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Abstract—Deep submicron effects, along with increasing in-
terconnect densities, have increased the complexity of the routing
problem. Whereas previously we could focus on minimizing
wirelength, we must now consider a variety of objectives during
routing. For example, an increased amount of timing restrictions
means that we must minimize interconnect delay. But, intercon-
nect delay is no longer simply related to wirelength. Coupling
capacitance has become a dominant component of delay due to
the shrinking of device sizes. Regardless, the most important
objective is producing a routable circuit. Unfortunately, this often
conflicts with minimizing interconnect delay as minimum delay
routes create congested areas, for which an exact routing cannot
be realized without violating design rules. In this work, we use
the concept of pattern routing to develop algorithms that guide
the router to a solution that minimizes interconnect delay—by
considering both coupling and wirelength—without damaging the
routability of the circuit. The paper is divided into two parts. The
first part demonstrates that pattern routing can be used without
affecting the routability of the circuit. We propose two schemes to
choose a set of nets to pattern route. Using these schemes, we show
that the routability is not hindered. The second part builds on the
previous part by presenting a framework for coupling reduction
using pattern routing. We develop theory and algorithms relating
pattern routing and coupling. Additionally, we give suggestions on
how to extend our theory and use our algorithms for both global
and detailed routing.

Index Terms—Congestion, coupling, detailed routing, global
routing, interconnect, pattern routing, physical design, routing
estimation.

I. INTRODUCTION

T HE PROCESS of routing can be divided into two subprob-
lems, global and detailed routing. Global routing decom-

poses the routing problem into smaller manageable routings for
the detailed router. Specifically, the global router finds a rough
path for each net while trying to reduce the chip size, decrease
the interconnect delay, and distribute the congestion across the
routing area, among other things [1]–[3]. Detailed routing uses
the results of global routing to find an exact realization of the
interconnections in VLSI circuits.

The global routing problem is known to be NP-hard [4]. This
motivates the use of heuristic and approximation algorithms.
The maze routing (or maze running) algorithm [5] is a widely
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used method for global and detailed routing. Briefly, the maze
routing algorithm starts from a source point and recursively
searches its neighbors for the best route until it reaches the sink
point. The best route is defined by a function of congestion, wire
length, chip size, number of bends, etc. Maze routing finds the
optimal path for two-terminal nets according to the cost func-
tion. A major drawback of the algorithm is the large amount of
memory required to label its data structure, the grid graph. There
have been several other proposed extensions and modifications
to the maze routing algorithm in the almost 40 years since it has
been introduced, but the underlying method remains the same.

Pattern routingis the well-known idea of using prespecified
patterns to route two terminal nets. This is particularly useful
for high level computer-aided design (CAD) tools (i.e., tools
preceding global routing in the design flow). For example, most
placement tools use quick routing metrics to get a basic idea
about congestion and wirelength information. In this paper, we
develop quick routing methods that reduce the interconnect
delay, increase the predictability of the circuit, and do not affect
the quality of the routing solution. Since we know these metrics
will not affect the routing, the placement tool can use these
methods to model congestion and wirelength more accurately.
Also, since we know the routing topology of a net, we can start
wire sizing, wire planning, and optimally add buffers1 once we
have placement information.

Due to DSM effects, coupling is of greater importance for
power, area, and timing in circuits. There are four principal
reasons for this, increasing interconnect densities, faster clock
rates, more aggressive use of high performance circuit families,
and scaling threshold voltages [7]. In fact, coupling capacitance
between wires can account for over 70% of the total wiring ca-
pacitance, even in 0.25-m processes [8]. Therefore, it has be-
come necessary to consider coupling during both global and de-
tailed routing.

Until recently, there has been little research on the coupling
problem in routing. Coupling reduction was considered at
the detailed routing stage for the river routing problem [9],
the channel routing problem [10], and the switch box routing
problem [11]. Also, there have been efforts in reducing cou-
pling in the stage between global and detailed routing. Xueet
al. developed a post global routing tool which estimates the
possible coupling between sensitive wires and tries to reroute
nets away from possible crosstalk areas [12]. Chaudharyet al.
developed a general postrouting spacing algorithm [13]. Also,
coupling is examined for area routing [14] and global routing

1If we know the net topology the complexity of buffer insertion for delay
becomes polynomial time solvable [6].
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[15]. This work presents algorithms for coupling avoidance
routing. The algorithms are general so they can be used in both
global and detailed routing.

