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Abstract

This paper deals with pattern rejection strategies for

self-paced Brain-Computer Interfaces (BCI). First, it

introduces two pattern rejection strategies not used yet

for self-paced BCI design: 1) the rejection class (RC)

strategy and 2) thresholds on reliability functions (TRF)

based on the automatic multiple-threshold learning al-

gorithm. Second, it compares several rejection strate-

gies using several classifiers, on motor imagery data,

in order to identify their most desirable properties. Re-

sults showed that nonlinear classifiers led to the most

efficient self-paced BCI. Concerning the reject option,

RC outperformed a specialized reject classifier which

outperformed TRF. Overall, the best results were ob-

tained using the RC reject option and non-linear classi-

fiers such as a Gaussian support vector machine, a fuzzy

inference system or a radial basis function network.

1 Introduction

Brain-Computer Interfaces (BCI) based on Elec-

troEncephaloGraphy (EEG) enable users to send com-

mands to computers only by means of brain activity,

measured using EEG [12]. To use a BCI, the user has to

produce brain activity patterns which will be identified

by the system [3] and translated into commands. Due to

the noisy and unstable nature of EEG signals, the design

of a BCI is known to be a challenging problem which

requires further improvements [12].

Presently, most EEG-based BCI systems are syn-

chronous, which means the user can only use the BCI

during imposed time windows [12]. An ideal BCI

should be self-paced (asynchronous), to allow the user

to use it at any time [5]. However, designing a self-

paced BCI is a challenging problemwhich requires con-

tinous analysis of EEG signals. This analysis should

determine if the user is in an Intentional Control (IC)

state, i.e., if he is producing one of the brain activity

patterns used to control the BCI, or, conversely, if he is

in a Non Control (NC) state [5]. Finally, if the user is in

an IC state, the system must also determine which kind

of brain activity pattern is being produced [5].

In this paper, we consider the design of a self-paced

BCI as a pattern rejection problem [8], where NC states

must be rejected by the BCI, whereas IC states must be

accepted and properly classified. In the BCI literature,

two main strategies are employed to deal with the NC

state: the use of thresholds on reliability functions (TRF

reject option) or the use of specialized classifiers (SC re-

ject option). Algorithms of the first category use one or

two thresholds, generally manually defined, on reliabil-

ity functions [6, 11]. If the reliability function, here the

classifier output, is higher than the given threshold, then

the IC state is chosen, otherwise rejection is performed

and the NC state is chosen. In the second category, spe-

cialized classifiers, known as reject classifiers, are used

to distinguish IC from NC states [10, 2, 13]. Another

classifier, known as the recognition classifier, is then

used to distinguish between the targeted patterns. Gen-

erally, a different set of features is used for the reject

classifiers and for the recognition classifier.

So far, despite the need to design efficient self-paced

BCI, relatively few algorithms have been explored to

deal with the NC state. Moreover, to our best knowl-

edge, no study has systematically compared several re-

ject options using several classifiers in the field of BCI.

This lack of study prevents from identifying the desir-

able properties of reject options and classifiers for self-

paced BCI design. In this paper, we first introduce two

reject options that have not been used yet in the BCI

field: the rejection class strategy and TRF based on the

automatic multi-threshold learning algorithm. Second,

we assess and compare several reject options using sev-

eral kinds of classifiers in order to study their behavior

and identify the most appropriate ones.



2 Method

In this Section, we present the different classifiers

and reject options that we investigated.

2.1 Classifiers

For this study we used four different classifiers,

which exhibit different properties with regards to clas-

sification performance and rejection. Two of these clas-

sifiers are generative classifiers and two are discrimi-

nant classifiers. The generative classifiers describe the

training data, which is interesting to reject the NC state

using reliability functions and to generalize using noisy

training data. The discriminant classifiers have power-

ful classification performance. As classifiers, we used:

• A Support Vector Machine (SVM): SVM are

discriminant classifiers, efficient for BCI design

[3]. We used Gaussian kernel to obain nonlinear

SVM.

• A Radial Basis Function Network (RBFN):

RBFN are neural networks using radial basis

functions learned using non supervised clustering.

Thus, RBFN are generative through their hidden

layer and discriminant through their output layer.

• A Fuzzy Inference System (FIS): FIS are a set of

fuzzy ”if-then” rules. FIS are nonlinear and gener-

ative classifiers with numerous advantages for BCI

design [4].

• A Linear Discriminant Analysis (LDA) classi-

fier: LDA are linear and discriminant classifiers

widely used for BCI purposes. They use hyper-

planes to separate classes [3].

