 [0N]: (6)

The matrix S has N eigenvectors ek, with eigenvalues

that give the ratio sk of signal to total variance. Finally,

the S/N-maximizing patterns vk are determined by the

regression of the ensemble data matrix X onto each tk:

v
k
5X

Tt
k
5X

T
Xu

k
5 [s

1
a
1
s
2
a
2
� � � s

N
a
N
]e

k
: (7)

In this analysis, the time series tk retain their orthogo-

nality (like principal components), but the S/NPs vk do not.

The S/NPs are sorted by sk such that the leading S/NPs

are patterns of forced response within the ensemble.

This is equivalent to sorting by S/N, which is uniquely

determined by the eigenvalue sk:

S/N5 s
k
(12 s

k
)21

: (8)

The first FP is the linear combination of the leading N

EOFs with the maximum possible S/N.

Note the difference between the fingerprint patterns

uk [Eq. (3)] and the S/NPs vk [Eq. (7)]: the fingerprint

patterns are weight vectors used to detect the signal,

which have no direct physical meaning; in contrast the

S/NPs characterize the signal itself. Fingerprint patterns

are also used in the optimal fingerprinting method for

detection and attribution, in order to detect a model-

based signal within observational data (Hasselmann

1979, 1993; Bell 1986; Hegerl et al. 1996). Here, in

contrast, the signal (as characterized by the S/NPs) is

determined empirically within a single model-based

dataset.

Once the S/NPs have been calculated, the forced re-

sponse is isolated by constructing a truncated dataset

from the M leading S/NPs:

X
S/NP

5 �
M

k51

t
k
vTk : (9)

Wewill show that the ensemble average of the truncated

dataset hXS/NPi (i.e., S/NP filtering) gives a better esti-

mate of the forced response than a simple ensemble

average hXi. The inclusion of M S/NPs to construct an

estimate of the forced response hXS/NPi is what distin-

guishes S/NP filtering from the method of T09, which fo-

cuses on the leading pattern in order to estimate the

contribution of forcing toAtlanticmultidecadal variability.

S/NP filtering has two hyperparameters: N, the num-

ber of EOFs retained, andM, the number of S/NPs used

in constructing the truncated dataset. The number of

EOFs N should generally not exceed the degrees of

freedom in the signal of interest, which in the case of the

ensemble mean used here is approximately n 2 1. We

pick N to retain 75%–95% of the total variance. We

choose M either by computing a significance threshold

for sk based on block bootstrapping or by empirically

finding the value of M that maximizes agreement be-

tween subsets of the large ensemble (i.e., by comparison

to a validation set; see section 3). We find similar an-

swers with methods to choose M based on the eigen-

value spectrum sk (cf. North et al. 1982). Our results are

generally insensitive to these hyperparameter choices

for 50 , N , 400 and 2 , M , 20 (see section 3).

A similar method was presented by DelSole et al.

(2011) that looks for patterns that maximize the vari-

ance in a simulation of forced climate change relative

to a preindustrial control run. This has the advantage of

requiring only one forced simulation and one prein-

dustrial control run (rather than at least two forced

simulations). However, it could miss forced responses

where forcing only modifies the timing (i.e., phase) of a

mode of internal variability. In most other respects these

methods would identify similar patterns of forced response.

b. Low-frequency pattern filtering

S/NP filtering relies on the computation of an en-

semble mean to diagnose the variance that is forced
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within a dataset. In the case that only a single realization

is available, it is necessary to come up with a new vari-

ance criterion to distinguish forced from unforced vari-

ance. Responses to anthropogenic forcing generally

differ from most internal variability in terms of their

long time scale. We can therefore look for the slowest

evolving patterns within a dataset, which will predomi-

nantly include the forced response. One method to find

the slowest evolving patterns is low-frequency compo-

nent analysis (LFCA;W18; see also SH01), which solves

for patterns with themaximum ratio of low-frequency to

total variance (i.e., LFPs).

LFCA uses the same linear algebra machinery as

S/NP filtering, but instead seeks anomaly patterns as-

sociated with time series tk that maximize the ratio of

low-frequency signal to total variance:

r
k
5

et
k

Tet
k

tTk tk
: (10)

Low-frequency signal is defined as any variations that

makes it through a low-pass filter (denoted by a tilde).

Here, we apply a linear Lanczos filter with a 10-yr low-

pass cutoff to anomalies from the linear trend to focus

on variability at decadal and longer time scales (i.e.,

multidecadal variability). In low-pass filtering, we do not

filter over discontinuities between ensemble members;

the data from each ensemble member are filtered sep-

arately and then concatenated into a single etk.
The LFPs vk and their time series tk are determined by

Eqs. (7) and (2), respectively, but with weight vectors ek
that are normalized eigenvectors of the covariance ma-

trix R of the first N low-pass filtered principal compo-

nents eck:

R
mn

5fc
m

T ec
n
, m, n 2 [0N]: (11)

The matrix R has N eigenvectors, Rek 5 rkek, with

eigenvalues that give the ratio rk of low-frequency to total

variance. The LFPs are sorted by rk such that the leading

LFPs are the anomaly patterns that maximize the ratio of

low-frequency to total variance.

Just as in S/NP filtering, a truncated dataset is created

that contains just the variability captured by the leading

M LFPs:

X
LFP

5 �
M

k51

t
k
vTk : (12)

In addition to the hyperparameters of S/NP filtering (N

and M), LFP filtering depends in general on the prop-

erties of the filter used, although we will not explore this

particular sensitivity here. A detailed discussion of the

robustness of LFPs to the choice of parameters and filter

can be found in W18. Unlike principal component

analysis of low-pass filtered data, LFCA uses informa-

tion about spatiotemporal covariance at all time scales

(e.g., in computing the EOFs ak). LFCA thus provides a

method to isolate the regions and physical mechanisms

important at long time scales while avoiding the issues

with attributing lead–lag relationships based on filtered

data (Cane et al. 2017; Wills et al. 2019a,b).

c. Model output and observational datasets

We focus primarily on surface temperature anomalies

in the 40-member CESM1 large ensemble (CESM-LE;

Kay et al. 2015), analyzing years 1920–2005 from the

historical simulations and years 2006–19 from theRCP8.5

simulations. Each ensemble member experiences the

same historical and RCP8.5 forcing from greenhouse

gases, anthropogenic aerosols, volcanic sulfur emissions,

solar variability, and ozone. They differ by machine-

precision atmospheric perturbations on 1 January 1920

(so-called micro initialization). Seasonal (3-monthly)

anomalies are computed with respect to the each en-

semble member’s climatological seasonal cycle over

1920–2019. Results are unchanged if the anomalies are

computed instead with respect to the ensemble-mean

climatology. In section 3b, we also include analysis of

seasonal precipitation and SLP anomalies.

For comparison, we also analyze a 30-member en-

semble of the CSIRO-Mk3.6 climate model (CSIRO-

LE; Jeffrey et al. 2013), a 20-member ensemble of the

GFDL-CM3 climate model (GFDL-LE; Sun et al. 2018),

and a 100-member ensemble of the MPI-ESM climate

model (MPI-LE; Maher et al. 2019), including years

1920–2005 from the historical simulations and years

2006–19 from the RCP8.5 simulations. As in the CESM-

LE, theGFDL-CM3-LE uses micro initialization in 1920.

The ensemble members of the CSIRO-LE and MPI-LE,

however, are all started from different ocean states in

1850 (so-called macro initialization). For computational

efficiency, all analysis is done on grids that are half the

atmospheric models’ resolution (;18 in CESM-LE;;1.88

in CSIRO-LE andMPI-LE;;28 in GFDL-LE) such that

four model grid points are averaged into one analysis grid

point. For the observational analysis in section 5c, we use

the infilled surface temperature reconstruction of Cowtan

and Way (2014), based on HadCRUT4 data, for the pe-

riod 1920–2019.

