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Chronic inflammation has been associated with an increased risk of several human malig-

nancies, a classic example being gastric adenocarcinoma (GC). Development of GC is

known to result from infection of the gastric mucosa by Helicobacter pylori, which initially

induces acute inflammation and, in a subset of patients, progresses over time to chronic

inflammation, gastric atrophy, intestinal metaplasia, dysplasia, and finally intestinal-type

GC. Germ-line encoded receptors known as pattern-recognition receptors (PRRs) are crit-

ical for generating mature pro-inflammatory cytokines that are crucial for both Th1 and

Th2 responses. Given that H. pylori is initially targeted by PRRs, it is conceivable that

dysfunction within genes of this arm of the immune system could modulate the host

response against H. pylori infection, and subsequently influence the emergence of GC. Cur-

rent evidence suggests thatToll-like receptors (TLRs) (TLR2,TLR3,TLR4,TLR5, andTLR9),

nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) (NOD1, NOD2, and

NLRP3), a C-type lectin receptor (DC-SIGN), and retinoic acid-inducible gene (RIG)-I-like

receptors (RIG-I and MDA-5), are involved in both the recognition of H. pylori and gastric

carcinogenesis. In addition, polymorphisms in genes involved in theTLR (TLR1,TLR2,TLR4,

TLR5, TLR9, and CD14) and NLR (NOD1, NOD2, NLRP3, NLRP12, NLRX1, CASP1, ASC,

and CARD8 ) signaling pathways have been shown to modulate the risk of H. pylori infec-

tion, gastric precancerous lesions, and/or GC. Further, the modulation of PRRs has been

suggested to suppress H. pylori -induced inflammation and enhance GC cell apoptosis,

highlighting their potential relevance in GC therapeutics. In this review, we present current

advances in our understanding of the role of the TLR and NLR signaling pathways in the

pathogenesis of GC, address the involvement of other recently identified PRRs in GC, and

discuss the potential implications of PRRs in GC immunotherapy.

Keywords: stomach neoplasm, Helicobacter pylori, inflammation, pattern-recognition receptors,Toll-like receptors,

NOD-like receptors, genetic polymorphism, therapeutics

INTRODUCTION

Of the three main types of stomach cancer, gastric adenocarci-

noma (GC), non-Hodgkin’s lymphoma, and gastrointestinal stro-

mal tumors, approximately 95% are GC, which remains one of

the most commonly diagnosed cancers in the world (1). In 2012,

stomach cancer was the fifth most common cancer worldwide,

with 952,000 new cases diagnosed, accounting for 6.8% of the

total cancer cases (1). Furthermore, it is the third leading cause

of cancer-related deaths worldwide, accounting for 8.8% of total

deaths from cancer, with 5-year relative survival rates lower than

30%, except in Japan where mass screening has been undertaken

for several years (2).

Gastric cancer is a heterogeneous pathology with respect

to anatomical location and histological subtypes (Figure 1A).

In relation to location, GC may occur in the cardia or non-

cardia region of the stomach. Cardia GC has been associated

with gastro-esophageal reflux, Helicobacter pylori infection, and

atrophic gastritis, male gender, smoking, and diet (3). Epidemi-

ological studies assessing the worldwide incidence of GC by

anatomical location have shown an increase in the incidence

of cardia GC, however, in high GC risk areas, non-cardia GC

remains the most frequent pathology (4). Further, even though

cardia and non-cardia GC have been considered etiologically

different phenomena, it has been demonstrated that cancer of

the cardia among individuals from areas with a high risk of

GC represents a subset of cardia GC that is associated with H.

pylori-related atrophic gastritis and resembles non-cardia GC

pathogenesis (5, 6).

According to the Lauren Classification, non-cardia GC has been

further subdivided into the two histological variants intestinal-

type and diffuse-type. Intestinal-type GC is characterized by the

formation of gland-like structures, distal stomach localization, and

a predilection for older individuals. It is also more frequent in

males (2:1 ratio) and in subjects of lower socioeconomic status

(10). This type of GC is often preceded by a precancerous phase

that starts with the transition of normal mucosa into multifocal

atrophic gastritis. This initial histological alteration is followed

by intestinal metaplasia, dysplasia, and finally adenocarcinoma

(11). On the other hand, diffuse-type GC is poorly differentiated,

affects younger individuals, and has been highly associated with

genetic susceptibility (the variant hereditary diffuse GC, which

is associated with germ-line mutations in CDH1, a gene encoding

E-cadherin) (12, 13). Additionally, it is not associated with the for-

mation of precancerous lesions and has been found to affect the
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FIGURE 1 | Gastric cancer classification and etiology. (A) Stomach

cancer comprises gastric adenocarcinoma (GC), non-Hodgkin lymphomas,

including mucosa-associated lymphoid tissue (MALT) lymphoma, and the

rare gastrointestinal stromal tumors (GIST), leiomyosarcoma, and carcinoid

tumors. The most common type, GC, has been classified as cardia and

non-cardia GC according to anatomical location. Cardia GC is divided into

two different etiological entities, esophageal-like cardia GC, which is

associated with gastro-esophageal reflux, smoking, and diet, and is frequent

in areas with a low risk of GC and distal stomach-like cardia GC, which is

associated with the presence of H. pylori and gastric atrophy, and is the

most frequent cardia GC variant in areas with a high risk of GC. Non-cardia

GC is further subdivided into two histological variants called intestinal-type

and diffuse-type GC. Intestinal-type GC, according to the widely accepted

Correa’s cascade (7), is a biological continuum that commences as chronic

gastritis and progresses to atrophic gastritis, intestinal metaplasia,

dysplasia, and finally, GC. *Stomach cancer subtypes that have been

associated with Helicobacter pylori infection. (B) H. pylori infection causes

chronic inflammation of the gastric mucosa of all infected individuals, and in

combination with host and environmental factor, leads to the development

of GC in a subset of infected individuals (1–3%). In these subjects,

inflammation represents the seventh hallmark of cancer and an enabling

characteristic that facilitates the acquisition of the other established

hallmarks that collectively dictate malignant growth (tissue

invasion/metastasis, limitless replicative potential, sustained angiogenesis,

evasion of programed-cell death (apoptosis), self-sufficiency in growth

signals, and insensitivity to growth-inhibitory signals) (8, 9).

entire surface of the stomach. This type of GC is present equally

between the two sexes and is associated with a worse prognosis in

comparison to intestinal-type GC (10, 12).

Most GC cases are sporadic and arise due to the combina-

tion of a permissive environment interacting with a susceptible

host. Several factors that contribute to the development of GC

have been identified; these include bacterial (H. pylori), host, and

environmental factors (12).

Helicobacter pylori is a Gram-negative bacterium that infects

nearly 50% of the human population (14). In the gastric mucosa,

the majority of Helicobacter pylori are found within the mucus

layer but they can also be attached to epithelial cells leading to the

maintenance, spread, and severity of the infection (15). H. pylori

infection has been associated with the development of a range

of diseases, including peptic ulcer disease (10%), non-cardia GC

(1–3%), and gastric mucosa-associated lymphoid tissue (MALT)

lymphoma (<0.1%) (14, 16–18). Furthermore, this bacterium has

been associated with three distinct phenotypes in the infected

host: (1) a corpus-predominant gastritis, which has the potential

to lead to atrophic gastritis, hypochlorhydria, and to the devel-

opment of GC; (2) a duodenal ulcer phenotype in which an

antrum-predominant gastritis leads to increased gastric acid secre-

tion; and (3) a benign phenotype in which the bacterial infection

causes a mild mixed gastritis that has a minor effect on gastric acid

production (19).

Helicobacter pylori infection is transmitted by direct human-

to-human transmission, via either the oral–oral route, fecal–oral

route, or both (14). H. pylori is acquired early in life, the majority

of individuals being infected before the age of 10 years with close

family members being a common source of infection (20–22).

It has been postulated that early acquisition of infection might

be associated with the broad pathological spectrum associated

with H. pylori infection and the highly persistent GC incidence

rates in genetically susceptible populations who have migrated to

Frontiers in Immunology | Tumor Immunity July 2014 | Volume 5 | Article 336 | 2

http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Castaño-Rodríguez et al. PRRs and gastric cancer

developed countries. In the absence of antibiotic therapy, H. pylori

infection generally persists for life (23).

Natural colonization by H. pylori is restricted to humans, pri-

mates, and domestic animals such as cats (23–25). H. pylori is

considered to be the dominant microorganism in the human stom-

ach as the majority of bacteria cannot survive in the low gastric pH

(26). Several other factors make the human stomach an unfavor-

able environment for bacterial colonization including peristalsis,

poor nutrient availability, and host innate and adaptive immu-

nity (23). The ability of H. pylori to survive and colonize the

stomach relates to a number of mechanisms. Most importantly

H. pylori, unlike other bacteria, produces large amounts of the

enzyme urease, which hydrolyzes urea to ammonia, which sub-

sequently interacts with hydrogen ions in the stomach to form

ammonium (27, 28). In addition, H. pylori is able to regulate

gene expression in response to changes in pH (29). Further, H.

pylori expresses multiple paralogous outer membrane proteins,

including the blood-group antigen-binding adhesin (BabA), the

sialic-acid binding adhesin (SabA), and the outer inflammatory

protein (OipA), which appear to bind to receptors on the surface

of gastric epithelial cells, which reduces the rate of bacterial elim-

ination as a result of peristalsis (30, 31). H. pylori counteracts the

lack of nutrients by inducing tissue inflammation and using spe-

cific systems that facilitate the transport and uptake of nutritional

resources (23). In addition, H. pylori has been reported to produce

antibacterial peptides that might decrease competition from other

microorganisms (32).

Further, a number of other factors have been shown to help

H. pylori evade the host immune system. For example, the vac-

uolating cytotoxin (VacA) produced by some strains of H. pylori

has been shown to inhibit T-cell proliferation as well as antigen

presentation by B cells and to alter the normal functions of CD8+

T cells, mast cells, and macrophages (33–36). In addition, gamma-

glutamyl transpeptidase, another immunosuppressive factor of

H. pylori, has been associated with inhibition of T-cell prolifer-

ation by induction of a cell cycle arrest in the G1 phase (37).

Furthermore, H. pylori has been shown to use arginase to down-

regulate the production of inducible nitric oxide synthase by

macrophages (38).

The fact that more than one H. pylori strain can colonize the

gastric mucosa provides the opportunity for H. pylori to acquire

new genetic sequences and to undergo recombination events (23).

