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Pattern Recognition Via Synchronization in
Phase-Locked Loop Neural Networks

Frank C. Hoppensteadt, Member, IEEE,and Eugene M. Izhikevich

Abstract—We propose a novel architecture of an oscillatory
neural network that consists of phase-locked loop (PLL) circuits. It
stores and retrieves complex oscillatory patterns as synchronized
states with appropriate phase relations between neurons.

Index Terms—Brain rhythms, oscillatory associative memory,
temporal pattern recognition, voltage-controlled oscillators
(VCO’s).

I. INTRODUCTION

OSCILLATIONS are ubiquitous in nature and, in partic-
ular, in neuron and brain dynamics. There is a mounting

evidence that rhythmic activity and synchronization of neuronal
firing play a profound role in the information processing in
many brain systems, including the olfactory bulb, hippocampus,
and thalamo-cortical system; see [4] for a review. However,
much of the artificial neural network research still focuses on
nonoscillatory sigmoidal neurons whose dynamics correspond
to the mean firing rates. The precise timing of neuronal firing is
usually neglected.

To understand possible neurocomputational properties of os-
cillatory neural networks we consider an extreme case when
each neuron exhibits periodic activity. Such networks can be de-
scribed by phase models (see [9, ch. 9] for rigorous introduction
to the theory) and take into account precise timing of spikes.
In particular, we have proven an analogue of Cohen–Grossberg
convergence theorem [3], but for oscillatory neural networks
(see [9, Th. 9.15] and [1]). It shows that oscillatory neural net-
works can have all the neurocomputational properties of stan-
dard Hopfield networks, with a key exception: Memorized pat-
terns are not equilibria, but synchronized oscillatory states in
which neurons fire periodically with certain relation between
their phases (firing times). This approach is in the spirit of that
developed in [1], [2], [9], and [16].

Interaction between such neurons occurs via modulation of
their phases (PM encoding), and it depends crucially on the res-
onant relations between their frequencies. Such a dependence
is the key issue of the frequency-modulated (FM) interaction
theory ([6]–[9], [13]–[15]), which shows that oscillatory
networks can have other neurocomputational properties far
exceeding those of Hopfield–Grossberg networks.

In this paper, we suggest an implementation of an oscillatory
neural network using phase-locked loops (PLL’s) (see Fig. 1).
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Fig. 1. Conceptual architecture of the PLL neural network described by (1).
Notice that the VCO outputs are phase-shifted by�90 (��=2); so that each
PLL receives input signalI = � s V (# � �=2):

Its major advantage is that PLL circuit technology is well devel-
oped and understood [5], [6], [12].

II. PHASE-LOCKED LOOPNEURAL NETWORK

In this section, we consider a dynamical system

(1)

which describes the dynamics of the PLL neural network de-
picted in Fig. 1. Here is the phase of the voltage-controlled
oscillator (VCO) embedded in theth PLL, is its natural
frequency (megahertz), are connection coefficients, and
is a -periodic output waveform function, which is assumed to
satisfy the following “odd–even” condition.

• (Odd) Waveform is an odd function; that is

for all .
• (Even) Phase-shifted waveform is an even

function; that is

for all .
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Fig. 2. Typical waveforms found in commercially available PLL’s.

Notice that three out of four standard waveforms found in
commercially available PLL’s and depicted in Fig. 2 satisfy
the “odd–even” condition, at least after a phase shift. The
“sawtooth” waveform does not satisfy the “even” part of the
condition.

The key mathematical result of this paper is the following
theorem.

Theorem 1 (Synchronization Theorem for PLL Neural
Networks): Consider the PLL neural network (1) depicted in
Fig. 1 with an arbitrary waveform function satisfying the
“odd–even” condition above. If

for all and (2)

then the network always converges to an oscillatory
phase-locked pattern; that is, the neurons oscillate with
equal frequencies and constant, but not necessarily zero phase
relations.

There could be many such phase-locked patterns corre-
sponding to many memorized images. Thus, the key difference
between the Hopfield–Grossberg and the PLL neural network
is that memorized images correspond to equilibrium (point)
attractors in the former and limit cycle attractors in the latter.
Pattern recognition by the PLL neural network consists in
convergence to the corresponding limit cycle attractor, which
results in synchronization of the network activity with an
appropriate phase relation between neurons, as in Fig. 5. In
the subsequent sections, we illustrate this issue and show how
the PLL neural network memorizes and retrieves complex
oscillatory patterns.

Proof: Let be the phase deviation of theth oscillator
from the natural phase that is

We want to show that the vector of phase deviations,
converges to an equilibrium, say This

corresponds to a synchronization of the network activity with
the pattern of phase relations The proof is a standard
application of averaging and Fourier analysis, and it consists of
three steps [5], [9].

Fig. 3. FunctionsH(�) for various waveformsV (#) from Fig. 2.