3. Improved identification of forced climate

responses

a. Forced surface temperature responses

We begin by identifying the S/NPs of seasonal

(3-monthly) surface temperature anomalies in the 40-member
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CESM-LE over the time period 1920–2019. S/NP-1

shows the predominant pattern of long-term global

warming (Fig. 1a) and can be detected based on changes

in temperature throughout the subtropical oceans

(Fig. 2a). All ensemble members show approximately

the same timing of its evolution (gray lines in Fig. 1a)

and are tightly clustered about the ensemble-mean time

series (black line in Fig. 1a). S/NP-1 captures centennial

global warming punctuated by volcanically induced

global cooling due to the eruptions of Agung in 1963,

El Chichón in 1982, and Pinatubo in 1991. However, it

is not the only pattern of forced response: S/NP-2,

which shows hemispherically asymmetric temperature

anomalies, also has a common temporal evolution in

all ensemble members (Fig. 1b). The signal fraction

(i.e., the eigenvalue sk) is only slightly lower for S/NP-2

than for S/NP-1 (0.81 vs 0.97; Fig. 3a) and both have a

S/N well above 1. The timing of S/NP-2 corresponds to

Northern Hemisphere cooling between 1940 and 1970,

and warming since, consistent with anthropogenic

aerosol forcing (Shindell et al. 2013), S/NP-2 also

shows large negative anomalies (cold Northern

Hemisphere) following volcanic eruptions. S/NP-2 can

be detected based on the asymmetry in subtropical

ocean warming between the Northern and Southern

Hemisphere (Fig. 2b).

The next two S/NPs (sk 5 0.77 and 0.67, respectively)

capture centennial changes in the seasonal cycle of

temperature, which manifest themselves in annual cy-

cles in the corresponding ensemble-mean time series

(black lines in Figs. 1c,d), with opposite phasing in the

early and later parts of the simulations (insets in Fig. 1

show ensemble-mean trends separately for each sea-

son). These S/NPs have the largest anomalies in regions

of sea ice cover (Figs. 1c,d), indicating that they are

capturing changes in the seasonal extent of sea ice (as

discussed in Zhang and Walsh 2006; Eisenman et al.

2011). Higher-order S/NPs (not shown) capture non-

monotonic long-term changes, regional responses to

volcanic eruptions, and evolution from the common

FIG. 1. (a)–(d) S/N-maximizing patterns of seasonal-mean surface temperature anomalies in the CESM-LE

historical andRCP8.5 simulations over the time period 1920–2019, withN5 200EOFs retained. The time evolution

of the S/N-maximizing patterns in all ensemblemembers are shown as standard deviation anomalies with gray lines.

The black line shows the ensemble-mean time evolution of each pattern (i.e., htki). Note that seasonal cycle in the

ensemble-mean time evolution indicates forced changes in the seasonality of surface temperature. The 100-yr

ensemble-mean trends in each pattern are shown separately for (left to right) January–March (JFM), April–June

(AMJ), July–September (JAS), andOctober–December (OND) in the bar chart insets. The y scale for the bar chart

insets is half that for the time series in (c).
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initial ocean state in January 1920 (a result of micro

initialization).

To construct an estimate of the forced response, we

must choose the number of patterns M to retain. Two

possible methods for choosing M are 1) finding a sig-

nificance level for sk using block bootstrapping or 2)

using the large ensemble to empirically determine the

number of patterns that works best. To test the block

bootstrapping approach, we take random 10-yr samples

from the 40-member ensemble (with replacement) to

construct randomized ensembles where the members

should not agree on the timing of climate responses.

We then rerun the S/NP filtering on these randomized

ensembles. Using the 95th percentile of s1 in the boot-

strapped ensembles as an estimate of the 5% signifi-

cance level, we find that sk . 0.15 are significant.1 S/NPs

with sk below this level could occur due to random

chance. According to this bootstrapping test, 11 S/NPs

are statistically significant (Fig. 3a). We find a similar

answer if we use the simpler North et al. (1982) test,

based on the separation of neighboring eigenvalues

relative to the sampling uncertainty in those eigenvalues

dsk 5 sk(2/DOF)1/2, where the degrees of freedom

(DOF) is approximately the number of seasonal time

steps minus one (i.e., 399).

Within a large ensemble, we can also empirically test

which value of M best estimates the forced response

(which should be the same in all subsets of the large

ensemble). To do so, we split the ensemble in half, apply

S/NP filtering to one 20-member half-ensemble (the

training set), and test how well the resulting hXS/NPi

agrees with the ensemble mean hXi of the opposite 20-

member half-ensemble (the validation set). We test

agreement based on the global average of the squared

correlation between the two estimates of the forced

FIG. 2. Fingerprint patterns uk (8C
21) of seasonal-mean surface

temperature anomalies in the CESM-LE historical and RCP8.5

simulations over the time period 1920–2019, with N 5 200 EOFs

retained (cf. S/N-maximizing patterns vk in Figs. 1a and 1b).

FIG. 3. (a) Signal fraction (sk) and percent of the total (ensemble-

mean) forced variance captured by the leading S/NPs. The dashed

line gives the minimum value of sk that is significant at the 5%

significance level computed by block bootstrapping. Note that the

percentages of the total forced variance do not add to exactly 100%

because of the nonorthogonality of the S/NPs. (b) Global mean of

the grid point squared correlation between the pattern filtered

estimate of the forced response hXS/NPi from one 20-member half-

ensemble and the simple ensemble mean hXi of the opposite 20-

member half-ensemble, as a function of the number of S/NPs

included M and the number of EOFs retained N. The dashed line

gives the global-mean gridpoint squared correlation between 20-

member half-ensembles when no pattern filtering is applied.

1Because selection bias implies that the leading eigenvalues are

biased high, whereas the trailing eigenvalues are biased low

(Lawley 1956), this gives a conservative significance test for higher-

order patterns considered individually (i.e., the effective signifi-

cance level will be lower than 5%).
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response at a grid point (Fig. 3b). As long as two ormore

S/NPs are included, S/NP filtering improves the agree-

ment with the ensemble mean of the validation set (the

agreement between the ensemble means of the opposite

half-ensembles is shown with a dashed line in Fig. 3b).

The large jump in agreement betweenM5 1 andM5 2

means that it is critical to include at least two DOF (two

patterns) in an estimate of the forced response.

For the case where 200 EOFs (91.2% of the total

variance) are included in the analysis, includingM5 10

S/NPs maximizes the agreement with the ensemble

mean of the validation set.2 Including further EOFs in-

creases the number M of S/NPs required to maximize

this agreement without substantially improving the

maximum value of the global-mean squared correlation.

The reduction in agreement beyondM5 10–12 is a sign

of overfitting to the evolution of anomalies in the par-

ticular ensemble members used. We choose represen-

tative hyperparameter values ofN5 200 EOFs andM5

11 S/NPs for most of the analysis that follows.

Spatial maps of the squared grid point correlation

between 20-member half-ensembles, before (Fig. 4a)

and after (Fig. 4b) applying S/NP filtering, show that

S/NP filtering substantially increases the agreement

between subensembles. The largest improvements are

over the Northern Hemisphere continents, the North

Pacific, the tropical Pacific, Australia, and Antarctica

(Fig. 4c). We find qualitatively similar results if we in-

stead use the root-mean-square error (RMSE) between

twohalf-ensembles tomeasure their agreement (Figs. 4d–f).