One of the most remarkable differences among H. pylori strains is

the presence or absence of a 40-kb DNA insertion element known

as the cytotoxin-associated gene pathogenicity island (cag PAI)

(39). This region contains between 27 and 31 genes flanked by

31-bp repeats and encodes the most widely investigated H. pylori

virulence factor, the cytotoxin-associated antigen A (CagA) (40,

41). H. pylori strains expressing CagA represent 60–70% of West-

ern strains and approximately 100% of East Asian strains (39,

42). CagA is a 120- to 140-kDa protein that is translocated into

host cells through a type IV secretion system following attach-

ment to gastric epithelial cells (43). Following translocation, CagA

is tyrosine phosphorylated at the EPIYA (glutamate–proline–

isoleucine–tyrosine–alanine) motifs by members of the host cell

kinase families known as proto-oncogene proteins Abl and Src

(18). In Western populations strains, EPIYA-A, EPIYA-B, and vary-

ing numbers of EPIYA-C motifs have been reported, while in H.

pylori strains from East Asian populations, EPIYA-A and EPIYA-

B with EPIYA-D motifs, are found (44). Both phosphorylated

and non-phosphorylated CagA result in alterations in the gastric

epithelium including: (1) the activation of the protein tyrosine

phosphatase, non-receptor type 11 (SHP-2), (2) alterations in cell

scattering and proliferation, (3) alterations in cell structure and

cell motility, (4) perturbation of epithelial cell differentiation and

polarity, (5) alteration of tight junctions, and (6) aberrant activa-

tion of β-catenin (45–47). Furthermore, numerous studies have

shown that cag PAI-positive H. pylori strains are associated with

an increased risk of gastric diseases including peptic ulcer dis-

ease, premalignant gastric lesions and GC (48–51). Further details

of the interplay between H. pylori virulence factors and gastric

epithelial cells and GC, can be found in an excellent review by

Posselt et al. (44).

In the last two decades, a large number of epidemiological stud-

ies have established the association between H. pylori and the

subsequent risk of developing both intestinal-type and diffuse-

type GC (52–57). This finding has been consistent among different

populations. For example, in the study by Parsonnet et al. (57),

conducted in Caucasian,African-American, and Asian individuals,

subjects infected with H. pylori who had antibodies against CagA

were shown to be more likely than uninfected subjects to develop

both intestinal-type and diffuse-type GC (OR: 5.1, 95% CI: 2.1–

12.2 and OR: 10.1, 95% CI: 2.2–47.4, respectively). Consistently,

a further study conducted in a Japanese population showed that,

although the association was stronger in cases with intestinal-type

GC (OR: 3.2, 95% CI: 1.8–5.8), there was also a positive associ-

ation between H. pylori infection and diffuse-type GC (OR: 3.0,

95% CI: 1.0–8.8) (53). Further, a study conducted in a Spanish

population showed no differences in H. pylori infection between

the two GC histological subtypes (58). Similarly, a recent study in

German individuals showed that H. pylori prevalence was com-

parable in patients with intestinal-type (82.1%) and diffuse-type

(77.9%) GC (59).

Interestingly, more recent studies, assessing H. pylori infection

through Western blot (CagA) for the detection of past infection,

have shown an unprecedented association between H. pylori and

GC that can be explained by a reduction of the misclassification

that might take place when samples are analyzed with the enzyme-

linked immunosorbent assay (ELISA) alone (60, 61). For example,

Ekstrome et al. (60) conducted a population-based study, com-

prising 298 GC patients and 244 controls, in which the OR for

H. pylori infection among non-cardia GC was 21.0 (95% CI: 8.3–

53.4). Further, Siman et al. (61) showed that H. pylori significantly

increased the risk of non-cardia GC showing an OR of 17.8 (95%

CI: 4.2–74.8).

While H. pylori infection has been established as the most

important risk factor for GC and was classified as a class 1 car-

cinogen by the World Health Organization in 1994, the etiology of

GC also involves host and environmental factors. This is evidenced

by the fact that only 1–3% of H. pylori-infected patients develop

GC, and that progression to GC in some subjects occurs even after

eradication of the bacterium (18).
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Given that H. pylori is initially targeted by germ-line encoded

receptors known as pattern-recognition receptors (PRRs), it is

conceivable that dysfunction within genes of this arm of the

immune system would affect the magnitude and direction of the

host inflammatory response against the infection, resulting in an

increased risk of GC development. Recent studies clearly show

that PRRs are critical for generating mature pro-inflammatory

cytokines that are crucial for both Th1 and Th2 responses dur-

ing H. pylori infection, and these immune responses have been

directly associated with gastric immunopathology. In this review,

we present current advances in the understanding of the role of

PRRs, mainly the Toll-like receptor (TLR) and nucleotide-binding

oligomerization domain (NOD)-like receptor (NLR) signaling

pathways, in the pathogenesis of GC, and discuss future directions

for continued research in this area. In the first section, we highlight

the relevance of inflammation in GC. In subsequent sections, we

address new developments in the TLR and NLR signaling path-

ways in GC, the role of other PRRs in GC, and the new frontier of

therapeutic application of these concepts.

INFLAMMATION IN GASTRIC CANCER

It is well established that most cancer cell genotypes are the man-

ifestation of six essential alterations in cell physiology that collec-

tively dictate malignant growth: (1) self-sufficiency in growth sig-

nals, (2) insensitivity to growth-inhibitory signals, (3) evasion of

programed-cell death (apoptosis), (4) limitless replicative poten-

tial, (5) sustained angiogenesis, and (6) tissue invasion/metastasis

(8). Recently, inflammation has been considered the seventh hall-

mark of cancer and an enabling characteristic that facilitates the

acquisition of the other hallmarks (Figure 1B). Inflammation ini-

tiated by innate immune cells, mainly macrophage subtypes, mast

cells, myeloid progenitors, and neutrophils (62–65), designed to

fight infections and heal wounds, can instead result in uninten-

tional support of multiple cancer hallmark functions, thereby

manifesting the widely accepted tumor-promoting consequences

of inflammatory responses (9). In addition, active evasion by can-

cer cells from attack and elimination by immune cells, mainly

CD8+ cytotoxic T lymphocytes, CD4+ Type 1 helper T cells, and

natural killer (NK) cells, highlights the dual role of an immune

system that both antagonizes and promotes cancer development

and progression (9).

In the context of tumor enhancement, it has been proposed

that once inflammation is initiated, tissue integrity is compro-

mised leading to the multistage process of carcinogenesis by

altering targets and pathways that are pivotal for normal tissue

homeostasis (66). The mechanisms that are connected to these

alterations include production of mutagenic reactive oxygen and

nitrogen species as well as synthesis of cytokines and growth

factors that favor tumor cell growth (67). In addition, inflamma-

tion provides a source of other bioactive molecules to the tumor

microenvironment, including survival factors that limit cell death,

pro-angiogenic factors, extracellular matrix-modifying enzymes

that facilitate angiogenesis, invasion, and metastasis, and inductive

signals that lead to activation of the epithelial–mesenchymal tran-

sition (a developmental regulatory program that enables epithelial

cells to invade, resist apoptosis, and disseminate) (9). Interest-

ingly, inflammation can be considered a “perigenetic alteration” of

cancer cells because it may promote growth, expansion, and inva-

sion of tumors even without the involvement of further genetic

mutations or epigenetic alterations (68).

In 1988, Correa proposed a human model of intestinal-type

gastric carcinogenesis (7). The model hypothesized a sequence of

events progressing from acute inflammation to chronic inflamma-

tion, to atrophy, to intestinal metaplasia, to dysplasia, to carcinoma

in situ, and finally to invasive GC. A subsequent study by Correa

evaluated the gastric precancerous process in a Colombian popu-

lation (7). The results of this cross-sectional study led to the widely

accepted conclusion that the severity of atrophy correlates with the

prevalence of metaplasia and that the severity of metaplasia corre-

lates with the prevalence of dysplasia, suggesting that the process

is indeed a biological continuum (69).

Given that inflammation is a hallmark of gastric carcino-

genesis, polymorphisms in genes encoding pro-inflammatory

cytokines/chemokines have been the focus of much research in

recent years. To date, polymorphisms in the interleukin (IL)-1

family genes have been the most widely studied, including poly-

morphisms in IL1A, IL1B, and IL1RN that encode IL-1α, IL-1β,

and their endogenous receptor antagonist IL-1RA, respectively. In

particular, IL-1β, a potent endogenous pyrogen and an important

component in the development of Th2-mediated immunity (70,

71), has been associated with lipid peroxidation, DNA damage,

inhibition of gastric acid secretion, increased H. pylori coloniza-

tion, and induction of gastric atrophy and dysplasia in the presence

or absence of H. pylori (72). Global meta-analyses have shown that

the IL1B-511 T allele is significantly associated with an increased

risk of developing GC in Caucasians but not Asians or Mesti-

zos (73, 74). Furthermore, IL-1 receptor signaling is known to

induce the production of genes that not only stimulate tumor

growth but are also involved in angiogenesis and metastasis such

as matrix metalloproteinases, basic fibroblast growth factor, vas-

cular endothelial growth factor, vascular cell adhesion molecule 1,

intercellular adhesion molecule 1, monocytic chemotactic protein

1, and CXCL-2 (75). To date, only one study has addressed the

role of IL1R1 (also known as CD121A) in GC and H. pylori infec-

tion. The study, conducted in a Caucasian population, showed

an increased risk of H. pylori infection in those harboring the

IL1R1 Hinfl A allele (OR: 2.01, P-value: 0.009) but failed to show

an association with GC (76). In addition, a recent meta-analysis

on the endogenous receptor antagonist IL-1RA has shown the

IL1RN*22 genotype to increase the risk of gastric precancerous

lesions, supporting a role for this polymorphism in the early stages

of gastric carcinogenesis (OR: 2.27, 95% CI: 1.40–3.70) (77). A fur-

ther meta-analysis that included 39 case–control studies, showed

statistically significant associations between the IL1RN*22 geno-

type and both intestinal-type and diffuse-type GC, showing ORs

of 1.83 and 1.72, respectively (78). Further examples of polymor-

phisms in pro-inflammatory cytokines/chemokines that play an

essential role promoting inflammation in the context of gastroin-

testinal carcinogenesis are IL-4 (IL4-590C/T and -168T/C) (79),

IL-6 (IL6-174 G/C) (80–82), IL-8 (IL8-251 A/T, +396 T/G, and

+781 C/T) (79, 83), IL-10 (IL10-1082 A/G, −819 C/T, and −592

C/A) (84–86), IL-12 (IL12A-701 C/A, −798 T/A, +277 G/A, and

−504 T/G) (87), IL-17 (IL17 -197 G/A and +7488 T/C) (79), IL-18

(IL18-137 G/C) (88), and TNF-α (TNFA −238 G/A, −308 G/A,
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and −857 C/T) (89). In addition to this, a recent comprehensive

review on this topic recommended the investigation of other poly-

morphisms in IL1B (3954 C/T and −1473G/C), IL4 (–168T/C),

IL6 (572 G/C and 597 G/A), and IL17 (+7488A/G and −197G/A),

given their potential relevance in GC (79).

