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Pattern Recognition with Gaussian Mixture Models of Marginal
Distributions

Masako OMACHI†, Member and Shinichiro OMACHI††a), Senior Member

SUMMARY Precise estimation of data distribution with a small num-
ber of sample patterns is an important and challenging problem in the field
of statistical pattern recognition. In this paper, we propose a novel method
for estimating multimodal data distribution based on the Gaussian mixture
model. In the proposed method, multiple random vectors are generated af-
ter classifying the elements of the feature vector into subsets so that there
is no correlation between any pair of subsets. The Gaussian mixture model
for each subset is then constructed independently. As a result, the con-
structed model is represented as the product of the Gaussian mixture mod-
els of marginal distributions. To make the classification of the elements
effective, a graph cut technique is used for rearranging the elements of the
feature vectors to gather elements with a high correlation into the same
subset. The proposed method is applied to a character recognition problem
that requires high-dimensional feature vectors. Experiments with a public
handwritten digit database show that the proposed method improves the ac-
curacy of classification. In addition, the effect of classifying the elements
of the feature vectors is shown by visualizing the distribution.
key words: pattern recognition, Gaussian mixture model, graph cut, small
sample size problem, character recognition

1. Introduction

In many statistical pattern recognition methods, it is impor-
tant to precisely estimate data distribution. In general, pre-
cise estimation of the distribution requires a great number
of sample patterns, especially when the feature vector ob-
tained from the pattern is high dimensional. However, for
some pattern recognition problems, such as face recognition
or character recognition, very high-dimensional feature vec-
tors are necessary, and there are not always enough sample
patterns for estimating the distributions. Precisely estimat-
ing the distribution with a limited number of sample patterns
is still a challenging problem.

The Gaussian mixture model is a linear combination
of Gaussian probability density functions, and it is used for
representing multimodal distributions. It is used not only for
pattern recognition [1], [2] but also in many fields such as
prediction [3], [4], monitoring [5], [6], segmentation [7], [8],
discrimination [9], and clustering [10], [11]. The parameters
of the Gaussian mixture model can be iteratively estimated
by calculating the probability of each sample pattern.

In this paper, we propose a novel method for estimat-
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ing data distribution with the help of the Gaussian mix-
ture model. As described in detail in Sect. 2.2, when cal-
culating the distribution of patterns, it may be effective in
some cases to classify the elements of feature vectors into
subsets and calculate the distribution for each subset in-
dependently. This strategy is identical to block diagonal-
ization of the covariance matrix by substituting zeros for
the non-block-diagonal elements, and it has been used to
reduce computational time for solving pattern recognition
problems [12], [13]. In these methods, the information of
the non-block-diagonal elements is lost by block diagonal-
ization. Researchers have investigated rearranging the ele-
ments to decrease the loss. Koshiba et al. minimized the
difference between the distances calculated with the origi-
nal and the block-diagonalized covariance matrices for each
possible combination of elements [12], which was compu-
tationally very expensive for high-dimensional feature vec-
tors. Sun et al. proposed an ad-hoc method for iteratively
changing the elements of the feature vector; however, it of-
fered no guarantee of convergence [13].

In the proposed method, to avoid losing the correla-
tion information, multiple random vectors are generated by
variable transformation so that there is no correlation be-
tween any pair of vectors after classifying the elements. The
Gaussian mixture model is then independently constructed
for each subset so that no information is lost. As a result,
the constructed model can be represented as a product of
the Gaussian mixture models of marginal distributions. To
classify the elements of the feature vector, a graph cut tech-
nique [14] is used to gather elements with a high correlation
into the same subset.

The proposed method is general with no limit on target
applications. To show the effect of the proposed method, it
is applied to a character recognition problem that requires
high-dimensional feature vectors. Experiments are carried
out with a public handwritten digit database MNIST [15].
The experimental results demonstrate that the proposed
method improves the classification accuracy and is more ef-
fective when the sample size is small. In addition, the effect
of classifying the elements of the feature vectors is shown
by visualizing the distribution.

2. Proposed Method

The key idea of the proposed method is to classify the ele-
ments of the feature vectors into subsets and generate a set
of new vectors corresponding to the subsets. The Gaussian
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mixture model corresponding to each subset is then con-
structed. To make the classification of the elements effec-
tive, a graph cut technique is used for rearranging the ele-
ments of the feature vectors to gather the elements with a
high correlation into the same subset.