All classifiers have been trained on the same training

data set (see section 3.1). The meta parameters of each

classifier have been optimized for each data set sepa-

rately, by splitting the training data into a training set

and a validation set.

2.2 Reject options

The NC rejection task is an outlier rejection prob-

lem [8]. Thus, data from NC states are outliers and data

from IC states are target class data. We compared three

reject options: SC, TRF and rejection class.

2.2.1 Specialized classifier (SC)

A specialized two-class classifier is trained indepen-

dently from the target classifier to reject - or not - the

input pattern. Separating the recognition and the rejec-

tion classifier allows the rejection classifier to take ad-

vantage of another family of classifiers or a different set

of features.

2.2.2 Rejection class (RC)

A rejection class is added to the recognition prob-

lem [7]. Outliers are treated as the other target classes.

To our best knowledge, this method has not been con-

sidered yet for BCI purposes.

2.2.3 Thresholds on reliability functions (TRF)

TRF uses the knowledge of the recognition classi-

fier through reliability functions [8]. TRF use the

interpretation of reliability functions: the lower is the

confidence (i.e., the reliability function value), the

more the pattern must be rejected. Thus, the TRF reject

option is defined with a set of N thresholds each one

associated with a reliability function. If all functions

are lower than their respective thresholds, rejection is

performed. The main problem is to set the threshold

values which is increasingly difficult as the number

of thresholds increases. Interestingly enough, most

self-paced BCI based on TRF use a single threshold,

manually defined. In this paper, we introduce the use of

the Automatic Multiple-Threshold Learning algorithm

(AMTL), developed by Mouchere and Anquetil, in the

BCI field [7, 8]. AMTL is a generic greedy algorithm

based on empiric heuristics. We used two variants

AMTL1 and AMTL2 with different aims. AMTL1

finds the best trade-off between the rejection of the data

from the target classes and the rejection of outliers.

AMTL2 finds the best description of target classes

without using outliers. We can note that TRF include

classical approaches which only use the score of the

best class to make the reject decision. In the following,

we denote as AMTL-MT, TRF using Multiple Thresh-

olds, and as AMTL-ST, TRF using a Single Threshold

on the best class score.

The SC and RC reject options should take advantage

of discriminant classifiers because they consider the re-

jection problem as a simple classification task. The

TRF architecture needs reliability functions represent-

ing generative knowledge for the rejection of the NC

state [7]. We used the classifier output scores as reli-

ability functions. This is relevant for RBFN and FIS

but less relevant for SVM and LDA. With AMTL2, we

used the activation of radial basis functions for RBFN

to have a better target class description.



3 Evaluation

The previously mentioned methods were evaluated

on motor imagery data, using Receiver Operating Char-

acteristic (ROC) analysis and accuracy computation.

3.1 Motor imagery EEG data used

Evaluations were achieved on 4 EEG data sets of

Motor Imagery (MI) acquired from 2 healthy subjects,

beginners with BCI. During the experiments, subjects

were asked to perform MI, i.e., imagination of left or

right hand movements [9]. For each subject, data were

collected over 2 days during which 3 to 5 sessions were

recorded each day. A session was composed of 20 tri-

als of each of the two classes (LEFT or RIGHT), ar-

ranged in a random order. A trial lasted 8 seconds, dur-

ing which the subject received instructions the first 3

seconds and had to perform the required MI task during

the last 5 seconds. We specifically asked subjects not to

perform MI nor real movements outside these 5 second

periods dedicated to MI.

EEG signals were sampled at 512 Hz and recorded

using electrodes FC3, FC4, C5, C3, C1, C2, C4, C6,

CP3, CP4, with nose reference. These electrodes cover

the motor cortex area, and are standard electrode posi-

tions, placed according to the extended 10-20 system

[1]. It should also be noted that a sampling frequency

of 512 Hz is suitable for our problem, as the relevant

EEG power variations triggered by MI are in the 8-30

Hz frequency band [9]. For each subject and each day,

the first half of the sessions was used to build a training

set whereas the remaining sessions were used to build a

test set. Hence, we used a total of 4 data sets, each one

being composed of a training set and a test set. EEG sig-

nals from the training sets were visually inspected and

periods of MI polluted by artifacts were removed. No

artifact was removed from the test sets.

3.2 Data labelling

We labelled as belonging to the LEFT or RIGHT

class the samples that were in the MI period of each

trial, according to the imagined movement the subject

was asked to perform. Samples from the first 0.5 s of

each MI period were labelled as NC in order to take

into account the user’s reaction time. All other sam-

ples were also labelled as belonging to the NC state.