While extensive evidence supports the important role of pro-

inflammatory cytokines/chemokines in gastric carcinogenesis,

given that PRRs, mainly TLRs and NLRs, are important mod-

ulators of intestinal epithelial barrier function, epithelial repair,

and immune homeostasis in the gastrointestinal tract (90), and

that signal transduction from these receptors converges upon

a common set of signaling molecules, including the activation

of the transcription factors nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) and the activator pro-

tein 1 (AP-1) that lead to the production of pro-inflammatory

cytokines/chemokines (e.g., IL-1α, IL-1β, IL-6, IL-8, IL-10, and

TNF-α) as well as members of the interferon (IFN) regulatory

transcription factor family that mediate type I IFN-dependent

responses, defects in PRRs function could be even more important

than defects in pro-inflammatory cytokines/chemokines per se in

the instauration of an inflammation-related disorder such as GC.

PATTERN-RECOGNITION RECEPTORS IN GASTRIC CANCER

Innate immunity refers to responses that do not require previ-

ous exposure to an immune stimulus and represents the first line

of host defense in the response to pathogens. PRRs are part of

the innate immune system and are pivotal for the detection of

invariant microbial motifs. PRRs have been divided into five dis-

tinct genetic and functional clades: TLRs, NLRs, C-type lectin

receptors (CLRs), retinoic acid-inducible gene (RIG)-I-like recep-

tors (RLRs), and absent in melanoma 2 (AIM2)-like receptors

(ALRs) (91, 92). PRRs are commonly expressed by cells of the

innate immune system such as monocytes, macrophages, dendritic

cells (DCs), neutrophils, and epithelial cells, as well as cells of the

adaptive immune system (93).

Toll-like receptors and CLRs scan the extracellular milieu and

endosomal compartments for pathogen-associated molecular pat-

terns (PAMPs), which are highly conserved microbial structures

that are essential for microbial survival (94), while intracellular

PRRs, including NLRs, RLRs, and ALRs, cooperate to provide

cytosolic surveillance (92, 93).

In H. pylori infection, the first physical–chemical barriers for

the pathogen are the mucus layer,gastric epithelial cells, autophagy,

and PRRs (TLRs, NLRs, CLRs, and RLRs) (Figure 2).

TOLL-LIKE RECEPTORS AND HELICOBACTER

PYLORI -RELATED GASTRIC CANCER

TOLL-LIKE RECEPTORS RECOGNITION OF HELICOBACTER PYLORI

The involvement of the TLR signaling pathway in infectious,

autoimmune, and inflammatory diseases is well accepted (95).

During H. pylori infection, TLRs on gastric epithelial and immune

cells recognize diverse PAMPs such as flagellin/unknown PAMP

(TLR5), unmethylated CpG motifs (TLR9), and lipopolysaccha-

ride (LPS) (TLR4 and TLR2).

TLR4 was initially identified as the potential signaling receptor

for H. pylori LPS on gastric epithelial cells (96–99). After forming

a complex with the LPS-binding protein (LBP), LPS interacts with

the monocyte differentiation antigen CD14 (CD14), and subse-

quently with the myeloid differentiation protein-2 (MD-2) (100).

Together with TLR4, this complex induces the TLR4-mediated

MyD88-dependent signal transduction pathway, which leads to

the rapid activation of transcription factors, mainly NF-κB, and

cytokines such as TNF-α, IL-1β, IL-6, and IL-12 (95). On the other

hand, stimulation of TLR4 by LPS also facilitates the activation

of a MyD88-independent pathway that activates IFN-regulatory

factor (IRF) 3 and involves the late phase of NF-κB activation,

both of which lead to the production of IFN-β and the expres-

sion of IFN-inducible genes (101, 102). In addition to LPS, the

H. pylori secretory protein HP0175, through its ability to bind

to TLR4, was shown to transactivate the epidermal growth fac-

tor receptor (EGFR) and stimulate the EGFR-dependent vascular

endothelial growth factor production in the GC cell line AGS,

which have been linked to H. pylori-associated gastroduodenal

diseases, ulcerogenesis, and carcinogenesis (103).

Although early studies concluded that TLR4 is the first innate

immune response against H. pylori (104, 105), later studies sug-

gested that TLR4 had a limited role, given that H. pylori LPS

appeared to bind poorly to LBP, resulting in it being inefficiently

transferred to CD14 (106). Consequently, recent studies address-

ing the role of other TLRs during H. pylori infection, have found

TLR2 to be the initial barrier against H. pylori infection (107–112).

A potential explanation for these inter-study differences in relation

to the TLRs response to H. pylori might be attributed to cell type

(i.e., epithelial versus immune cells), origin of the cell studied (i.e.,

peritoneal versus bone marrow derived macrophages), and the

type of inflammatory response measured (i.e., type of cytokines),

and thus, currently any conclusions regarding the role of TLR4

must be treated with caution.

In contrast, there is strong evidence supporting an important

role for TLR2 in H. pylori infection, with both animal and cell

culture experiments suggesting that TLR2 ligands (LPS or other)

exist in H. pylori and related Helicobacter species (112–114), and

that TLR2 may be involved in the innate immune sensing of these

bacteria by epithelial cells (113). Furthermore, an interesting pub-

lication by Smith et al. (115) showed that H. pylori LPS functions as

a classic TLR2 ligand and induces a discrete pattern of chemokine

expression in epithelial cells, which involves modulation of the

expression of the signaling protein tribbles 3 (TRIB3), a molecule

implicated in the regulation of NF-κB.

Yet, the most likely scenario is that both TLR4 and TLR2 are

involved in the early immune response against H. pylori as has

been demonstrated by a number of investigators (116–118). For

example, Obonyo et al. (116) showed that both TLR2 and TLR4

were crucial signaling receptors for H. pylori activation of the host

immune response leading to the secretion of cytokines. Further,

Yokota et al. (118) not only showed that H. pylori LPS was ini-

tially targeted by TLR2 as described by others, but, for the first

time, showed that this TLR2 activation leads to cell proliferation

and TLR4 expression via the MEK1/2-ERK1/2 pathway. The final

outcome of this signaling pathway is increased proliferation of

gastric epithelial cells and the instauration of a strong inflamma-

tory reaction. Once this response is instaurated, H. pylori could

then enhance inflammatory reactions mediated by TLR4 agonists

such as other bacterial LPS, which would also contribute to gastric
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FIGURE 2 | Pattern-recognition receptors involvement in Helicobacter

pylori infection. H. pylori is recognized by the Toll-like receptors (TLRs)

(TLR2, TLR4, TLR5, and TLR9), NOD-like receptors (NLRs) (NOD1, NOD2,

NLRP3, and possibly, NLRP12 and NLRX1), RIG-I like receptors (RLRs) (RIG-I

and possibly, MDA-5), and C-type lectin receptors (CLRs) (DC-SIGN). TLR4

poorly recognizes H. pylori lipopolysaccharide (LPS) to generate

pro-inflammatory cytokines (e.g., IL-1α, IL-1β, IL-6, IL-8, IL-10, and TNF-α) and

interferons (IFNs) through the myeloid differentiation primary response gene

88 (MyD88)-dependent and -independent pathways, respectively. TLR2

recognizes H. pylori LPS/peptigoglycan/unknown pathogen-associated

molecular pattern (PAMP) while TLR5 poorly recognizes H. pylori flagella and

TLR9 recognizes H. pylori DNA (unmethylated CpG motifs). H. pylori

recognition by these three TLRs leads to nuclear factor-κB (NF-κB) activation.

NOD1 and NOD2 recognize H. pylori peptidoglycan-derived peptides

[γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP) and muramyl dipeptide

(MDP)], leading to the activation of both transcription factors NF-κB and

activator protein (AP)-1. The NLRP3 inflammasome, comprising NLRP3,

apoptosis-associated speck-like protein containing a CARD (ASC) and

caspase-1, recognizes a yet unknown H. pylori PAMP and/or

damage-associated molecular pattern (DAMP), and through caspase-1

cleavage, leads to the maturation and secretion of interleukin (IL)-1β and IL-18.

NLRX1 and NLRP12, two known negative regulators of NF-κB, appear to be

significantly down-regulated during H. pylori infection in vitro, however, their

exact role during H. pylori infection remains unclear. RIG-I recognizes H. pylori

5′-triphosphorylated RNA (5′-PRNA) while MDA-5 possibly recognizes H.

pylori dsRNA. The dendritic cell-specific intercellular adhesion molecule-3

grabbing non-integrin (DC-SIGN) recognizes H. pylori fucosylated ligands and

this interaction appears to counteract the pro-inflammatory immune response

to H. pylori. Only one generic cell type depicting all TLRs, NLRs, RLRs, and

CLRs involved in H. pylori recognition is shown here for simplicity. MAL,

MyD88 adaptor-like protein, also named TIRAP; TRAM, translocating

chain-associating membrane protein; TRIF, TIR domain containing adaptor

inducing interferon-beta protein; TBK-1, TANK-binding kinase 1; IRF3,

IFN-regulatory factor 3; TRAF6, TNF receptor-associated factor 6; IRAK,

interleukin 1 receptor-associated kinase; RAS, proto-oncogene ras; c-RAF,

proto-oncogene protein ras; RIP2, receptor-interacting

serine/threonine-protein kinase 2, also known as RICK; CARD9, caspase

activation and recruitment domain; MD-2, myeloid differentiation protein-2;

ILs: interleukins. Names in orange correspond to molecules with a probable

but not established role in the host response to H. pylori.

inflammation and subsequent carcinogenesis (118). Further, the

heat-shock protein 60, an immune-potent antigen of H. pylori,

has been shown to activate NF-κB and induce IL-8 production

through TLR2 and TLR4 pathways in gastric epithelial cells, a

phenomenon that is likely to contribute to the development of

gastric inflammation caused by H. pylori infection (117).

In addition, TLR9 appears to play an important role in

H. pylori recognition. Interestingly, Rad et al. (112) identified
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TLR9-mediated recognition of H. pylori DNA as a main H. pylori-

induced intracellular TLR signaling pathway in DCs. Further,

a study using a murine model of H. pylori infection has sug-

gested that TLR9 signaling is involved in the suppression of H.

pylori-induced gastritis in the early phase of infection via down-

regulation of Th1-type cytokines modulated by IFN-α (119). In

addition, a recent study has shown that the gastric epithelia of chil-

dren respond to H. pylori infection by increasing the expression of

TLR2, TLR4, TLR5, and TLR9, as well as the cytokines IL-8, IL-10,

and TNF-α (120).