The flowchart of the proposed method is displayed in
Fig. 1. Given the sample feature vectors, first the elements of
the feature vectors are rearranged by a graph cut approach.
They are then classified into subsets and new random vec-
tors are generated with the rearranged vectors. Finally, the
Gaussian mixture model is constructed for each subset.

2.1 Gaussian Mixture Model

Gaussian mixture models are used for approximating mul-
timodal distributions. A Gaussian mixture model of vector
x is a linear combination of n Gaussian probability density
functions and is defined as

g(x) =
n∑

k=1

pk f (x;μk,Σk). (1)

Here,

f (x;μ,Σ) =
1

(2π)(d(x)/2)|Σ|1/2

× exp

{
−1

2
(x − μ)TΣ−1(x − μ)

}
(2)

is a component density function, pk is a mixing parameter
that satisfies

∑n
k=1 pk = 1, d(x) is the dimensionality of x,

μ is a d(x)-dimensional mean vector and Σ is a d(x) × d(x)
covariance matrix.

Given the sample vectors, the parameters of the model
can be estimated by the expectation-maximization algo-
rithm [16]. The probability of each component density func-
tion is calculated for each sample vector, and the parameters
of the component density function are iteratively updated
according to the probability. Given m sample vectors {x j}
and a set of initial parameters {p(0)

k ,μ
(0)
k ,Σ

(0)
k }, the parame-

ters are estimated by applying the following formulae.

p(t+1)
k =

1
m

m∑
j=1

p̃(t)
k (x j), (3)

Fig. 1 Flow of the proposed method.

μ(t+1)
k =

∑m
j=1 p̃(t)

k (x j)x j∑m
j=1 p̃(t)

k (x j)
, (4)

Σ
(t+1)
k =

∑m
j=1 p̃(t)

k (x j)(x j − μ(t)
k )(x j − μ(t)

k )T

∑m
j=1 p̃(t)

k (x j)
, (5)

where

p̃(t)
k (x j) =

p(t)
k f (x j;μ

(t)
k ,Σ

(t)
k )∑n

l=1 p(t)
l f (x j;μ

(t)
l ,Σ

(t)
l )
. (6)

Equations (3), (4), (5) and (6) are calculated iteratively until
convergence.

2.2 Classifying the Elements of the Feature Vector

The probability for each feature vector is calculated accord-
ing to Eq. (6). However, when estimating a Gaussian mix-
ture model, it may be effective in some cases to classify the
elements of the feature vectors into subsets and indepen-
dently calculate the distribution for each subset. An intuitive
example is shown in Fig. 2. These are some of the handwrit-
ten digit images included in the MNIST database [15]. Fig-
ures 2 (a) and (b) show images having similar upper parts
and dissimilar lower parts. On the other hand, the images
in Figs. 2 (b) and (c) have similar lower parts and dissimilar
upper parts. In this case, it would be effective to divide the
images into upper and lower parts. Then, for the upper part,
Figs. 2 (a) and (b) can be used for estimating one component
density function, and Figs. 2 (c) and (d) can be used for es-
timating another component density function. On the other
hand, for the lower part, Figs. 2 (a) and (d) can be used for
estimating one component density function, and Figs. 2 (b)
and (c) can be used for estimating another component den-
sity function.

For simplicity, suppose that the elements of each fea-
ture vector are classified into two subsets. Given a d-
dimensional vector, we can rearrange the elements of the
vector and construct a new d-dimensional vector x so that

x =
(

x1

x2

)
(7)

is satisfied, where x1 and x2 include only the elements of the
first and second subsets, respectively. Let the corresponding
mean vector μ and the covariance matrix Σ be

μ =

(
μ1
μ2

)
, (8)

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. (9)

(a) (b) (c) (d)

Fig. 2 Example of handwritten digit images.
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The strategy of classifying the elements into subsets and in-
dependently calculating the distributions is equivalent to in-
dependently calculating the distribution of x1 and x2. In this
case, Σ12 and Σ21 are regarded as a zero matrix, and Eq. (9)
becomes a block-diagonal matrix. In the case of a Gaussian
distribution, the probability density function of Eq. (2) can
be calculated as the product of two marginal distributions.

f (x;μ,Σ) = f (x1;μ1,Σ11) f (x2;μ2,Σ22). (10)