In this paper, we focus on increasing routing predictability
and reducing the unwanted effects caused by coupling during
routing. This work is based on papers that appeared in
[16]–[18]. In Section II, we give some basic definitions in
order to make this paper self-contained. In particular, we
discuss pattern routing, congestion, and coupling. Also, we
briefly describe our router used in the experiments. Section III
introduces the idea of increasing routing predictability through
pattern routing. We present heuristics for finding a subset of
nets which can be predictably routed and show the results of
those heuristics. We introduce the coupling-free routing (CFR)
problem in Section IV and discuss its applications to global
and detailed routing. An exact algorithm for coupling-free
routing decision problem (CFRDP) is presented. Then, we
show how to transform a CFR problem into implication graph
to model the dependencies between nets. Finally, we introduce
the maximum coupling-free layout (MAX-CFL) problem and
analyze a couple algorithms developed to solve the problem.
We conclude in Section V.

II. PRELIMINARIES

A multiterminal net
is a collection of points in the plane. Aterminalis single point of
a net. A multiterminal net can be partitioned into a collection of
two-terminalnets (a net with exactly two points) using a number
of standard techniques. We adopt thestable spanning treepar-
titioning of Ho et al. [19]. Additionally, the spanning tree is al-
tered for flexibility [20]. Essentially, we use this to transform
the multiterminal net into a set of either a very short two-ter-
minal net or a large two-terminal net. That paper shows that
these nets can be pattern routed independently as two-terminal
nets without affecting the routability of the circuit.

A two-terminal net (or simply called anet hereafter)
is an unordered pair of points and

. A routingor wiring of is a set of horizontal and ver-
tical line segments connecting and . A layoutis
the routings of a set of nets.

A net can be routed without any bends if and only if either
or . We call such a net azero-bend net. Other-

wise, there are two ways to routewith one bend as shown in
Fig. 1. When a routing has no more than one bend, it is called a
single-bend routing[21]. We call such a net aone-bend net.

The routings in Fig. 1 are called theupper-L routingand the
lower-L routing. A stable spanning tree ensures that upper-L
routing and lower-L routing shapes of the two-terminal nets ob-
tained from a multiterminal net are pairwise nonintersecting. To
avoid confusion, we often refer to a possible routing as aroute.
Thus we say that a one-bend net has two one-bend routes (the
upper-L route and the lower-L route).

A grid graphis a graph such that each vertex corre-
sponds to a point in a plane. See Fig. 2 for further explanation.
A routingof a net on a grid graph is a set of grid edges such that
the terminals are fully connected. Theroute edgesof a net are
the set of edges used in the routing of that net.

Fig. 1. (a) Upper-L routings. (b) Lower-L routings.

Fig. 2. (a) Placement of cells into global bins. (b) The corresponding grid
graph.

A global bin is a rectangular partition of the chip. By parti-
tioning the chip into many rectangular regions and placing the
cells into these regions, we have a placement using global bins.
The boundaries of the global bins areglobal bin edges.

In this paper, we assume that a global placement of cells and
their interconnections are given by some placement engine (our
experiments used Dragon [22]). The cells are placed into global
bins and each cell is assumed to be placed in the center of the
global bin. Looking at Fig. 2, it is easy to see that the global bins
and edges can be transformed into a grid graph. The intercon-
nections between the cells can be modeled by nets.

Congestion in a layout means that there are too many nets
routed in a local area. This causes difficulty for the detailed
router as it may not find a feasible routing solution. We want
to evenly distribute the routing across the total chip area. The
congestionof an edge is the number of nets routed over a global
bin edge. From now on, we will refer to a global bin edgeas

. Thecapacity(also referred to as supply) of edgeis . It
is the maximum number of nets that can be routed over.
is a fixed value that is based on the length of the edge and the
technology used in creating the chip. The routing demand of,
specified as , is defined as the number of route edges crossing

. Similarly, the demand of a vertexis . Here the demand
corresponds to the number of routes that pass though the vertex

(equivalently the global bin). An edge is overflown if and
only if . Formally, the overflow of an edge is

overflow
if
otherwise.

is a threshold value which allows to go above without
an overflow penalty. is used since you can often route up to



KASTNER et al.: PATTERN ROUTING: USE AND THEORY FOR INCREASING PREDICTABILITY 779

nets though neighboring bins without affecting the congestion
of those bins. is usually a small constant (approximately 2–5).
Using the global bin and global edge notation, the total overflow
of a routing is

overflow overflow

where is the set of bin edges. The total overflow reflects
the shortage of routing resources for a particular set of edge
capacities. A routing with a minimized total overflow is one
of the objectives of our global router. Our industrial experience
shows that total overflow is a good measure of congestion.