Note that the S/NP filtering of each subensemble is inde-

pendent and no information (e.g., EOFs) is shared between

analyses.

Detecting climate signals in grid point temperature is

significantly harder than detecting climate signals in a

large-scale spatial average because of the larger ampli-

tude of internal variability at small scales (e.g., Deser

et al. 2012a).Wewould therefore like to test whether the

improved identification of the forced response by S/NP

filtering extends to large-scale averages. Again, we

compare agreement between the two 20-member half-

ensembles before and after applying pattern filtering.

The time evolution of global-mean surface temperature

is in good agreement between the two half-ensembles,

even before applying pattern filtering (squared correlation

of 0.98; Fig. 5a). S/NP filtering improves this agreement

(squared correlation of 0.99; Fig. 5b), but only margin-

ally so. The global average already averages out most

internal variability, so pattern filtering does not sub-

stantially improve the estimate of the forced response in

global-mean surface temperature. Note, however, that it

does improve the global-mean surface temperature re-

sponse estimate when fewer ensemble members are

available (see section 4).

The improved identification of climate responses by

S/NP filtering is again apparent if we examine regional

temperature anomalies such as the North Atlantic (NA)

SST (408–608N, including the NA warming hole), the

SST difference between the eastern and western equa-

torial Pacific, or the U.S. land surface temperature aver-

aged over 308–458N (Figs. 5c–h). Particularly noteworthy

is that the 20-member and even 40-member ensemble

means of the equatorial Pacific east–west SST difference

show substantial noise from El Niño–Southern Oscillation

(ENSO) (Fig. 5e), which is removed in the S/NP-filtered

estimate of the forced response (Fig. 5f). The squared

correlation between the two half-ensembles is only 0.16

before S/NP filtering, but increases to 0.40 after. This

reveals an El Niño–like response to volcanic forcing that

was not apparent in the 20- or 40-member ensemble

means. This response has been studied elsewhere (Maher

et al. 2015; Khodri et al. 2017; Pausata et al. 2020), but has

only been identifiable by compositing over hundreds of

modeled eruption responses. Pattern filtering also reveals

ensemble agreement on evolution from a common La

Niña–like initial state in January 1920 (a result of micro

initialization) and aweakElNiño–like trend since;1990.

In the U.S.-average land temperature, a simple ensemble

average shows a long-term warming trend punctuated by

cooling in response to volcanic eruptions, but it also has

considerable seasonal-to-interannual noise superimposed

(Fig. 5g). S/NP filtering identifies the same forced climate

signal, but with almost all of this noise removed (Fig. 5h).

b. Forced precipitation and SLP responses

Identifying climate signals in surface temperature is

generally easier than in other variables, because the

pattern of global warming differs from dominant modes

of temperature variability (see, e.g., Santer et al. 1994).

To test whether the improved identification of climate

responses by S/NP filtering extends to other variables,

we consider seasonal precipitation and SLP anomalies in

the 40-member CESM-LE. For both variables, S/NP

filtering considerably improves the agreement be-

tween halves of the CESM-LE on their estimates of the

forced response, compared to a simple ensemble mean.

Using the metric in Fig. 3b, S/NP filtering (with 10 pat-

terns retained) improves the skill in identifying the

spatiotemporal evolution of the forced response from

2 In determining the value ofM to use, one must compare to the

simple ensemble mean of the validation set rather than the pattern

filtered validation set, because truncating to a single pattern (i.e.,

M 5 1) maximizes the agreement between two pattern filtered

subensembles (by construction).
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0.08 to 0.13 for precipitation and from 0.14 to 0.20 for

SLP (cf. from 0.62 to 0.73 for surface temperature;

Fig. 3b). While more noise remains in these variables

after S/NP filtering, the fractional improvement is ac-

tually greater than for temperature.

Further improvement can be made by performing a

combined analysis on all three fields. We will show the

results from this three-field analysis before returning to

discuss how it differs from the individual-field analyses

at the end of this section. For the multi-field analysis,

seasonal precipitation and SLP anomaly matrices are

concatenated with the surface temperature anomaly

matrix X in the spatial dimension (i.e., creating a new

data matrix Xwith 3 times the spatial dimension). This is

analogous to the generalization of EOF analysis to

multiple field variables (Bretherton et al. 1992; Deser

and Blackmon 1993). Each field variable is normalized

by the trace of its covariance matrix such that all vari-

ables are unitless and weighted equally. The rest of the

multi-field analysis proceeds exactly as in the individual-

field case. By using a combined analysis of all three fields,

we hope to take advantage of the relatively high S/N in

surface temperature anomalies to identify contempora-

neous forced responses in precipitation and SLP.

FIG. 4. Spatial maps of the squared correlation between estimates of the forced response in 20-member half-

ensembles: (a) when the forced response is estimated by a simple ensemble mean and (b) when the forced response

is estimated by S/NP filteringwithM5 11 andN5 200. (c)Difference between (a) and (b). Spatialmaps of the root-

mean-square error (RMSE) between estimates of the forced response in 20-member half-ensembles: (d) when the

forced response is estimated by a simple ensemble mean and (e) when the forced response is estimated by S/NP

filtering with M 5 11 and N 5 200. (f) Difference between (d) and (e).
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The multi-field S/N-maximizing patterns show similar

temperature anomaly patterns to those found in the

temperature-only analysis (Fig. 6, cf. Fig. 1). However,

the multi-field analysis additionally identifies contem-

poraneous precipitation and SLP anomaly patterns.

Multi-field S/NP-1 shows increasing SLP in the sub-

tropics and midlatitudes and decreasing SLP in the

Arctic andAntarctic (Fig. 6a), trends associated with the

poleward shift of the storm tracks and jet streams in both

hemispheres (Kushner et al. 2001; Yin 2005). The asso-

ciated precipitation anomaly pattern shows on average

that the dry subtropical regions get drier and the wet

extratropical regions get wetter (Held and Soden 2006;

Seager et al. 2010), but there is also considerable vari-

ability with longitude. In particular, there is strong

drying in Southeast Asia and Indonesia, which in this

model is a response to the centennial increase in aerosol

optical depth in this region (Deser et al. 2020b).

FIG. 5. Forced responses of large-scale temperature indices in the CESM-LE, computed from (left) a simple

ensemble mean hXi and (right) the pattern filtered ensemble mean hXS/NPi, from S/NP filtering of seasonal surface

temperature anomalies withM5 11 andN5 200. Blue and orange lines show the first and second 20-member half-

ensembles of the CESM-LE, respectively. The black line shows the full 40-member CESM-LE. The squared

correlation between the 20-member half-ensembles is shown in the bottom right of each panel. North Atlantic SST

is averaged over 408–608N and 08–808W. The Pacific east–west SST difference is the difference between the eastern

equatorial Pacific (908–1508W, 68S–68N) and the western equatorial Pacific (1208E21808, 68S–68N). U.S. land

surface temperatures are averaged over 308–458N, including most of the contiguous United States and parts of

Mexico and Canada.
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FIG. 6. (a)–(c) Multi-field S/N-maximizing patterns of seasonal-mean surface temperature (TS), sea level pres-

sure (SLP), and precipitation (PR) anomalies in the CESM-LE historical and RCP8.5 simulations over the time

period 1920–2019, withN5 200 EOFs retained. The time evolution of the S/N-maximizing patterns in all ensemble

members are shown as standard deviation anomalies with gray lines. The black line shows the ensemble-mean time

evolution of each pattern. The 100-yr ensemble-mean trends in each pattern are shown separately for (left to right)

JFM, AMJ, JAS, and OND in the bar chart insets. The y scale for the bar-chart insets is half that for the time series

in (a).
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Multi-field S/NP-2 shows positive SLP anomalies in the