However, it is rare that x1 and x2 are exactly indepen-
dent, and ignoring the correlation of x1 and x2 sometimes
deteriorates the classification accuracy. To avoid losing the
correlation information, in the proposed method, multiple
random vectors are created by transforming the variables so
that there is no correlation between any pair of vectors [17]
after classifying the elements. Let

y =
(

y1
y2

)
(11)

where

y1 = x1 − Σ12Σ
−1
22 x2, (12)

y2 = x2. (13)

Then the mean vector μy and the covariance matrix Σy will
be

μy =

(
μ1 − Σ12Σ

−1
22μ2

μ2

)
, (14)

Σy =

(
Σ11 − Σ12Σ

−1
22Σ21 O

O Σ22

)
. (15)

Note that the original vector can be represented by any num-
ber of vectors by repeating this procedure.

The distribution of y2 is the marginal distribution of x,
and the elements of y1 and y2 have no correlations. In the
proposed method, the Gaussian mixture models of y1 and y2
are independently constructed.

As a by-product, the computational time of the proba-
bility density function is reduced. If the dimensionality of
x1 is half of that of x, the computational time for Eq. (10)
will be half of that for Eq. (2). Considering the calculation
time for Eq. (12), the total computational time is reduced to
three-fourths of that of the original.

2.3 Rearrangement of Elements

We now explain how to rearrange the elements of the origi-
nal feature vector as per Eq. (7). Since the proposed method
independently estimates the distributions of y1 and y2, it will
be more effective if there is a high correlation between the
elements of the same vector. In other words, it will be effec-
tive to make the values of the elements of Σ12 or Σ21 as small
as possible. For this purpose, we apply a graph cut approach
for rearranging the elements of the original feature vector.

Suppose the dimensionality of the feature vector is d
and consider a complete graph G = (V, E) that has d nodes

vi ∈ V . Each node corresponds to an element of the feature
vector, and the edge weight w(u, v) is the absolute value of
the (u, v)th element of the covariance matrix of the feature
vector.

Consider partitioning G into two parts. We use the nor-
malized cut (Ncut) [14] as the criterion that should be min-
imized for graph partition. Suppose A and B are exclusive
subsets of V that satisfy A ∪ B = V . Ncut is defined as

Ncut(A, B) =
cut(A, B)

assoc(A,V)
+

cut(A, B)
assoc(B,V)

, (16)

where

cut(A, B) =
∑

u∈A,v∈B

w(u, v), (17)

assoc(A,V) =
∑

u∈A,t∈V
w(u, t). (18)

Here, the sets of the elements of x1 and x2 of Eq. (7) cor-
respond to A and B, respectively. The sum of the elements
of Σ12 or Σ21 in Eq. (9) corresponds to cut(A, B). Therefore,
minimizing Eq. (16) will diminish the values of the elements
of Σ12 or Σ21.

Although this minimization is NP-complete, by relax-
ing it to the real value domain, a reasonable solution can be
derived as follows [14]: Let W be the matrix of w(i, j), D be
a diagonal matrix with Dii =

∑
j w(i, j), and α = {α1, . . . , αd}

be the indicator vector of the partition.

αi =

{
1 if vi ∈ A
−1 if vi ∈ B

. (19)

The graph partition can be obtained by solving

(D −W)β = λDβ, (20)

for the eigenvectors where

β = (1 + α) −
∑
αi>0 Dii∑
αi≤0 Dii

(1 − α), (21)

and 1 is a vector in which all the elements are one. This
problem can be changed to the following standard eigen-
value problem.

D−
1
2 (D −W)D−

1
2γ = λγ, (22)

where γ = D
1
2β. Solving Eq. (22) for the eigenvector with

the second smallest eigenvalue, the graph can be partitioned
into two parts according to the sign of each element. In the
proposed method, we rearrange the elements of the feature
vector according to the values of the elements of this eigen-
vector.

2.4 Regularization

In general, when the number of sample vectors is small
and the dimensionality of the vector is large, regulariza-
tion [18] is effective. In the framework of the well-known
MQDF (modified quadratic discriminant function) [19],
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similar technique is introduced.
For regularization, Σ+δI is used instead of Σ in Eq. (2),

where I is a d(x) × d(x) identity matrix and δ is a positive
constant. This strategy may be combined with the proposed
method for better results. The proposed method is combined
with regularization and the performance is tested in an ex-
periment.