Then, EEG signals were segmented into 1 s segments

with 93.75 % (15/16) of overlap between consecutive

segments. Each segment was labelled according to the

most represented label among the samples composing

it. Then, a feature vector was extracted from each seg-

ment and labelled with this segment label. As such, 16

feature vectors were extracted for each second.

3.3 Preprocessing and feature extraction

In order to build the classifier inputs, we applied tem-

poral and spatial filters to EEG signals and extracted

Band Power (BP) features from these signals. More

specifically, EEG signals were first band-pass filtered in

3-45 Hz. Then, from the 10 initial EEG channels, 2 new

channels were designed by applying a discrete surface

Laplacian spatial filter over channel C3 and C4 [12]. Fi-

nally, we extracted logarithmic BP features from these

two Laplacian channels [9]. Computing a BP feature

consists in band-pass filtering the signal in a given fre-

quency band, squaring it, averaging it over the whole

time segment and taking its logarithm. BP features are

popular features which are known to be efficient for MI

classification [9]. Indeed, imagination of hand move-

ments is known to trigger EEG power variations, mainly

in the µ (≃ 8-13 Hz) and β (≃ 13-30 Hz) frequency

bands, over the motor cortex areas [9].

Two sets of BP features were generated: features

for rejection and features for recognition. The first set

was obtained by extracting BP features in the frequency

bands that best differentiate IC from NC, whereas the

second set was obtained using frequency bands that best

differentiate left MI from right MI. For each subject,

these frequency bands were identified using a statistical

analysis in a way similar to [4]. This analysis compared

the BP mean value for the two corresponding conditions

(NC versus IC or left MI versus right MI) for different

frequencies in the 4-35 Hz frequency band, with the aim

of selecting the most discriminative frequency bands.

Features for rejection were used as input of the reject

classifiers whereas features for recognition were used

for the recognition classifiers.

3.4 Results

In order to evaluate how well the classifiers and re-

ject options can reject the NC state, we conducted a

ROC analysis [5]. The ROC curve allows to consider

the trade-off between the True Acceptance Rate (TAR)

and the False Acceptance Rate (FAR) for a reject op-

tion. FAR and TAR are based on the number of True

Positive (TP, acceptance of an IC state), of True Neg-

ative (TN, rejection on an NC state), of False Positive

(FP, acceptance of an NC state) and of False Negative

(FN, rejection of an IC state) and are defined as follows:

TAR = Recall =
TP

TP + FN
(1)



FAR =
FP

FP + TN
(2)

FAR and TAR represent the rejection performances

of the evaluated system as they are independent of the

proportion between IC and NC states. As an evaluation

measure, we also considered the Precision:

Precision =
TP

TP + FP
(3)

Precision is linked to the comfort of the final user, as

it summarized how often the BCI system will respond

correctly. Precision depends on the proportion between

IC and NC states. Then, to evaluate the classification

capabilities of the methods, we computed the accuracy

of each method [5] for a fixed FAR. The accuracy is

defined as the percentage of accepted IC state that have

been correctly classified.

Table 1 displays the Area Under the ROC Curve

(AUC), for FAR lower than or equal to 0.2, obtained by

all methods. We chose to use the AUC for FAR ≤ 0.2

rather than the total AUC, as Mason et al highlighted

that only the beginning of the ROC curves was relevant

for BCI [5]. Actually, a high FAR tends to cause exces-

sive user frustration making the resulting BCI not us-

able. Here, it should be noted that the AUC for FAR ≤

0.2 would be 0.02 for a randomly performing classifier.

We computed the accuracy and precision of each

classifier and reject option, averaged over the four data

sets for a fixed FAR of 10%. This FAR is similar to

the FAR used in the work of Scherer et al [10]. Table 2

displays the resulting accuracy, precision and TAR.

Results showed that using a nonlinear classifier

within the RC reject option led to the most efficient self-

paced BCI. Independently from the reject option used,

nonlinear classifiers, i.e., FIS, RBFN or SVM, provided

the best rejection results. Using TRF, LDA provided

the highest accuracy, but this has to be moderated by

the low TAR it provided. Actually, it is very likely that

LDAwas in fact performing ambiguity rejection [8] and

not outlier rejection, which could explain the results.