Pacific and Indian Oceans and negative SLP anomalies

over Southeast Asia, North America, and the midlati-

tude Southern Ocean (Fig. 6b). It also shows a shift of

the South Pacific convergence zone (SPCZ) toward the

southwest and positive precipitation anomalies over

China, Southeast Asia, and tropical South America,

which looks similar to this model’s precipitation re-

sponse to anthropogenic aerosol forcing over 1930–79

(Deser et al. 2020b). On average it shows a northward

shift in precipitation, consistent with hemispherically

asymmetric heating due to anthropogenic Northern

Hemisphere aerosol loading (Broccoli et al. 2006; Kang

et al. 2008). The presence of precipitation responses to

anthropogenic aerosol forcing in both patterns indicates

that greenhouse gas and anthropogenic aerosol forcing

can still be mixed between the first two patterns. Multi-

field S/NP-3 shows changes in the seasonality of extra-

tropical sea level pressure anomalies associated with

changes in the seasonality of sea ice and high-latitude

temperature anomalies, especially in the Aleutian low

region and the Southern Ocean. The associated precipi-

tation anomalies are weaker and of smaller spatial scale

than those in multi-field S/NP-1 and S/NP-2.

As with surface temperature, S/NP filtering improves

the identification of forced responses in large-scale

precipitation anomalies and SLP indices including

global-mean precipitation, precipitation averaged over

China (land within 1008–1208E and 208–408N), precipi-

tation averaged over the Southwest United States

(U.S.-SW; land within 1058–1258W and 308–408N), the

SLP difference between Lisbon and Reykjavik [an

unnormalized variant of the North Atlantic Oscillation

(NAO) index of Hurrell (1995)], and the North Pacific

index [NPI; SLP averaged over 1608E–1408W and 308–

658N, as in Trenberth and Hurrell (1994)]. Most of these

forced responses have a low S/N and are therefore dif-

ficult to detect with simple ensemble averaging of 20-

member or even 40-member ensembles (left side of

Fig. 7). However, by S/NP filtering with the leading 12

multi-field S/N-maximizing patterns (which maximizes

the agreement with the ensemble mean of a 20-ensemble-

member validation set for N 5 200 EOFs; 79.9% of the

total variance retained), both 20-member half-ensembles

find the same forced responses in these precipitation and

SLP indices (right side of Fig. 7).

With the exception of changes in global-mean pre-

cipitation (Figs. 7a,b), the forced responses uncovered

by multi-field S/NP filtering would be difficult to detect

using more traditional methods. For example, while the

long-term decreasing trend in China precipitation would

be easy enough to detect in 20-member or even smaller

ensembles using standard ensemble averaging or linear

trend analysis (Fig. 7c), the reduction in precipitation

following volcanic eruptions and the long-term trend in

seasonality (toward wetter winters and drier summers)

are not apparent until after the S/NP filtering is applied

(Fig. 7d). In U.S.-SW precipitation, the signal is small

compared to internal variability such that it is com-

pletely swamped by noise, even when averaging over a

40-member ensemble (Fig. 7e). However, a weak but

robust signal is found in both 20-member half-ensembles

using S/NP filtering (Fig. 7f): increased precipitation

following volcanic eruptions and a very small long-term

positive trend (,0.1mmday21 century21). Recent work

by Coats et al. (2015) has investigated whether external

forcing, such as from volcanoes, has influenced long-

term droughts in this region and concluded that they are

dominated by internal variability. While we also find

that internal variability is a bigger influence than ex-

ternal forcing on precipitation in this region, we find that

volcanic eruptions lead to a detectable shift toward

wetter conditions over the subsequent several years (in

CESM), likely linked to the El Niño–like response to

eruptions.

SLP anomalies have very high amplitude internal

variability, which is aliased into even the 40-member

ensemble average (Figs. 7g,i). Long-term forced shifts in

the NAO or NPI are therefore hard to detect, although

there is much interest in knowing the relative contribu-

tion of forcing to observed trends (Hurrell 1995; Ulbrich

and Christoph 1999; Semenov et al. 2008; Greatbatch

et al. 2012; Deser et al. 2017). S/NP filtering provides a

means to characterize forced responses in these indices

within large ensembles. The CESM-LE shows a forced

positive trend in the NAO between 1950 and 1990

(Fig. 7h), especially in the winter half-year, which cor-

responds roughly to the timing and magnitude of the

observed trend over that period (Hurrell 1995;Ulbrich and

Christoph 1999; Semenov et al. 2008). There is also a

forced negative trend in theNAObetween 1990 and 2019.

In the Pacific, the CESM-LE shows a forced positive

trend in the NPI over the entire century (Fig. 7j), which

is focused in the summer half-year. This trend is punc-

tuated by negative anomalies following volcanic erup-

tions. Another interesting feature isolated by the S/NP

filtering is a 200-Pa NPI anomaly in the first three months

of 1920, a symptom of the micro initialization.

Multi-field S/NP filtering uncovers a rich spatiotem-

poral complexity within the forced responses of pre-

cipitation and SLP in CESM-LE that would be lost on

other methods. This does benefit from the use of surface

temperature in the analysis, as individual-field analyses

of precipitation or SLP alone do not give as good of

agreement between the 20-member half-ensembles (re-

ducing the squared correlations given on the right-hand
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FIG. 7. Forced responses of large-scale precipitation and SLP indices in the CESM-LE, computed from (left) a

simple ensemble mean hXi and (right) the pattern filtered ensemble mean hXS/NPi, frommulti-field S/NP filtering of

seasonal surface temperature, precipitation, and SLP anomalies with M 5 12 and N 5 200. Blue and orange lines

show the first and second 20-member half-ensembles of the CESM-LE, respectively. The black line shows the full

40-member CESM-LE. The squared correlation between the 20-member half-ensembles is shown in the bottom

right of each panel. China precipitation is averaged over land within 1008–1208E and 208–408N, which includes small

parts of Southeast Asia. U.S. Southwest (U.S.-SW) precipitation is averaged over land within 1058–1258Wand 308–

408N, which includes small parts of northwest Mexico. An approximate North Atlantic Oscillation (NAO) index is

computed from the unnormalized SLP anomaly difference (Pa) between Lisbon and Reykjavik. The North Pacific

index is the average SLP anomaly over 1608E21408W and 308–658N, as in Trenberth and Hurrell (1994).
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side of Fig. 7 to 0.78, 0.92, 0.36, 0.36, and 0.45, from top to

bottom, compared to the multi-field analysis values given

in the figure). Individual-field S/NP filtering is still con-

siderably better than a simple ensemble mean (cf. values

on the left side of Fig. 7), with the notable exception of

global-mean precipitation, forced changes in which are

underestimated by individual-field S/NP filtering. The

forced response of global-mean precipitation is retained

in the multi-field analysis (Fig. 7b), presumably because

of its correlation with aspects of the surface temperature

response. Overall, multi-field S/NP filtering isolates the

forced responses of precipitation and SLP somewhat

better than individual-field S/NP filtering, especially for

global-mean precipitation.