3. Experiment

3.1 Data and Features

We carried out an experiment to confirm the effectiveness
of the proposed method. For the experiment, we used a
handwritten digit database, MNIST [15]. MNIST includes
a training set and a test set of images of single-digit num-
bers in ten categories (from “0” to “9”).

We used the directional element feature [20] as the fea-
ture of the character images. An input image is normalized
to 64×64 dots, and a contour of the image is extracted. Then,
orientation—vertical, horizontal, or slanted at ±45◦—is as-
signed for each pixel. The image is divided into 49 sub-areas
of 16×16 dots where each sub-area overlaps eight dots with
the adjacent sub-area. For each sub-area, a four-dimensional
vector is defined to represent the quantities of the four orien-
tations. The dimensionality of this feature is 196 (= 4× 49).

Given an unknown character image, the feature vec-
tor is extracted from this image. Recognition is achieved
by calculating the probability of belonging to each category
and finding the category with the maximum probability. We
compared the proposed method with the traditional Gaus-
sian mixture model that uses Eq. (1) as it is; hereafter called
the traditional method. The number of component density
functions was four for both the traditional and the proposed
methods. In the proposed method, the feature vector was
classified into two subsets with d/2(= 98) elements.

Note that the numbers of subsets and the component
density functions are very important parameters that influ-
ence the performance. If necessary, suitable values of the
parameters can be found by cross-validation performed by
dividing the training patterns to improve the classification
accuracy. However, since we would rather focus on the per-
formances of the traditional and the proposed methods, we
fixed these parameters in the experiment.

3.2 Initial Parameters

To estimate the parameters of the Gaussian mixture model,
we must choose a set of initial parameters. In order to de-
termine these parameters, the mean vector μ̂ and the covari-
ance matrix Σ̂ are calculated with m sample vectors for each
category.

μ̂ =
1
m

m∑
j=1

x j, (23)

Fig. 3 Initial parameters.

Σ̂ =
1

m − 1

m∑
j=1

(x j − μ̂)(x j − μ̂)T . (24)

Let λi be the ith eigenvalue of Σ̂ sorted in descending order,
and φi be the eigenvector with λi. We determine the initial
parameters as

p(0)
k =

1
n
, (25)

μ(0)
k = μ̂ − (−1)kεφ�k/2�, (26)

Σ
(0)
k = Σ̂, (27)

where n is the number of component density functions and ε
is a small constant. Figure 3 displays the initial parameters
for the case of n = 4.

3.3 Example of Covariance Matrix

To show the effect of rearranging the elements of the feature
vectors, a representative covariance matrix is displayed in
Fig. 4. The absolute value of each element of the covariance
matrix is represented by the brightness.

Figure 4 (a) is a 196×196 covariance matrix calculated
with the feature vectors obtained from the first 200 images
of “7” in the training set. With this covariance matrix, the
elements of each feature vector are rearranged by the algo-
rithm described in Sect. 2.3. Figure 4 (b) is the covariance
matrix obtained with the rearranged feature vectors. Com-
pared to Fig. 4 (a), brighter pixels are gathered in the block
diagonals of Fig. 4 (b). Figure 4 (c) is the block-diagonal co-
variance matrix of y obtained by the algorithm described in
Sect. 2.2.

3.4 Example of Data Distribution

To show the effect of classifying the elements of feature vec-
tors, the data distribution is displayed. Figures 5 (a) and (b)
display the distributions of the patterns of “7” for two sub-
sets. For visualization, sample vectors are projected onto
the φ1φ2 plane, i.e., the plane defined by the first and second
principal components, and plotted as crosses.
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(a) Original (b) After rearrangement

(c) After block diagonalization

Fig. 4 Covariance matrices.

The position of each image of Fig. 2 is also displayed
in the figure. The distribution of these four images is quite
different in each figure. In Fig. 5 (a), the images that have
similar lower parts are closely placed; it seems that most
of the elements of the feature vectors that correspond to the
lower part of the character image are included in subset 1.
On the other hand, the images in which the upper parts are
similar are closely placed in Fig. 5 (b).

3.5 Results

All the character images in the test set were recognized by
the models constructed with the sample patterns in the train-
ing set. The number of sample patterns for each category
was changed from 100 to 600. The sample patterns used for
training were chosen randomly from the training set, and
this trial was repeated ten times. Figure 6 displays the av-
erage and the standard deviation of the accuracy in recog-
nition. In every case, the accuracy of the proposed method
was better than that of the traditional method. The results
demonstrated that the proposed method is especially effec-
tive when the number of sample patterns is small.