Although TLR5 interaction with H. pylori induces only weak

receptor activation (121), TLR5 has been involved in the inflam-

matory response to H. pylori. An interesting publication by Smith

et al. (107), using HEK293 cells transfected with specific TLR

expression constructs and MKN45 cells expressing dominant neg-

ative versions of TLR2, TLR4, and TLR5, which block the activity

of wild-type forms of these receptors, has demonstrated that live

H. pylori induces NF-κB activation and chemokine gene expres-

sion due to ligation of TLR2 and TLR5. A further study that aimed

to explore the involvement of TLR2 and TLR5 in THP-1 cells and

HEK293 cell lines (stably transfected with TLR2 or TLR5) during

H. pylori infection, has indicated that H. pylori-induced expression

of TLR2 and TLR5 can qualitatively shift cag PAI-dependent to

cag PAI-independent pro-inflammatory signaling pathways with

possible impact on the outcome of H. pylori-associated diseases

(122). Given the established TLR5 evasion of α and ε Proteobac-

teria including H. pylori (123), the TLR5-mediated inflammatory

responses during H. pylori infection described by Smith et al. (107)

and Kumar Pachathundikandi et al. (122) are likely to be flagellin-

independent, and therefore, a still unknown H. pylori factor might

be responsible for this.

The importance of TLRs recognition during H. pylori infection

and GC development is further supported by the acquired char-

acteristics that enable H. pylori to survive in the human stomach

and cause chronic inflammation. For example, H. pylori LPS is

characterized by a modification of the lipid A component of LPS

that makes it less pro-inflammatory (124) and has been reported

to exhibit a 1000-fold reduction in bioactivity as compared to

Escherichia coli LPS (125). Also, the flagellin of this bacterium

has been shown to be poorly recognized due to modifications

in the TLR5 recognition site of the N-terminal D1 domain of

flagellin (123).

TOLL-LIKE RECEPTORS AND GASTRIC CARCINOGENESIS

While TLR2, TLR4, TLR5, and TLR9 appear to be important for

H. pylori recognition, their role in the evolution of gastritis to

more advanced lesions remains unclear. Interestingly, Schmausser

et al. (126) showed that TLR9 was not detectable in intestinal

metaplasia or dysplasia and was only focally detected in 6 out

of 22 gastric carcinomas, while TLR4 and TLR5 were strongly

expressed by gastric carcinomas. Consistently, a study by Pimentel-

Nunes et al. (127) showed a statistically significant trend for a

progressive increase of TLR2, TLR4, and TLR5 expression from

normal mucosa to gastric dysplasia (mean expression in normal

mucosa: 0.1, gastritis: 1.0, metaplasia: 2.2, and dysplasia: 2.8, P-

value <0.01), with dysplasia presenting more than 90% positive

epithelial cells showing strong expression (2.8, 95% CI: 2.7–3). In

addition, these authors showed a significant trend for decrease in

TOLLIP and PPARγ, two TLR signaling pathway inhibitors, which

was associated with increasing levels of CDX-2, a marker for ade-

nocarcinoma, from normal mucosa to carcinoma (P-value <0.05)

(128). Fernandez-Garcia et al. (129) have also reported increased

expression of TLR3, TLR4, and TLR9 in GC, and furthermore,

these authors noted that TLR3 expression by cancer cells was sig-

nificantly associated with a poor overall survival in patients with

resectable tumors, which lead them to suggest that TLR3 might be

an indicator of tumor aggressiveness. Similarly, Yakut et al. (130)

investigating the association between serum IL-1β, TLR4 levels,

pepsinogen I and II, gastrin 17, vascular endothelial growth fac-

tor, and H. pylori CagA status in patients with a range of gastric

precancerous lesions, concluded that serum TLR4 levels could be

used as a biomarker to differentiate individuals presenting with

dysplasia from those with other gastric precancerous lesions, the

mean TLR4 level in patients with dysplasia (0.56 ± 0.098 ng/mL)

being significantly higher than in patients with H. pylori posi-

tive chronic non-atrophic gastritis (0.10 ± 0.15 ng/mL), chronic

atrophic gastritis (0.06 ± 0.07 ng/mL), and intestinal metaplasia

(0.12 ± 0.18 ng/mL). Furthermore, while TLRs have been shown

to be expressed at the apical and basolateral pole of both nor-

mal gastric epithelial cells and in H. pylori gastritis, in metaplasia,

dysplastic, and neoplastic epithelial cells all TLRs are expressed

diffusely and homogeneously throughout the cytoplasm, with

no apparent polarization, which may suggest an increased acti-

vation of these diffusely over-expressed receptors during gastric

carcinogenesis (126, 128).

In recent years, TLRs have been associated with tumor devel-

opment and progression processes including cell proliferation,

epithelial–mesenchymal transition, angiogenesis, metastasis, and

immunosuppression. Interestingly, Chochi et al. (104) not only

showed that H. pylori augmented the growth of GC via the

LPS-TLR4 pathway but also found that this bacterium attenu-

ated the antitumor activity and IFN-γ-mediated cellular immu-

nity of human mononuclear cells. In addition, Song et al. (131)

have suggested that flagellin-activated TLR5 enhances the pro-

liferation of GC cells through an ERK-dependent pathway. Fur-

thermore, Tye et al. (132) have proposed a novel role for TLR2

in promoting gastric tumorigenesis independent of inflamma-

tion, whereby up-regulation of TLR2 within epithelial tumor

cells, rather than infiltrating inflammatory cells, by the uncon-

trolled activation of the oncogenic transcription factor STAT3,

promoted gastric tumor cell proliferation, and survival via up-

regulation of anti-apoptotic genes [e.g., BCL2-related protein A1

(BCL2A1),baculoviral IAP repeat containing 3 (BIRC3), and B-cell

CLL/lymphoma 3 (BCL3)]. Further, two processes that facilitate

carcinogenesis and involve TLRs have recently been described by

Li et al. (133). Using LPS-treated CD14-knockdown GC cells, these

authors showed that CD14, an important co-receptor in the TLR4

complex, promotes tumor cell epithelial–mesenchymal transition

and invasion through TNF-α (133).

In addition, the expression of tumor-associated molecules

known to be important in gastric carcinogenesis has been linked

to the activation of the TLR signaling pathway. For example,

prostaglandin-endoperoxide synthase 2 (PTGS2), which is also

termed cyclooxygenase 2 (COX2), a key enzyme that catalyzes
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the conversion of arachidonic acid to prostaglandins, has been

shown to play a pivotal role in gastric inflammation and carcino-

genesis (134). For example, a study by Chang et al. (108), using

clinical H. pylori isolates, has shown that H. pylori acts through

TLR2/TLR9 to activate both the PI-PLCγ/PKCα/c-Src/IKKα/β

and NIK/IKKα/β pathways, resulting in the phosphorylation and

degradation of IκBα, which in turn leads to the stimulation of

NF-κB and the expression of PTGS2.

Further, as compared with normal cells, cancer cells are more

metabolically active and generate more reactive oxygen species

(ROS), which affects cell survival. Several studies have suggested

that ROS can act as secondary messengers and control a range

of signaling cascades, leading to sustained proliferation of cancer

cells (135, 136). In the context of gastric carcinogenesis, H. pylori-

infected gastric epithelial cells have been shown to generate ROS

(137). Interestingly, Yuan et al. (138) recently suggested that TLR4

expression in GC correlated with tumor stage and that activation

of TLR4 contributed to GC cell proliferation via mitochondrial

ROS production through up-regulation of phosphorylated Akt

and NF-κB p65 activation and nuclear translocation.

However, the involvement of TLRs in GC might be more

complex than initially suspected as TLRs not only recognize anti-

genic determinants of viruses, bacteria, protozoa, and fungi, but

are also involved in the detection of damage-associated molecu-

lar patterns (DAMPs) (e.g., extracellular adenosine triphosphate,

hyaluran, extracellular glucose, monosodium urate crystals) (139).

Release of DAMPs, which are especially targeted by TLR2 and

TLR4 (140–145) during cancer progression may cause chronic

inflammation leading to down-regulation of the ζ chain of the

T-cell and NK cell activating receptors [for comprehensive infor-

mation on this topic see the review by Baniyash et al. (146)], which

entails T-cell and NK cell dysfunction, a phenomenon observed in

some malignancies such as GC (147, 148), colon (149), prostate

(150), cervical (151), and pancreatic cancer (152). In addition to

immunosuppression, DAMPS appear to facilitate other processes

during gastric carcinogenesis. For example, Wu et al. (153) have

recently showed that hyaluronan, derived from malignant cells,

induced long-lived tumor-associated neutrophils and subsequent

malignant cell migration in gastric carcinomas via a TLR4/PI3K

interaction.

Collectively, TLRs might be involved in both gastric carcino-

genesis mediated by H. pylori infection (a tumor-promoting con-

sequence of inflammatory responses) and in GC perpetuation

associated with immunosuppression (active evasion by cancer

cells from attack and elimination by immune cells) and increased

metastasis.

GENETIC POLYMORPHISMS INVOLVED IN THE TOLL-LIKE RECEPTOR

SIGNALING PATHWAY AND GASTRIC CANCER

In recent years, a number of investigations have attempted

to establish the relationship between polymorphisms in mol-

ecules of the TLR signaling pathway and risk of GC. Recent

studies, conducted in several populations, have shown associa-

tions between the polymorphisms TLR1 rs5743618 (Ile602Ser)

(154), TLR2 −196 to −174del (155–158), TLR2 rs3804099 (157),

TLR4 rs4986790 (Asp299Gly) (155, 157, 159), TLR4 rs4986791

(Thr399Ile) (160), TLR4 rs10116253 (161), TLR4 rs10983755

(162), TLR4 rs11536889 (+3725G/C) (155), TLR4 rs1927911

(161), TLR5 rs5744174 (158), TLR9 rs187084 (−1486 T/C) (163),

and CD14 rs2569190 (−260 C/T) (155, 164–167), and risk of

GC development in an ethnic-specific manner (Table 1). In addi-

tion, three polymorphisms located in the TLR4 mRNA promoter

region (sites −2081, −2026, and −1601) and TLR4 Thr135Ala at

the leucine-rich repeat (LRR), have been associated with poorly

differentiated GC (168, 169).

Interestingly, some of these polymorphisms including TLR4

Asp299Gly (159, 184), TLR4 Thr399Ile (184, 185), TLR4

rs10759932 (186), CD14-260 C/T (187), and TLR2 −196 to

−174del (157), appear to be involved in the biological continuum

that results in intestinal-type GC as they have also been associated

with gastric precancerous lesions (Table 2).