4. How many ensemble members are needed?

Now that we have shown how S/NP filtering improves

estimates of the forced response (for the specific case of

20-member half-ensembles), we return to investigate the

FIG. 8. (a) The global-mean gridpoint squared correlation and (b) the root-mean square error

(RMSE) between estimates of the forced surface temperature response in nE-member sub-

ensembles and a reference estimate of the forced response, computed from S/NP filtering of 20

CESM-LE ensemble members that are withheld from the subensembles. Within the sub-

ensembles, the forced response is estimated by a simple ensemble mean (blue), S/NP filtering

(black), and LFP filtering (orange). (c)–(f) As in (a), but with spatial averaging computed

before computing the squared correlation between forced response estimates. Spatial averages

are computed as in Fig. 5. All values are the mean over five random choices of ensemble

member sampling (without replacement); error bars show61 standard deviation spread due to

sampling uncertainty.
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question of howmany ensemble members are needed to

identify the forced response. To do so, we reserve one

S/NP-filtered 20-member half-ensemble for comparison,

which we will refer to as the reference estimate, and test

how well this forced response can be identified within

subsets of the remaining ensemble members. To quan-

tify sampling uncertainty, we repeat this procedure for

five random choices of ensemble member sampling

(without replacement). For simplicity, we use M 5 11

S/NPs for all ensemble sizes, although it would be an

easy generalization to identify the optimal value of M

for each ensemble size.

For the case of identifying the forced evolution of

temperature at a grid point, S/NP filtering gives a dra-

matic improvement in squared correlation with the

reference estimate compared to simple ensemble aver-

aging (Figs. 8a,b). This is true for all ensemble sizes

between 2 and 20 members. The S/NP-filtered estimate

of the forced response based on 3 ensemble members is

better than the simple ensemble average of 20 members,

both in terms of squared correlation and root-mean-

square error with the reference estimate. The S/NP-

filtered estimate based on 2 ensemble members is only

slightly worse. This means that S/NP filtering reduces

the number of ensemble members needed to estimate

the forced response by a factor of ;7–10 compared to

simple ensemble averaging.

We can characterize the number of ensemble mem-

bers needed to estimate the forced response based on

where the variance shared with the reference estimate

exceeds a threshold (e.g., 80%). Based on the 80%

threshold, four ensemble members are needed with

S/NP filtering, while more than 20 ensemble members

would be needed with simple ensemble averaging

(Fig. 8a).We canmap howmany ensemble members are

needed to detect the forced response in different local

temperature anomalies by computing the number of

ensemble members at which the subensemble forced

response estimate first exceeds an 80% squared corre-

lation with the reference estimate (Fig. 9). Using a

simple ensemble mean, more than 20 ensemble mem-

bers are needed for more than half of grid points glob-

ally (Fig. 9a), whereas 2–3 ensemble members are

generally enough to detect local forced responses with

S/NP filtering (Fig. 9b). Only a few locations, such as the

North Pacific, the equatorial Pacific between 1508E and

1808, India, and some regions of the North Atlantic and

Southern Ocean (regions of small-scale and/or low-

frequency variability) require more than 10 ensemble

members when using S/NP filtering.

Similar results hold for detecting forced responses in

large-scale average temperature anomalies. For NA

SST anomalies, 3 ensemble members are needed with

S/NP filtering versus 7 with a simple ensemble mean

(Fig. 8d); for U.S. average land surface temperature, 2–3

members are needed versus 14–15 (Fig. 8f). Fewer en-

semble members are needed to capture the forced re-

sponse in global-mean surface temperature: 2 ensemble

members with S/NP filtering versus 4 with simple en-

semble averaging (here based on a stricter 95% variance

criterion; Fig. 8c). The forced response in the Pacific SST

gradient does not satisfy the 80% squared correlation

criterion for any choice of ensemble size, but the squared

correlation does not increase further after about 10 en-

semble members, suggesting that including more than

;10 ensemble members in an estimate of the forced re-

sponse (based on S/NP filtering) has marginal returns.

Similar results are found for the three other large

ensembles (CSIRO-LE, GFDL-LE, and MPI-LE):

using S/NP filtering, these ensembles require 6, 3, and 5

ensemble members, respectively, to meet the 80% thresh-

old in global-mean squared correlation (cf. Fig. 8a). They

need 2–4 ensemble members to meet the 95% squared

correlation threshold for global-mean surface tempera-

ture, 2–3 ensemble members to meet the 80% squared

correlation threshold for U.S. temperature, and 2–12

ensemble members to meet the 80% squared correlation

threshold for NA SST. None of the ensembles exceed a

50% squared correlation for the east–west Pacific SST

FIG. 9. The number of ensemble members needed to constrain

the forced response in local temperature using (a) a simple en-

semble mean and (b) S/NP filtering. The criterion used is that the

forced response must share 80% of its variance with the reference

estimate (S/NP filtering of the opposite 20-member half-ensemble;

i.e., no ensemblemembers are shared between the estimate and the

reference). Values shown are the median over five random choices

of ensemble member sampling.
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difference, not even the two 50-member subensembles of

MPI-LE. However, this could simply be a result of these

models not having a strong response of the Pacific SST

gradient to forcing over the past 100 years.

For all temperature indices except the Pacific SST

gradient, S/NP filtering with 2–3 ensemble members

already gives a reasonable estimate of the forced re-

sponse, which raises the question of what can be done

with a single ensemble member. We will answer this

question in the next section.

5. Estimating the forced response from a single

realization

a. Testing LFP filtering within the CESM-LE

For the case of a single ensemble member (or, equiv-

alently, observations), agreement on the timing of evo-

lution of large-scale temperature anomaly patterns can

no longer be used as ametric for whether they are forced

or unforced. Another major difference between forced

changes and (most) internal variability is their longer

time scale. We can take advantage of this longer time

scale to identify patterns that are representative of the

forced response. This was first proposed by SH01, who

solved for patterns of global surface temperature anom-

alies that maximize the variance between decadal means

relative to the total variance. This was further explored by

W18, who solved for patterns of Pacific SST anomalies

that maximized the ratio of low-frequency (low-pass fil-

tered) to total variance and found that this can cleanly

separate long-term warming from variability associated

with the Pacific decadal oscillation (PDO) and ENSO.

Here, we use the CESM-LE to test how well the method

used in W18 (and described in section 2b) can isolate the

forced climate response within a single realization.

First, we show the low-frequency patterns (LFPs) of

the full 40-member CESM-LE (Fig. 10). We retain only

50 EOFs in the analysis (vs. 200 in S/NP filtering),

amounting to 76.7% of the total variance, because there

are fewer DOF in a low-pass filtered 100-yr time series

than there are in the full 100-yr time series. The leading

LFP shows a global warming pattern, with amplified

warming over land and at high latitudes, similar to S/NP-1

(Fig. 10a, cf. Fig. 1a; pattern correlation 5 0.999). The

second LFP shows cooling of the North Atlantic, Arctic,

and Northern Hemisphere land through the 1950s and

1960s and a subsequent recovery, as well as opposite

signed changes in the Southern Ocean (Fig. 10b), similar

to S/NP-2 (Fig. 1b; pattern correlation 5 0.85). The vari-

ance among ensemble members is somewhat greater for

LFP-2 than for S/NP-2, likely because of the greater

projection onto regions of Atlantic multidecadal vari-

ability (Enfield et al. 2001;Wills et al. 2019a; Zhang et al.

2019). The third LFP shows low-frequency internal

variability associated with the PDO (Fig. 10c) (Mantua

et al. 1997; Newman et al. 2016;Wills et al. 2019b). There

is only a small excursion in the ensemble mean time

series, before 1930, resulting from memory of common

ocean initial conditions in January 1920. The fourth LFP

also shows somewhat PDO-like low-frequency internal

variability, but with opposite signed anomalies in the

Greenland, Norwegian, Barents, and Kara Seas

(Fig. 10d). It shows little agreement on the timing of its

evolution among ensemble members, except for a small

response to the twentieth-century volcanic eruptions.

The remaining LFPs show internal variability with in-

creasingly shorter time scales.

As with S/NP filtering, we need to choose how many

patterns to include in estimating the forced response.