To check whether the difference in the average accu-
racy is statistically significant, the t-test was carried out. It
was found that the differences were statistically significant
with a significance level of 0.01 when the number of sample
patterns was less than or equal to 400. If the significance
level is 0.05, the difference of 500 sample patterns was also
significant.

Table 1 shows the average computational time for each
method. The computational time is the time required for cal-
culating the probability for ten categories and selecting the
category with the maximum probability. The time for pre-
processing (extracting feature vectors from images), which

(a) Subset 1

(b) Subset 2

Fig. 5 Data distribution of patterns of “7”.

Fig. 6 Average and standard deviation of accuracy in recognition.

Table 1 Average computational time.

Proposed method Traditional method
6.18 msec 7.96 msec
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Fig. 7 Average accuracy for each category.

(a) (b) (c) (d)

Fig. 8 Example of images correctly recognized by the proposed method.

requires 0.90 milliseconds for each image, is not included.
This table shows that the proposed method not only im-
proves the recognition accuracy but also reduces the com-
putational time.

Figure 7 displays the average accuracy for each cate-
gory when the number of samples is 200. This figure shows
that the accuracy was improved for almost all the categories;
the difference is noticeably large for categories “1,” “2” and
“8.” For these categories, since the variations in the char-
acter patterns are large, more complicated statistical models
are necessary. The proposed method could model the varia-
tions of the character patterns and achieve a higher accuracy
than the traditional method.

Figure 8 displays some examples of the character im-
ages that were correctly recognized by the proposed method
and were misclassified by the traditional method. Fig-
ures 8 (a), (b) and (c) were recognized as “2” and Fig. 8 (d)
was recognized as “3” by the traditional method. This figure
reveals that category “8” has many variations and that the
proposed method possibly modeled these variations more
flexibly than the traditional method.

To show the behavior of the proposed method in the
case of category “8,” the component density functions for
each subset constructed by the proposed method are shown
in Figs. 9 (a) and (b). For visualization, the sample vectors
and the hyperellipsoid of equal probability for each com-
ponent density function are projected onto the φ1φ2 plane.
Figure 9 (c) displays the component density functions ob-
tained by the traditional method and the sample vectors. In
this case, the original distribution is very complicated, as
shown in Fig. 9 (c). Since the proposed method constructed
the Gaussian mixture models after classifying the elements

(a) Proposed method (subset 1)

(b) Proposed method (subset 2)

(c) Traditional method

Fig. 9 Data distribution and component density functions.

of the feature vector into subsets, appropriate models could
be constructed for two kinds of distributions.

Although the accuracy was improved for almost all the
categories, the accuracy deteriorated for the cases of “0”
and “6,” as shown in Fig. 7. Figure 10 displays some ex-
amples of the character images that were misclassified by
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(a) (b) (c)

Fig. 10 Example of images misclassified by the proposed method.

the proposed method and were correctly recognized by the
traditional method. All of these images were recognized as
“5” by the proposed method. Some images in category “5”
are similar to “6.” In the proposed method, a model of “5”
was constructed to represent various kinds of images of “5,”
which can also represent these minorities. Hence, some im-
ages of “6” were represented by the model of “5” and these
were recognized as “5.” To diminish this kind of misclas-
sification, we should consider the relationships between the
categories.

4. Conclusions

In this paper, we have proposed a novel statistical model
based on the Gaussian mixture model. In the proposed
method, first the elements of the feature vector are rear-
ranged based on the covariance of the elements. A graph
cut approach is used for optimization and the normalized cut
criterion is adopted. Then the elements of the feature vector
are classified into subsets and new random vectors are gen-
erated. Finally, a Gaussian mixture model is constructed for
each subset of elements.

To confirm the effectiveness of the proposed method,
experiments were carried out with the MNIST handwritten
digit database. Experimental results demonstrated that the
proposed method is better than the traditional method, es-
pecially when the number of sample patterns is small. The
t-test was carried out and it was shown that the difference in
the average accuracies of these methods is statistically sig-
nificant.

In this study, we have used only the MNIST database.
Applying the proposed method to various kinds of pattern
recognition problems is an important future work. In addi-
tion, as we mentioned above, the Gaussian mixture model is
a general statistical model and can be used in many applica-
tions. Confirming the effectiveness of the proposed method
in various applications is also a future work.
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