Given that some authors have failed to show specific associ-

ations between polymorphisms in the TLR signaling pathway,

especially in TLR2, TLR4, and CD14, and gastric precancerous

lesions/GC (157, 160, 162, 164, 172, 174–178, 180–183, 185, 188,

189), we performed the first global meta-analysis to assess the

role of TLR2, TLR4, and CD14 polymorphisms in gastric carcino-

genesis (155), in an attempt to clarify the limited and current

conflicting evidence, and to establish the true impact of the TLR

signaling pathway in GC. Our meta-analysis, which included 18

case–control studies conducted in Caucasian, Asian, and Latin

American populations, showed that TLR4 Asp299Gly was a defin-

itive risk factor for GC in Western populations (pooled OR: 1.87,

95% CI: 1.31–2.65). In addition, there was a potential associa-

tion between TLR2 −196 to −174 and GC in Japanese (pooled

OR: 1.18, 95% CI: 0.96–1.45) (155). Interestingly, a recent meta-

analysis on TLR2 −196 to −174 and the risk of GC, conducted by

Cheng et al. (190), failed to reproduce the findings in our meta-

analysis, however, their stratification by ethnicity analyses included

subjects from both Japan and China, which might explain the

different outcomes. A further meta-analysis conducted by Chen

et al. (191) that included 21 case–control studies showed an over-

all increased risk of GC in individuals harboring TLR4 Asp299Gly

(Allele analysis, OR: 1.84, 95% CI: 1.41–2.39) and TLR4 Thr399Ile

(Allele analysis, OR: 1.97, 95% CI: 1.22–3.18). Consistently, in

stratified analyses by ethnicity, these authors only found an asso-

ciation between TLR4 Asp299Gly (Allele analysis, OR: 1.90, 95%

CI: 1.43–2.51) and TLR4 Thr399Ile (Allele analysis, OR: 2.84,

95% CI: 1.56–5.15) in Caucasian individuals (191). Further, Zhao

et al. (192) in an updated version of a meta-analysis that was

initially conducted by Zhang et al. (193), on the risk of TLR4

polymorphisms and risk of cancer in general, found a significant

association with GC after stratifying by cancer type (OR: 2.00,

95% CI: 1.53–2.62). In addition, Zou et al. (194), through a meta-

analysis that included 10 case–control studies, not only found that

TLR4 Asp299Gly was associated with GC (OR: 1.87, 95% CI: 1.44–

2.44), especially non-cardia GC (OR: 2.03, 95% CI: 1.51–2.72), but

also gastric precancerous lesions (OR: 2.47, 95% CI: 1.57–3.88),

especially in H. pylori-infected individuals (OR: 3.43, 95% CI:

1.92–6.13).

Given limited evidence regarding the association between poly-

morphisms in other molecules of the TLR signaling pathway and

the risk of GC, and the fact that 42% of cases of GC worldwide

occur in the Chinese population, we conducted a case–control
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Table 1 | Genetic polymorphisms in theToll-like receptor signalling pathway that have been studied in relation to gastric cancer (170).

Gene Polymorphism Reference Population GC subtype Total

sample

size

OR, 95% CIa

TLR1 rs5743618 (Ile602Ser) Yang et al. (154) German NS 284b OR: 0.40, 95% CI: 0.22–0.72

TLR2 −196 to −174del Castaño-Rodríguez et al. (170) Chinese Non-cardia 310 OR: 1.17, 95% CI: 0.81–1.71

de Oliveira et al. (157) Brazilian Non-cardia 440 OR: 2.32, 95% CI: 1.56–3.46

Zeng et al. (158) Chinese NS 744 OR: 0.66, 95% CI: 0.48–0.90

Hishida et al. (172) Japanese NS 1680 OR: 1.17, 95% CI: 0.79–1.73c

Tahara et al. (156) Japanese Non-cardia 744 OR: 6.06, 95% CI: 1.86–19.72

rs3804099 de Oliveira et al. (157) Brazilian Non-cardia 440 OR: 2.32, 95% CI: 1.56–3.46

rs3804100 Castaño-Rodríguez et al. (170) Chinese Non-cardia 310 OR: 3.16, 95% CI: 1.38–7.24

TLR4 rs4986790 (Asp299Gly) Qadri et al. (174) Indian NS 330 OR: 1.15, 95% CI: 0.66–2.03

de Oliveira et al. (157) Brazilian Non-cardia 440 OR: 2.01, 95% CI: 1.06–3.81

Schmidt et al. (175) Chinese Non-cardia 222 OR: 0.23, 95% CI: 0.03–1.81

Santini et al. (160) Italian NS 322 OR: 0.97, 95% CI: 0.37–1.14

Trejo de la O (176) Mexican NS 182 OR: 2.70, 95% CI: 0.36–10.70

Hold et al. (159) Caucasiand Non-cardia 731 OR: 2.50, 95% CI: 1.60–4.00

Hold et al. (159) Caucasiane Cardia and non-cardia 395 OR: 2.10, 95% CI: 1.10–4.20

Garza-Gonzalez et al. (177) Mexican Non-cardia 314 OR: 1.00, 95% CI: 0.30–2.80

rs4986791 (Thr399Ile) Qadri et al. (174) Indian NS 330 OR: 1.39, 95% CI: 0.70–2.78

de Oliveira et al. (157) Brazilian Non-cardia 440 OR: 1.81, 95% CI: 0.64–5.15

Santini et al. (160) Italian NS 322 OR: 3.62, 95% CI: 1.27–6.01

Trejo de la O (176) Mexican NS 263 OR: 1.40, 95% CI: 0.36–5.38

Garza-Gonzalez et al. (177) Mexican Non-cardia 314 OR: 0.25, 95% CI: 0.01–1.80

rs10116253 Castaño-Rodríguez et al. (170) Chinese Non-cardia 310 OR: 0.58, 95% CI: 0.34–1.00

Huang et al. (161) Chinese NS 511 OR: 0.33, 95% CI: 0.18–0.60

rs10759931 Castaño-Rodríguez et al. (170) Chinese Non-cardia 310 OR: 0.56, 95% CI: 0.33–0.97

rs10759932 Castaño-Rodríguez et al. (170) Chinese Non-cardia 310 OR: 0.59, 95% CI: 0.34–1.04

Huang et al. (178) Chinese Cardia and non-cardia 1962 OR: 1.03, 95% CI: 0.74–1.45

rs10983755 Kim et al. (179) Korean Non-cardia 974 OR: 1.41, 95% CI: 1.01–1.97

rs11536889 Castaño-Rodríguez et al. (170) Chinese Non-cardia 310 OR: 3.58, 95% CI: 1.20–10.65

Kupcinskas et al. (180) Caucasianf NS 349 OR: 1.03, 95% CI: 0.62–1.71

Hishida et al. (181) Japanese NS 1639 OR: 1.04, 95% CI: 0.66–1.63

rs1927911 Castaño-Rodríguez et al. (170) Chinese Non-cardia 310 OR: 0.47, 95% CI: 0.27–0.82

Huang et al. (161) Chinese NS 511 OR: 0.37, 95% CI: 0.21–0.70

rs2149356 Castaño-Rodríguez et al. (170) Chinese Non-cardia 310 OR: 0.59, 95% CI: 0.34–1.02

TLR5 rs5744174 Zeng et al. (158) Chinese NS 744 OR: 1.43, 95% CI: 1.03–1.97

TLR9 rs187084 (−1486 T/C) Wang et al. (163) Chinese Cardia and non-cardia 628 OR: 1.63, 95% CI: 1.01–2.64

CD14 rs2569190 (−260 C/T) Castaño-Rodríguez et al. (170) Chinese Non-cardia 310 OR: 0.72, 95% CI: 0.5–1.02

Companioni et al. (164) Caucasiang Cardia and non-cardia 1649 OR: 0.92, 95% CI: 0.77–1.09

Li et al. (133) Tibetan NS 462 OR: 2.16, 95% CI: 1.34–3.47

Kim et al. (179) Korean Non-cardia 974 OR: 0.97, 95% CI: 0.77–1.23h

Hold et al. (182) Caucasiand Non-cardia 716 OR: 1.00, 95% CI: 0.70–1.40

Hold et al. (182) Caucasian e Cardia and non-cardia 395 OR: 0.80, 95% CI: 0.50–1.30

Tahara et al. (166) Japanese Non-cardia 237 OR: 0.31, 95% CI: 0.12–0.78

Zhao et al. (167) Chinese NS 940 OR: 1.95, 95% CI: 1.20–3.16

Wu et al. (183) Chinese Non-cardia 414 OR: 0.98, 95% CI: 0.75–1.29

(Continued)
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Table 1 | Continued

Gene Polymorphism Reference Population GC subtype Total

sample

size

OR, 95% CIa

MD-2 rs11465996 Castaño-Rodríguez et al. (170) Chinese Non-cardia 310 OR: 4.83, 95% CI: 2.02–11.57

rs16938755 Castaño-Rodríguez et al. (170) Chinese Non-cardia 310 OR: 3.80, 95% CI: 1.48–9.77

LBP rs2232578 Castaño-Rodríguez et al. (170) Chinese Non-cardia 310 OR: 3.07, 95% CI: 1.24–7.59

TIRAP rs7932766 Castaño-Rodríguez et al. (170) Chinese Non-cardia 310 OR: 6.04, 95% CI: 1.89–19.36

GC, gastric cancer; OR, odds ratio; CI, confidence intervals; NS, not specified.

aOR and 95% CI correspond to allele or genotype analysis, depending on available information in the article.

bThe control group included individuals with high risk gastritis (pangastritis, corpus-predominant gastritis with or without the presence of gastric atrophy, and intestinal

metaplasia in either antrum or corpus).

cCompared to gastric atrophy controls.

dThe study population is from Poland.

eThe study population is from the United States. No significant association was found with cardia GC.

fSubjects from Germany, Lithuania and Latvia.

gSubjects from France, Italy, Spain, United Kingdom, The Netherlands, Greece, Germany, Sweden, Denmark and Norway.

hEffect size for intestinal-type GC, diffuse type: OR: 0.99, 95% CI: 0.78–1.26.

study comprising 310 ethnic Chinese individuals (87 non-cardia

GC cases and 223 controls with functional dyspepsia), in which

25 polymorphisms involved in the TLR signaling pathway were

investigated (170). Seven polymorphisms showed significant asso-

ciations with GC (TLR4 rs11536889, TLR4 rs10759931, TLR4

rs1927911, TLR4 rs10116253, TLR4 rs10759932, TLR4 rs2149356,

and CD14 −260 C/T). In multivariate analyses, TLR4 rs11536889

remained a risk factor for GC even after adjustment (OR: 3.58,

95% CI: 1.20–10.65). Further, TLR4 rs10759932 decreased the

risk of H. pylori infection (OR: 0.59, 95% CI: 0.41–0.86) (170).

Strikingly, statistical analyses assessing the joint effect of H. pylori

and the selected polymorphisms revealed that H. pylori-infected

individuals harboring TLR2 rs3804100, TLR2 −196 to −174del,

TLR4 rs11536889, MD-2 rs11465996, MD-2 rs16938755, LBP

rs2232578, and TIRAP rs7932766 were at most risk of developing

GC (Table 1) (170).