Using the CESM-LE, we can determine the ratio of

forced signal to total variance sk for each LFP. The only

LFPs that exceed the sk ’ 0.15 cutoff used in the S/NP

filtering analysis are LFP-1 (sk 5 0.95), LFP-2 (sk 5

0.62), and LFP-48 (sk 5 0.27). LFP-48 is not low-

frequency (i.e., it has low rk); it shows primarily changes

in the seasonal cycle and is excluded here.3 LFP-3, for

comparison, has sk 5 0.09. We therefore include the

leading two LFPs in an estimate of the forced response.

Applying LFP filtering to individual ensemble members,

we also find that M 5 2 patterns maximizes the agree-

ment with a reference estimate (the ensemblemean of 20

ensemble members not included in the LFP filtering).

We find that LFP filtering of a single-ensemble mem-

ber provides a better estimate of the forced response

than a 20-member ensemble mean (Fig. 8), capturing

;80% of the spatiotemporal variations in the forced re-

sponse as diagnosed by the reference estimate. It remains

the best method to estimate the forced response for up to

about 4–5 ensemble members (depending on the metric

used), beyond which S/NP filtering is the best method.

For global-mean surface temperature (Fig. 8c) and U.S.

land surface temperature (Fig. 8f), LFP filtering remains

nearly as good an estimate of the forced response as S/NP

filtering for up to 20 ensemble members. The benefits of

LFP filtering are not as clear for ocean regions with sub-

stantial low-frequency internal variability, such as the

North Atlantic (in terms of squared correlation), but the

RMSE is substantially reduced. The reduction in RMSE

can be seen in Fig. 11, which shows the distribution of

3When we modify our analysis to low-pass filter each season

separately, we find that LFPs 3 and 4 capture forced changes in

seasonality, similar to S/NPs 3 and 4 (cf. Fig. 1), while LFP-1 and

LFP-2 are relatively unchanged. However, inclusion of these ad-

ditional patterns does not improve the skill in isolating the forced

response from individual ensemble members.
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individual ensemble member time series before and after

applying LFP filtering. LFP filtering reduces the spread in

the responses by a factor of 2 for global-mean surface

temperature and by as much as a factor of 10 in other

metrics (note the different y axes). Note, however, that

LFP filtering does remove some signals, such as the El

Niño–like response to volcanic eruptions and some of the

changes in seasonality.

b. Filtering with linear inverse models

With similar goals in mind, Frankignoul et al. (2017)

described an optimal perturbation filter (LIMopt) based

on linear inverse models (LIMs), and showed that it

is among the best available methods for determining

the forced climate response from a single realization.

Specifically, they considered methods that do not require

multiple ensemble members and compared the LIMopt

method to a linear trend, quadratic trend, regression

against global-mean SST, and multivariate ensemble

empirical mode decomposition. We have also tested the

LIMopt method for the isolation of the forced response

from subsets of the CESM-LE (see the online supplemental

material). We find that LFP filtering performs better

for global-mean surface temperature and for grid

point temperatures, and that it has skill equal to or

greater than LIMopt for most large-scale tempera-

ture metrics. Furthermore, LFP filtering scales better

with the addition of further ensemblemembers. Comparing

with the work of Frankignoul et al. (2017), this also

means that LFP filtering isolates the forced response

within individual ensemble members better than a

linear trend, quadratic trend, regression against global-

mean SST, or multivariate ensemble empirical mode

decomposition.

c. Application to HadCRUT4 observations

Given the success of LFP filtering in estimating the

forced response from individual ensemble members

(Figs. 8 and 11), we would like to see what this method

can tell us about the forced response in observations.We

examine the HadCRUT4 infilled observational surface

temperature product (Cowtan and Way 2014). We

compute the LFPs of seasonal (3-monthly) surface

temperature anomalies over the period 1920–2019,

FIG. 10. Low-frequency patterns (LFPs) of seasonal-mean surface temperature anomalies in the CESM-

LE historical and RCP8.5 simulations over the time period 1920–2019, with N 5 50 EOFs retained. The

time evolution of the LFPs in all ensemble members are shown as standard deviation anomalies with gray

lines. The orange (blue) lines show the ensemble member with the most (least) change in LFP-1 over 2000–

19. The black line shows the ensemble-mean time evolution of each pattern. Modified from Wills

et al. (2017).
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retaining 25 EOFs (67.6% of the total variance)

(Fig. 12). While the infilling of missing data can in gen-

eral lead to biases in the estimated covariance matrix

and thus in the LFPs, we find similar results when using

HadCRUT3 data imput with a regularized expectation

maximization algorithm (Schneider 2001) (not shown).

LFP-1 and LFP-2 of observed temperature anomalies

are similar to LFP-1 and LFP-2 of the CESM-LE (pat-

tern correlations of 0.52 and 0.55, respectively). This

suggests that LFP filtering withM5 2 LFPs would help

to isolate the forced response, as in the large ensemble.

LFP-3 and LFP-4 are both somewhat PDO-like (cf.

W18), giving additional motivation to exclude them

from the LFP filtering.

Most long-term trends in observations can be attrib-

uted to the first two LFPs (Fig. 13). Over the full century,

the influence of the residual is small, and most temper-

ature changes are captured by the LFP-filtered data.

Over 1940–79, Northern Hemisphere cooling, which is

thought to result in part from aerosol forcing, is retained

in the LFP-filtered data. Over this period, there are also

weak cooling trends in the eastern Atlantic and eastern

Pacific and a strong warming/cooling dipole over west-

ern Eurasia and Siberia (captured by the residual). The

FIG. 11. (left) Spread in time evolutions of large-scale temperature indices in individual members of the CESM-

LE and (right) spread in time evolutions of the same large-scale temperature indices after the application of LFP

filtering in individual members of the CESM-LE. Averaging regions for the large-scale temperature indices are

defined in the caption of Fig. 5. Note the different y-axis scales for the Pacific east–west SST difference and the U.S.

land surface temperature. For reference, the forced response estimate from S/NP filtering of the full 40-member

CESM-LE (as in the right-hand side of Fig. 5) is shown in green (same on left and right).
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recent trend over 1980–2019 is largely captured by the

LFP-filtered data, except for a negative PDO-like trend

in the Pacific and a weak cooling trend in the Atlantic.

We also use LFP filtering to examine the slow com-

ponent of observed changes in key large-scale temper-

ature indices (Fig. 14). Almost all of the observed

global-mean surface temperature changes and much of

the observed Atlantic multidecadal variability remain in

the LFP-filtered data. The Pacific east–west SST gradi-

ent is dominated by high-frequency internal variability

(i.e., ENSO), but it also exhibits a slow La Niña–like

trend since 1980. Note, however, that the LFP-filtered

trend in the east–west SST gradient is smaller than the

trend in the raw data (Fig. 13).

Interpreting this observational analysis in the context

of the results from our LFP-filtering analysis of the

CESM-LE (Figs. 8, 10, and 11) may give insight into the

forced and unforced components of observed tempera-

ture changes. In particular, Fig. 8 suggests that the LFP

filtering gives a good estimate of the forced component

of changes in large-scale temperature indices from a

single realization, roughly equivalent to an estimation of

the forced response from a 5-member ensemble mean.

This means that the LFP-filtered time series in Fig. 14

approximate the forced responses in these indices.

However, it is important to keep in mind that the anal-

ysis is only guaranteed to isolate the slow component,

which happens to be a better approximation of the forced

response than the full unfiltered dataset in most cases.

The LFP-filtered time series can still contain some amount

of low-frequency internal variability, and should be in-

terpretedwith the spread in Figs. 11b, 11d, and 11f inmind.