Concerning the reject options, the obtained AUC and

TAR may appear as modest, but it should be noted that

they are in line with results found in the literature. For

instance, the 3-class self-paced BCI presented in the

work of Scherer et al obtained an averaged FAR of 16.9

% and an average TAR of 28.4 % [10]. Moreover, it

is known that designing an EEG-based self-paced BCI

is a difficult problem which requires further research

[3, 5, 10].

The most efficient methods in terms of rejection ca-

pabilities are RC and SC. However, RC outperformed

Table 1. Rejection capabilities: area under
the ROC curves for FAR ≤ 0.2, for all data

sets and methods.

reject Classifier Subject 1 Subject 2

option Day1 Day 2 Day 1 Day 2

SVM 0.105 0.077 0.057 0.046

SC FIS 0.102 0.075 0.052 0.039

RBFN 0.103 0.074 0.055 0.044

LDA 0.102 0.071 0.041 0.035

SVM 0.102 0.077 0.056 0.062

RC FIS 0.102 0.072 0.055 0.052

RBFN 0.095 0.075 0.054 0.058

LDA 0.095 0.072 0.053 0.048

SVM 0.025 0.040 0.028 0.033

TRF FIS 0.057 0.039 0.04 0.036

AMTL1 RBFN 0.053 0.043 0.033 0.026

ST LDA 0.02 0.036 0.047 0.036

SVM 0.025 0.041 0.028 0.032

TRF FIS 0.082 0.06 0.037 0.042

AMTL1 RBFN 0.066 0.047 0.030 0.028

MT LDA 0.038 0.039 0.038 0.037

SVM 0.025 0.040 0.028 0.032

TRF FIS 0.058 0.044 0.041 0.042

AMTL2 RBFN 0.065 0.050 0.030 0.028

MT LDA 0.021 0.027 0.039 0.035

SC in terms of accuracy for a fixed FAR of 10 %. TRF

had the lowest rejection capabilities, even if with a low

resource cost the use of multiple thresholds improved

the results as compared to a single threshold, especially

for generative classifiers. Indeed, regarding the AUC

in Table 1, it can be noticed that discriminant classi-

fiers, i.e., SVM and LDA, obtained scores that are close

to random classification scores with TRF. However, it

is interesting to note that TRF provided the highest ac-

curacy. This suggests that, implicitely, TRF also per-

formed ambiguity rejection in addition to outlier rejec-

tion. In the future, it could be interesting to incorporate

and study ambiguity rejection in our BCI in order to in-

crease the accuracy.

4 Conclusion

This paper first introduced two pattern rejection

strategies for self-paced BCI design: the RC reject

option and the TRF reject option based on the AMTL

algorithm. Then, it compared the SC, RC and TRF



Table 2. Classification capabilities: average Accuracy (Acc), TAR and Precison (Prec), in per-
cent, for a fixed FAR of 10%.

SVM FIS RBFN LDA

SC Acc 74.1±8 73.2±5.2 73,9±9 72.0±4.7

TAR 38.2±15.2 34.3±16.6 37.0±15 33.1±17.7

Prec 69.1±8.3 65.7±11.6 68.3±8.8 64.6±12.1

RC Acc 83.4±7.7 79.4±7.3 80.2±8.3 81.1±7.3

TAR 40.0±12.2 38.7±15.2 38.2±10.5 36.1±12.3

Prec 70.8±6.2 69.5±7.8 70.0±5.8 68.4±7.4

AMTL1 Acc 84.1±5.7 92.6±7.1 82.7±9.1 94.5±5

ST TAR 16.3±3.6 22.8±4.9 20.1±6.4 17.2±8.8

Prec 50.5±5.5 58.7±5 55.0±8.3 48.9±16.5

AMTL1 Acc 84.1±5.8 77.6±8.1 83.5±8.1 93.2±4.8

MT TAR 16.2±3.4 28.5±11.1 22.2±6.5 19.3±2.2

Prec 50.4±5.3 62.8±8.8 57.6±7.4 55.0±3.2

AMTL2 Acc 83.8±5.8 92.1±6.4 75.9±6.6 94.1±3.9

MT TAR 16.2±3.6 24.1±4.7 22.5±9.8 13.6±6.3

Prec 50.4±5.5 60.1±4.7 56.8±11.1 44.3±12.9

reject options using SVM, FIS, RBFN and LDA classi-

fiers, on motor imagery data. The results showed that

Gaussian SVM, FIS and RBFN classifiers reached the

best rejection performance and that RC outperformed

SC which outperformed TRF. To conclude, we could

recommend using the RC reject option with nonlinear

classifiers for efficient self-paced BCI design.
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