The functional relevance of a number of these polymorphisms

has already been established. For example, two polymorphisms

in TLR4, Asp299Gly, and Thr399Ile, have been shown to dis-

rupt the normal structure of the extracellular domain of TLR4,

and thus, as a result, may reduce responsiveness to H. pylori by

diminishing the binding affinity of the bacterial ligands (195). In

addition, the TLR4 rs11536889 polymorphism, which is located in

the center of the 2818-bp TLR4 3′ untranslated region (UTR), has

recently been shown by Sato et al. (196) to contribute to the trans-

lational regulation of TLR4, possibly by binding to microRNAs.

Further, these authors elegantly demonstrated that subjects har-

boring TLR4 rs11536889 exhibited higher levels of TLR4 receptors

on monocytes and secreted higher levels of IL-8 in response to LPS

(196). In addition, TLR4 rs10759932 has been shown to decrease

the expression of forkhead box protein P3 (FOXP3), the most spe-

cific marker for natural regulatory T (Treg) cells (197). FOXP3+

Treg cells, which suppress the immune response of antigen-specific

T cells, have been demonstrated to play a key role in immuno-

logic tolerance (198). Notably, recent studies have not only shown

that in vivo depletion of FOXP3+ Treg cells in H. pylori-infected

mice leads to increased gastric inflammation and reduced bacter-

ial colonization (199), but also recruitment of FOXP3+ Treg cells

is increased in H. pylori-related human disorders including gas-

tritis (200, 201), duodenal ulcer (202), and GC (200, 203, 204),

suggesting that FOXP3+ Treg cells might contribute to lifelong

persistence of H. pylori infection. Also, TLR1 rs5743618 appears

to impair the surface expression of TLR1 of NK cells and NK cells-

derived IFN-γ production (154). Further, TLR2 −196 to −174

has been associated with decreased transcriptional activity of TLR2

(205, 206). Similarly, it has been demonstrated that TLR9 rs187084

down-regulates TLR9 expression (207).

Further, CD14 has been shown to activate macrophages/

monocytes to release Th1-type cytokines including IL-12, thus,

establishing the chronic inflammation stimulated by H. pylori

infection (208–210). A Th1 predominant response has been exten-

sively associated with the pathogenesis of H. pylori-related gastric

disease (211–213). Currently, however, controversy exists regard-

ing the influence of CD14 −260 on expression of soluble CD14

(sCD14). According to a number of studies, the CD14 −260 T

allele is believed to increase sCD14 production and therefore,

serum sCD14 levels (214–217). In contrast, it has been reported

that elevated sCD14 levels are associated with H. pylori infec-

tion, especially in subjects with the CD14 −260 CC genotype

(167). Alternatively, others have argued that this polymorphism

has no effect on transcription (218). Since the evidence to date

is conflicting, more functional studies are required to clarify this

issue.

Overall, it is clear that genetic variability in genes of the TLR

signaling pathway plays an important role in GC pathogene-

sis. Investigations of polymorphisms in different molecules of

this pathway among different populations could provide novel

insights into targeted treatment in genetically susceptible individ-

uals, and thus, improve primary and secondary prevention of H.

pylori-related GC in high risk populations.
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Table 2 | Genetic polymorphisms in theToll-like receptor signalling pathway that have been studied in relation to gastric precancerous lesions.

Reference Journal Population Precancerous

lesion

Cases Controls Total Polymorphism OR (95% CI)a

Fan et al. (186) Human Immunology Chinese IM 193 312 505 TLR4 Asp299Gly 0.89 (0.46–1.72)

TLR4 Thr399Ile 1.01 (0.33–3.14)

TLR4 rs10759932 0.42 (0.29–0.62)

Dysplasia 140 312 452 TLR4 Asp299Gly 0.81 (0.38–1.73)

TLR4 Thr399Ile 0.83 (0.22–3.19)

TLR4 rs10759932 0.62 (0.41–0.93)

de Oliveira et al. (157) Digestive Diseases and

Science

Brazilian CG 229 240 469 TLR4 Asp299Gly 1.60 (0.84–3.06)

TLR4 Thr399Ile 1.08 (0.35–3.39)

TLR2 −196–174 del 1.52 (1.01–2.29)

Kupcinskas et al. (180) BMC Medical Genetics Caucasian CG, AG and IM 222 238 460 TLR4 rs11536889 0.94 (0.62–1.44)

Zeng et al. (158) Cancer Epidemiology,

Biomarkers and

Prevention

Chinese IM 496 496 992 TLR2 −196–174 del 0.99 (0.65–1.52)

TLR5 rs5744174 1.55 (0.78–3.11)

Dysplasia 350 496 846 TLR2 −196–174 del 0.99 (0.73–1.35)

TLR5 rs5744174 1.73 (0.84–3.55)

Rigoli et al. (184) Anti-Cancer Research Caucasian CG 60b 87 147 TLR4 Asp299Gly 4.80 (1.93–12.35)

TLR4 Thr399Ile 3.73 (1.36–10.14)

Hishida et al. (172) Gastric Cancer Japanese AGc 494 443 937 TLR2 −196–174 del 1.08 (0.70–1.67)

Hishida et al. (181) Helicobacter Japanese AGc 536 1056 1592 TLR4 rs11536889 1.20 (0.76–1.89)

Murphy et al. (188) European Journal of

Gastroenterology and

Hepatology

Caucasian CG 91 96 187 TLR4 Asp299Gly 1.12 (0.49–2.52)

90 91 181 TLR4 Thr399Ile 0.97 (0.44–2.11)

IM 63 96 159 TLR4 Asp299Gly 1.33 (0.49–3.59)

62 91 153 TLR4 Thr399Ile 0.99 (0.38–2.63)

Hofner et al. (189) Helicobacter Caucasian CG 136d 75 211 TLR4 Asp299Gly 1.25 (0.53–2.95)

TLR4 Thr399Ile 0.94 (0.39–2.24)

Achyut et al. (185) Human Immunology Indian AG 68 200 268 TLR4 Asp299Gly 1.50 (0.55–3.82)

TLR4 Thr399Ile 4.2 (1.13–15.73)

IM 50 200 250 TLR4 Asp299Gly 1.10 (0.32–3.50)

TLR4 Thr399Ile 4.7 (1.52–14.63)

Hold et al. (159) Gastroenterology Caucasian AG 45e 100 145 TLR4 Asp299Gly 11.0 (2.50–48.0)

Kato et al. (187) Digestive Diseases and

Science

Venezuelan AG 289 1033 1322 CD14 −260 C/T 1.17 (0.81–1.70)

IM 543 1033 1575 CD14 −260 C/T 1.45 (1.06–1.99)

Dysplasia 118 1033 1151 CD14 −260 C/T 1.44 (0.82–2.55)

CG, chronic gastritis; AG, atrophic gastritis; IM, intestinal metaplasia; OR, odds ratio; CI, confidence intervals.

aOR and 95% CI correspond to allele or genotype analysis, depending on available information in the article.

bOnly individuals with corpus-predominant chronic gastritis were included in the meta-analysis (individual presenting antrum-predominant gastritis were excluded).

cAnalyses including only H. pylori seropositive individuals.

dOnly patients with chronic gastritis were included in the meta-analysis (patients presenting duodenal ulcer were excluded).

eCases were GC patients’ relatives with gastric atrophy and infected with H. pylori from a Scotland population.

NOD-LIKE RECEPTORS AND HELICOBACTER

PYLORI -RELATED GASTRIC CANCER

NOD-LIKE RECEPTORS RECOGNITION OF HELICOBACTER PYLORI

The NLR family not only recognizes PAMPs but also DAMPs in the

cytoplasm (93). The NLRs characteristic structure includes a cen-

tral nucleotide-binding and oligomerization (NACHT) domain

that is present in all NLR family members, a C-terminal LRRs

and an N-terminal caspase recruitment (CARD) or pyrin (PYD)

domain.

Based on phylogenetic analysis of NACHT domains, the NLR

family has been shown to comprise three subfamilies: (1) the

NOD family which includes NOD1-2, NOD 3 (NLRC3), NOD4
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(NLRC5), NOD5 (NLRX1), and CIITA, (2) the NLRPs including

NLRP1-14 (also known as NALPs), and (3) the IPAF subfamily,

which consists of IPAF (NLRC4) and NAIP (93).

The NACHT domain belongs to a family of P-loop NTPases

known as the signal transduction ATPases with numerous domains

(STAND) (219). This domain permits activation of the signal-

ing complex via adenosine ATP-dependent oligomerization (94).

NACHT domain oligomerization is essential for the activation of

NLRs, forming high molecular weight complexes, probably hexa-

mers or heptamers that characterize inflammasomes (molecular

complexes involved in the activation of inflammatory caspases for

the maturation and secretion of IL-1β, IL-18, and possibly IL-

33) and NOD signalosomes (complexes that are assembled upon

oligomerization of NOD1 or NOD2 and lead to NF-κB activa-

tion through the receptor-interacting protein-2) (94). CARD and

PYD are death domains that mediate homotypic protein–protein

interactions for down-stream signaling (93, 94). These domains

are characterized by six α helices that form trimers or dimers with

other members of the same subfamily (94). The third domain, the

LRR region, has been implicated in ligand sensing and autoreg-

ulation of not only NLRs but TLRs (93, 94). The LRR is formed

by tandem repeats of a structural unit consisting of a β strand

and an α helix and is composed of 20–30 amino acids that form a

horse-shoe shaped structure rich in the hydrophobic amino acid

leucine (220). The NLRPs LRR gene is made up of tandem repeats

of exons of exactly 171 nucleotides, which encode one central

LRR and two halves of the neighboring LRRs (221). This partic-

ular modular organization possibly allows extensive alternative

splicing of the LRR region leading to maximum variability in

the ligand-sensing unit (94). However, a recent publication by

Tenthorey et al. (222) analyzing a panel of 43 chimeric NAIPs,

showed that LRR was unnecessary for NAIP/NLRC4 inflamma-

some ligand specificity, leading them to propose a model in which

NAIP activation is instead triggered by ligand binding to NACHT-

associated helical domains. This recent evidence suggests that

the ligand-sensing function of the LRR domain in NLRs, which

has been supported primarily by analogy to the well-established

ligand-sensing function of the LRR region in TLRs, needs to be

re-examined.

The most widely studied NLRs during H. pylori infec-

tion are NOD1 and NOD2, which are expressed in epithe-

lial and antigen-presenting cells, and are known to specifically

recognize peptidoglycan-derived peptides (γ-d-glutamyl-meso-

diaminopimelic acid and muramyl dipeptide, respectively). An

early study, attempting to determine the mechanism whereby H.

pylori delivers peptidoglycan to cytosolic host NOD1, demon-

strated that H. pylori peptidoglycan is delivered to the host

cell via a type IV secretion system (223). More recently, Hut-

ton et al. (224) showed, for the first time, that cholesterol-rich

microdomains called lipid rafts, were important for the type IV

secretion system-dependent peptidoglycan delivery and subse-

quent NF-κB activation and IL-8 production, mediated by NOD1.