The LFP-filtered observations are broadly consistent

with the forced component (based on S/NP filtering) of

temperature changes in four different large ensembles

(Fig. 15): CESM-LE (Kay et al. 2015), CSIRO-LE

(Jeffrey et al. 2013), GFDL-LE (Sun et al. 2018), and

MPI-LE (Maher et al. 2019). One model (GFDL CM3)

has too much midcentury cooling of both global-mean

temperatures and NA SSTs, suggesting that its aerosol

forcing may be too strong. It also seems to overestimate

warming in the past two decades, suggesting that its

climate sensitivity may be too high. Another model

(MPI-ESM) has too little midcentury cooling of NA

FIG. 12. Low-frequency patterns (LFPs) of seasonal surface temperature anomalies, and their time evolution in

standard deviation anomalies, from the infilled HadCRUT4 (Cowtan and Way 2014) observational product over

the time period 1920–2019, with N 5 25 EOFs retained.
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SSTs, suggesting that its aerosol forcing may be too

weak. This is consistent with a diagnosis of aerosol ra-

diative forcing based on simulations with fixed SST

(Booth et al. 2018), where these two models span the

range of diagnosed aerosol forcing strength in CMIP5

models. In general, the models showmidcentury cooling

of NA SSTs that occurs earlier than in observations

(Fig. 15b), though the timing in observations could also

be influenced by Atlantic multidecadal variability.

The response of the Pacific east–west SST difference

varies across models from positive (El Niño–like) to

weakly negative (La Niña–like) (Fig. 15c). None of the

other models show as strong of an El Niño–like response

to volcanic eruptions as CESM. Observations show a La

Niña–like trend between the 1970s and present that is

outside of the range of model forced responses (Fig. 15c),

as has been found in several studies looking at the full

twentieth century (Cane et al. 1997; Solomon and

Newman 2012; Coats and Karnauskas 2017). The LFP-

filtered observations show a hint of an El Niño–like re-

sponse to the eruption of Mt. Pinatubo even though

LFP-filtering was found to smooth out El Niño–like

responses to volcanic eruptions in the CESM-LE

(cf. Fig. 11).

The best agreement between LFP-filtered observa-

tions and ensemble-based estimates of the forced re-

sponse is actually found with M 5 1 observational LFP,

but the estimate withM5 2 observational LFPs remains

in good agreement with the ensemble-based forced re-

sponse estimates (Fig. 16). The reason including LFP-2

reduces agreement with the models might be because

the observational LFP-2 reaches its minimum somewhat

later than the CESM-LE LFP-2, in the mid-1980s in-

stead of around 1970 (Figs. 10 and 12). Overall, the

forced responses in the MPI-LE and the CESM-LE

have the highest correlation with the observational

record (Fig. 16).

The observed trend in temperature asymmetry be-

tween the Northern and Southern Hemispheres during

the period 1940–79 shows up in the LFP-filtered com-

ponent in our analysis (Fig. 13), but only if two LFPs are

included. This trend in hemispheric asymmetry could

have been caused by anthropogenic aerosols (Booth

et al. 2012; Tandon and Kushner 2015; Bellucci et al.

2017; Bellomo et al. 2018; Watanabe and Tatebe 2019),

stratospheric ozone changes (Thompson et al. 2011),

unforced AMOC variability (Semenov et al. 2010;

DelSole et al. 2011; Chen et al. 2017), or a transient re-

sponse of ocean circulations to climate change (Armour

et al. 2016; Stolpe et al. 2018). The key to disentangling

the forced and unforced components of observed global

temperature changes lies in distinguishing between

these hypotheses. LFP filtering provides a potential

path forward by identifying the main slowly changing

3 Residual Component 1920-2019

Residual Component 1940-1979

Residual Component 1980-2019

90°E 180° 90°W

LFP-Filtered Component 1920-2019

LFP-Filtered Component 1940-1979

LFP-Filtered Component 1980-2019

90°E 180° 90°W

Trend 1920-2019

60°S

30°S

EQ

30°N

60°N

Trend 1940-1979

60°S

30°S

EQ

30°N

60°N

Trend 1980-2019

90°E 180° 90°W

60°S

30°S

EQ

30°N

60°N

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2°C

FIG. 13. Partitioning of observed trends (from HadCRUT4; Cowtan and Way 2014) into an LFP-filtered component, based on LFP

filtering withM5 2 LFPs included andN5 25EOFs retained, and a residual. Trends are shown in units of degrees Celsius per trend length

[e.g., 8C (40 yr)21]. Note that the residual component of 1920–2019 temperature trends is multiplied by a factor of 3 for ease of comparison.
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temperature pattern (LFP-2) in need of attribution.

Climate model ensembles with individual forcing from

greenhouse gasses, aerosols, and ozone may provide

utility in attributing these hemispherically asymmetric

temperature changes.

Overall, estimates of the forced and unforced com-

ponents of observed temperature trends based on LFP

filtering largely agree with other estimates in the liter-

ature (Frankcombe et al. 2015; Frankignoul et al. 2017;

Bellucci et al. 2017; Stolpe et al. 2017, 2018; Haustein

et al. 2019), with the exception of T09, DelSole et al.

(2011), and Chen et al. (2017), who use related statistical

analyses but suggest that only the first pattern is forced

and therefore conclude that a large portion of recent

warming can be attributed to internal climate variability.

In the case of T09 and DelSole et al. (2011), this comes

from requiring that forced responses show up in a

multimodel average, which could average out aerosol-

forced climate responses that differ in pattern, strength, or

timing between models.

6. Discussion and conclusions

a. Summary and conclusions

Here, we have demonstrated how S/NP filtering im-

proves estimates of the forced response within climate

model ensembles. Within the CESM-LE, this uncovers

FIG. 14. Time evolution of (a) global-mean surface temperature,

(b) North Atlantic SST averaged over 408–608N (i.e., the North

Atlantic warming hole), and (c) the SST difference between the

eastern and western equatorial Pacific (averaging regions as in

Fig. 5) in HadCRUT4 (Cowtan and Way 2014), before and after

applying LFP filtering.

FIG. 15. Comparison across four single-model large ensembles

and HadCRUT4 observations of the time evolution of (a) global-

mean surface temperature, (b) North Atlantic SST averaged over

408–608N (i.e., the North Atlantic warming hole), and (c) the SST

difference between the eastern and western equatorial Pacific

(averaging regions as in Fig. 5). In models, the time series shown

are averaged over the full ensemble after application of S/NP fil-

tering. In the analysis of CESM-LE, CSIRO-LE, GFDL-LE, and

MPI-LE, we choose a number of EOFs to retain between 90% and

91% of the total variance (200, 225, 150, and 225, respectively); we

choose the number of S/NPs based on a 5% significance threshold

in sk, computed by block bootstrapping (11, 8, 9, and 10, respec-

tively). The observations are LFP filtered, as shown in Fig. 14.
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forced responses that would otherwise be difficult to

detect, such as an El Niño–like response to volcanic

eruptions, increased (decreased) precipitation in the

U.S. Southwest (China) following volcanic eruptions,

forced trends in the NAO, and regional changes in the

seasonality of temperature, precipitation, and SLP.

While all of these signals have a small S/N in a particular

year or season, this method uncovers the time progres-

sion of local climate change signals that, when averaged

over 30 or so years (or sufficient volcanic eruptions),

would be statistically significant. The details of the di-

agnosed forced responses differ across models, but in all

four large ensembles tested, S/NP filtering identifies the

forced response with fewer ensemble members than a

simple ensemble average. The inclusion of at least two

DOF (patterns of change) in the forced response is

critical in all cases, suggesting that methods that include

only one pattern of forced response will generally un-

derestimate the contribution of external forcing to ob-

served temperature changes. Dynamical adjustment

(Wallace et al. 2012; Smoliak et al. 2015; Deser et al.