Step I (averaging):We can rewrite the system (1) in the
phase deviation form

Since we can average it (this is the purpose of the loop
filter in the PLL in Fig. 1) to obtain

(3)

plus higher order terms, where

is the “averaged” connection function.
Step II (Fourier expansions):Let us show that

(4)

where are Fourier coefficients of the waveform function
In particular, when

see also Fig. 3. Indeed, we can expand the-periodic function
into its Fourier series, which has the form

due to the “odd–even” condition above. One can check that

The product is given by

which we rewrite in the form

The only low-frequency modes, which can survive the aver-
aging, are those given by when which
results in (4).
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Fig. 4. Key patterns to be memorized. Neurons having similar phases are
depicted using similar colors.

Step III (convergence):Now we use the condition
to prove that phase deviation model (3) is a gradient system with
the potential function

(5)

where is an antiderivative of ; i.e., The former is
an even function because the latter is odd. One can easily check
that for all

We see that if the matrix of synaptic connections is sym-
metric, then the PLL network synchronizes with a certain pat-
tern of phase relations, which is determined by the attractors of
(3). In the next section, we use to illustrate the
neurocomputational properties of the PLL networks. Thus, we
consider a system

Assuming the corresponding phase deviation
model (3) has a simple form

Other choices of the waveform result in different (see
Fig. 3). Whether they can provide any advantages remains an
open question.

III. I LLUSTRATION

Suppose we are given a set of key vectors (patterns) to be
memorized

(6)

e.g., those in Fig. 4, where means that theth and the
th oscillators are in-phase and means

they are antiphase First, notice that the problem
of negative images does not exist in oscillatory neural networks,
since both and result in the same phase relations. A
Hebbian learning rule of the form

(7)

is the simplest one (but not the best) among many possible
learning algorithms. It produces symmetric connectionsso
that the Synchronization Theorem for PLL Neural Networks is
applicable.

We use the learning rule to train the network with three im-
ages “0,” “1,” and “2” depicted in Fig. 4. When the initial phase
distribution corresponds to a distorted image “1,” the oscillators
lock to each other with an appropriate phase relation (in-phase
or antiphase), which is referred to as associative memory recall
(see top of Fig. 5). We also plot two VCO outputs, and

and their phase deviations, and As one expects,
the oscillators approach a nearly in-phase-locked state during
the recall.

To extract the relative phase pattern we need to remove the
high frequency oscillatory component from the recognized
image. For this we note that the product

after low-pass filtering. We plot the quantities
at the bottom of Fig. 5. One can clearly see the relative

phase pattern.

IV. COMPLEX OSCILLATORY PATTERNS

A generalization of the PLL neural network (1) is

(8)

where are natural phase shifts between neurons, also re-
ferred to as being phases (angles) of synaptic connections.

The Synchronization Theorem for PLL Neural Networks
would need an additional condition

for all and

which combined with (2) can be expressed compactly as

for all and

where is a complex synaptic coefficient and
means complex conjugation. The Theorem’s proof is un-

changed, except that system (3) then has the form

and the potential function (5) is

Such a network can memorize more complicated oscillatory pat-
terns than mere in-phase/antiphase relations defined by the real
key vectors (6). Indeed, we can considercomplexvectors so
that the desired phase shift between theth and the th neuron is
the argument (angle) difference between the complex numbers

and For example, the merry-go-around state can be rep-
resented as

To memorize such phase patterns we can employ the complex
Hebbian learning rule [1], [9]–[11]

which modifies both the strength and the phase of the synaptic
connections.
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Fig. 5. Pattern recognition by the PLL neural network (1) with Hebbian learning rule (7) applied to the key patterns in Fig. 4. Functions and parameters: V (#) =
sin#; 
 = 10; n = 60; andt 2 [0; 10]:

The generalized PLL neural network (8) has more than one
implementation. A straightforward one is when each circuit con-
necting two neurons has modifiable weight and phase shift

However, if , then we can represent (8) in an
alternative form

where

and

Using both and to affect the th neuron
eliminates the necessity for modifiable phase shifts, which
simplifies the circuit.

V. DISCUSSION

We have proposed a novel architecture of an oscillatory
neural network that can be built using off-the-shelf PLL’s,
e.g., LMC568 or LM565 series byNational Semiconductor.
The network can memorize and reproduce complex oscillatory

patterns in which all neurons oscillate with the same frequency,
but different phase relations. There are still some issues that
have not been addressed.

• Oscillatory memory. What are the major advantages of
oscillatory associative memory?

• Learning. What is the best learning rule for PLL neural
networks in terms of the capacity? The Hebbian rule,
which we used here, is the simplest one, but usually not
the best.

• Waveforms. What are the advantages of various wave-
forms , e.g., those in Fig. 2.

• Scaling properties. How large can be, and what are the
restrictions on the frequency?

• Acquisition time. How long does it take for the network to
lock to the memorized pattern?

• Phase noise. How does the phase noise affect the PLL
network performance?

Obviously, more research is needed before the PLL neural net-
works can pass the “small prototype” stage.
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