Interestingly, Kaparakis et al. (225) reported a novel mechanism

in Gram-negative bacteria, including H. pylori, for the delivery of

peptidoglycan to cytosolic NOD1 in host cells that involves outer

membrane vesicles that enter epithelial cells through lipid rafts.

In addition, Necchi et al. (226) demonstrated the formation of

a particle-rich cytoplasmic structure (PaCS) in H. pylori-infected

human gastric epithelium having metaplastic or dysplastic foci,

where VacA, CagA, urease, outer membrane proteins, NOD1

receptor, ubiquitin-activating enzyme E1, polyubiquitinated pro-

teins, proteasome components, and potentially oncogenic proteins

like SHP-2 and ERKs colocalized, inferring that this structure

is likely to modulate inflammatory and proliferative responses

during H. pylori infection.

The recent finding that NF-κB and AP-1 complexes can be

physically translocated to the nucleus in response to NOD1 acti-

vation has led to the view that NOD1 is likely to be essential for

the induction of both NF-κB and AP-1 activation during H. pylori

infection (227). A number of studies have shown up-regulation

of NOD1 expression in diverse human cell lines challenged with

H. pylori in a cag PAI-dependent manner (228–230). Further, H.

pylori cag PAI-positive strains have recently been shown to activate

the NOD1 pathway through two components of the IFN-γ signal-

ing pathway,STAT1 and IRF1 (228). Similarly, expression of NOD2

was shown to significantly sensitize HEK293 cells to H. pylori-

induced NF-κB activation in a cag PAI-dependent manner (231).

Further, NOD2, but not NOD1, seems to be required for induction

of pro-IL-1β and NLRP3 in H. pylori-infected DCs (232).

A limited number of studies have assessed the interaction

between NLRPs and other inflammasome-associated molecules,

and H. pylori. NLRPs represent the largest NLR subfamily (14

genes have been identified in humans) and are believed to be

the scaffolding proteins of inflammasomes (221, 233). NLRPs

interact and recruit the adaptor apoptosis-associated speck-like

protein (ASC) via PYD-PYD interaction (94). ASC (also known

as PYCARD), a key component required for inflammasome for-

mation, is formed by an N-terminal PYD and a C-terminal CARD

(234, 235). This interaction leads to the recruitment of caspase-1,

an intracellular aspartate specific cysteine protease, which subse-

quently leads to the maturation and release of pro-inflammatory

cytokines (236).

An early study by Tomita et al. (237) demonstrated that in

H. pylori positive patients antral IL-18 mRNA expression was

increased as compared with H. pylori negative patients, however,

mature IL-18 protein and active caspase-1 were found to be present

in both infected and non-infected gastric mucosa. Interestingly,

in the following year, Potthoff et al. (238) reported activation of

caspase-3, -8, and -9, but not caspase-1, in AGS cells challenged

with H. pylori. However, this finding is in contrast with subse-

quent studies, which have demonstrated an important role for

NLRPs and inflammasome-related molecules in H. pylori infec-

tion. For example, Basak et al. (96) demonstrated that H. pylori

LPS could activate caspase-1 through Rac1/PAK1 signaling, and

that activated caspase-1 played a role in LPS-induced IL-1β matu-

ration (96). Further, ASC-deficient mice challenged with H. pylori

have been shown to exhibit higher bacterial loads and signifi-

cantly lower levels of gastritis, when compared with wild-type

mice, and were incapable of producing IL-1β or IL-18 and pro-

duced less INF-γ in response to H. pylori infection (239). Later,

Hitzler et al. (240) showed in both cultured DCs and in vivo that

H. pylori infection activates caspase-1, leading to IL-1β/IL-18 pro-

cessing and secretion. Consistently, three studies, using human GC

cell lines, gastric tissue, and murine models, confirmed increased
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expression of caspase-1, IL-1β, and IL-18 in H. pylori-infected

cells (171, 241, 242). Further, Jiang et al. (243), also using a murine

model, have reported the expression of NLRP3 inflammasome-

related molecules as well as serum IL-1β, IL-18, and IL-33 levels to

be significantly increased in H. pylori-infected mice. More recently,

a study by Kim et al. (232) has shown that secretion of IL-1β by

DCs infected with H. pylori requires TLR2, NOD2, and the NLRP3

inflammasome.

Given that little is known about the role of NLRPs, inflamma-

somes, or other molecules involved in the NLR signaling pathways

in response to H. pylori infection, we recently assessed the gene

expression of 84 different molecules involved in the NLR signal-

ing pathways, through quantitative real-time PCR, using THP-

1-derived macrophages infected with two strains of H. pylori,

GC026 (GC) and 26695 (gastritis) (173). Our gene expression

analyses showed five genes encoding NLRs to be significantly

regulated in H. pylori-challenged cells (NLRC4, NLRC5, NLRP9,

NLRP12, and NLRX1) (173). Interestingly, NLRP12 and NLRX1,

two known NF-κB negative regulators, were markedly down-

regulated, while NFKB1 and several NF-κB target genes encod-

ing pro-inflammatory cytokines (IFNB1, IL12A, IL-12B, IL6, and

TNF), chemokines (CXCL1, CXCL2, and CCL5) and molecules

involved in carcinogenesis (PTGS2 and BIRC3) were markedly up-

regulated, in THP-1 cells infected with a highly virulent H. pylori

strain isolated from a GC patient. These findings highlight the

relevance of the NLR signaling pathways in gastric carcinogenesis

and its close interaction with NF-κB (173).

Overall, current evidence clearly shows that, in response to H.

pylori, members of the NOD and NLRP subfamilies are critical for

generating mature pro-inflammatory cytokines/chemokines that

are crucial for Th1 responses and lead to H. pylori-related gastric

disorders.

NOD-LIKE RECEPTORS AND GASTRIC CARCINOGENESIS

The role of the NLR signaling pathways in the biological contin-

uum that characterizes GC remains relatively unexplored as a very

limited number of studies have addressed this issue. For exam-

ple, Allison et al. (228) have shown that NOD1 expression was

significantly increased in human gastric biopsies displaying severe

gastritis, when compared with those without gastritis, as well as in

gastric tumor tissues, as compared with paired non-tumor tissues.

In contrast, Jee et al. (244), who analyzed human GC tissues and

GC cell lines, showed that a significant decrease in the expression

of caspase-1 was associated with poor survival and was inversely

correlated with p53 expression.

Given the reported interaction of H. pylori with NLRs and the

importance of this in the development of gastric inflammation and

subsequent carcinogenesis, as well as the production of DAMPs

during tumor formation (245), further comprehensive studies of

the functional relevance of NLRs activation during chronic gastri-

tis, atrophic gastritis, intestinal metaplasia, dysplasia, and GC are

clearly warranted.

GENETIC POLYMORPHISMS INVOLVED IN THE NOD-LIKE RECEPTOR

SIGNALING PATHWAY AND GASTRIC CANCER

The majority of studies examining the association between poly-

morphisms involved in the NLR signaling pathways and the risk

of GC have focused on NOD1 and NOD2 polymorphisms. Stud-

ies, conducted in a number of populations, have investigated

the association between the polymorphisms NOD1 rs2907749

(246), NOD1 rs7789045 (246), NOD1 rs2075820 (E266K) (179,

247), NOD1 rs5743336 (180), NOD2 rs7205423 (246), NOD2

rs7202124 (164), NOD2 rs2111235 (164), NOD2 rs5743289 (164),

NOD2 rs2066842 (P268S) (248, 249), NOD2 rs2066844 (R702W)

(250), NOD2 rs2066845 (G908R) (184), and NOD2 rs2066847

(L1007insC) (184, 250), and risk of gastric precancerous lesions

and GC (Table 3). Further, a recent meta-analysis by Liu et al.

(251) that included six case–control studies has shown consistent

associations between NOD2 R702W, G908R, and L1007insC, and

risk of GC.

Given the documented relevance of other NLRs in H. pylori

infection and related GC, and that polymorphisms in genes such

as NLRP3 (252–255) and CARD8 (255, 256) have been associated

with inflammatory gastrointestinal disorders, we addressed, for the

first time, the association between 51 polymorphisms in six genes

(NLRP3, NLRP12, NLRX1, CASP1, ASC, and CARD8) involved in

the NLR signaling pathways and risk of GC in a high risk Chi-

nese population (173). In this study, we found novel associations

between CARD8 rs11672725 and the risk of GC, and NLRP12

rs2866112 and the risk of H. pylori infection (Table 3). Fur-

ther, we showed that the concomitant presence of polymorphisms

involved in the NLR signaling pathways (CARD8, NLRP3, CASP1,

and NLRP12) and H. pylori infection dramatically increased the

risk of GC in Chinese (Table 3) (173).

The functional relevance of a number of these polymorphisms

has been examined. For example, the introduction of NOD2

R702W, a polymorphism located in the LRR of NOD2, into the

HEK293 cell line, resulted in abrogation of H. pylori-induced

activation of NF-κB signaling (231). Further, Maeda et al. (257)

observed increased NF-κB activation in response to muramyl

dipeptide in mice harboring a NOD2 mutation that is homolo-

gous to NOD2 rs5743293 (3020insC) in humans. However, it is

worth noting that the conclusions described by Maeda et al. (257)

must be interpreted with care given that the authors subsequently

found a duplication of the 3’ end of the wild-type Nod2 locus,

including exon 11, which was targeted by the mutation, and there-

fore, they are currently working to recreate a mutant strain without

such a duplication.

Given that investigation of the role of polymorphisms involved

in the NLR signaling pathways in GC is a relatively recent field

of research, further studies are required to assess the associa-

tion between these polymorphisms and GC in a range of human

populations, especially those at high risk of GC.

OTHER PATTERN-RECOGNITION RECEPTORS AND HELICOBACTER

PYLORI -RELATED GASTRIC CANCER

A further two PRR subfamilies, RLRs and CLRs, have been studied

in relation to H. pylori infection and gastric carcinogenesis. It is

well known that RLRs (RIG-I, MDA-5, and LGP2) induce type

I IFN in response to different RNA viruses, however, investiga-

tion on the role of RIG-I-like receptors in the recognition of RNA

derived from intracellular bacteria is very limited. Interestingly,

a study by Rad et al. (112), which used mice lacking simultane-

ously up to four different TLRs, apart from identifying TLR2 and

www.frontiersin.org July 2014 | Volume 5 | Article 336 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Castaño-Rodríguez et al. PRRs and gastric cancer

Table 3 | Genetic polymorphisms in the NOD-like receptor signalling pathway that have been studied in relation to gastric precancerous lesions

and gastric cancer.