2016; Sippel et al. 2019) may perform similarly for some

applications, but does not allow for the detection of

forced atmospheric circulation responses, as were

identified in the CESM-LE using S/NP filtering.

Using pattern filtering methods for estimating the

forced response within climate model ensembles, we

revisited the question of how many ensemble members

are needed to isolate the forced climate response from

internal variability. We tested the number of ensemble

members needed (from one-half of the CESM-LE) to

converge on the same forced response estimate as was

obtained from the other half of the CESM-LE. The

answer depends on the particular climate response of

interest and on the error tolerance level. For global-

mean surface temperature, even a simple ensemble

mean is able to isolate the forced response with about

three ensemble members. However, S/NP filtering is

able to isolate the forced global-mean surface temper-

ature response with two ensemble members and LFP

filtering with a single ensemble member. To capture

80% of the full spatiotemporally variable climate re-

sponse globally, more ensemble members are required:

4–5 when using S/NP filtering. This is a large improve-

ment over simple ensemble averaging, which would

need well over 20 ensemble members to reach this

threshold. Even in noisy climate metrics such as the

tropical Pacific SST gradient, U.S. Southwest precipi-

tation, or the NAO, the addition of ensemble members

beyond an ensemble size of about 10 has marginal re-

turns for the identification of the forced response. For

future modeling efforts, increasing the number and

quality (e.g., resolution) of, for example, 5-member or

10-member ensembles would provide greater benefit

than increasing the ensemble size.

Using the CESM-LE as a test bed, we showed that

LFP filtering can give an estimate of the forced response

from a single realization, although it can miss rapid

forced signals such as the response to volcanic eruptions.

LFP filtering differs from simple low-pass filtering be-

cause it includes information about the spatiotemporal

structure of the high-frequency noise in order to opti-

mally filter it out. LFP filtering of a single ensemble

member captures more than 80% of the spatiotemporal

variance in the ensemble’s forced climate response.

With these results as motivation, we used LFP filtering

to approximate the forced and unforced components of

observed temperature trends, without using any model-

based information. Our results support the conjecture

that most of the multidecadal changes in global-mean

surface temperature and North Atlantic SST are forced

and that there has been an externally forced strengthen-

ing of the tropical Pacific SST gradient over the past four

decades. This approach to estimating the forced response

from observations provides an alternative to approaches

that combine observational andmodel-based information

(e.g., detection and attribution), which are subject to

model biases in the forced response.

b. Generalizability

The number of ensemble members needed to isolate

forced climate signals will depend in general on the

FIG. 16. Global mean of gridpoint squared correlation between

hXLFPi, computed entirely from the HadCRUT4 observational

product, and hXS/NPi, computed from four different large ensem-

bles, over the time period 1930–2019 (excluding the micro-

initialization spinup period), as a function of the numberM of LFPs

included and the number N of EOFs retained in the observational

LFP filtering. The values ofM and N used in the S/NP filtering are

given in the caption of Fig. 15.
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amplitude of the signal of interest and the characteristics

of the noise in the model used. We have focused on

simulations of global climate change over 1920–2019,

where the forced response is comparable in amplitude to

modes of internal variability. Fewer ensemble members

would be needed to isolate the forced climate response

in simulations with stronger forcing, such as simulations

of twenty-first-century climate change or of a quadru-

pling of CO2. Properties of the internal variability within

climate model ensembles and observations also influence

the ability to isolate the forced response.Higher-amplitude

noise from internal variability does not necessarily make

climate responses harder to detect, because this high-

amplitude noise could all be contained in a few spatial

patterns (e.g., ENSO). The climate variability that is most

difficult to remove from estimates of the forced response is

that which is on small spatial scales (such that it does not

show up in the leading EOFs) and/or on long time scales

(such that it has fewer temporal DOF).

A number of studies have pointed out that observa-

tions aremore predictable than expected from comparison

to individual members of climate model ensembles,

despite similar amplitudes of climate variability in

models and observations, especially on seasonal-to-

decadal time scales in the North Atlantic (Scaife

et al. 2014; Eade et al. 2014; Scaife and Smith 2018).

One potential explanation for this so-called signal-to-

noise paradox is that the fraction of atmospheric vari-

ability driven by variations in SST is larger in observa-

tions than in models, such that a model that is able to

correctly predict the evolution of SSTs may correctly

predict the timing (but not the amplitude) of observed

atmospheric variability once the unpredictable atmo-

spheric noise is averaged out (see, e.g., Simpson et al.

2018). The implications of the signal-to-noise paradox

for the skill of pattern filtering in isolating the forced

climate response are not clear cut; more unpredictable

atmospheric noise in models would make it harder to

isolate the forced response in models (and therefore

overestimate the difficulty in observations), but more

multidecadal coupled atmosphere–ocean variability in

observations would pose a challenge for isolating the

forced response in observations. Based on this litera-

ture, we have no reason to believe that our analysis in

section 5 systematically overestimates or underesti-

mates what can be learned about the forced climate

response from a single realization.

One limitation of the pattern filtering methods pre-

sented here is that they only consider linear combina-

tions of state variables. This may lead to underestimates

of nonlinear climate responses (e.g., in cases where

positive and negative anomalies have different patterns

or amplitudes). This may be apparent in the estimated

El Niño–like response to volcanic eruptions (Fig. 5f; cf.

Fig. 5e). Future work should investigate whether non-

linearmachine learningmethods can be constructed that

take advantage of patterns with high signal-to-noise

ratio, in a similar spirit to the analyses shown here

(e.g., Barnes et al. 2019, 2020).

c. Further applications

Estimates of forced responses from pattern filtering

are complementary to estimates of the uncertainty in

long-term trends, as can be computed from unforced

variability in control runs or observations (Thompson

et al. 2015; McKinnon et al. 2017). To characterize the

unforced variability in observations, these studies rely

on removing the forced response, either through de-

trending or the subtraction of a model-based forced re-

sponse estimate. However, some of the variability about

the long-term trend likely comes from aerosol forcing

and other nonmonotonic forcing, as encompassed in

LFC-2 of observed temperatures (Fig. 12). If these

nonmonotonic forced responses are not fully removed

(e.g., if there are biases in the modeled forced response),

then this may bias the estimates of unforced variability

in observations. By first removing nonmonotonic forced

responses using LFP filtering, the uncertainty in long-

term trends that results from internal variability could

be better estimated from observations.

Separating the forced response from the internal

variability also helps us understand internal decadal

variability, which may help improve decadal climate

predictions (Meehl et al. 2009). Current methods of re-

moving the forced component from indices of internal

variability, such as removing the linear trend (Enfield

et al. 2001) or global-mean SST (Trenberth and Shea

2006), will become less effective as the forced climate

change pattern evolves over time (Andrews et al. 2015).

LFP filtering provides a way to identify and remove the

forced response from indices of climate variability.

Pattern filtering methods can also provide utility for

the analysis of multimodel ensembles (e.g., CMIP), as

shown in Ting et al. (2009) and DelSole et al. (2011).

However, if the timing of a particular forced response

pattern differs across models, application of S/NP fil-

tering to a multimodel ensemble would filter this re-

sponse out. Therefore, in order to study intermodel

differences in the forced response, it is necessary to

apply pattern filtering separately to each climate model.

Overall, the common framework of S/NP and LFP

filtering provide a powerful set of tools for separating

forced and unforced components of climate change in

climate model ensembles and observations, thereby

identifying the full spatiotemporal complexity of the

climate system’s response to radiative forcing.
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