Reference Journal Population Gastric lesion Study

sample

size

Polymorphism OR (95% CI)a

Castaño-Rodríguez

et al. (173)

PLoS One Chinese GC 310 CARD8 rs11672725 4.80 (1.39–16.58)

CARD8 rs10405717 2.46 (1.04–5.84)b

CARD8 rs2043211 0.19 (0.058–0.63)b

NLRP3 rs12079994 4.15 (1.70–10.12)b

NLRP3 rs3806265 3.33 (1.09–10.13)b

NLRP3 rs4612666 4.03 (1.15–14.16)b

NLRP12 rs2866112 4.73 (2.06–10.88)b

NLRP12 rs4419163 2.42 (1.12–5.23)b

NLRX1 rs10790286 4.00 (1.66–9.61)b

CASP1 rs2282659 4.65 (1.67–12.95)b

CASP1 rs530537 4.65 (1.67–12.95)b

CASP1 rs61751523 4.56 (1.57–13.28)b

Companioni

et al. (164)

International Journal of

Cancer

Caucasian GC 1649 NOD2 rs7202124 0.74 (0.61–0.89)

NOD2 rs2111235 0.77 (0.64–0.93)

NOD2 rs5743289 3.76 (1.33–10.63)c

Kim et al. (179) Helicobacter Korean IM 412 NOD1 rs2075820 (E266K) 1.0 (0.74–1.34)d

Wang et al. (246) World Journal of

Gastroenterology

Chinese GC 456 NOD1 rs2907749 0.50 (0.26–0.95)

NOD1 rs7789045 2.14 (1.20–3.82)

NOD2 rs7205423 0.82 (0.39–1.72)

Kupcinskas et al.

(180)

BMC Medical Genetics Caucasian GC 574 NOD1 rs5743336 1.01 (0.48–2.16)

CG, AG and IM 0.78 (0.40–1.49)

Rigoli et al. (184) Anti-cancer Research Caucasian CG 147 NOD2 G908R 5.18 (1.65–16.09)

NOD2 L1007insC 3.66 (1.13–11.80)

Kara et al. (247) Clinical and

Experimental Medicine

Turkish AG 150 NOD1 rs2075820 (E266K) 13.35 (5.12–34.82)

IM 2.71 (1.26–5.80)

Hnatyszyn et al.

(248)

Experimental and

Molecular Pathology

Caucasian CG, AG, IM and GC 244 NOD2 rs2066842 (P268S) 2.2 (1.40–3.30)

Angeletti

et al. (250)

Human Immunology Caucasian GC 326 NOD2 rs2066844 (R702W) 4.1 (1.75–9.42)d

NOD2 rs2066845 (G908R) 0.56 (0.17–1.65)d

NOD2 rs2066847 (L1007insC) 16.10 (3.83–67.81)d

Wex et al. (249) Anti-cancer Research Caucasian GC 324 NOD2 rs2066842 (P268S) 1.5 (1.05–2.17)

NOD2 rs2066844 (R702W) 1.3 (0.66–2.55)

Hofner et al. (189) Helicobacter Caucasian CG 211 NOD1 rs2075820 (E266K) 1.06 (0.66–1.73)

GC, gastric cancer; IM, intestinal metaplasia; AG, atrophic gastritis; GC, chronic gastritis; OR, odds ratio; CI, confidence intervals.

aOR and 95% CI correspond to allele or genotype analysis, depending on available information in the article.

bOnly in H. pylori-infected individuals.

cSignificant only in non-cardia H. pylori CagA negative individuals.

dResults obtained through a Fisher’s exact probability test (two-tailed P-values) conducted in the current review using the information provided in the original article.

TLR9 to be important H. pylori recognizing PRRs, also showed

that H. pylori 5′-triphosphorylated RNA can be sensed by RIG-I

and can contribute to the TLR-independent type I IFN response

to this bacteria in DCs. Further, Tatsuta et al. (258) have recently

shown that MDA-5 expression was significantly increased in the

human gastric antral mucosa of H. pylori-infected individuals. In

addition, these authors showed that increased MDA-5 levels corre-

lated with atrophy and intestinal metaplasia in the corpus of these

individuals (258).

C-type lectin receptors bind to carbohydrates (mannose- or

fucose-containing glycans) present on pathogens to tailor immune

responses to viruses, bacteria, and fungi. DC-specific intercellular
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FIGURE 3 | Pattern-recognition receptors and gastric carcinogenesis.

Based on this comprehensive literature review, we propose a synergistic

interaction between pattern-recognition receptors (PRRs) and Helicobacter

pylori in gastric carcinogenesis. The association between PRRs and risk of

GC might be a continuum commencing in childhood. Individuals harboring

polymorphisms in PRRs could not only be more susceptible to acquisition

of H. pylori in childhood but also would present deregulation of NF-κB in

gastric epithelial and immune cells, and subsequent uncontrolled

production of cytokines/chemokines, due to dysfunctional PRRs. This in

turn would impact upon the direction and magnitude of the chronic

inflammatory response to H. pylori. As H. pylori, the dominant bacterium

in the stomach, gradually disappears upon the development of gastric

atrophy, it is plausible that other microbial species might bloom in its

absence and perpetuate local inflammation through further PRRs

activation. Over time, the combination of these events would facilitate a

number of features that promote gastric cancer development including cell

proliferation, epithelial–mesenchymal transition, angiogenesis, metastasis,

and immunosuppression.

adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a CLR

expressed on the surface of both macrophages and DCs. Inter-

estingly, it has been shown that H. pylori harbors fucosylated

ligands that can be recognized by DC-SIGN (259). Further, H.

pylori DC-SIGN ligands appear to actively dissociate the signal-

ing complex down-stream of DC-SIGN (KSR1–CNK–Raf-1) to

suppress pro-inflammatory cytokine production (259). In addi-

tion, H. pylori LPS Lewis blood-group antigens can bind to

DC-SIGN in a fucose or galactose-dependent manner (260, 261)

and this interaction appears to inhibit a Th1 response in DCs

(262). It has also been demonstrated that H. pylori-induced IL-

10 production in monocyte-derived DCs is significantly sup-

pressed by the addition of anti-DC-SIGN, TLR2, or TLR4 anti-

bodies, either alone or in combination, before H. pylori stim-

ulation (263). Further, in vitro and in vivo experiments have

shown that the expression of DC-SIGN is significantly higher

in H. pylori-infected individuals as compared with that in their

uninfected counterparts (264, 265).

To date, no studies have been conducted to determine

the association between genetic polymorphisms involved in

the RLR and CLR signaling pathways and GC, however,

Kutikhin and Yuzhalin (266) have comprehensively analyzed

the oncogenic potential of both RLRs and CLRs, suggest-

ing that future oncogenomic investigations should focus on

polymorphisms in MRC1 (rs1926736, rs2478577, rs2437257,

and rs691005), CD209 (rs2287886, rs735239, rs4804803, and

rs735240), CLEC7A (rs16910526), and RIG-I (rs36055726,

rs11795404, and rs10813831).

Given the limited but consistent current evidence suggesting a

role of RLRs and CLRs in H. pylori infection, and the documented

interaction between these signaling pathways and other important

PRRs in GC such as TLRs (267, 268) and NLRs (269, 270), further
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studies assessing the implications of RLRs and CLRs in H. pylori-

related inflammation and subsequent carcinogenesis need to be

conducted.

PATTERN-RECOGNITION RECEPTORS AS THERAPEUTICS

TARGETS IN GASTRIC CANCER

Pattern-recognition receptors are increasingly recognized as

important players in immunotherapy as PRRs-specific agonists

elicit a potent immune response to cancers, allergic diseases, and

chronic viral infections, while reducing the risk of an uncontrolled

and detrimental systemic inflammatory response (for comprehen-

sive information on this topic refer to the reviews by Hedayat et al.

(271) and Paul-Clark et al. (272).

In the context of gastric carcinogenesis, Tye et al. (132), using

a GC murine model (gp130F/F) displaying elevated gastric TLR2

expression levels, have elegantly shown that genetic and antibody-

mediated therapeutic targeting of TLR2 leads to a substantial

reduction in stomach size and overall tumor burden, including

the number of gastric tumors. A further example is presented in

the study by Gradisar et al. (273), which suggested that MD-2 is

one of the important targets of curcumin (diferuloylmethane),

the main component of the spice turmeric (Curcuma longa) that

is widely used for gastric disorders in the Indian subcontinent,

in its suppression of the innate immune response to bacterial

infection. Furthermore, curcumin was recently shown to polar-

ize myeloid-derived suppressor cells, extracted from a human GC

xenograft mouse model, toward a M1-like phenotype with an

increased expression of CCR7 and decreased expression of the

CLR dectin 1, being both observed in vivo (tumor tissue) and

in vitro (splenic myeloid-derived suppressor cells from tumor-

bearing mice) (274). In addition, a study by Yang et al. (171)

demonstrated that the combination of catechins and sialic acid is

effective in suppressing the inflammatory responses mediated by

the inflammasome/caspase-1 signaling pathway in gastric epithe-

lial cells during H. pylori infection. Also, poly(I:C), an agonist

of TLR3 and RLRs, has been shown to have a pro-apoptotic

effect in vitro, and has significantly inhibited xenograft growth

of human GC in a mouse model, through up-regulation of RLRs

(RIG-I, MDA-5, and LGP2) as well as an increased expression

of Bcl-2 family members, suggesting that it may be a promising

chemotherapeutic agent against GC (275).

Given that modulation of PRRs has been proven to be relevant

in gastric carcinogenesis through diverse mechanisms, including

suppression of H. pylori-induced inflammation and enhancement

of cancer cell apoptosis, this approach should be considered a new

and promising angle of immunotherapy in GC.

CONCLUSION

In conclusion, abundant evidence supports the pivotal role of

PRRs in gastric carcinogenesis as these receptors of the innate

immune system, including TLRs, NLRs, CLRs, and RLRs, have

been shown to recognize diverse components of H. pylori, the

major risk factor of GC. In addition, PRRs are also involved

in gastric carcinogenesis per se as these receptors are known to

exert tumor-promoting functions (cell proliferation, epithelial–

mesenchymal transition, angiogenesis, and metastasis) as well

as immunosuppression during cancer. Given that host genetic

variability in the TLR and NLR signaling pathways are known

to be associated with an increased risk of H. pylori infection, the

development of gastric precancerous lesions and GC, this knowl-

edge has the potential to allow better prevention of GC through

selective treatment and surveillance of individuals harboring high

risk genetic profiles. Finally, given that PRRs are increasingly

being used as a target for immunotherapy against both cancer

and infectious diseases, the established relevance of PRRs in H.

pylori infection and GC, could suggest that PRR agonists and/or

antagonists may potentially improve the outcome of GC. Based

on the extensive evidence presented in the current review, we pro-

pose a synergistic interaction between PRRs and H. pylori, which

over time, could facilitate the sequence of events that character-

izes GC development including inflammation, atrophy, intestinal

metaplasia, dysplasia, and finally, GC (Figure 3).
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