A. Maze Routing

We implemented a global maze router. The maze router takes
every net and routes them one at a time according to a cost func-
tion

overflow overflow

length RouteEdges

cost overflow length

cost cost

There is a tradeoff between minimizing overflow and mini-
mizing wire length. Ideally, you could minimize both concur-
rently. Most often this is not possible. Our cost function can
solely minimize wire length (set ). Likewise, you can
minimize overflow by setting . We found that varying
from 10 to 100 minimizes the total overflow while keeping the
wire length minimal.

For nets with more than two terminals, we use stable Steiner
trees to partition the net into a set of two-terminal nets. Each net
is given an initial route and then a rip-up and reroute phase is
applied to further minimize the total overflow. This technique
(or variants of it) appears in most global routers in order to deal
with the net ordering problem [23]. During rip-up and reroute,
the bin edges are sequentially searched. If an edge is overflown,
then all of the nets that pass through that edge are ripped and
rerouted. This process continues until the total overflow con-
verges to a local minimum. That is, if the total overflow does
not decrease (the goal is to minimize the total overflow) after
iterations, rip-up and reroute has completed. We found that a
of 200 gave good results for the designs that we tested. Larger
designs may need an increasedwhich decreases the chance
of getting stuck in a local minimum. In general, smaller designs
can afford to decreasewhich would decrease the runtime.

B. Pattern Routing

Pattern routingis the notion of using predefined patterns to
route two-terminal nets. Usually these are simple patterns such
as an L-shaped (single bend) or a Z-shaped pattern with two
bends, route restricted within bounding box. For more details,
see Fig. 3.

Patterns can speed up the routing process. Instead of maze
routing a net, we pattern route it. In general, maze routing will
consider many bins that the final route will not actually use.

Fig. 3. (a) L-shaped routing of two two-terminal nets. (b) Z-shaped routing of
two nets.

When using pattern routing, only a constant number of edges
are searched. For example, L-shaped pattern routing will only
search the edges on the bounding box of the two-terminal net.
Then, depending on the cost of these edges, it will choose
the upper-L or lower-L and place the route there. Similarly,
Z-shaped pattern routing needs only search the edges on the
perimeter and inside the two-terminal bounding box. On the
other hand, maze routing will search every edge (in the worst
case). Therefore, pattern routing has a better upper bound on
runtime complexity. We found that on average, the pattern
routing approach searches fewer edges than the maze router.
We formally summarize the complexities.

1) Given a net and a grid graph

2) Let be the edges on and within the bounding box of.
.

3) Let be the edges on the bounding box of. .

4) Maze routing—
5) L-shaped pattern routing—
6) Z-shaped pattern routing—
Theorem 1: .

Proof 1: The proof is trivial since .
The maze router ensures that the least cost route (according

to the cost function) is found. Pattern routing does not give you
this luxury. In fact, an L-shaped pattern routing could produce
the second worst possible route. This occurs if both the upper-L
route and the lower-L route are the two worst paths. Pattern
routing will choose the better of these two solutions, giving you
a bad routing. In general this is not the case, as our results show.

Another benefit of pattern routing lies in the predictability of
a pattern-routed net [17]. If you know that a net will be pattern
routed, you can quickly and accurately estimate its route earlier
in the design flow. For example, you know that an L-shaped pat-
tern route will take one of two routes. This allows higher level
CAD tools, such as the placement or logic synthesis engines,
to estimate routings which will lead to better congestion and
area estimates. In order to exploit predictability, the tools need
placement information. Many industrial logic synthesis tools are
moving toward layout-driven synthesis. Additionally, an aca-
demic behavioral level synthesis tool has recently incorporated
placement information [24].

With emergence of deep submicron (DSM) fabrication tech-
nology, interconnect has an increasingly dominant role. Now
circuit delay is determined by the gate resistance and capaci-
tance as well as the interconnect resistance and capacitance [25].
When optimizing for delay in a circuit, logic synthesis tools look
at the critical path. Usually these tools only consider the gate
delay, ignoring the interconnect delay. If we could pattern route
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the gates on the critical path, then we can more accurately esti-
mate the interconnect resistance and capacitance.

Finally, the number of vias on a pattern-routed net is fixed.
Since vias further increase the capacitance and resistance, it is
beneficial to keep them at a minimum. Also, vias negatively
affect the routability of the circuit [26].

C. Coupling

Bakoglu [27] shows that the wire-delay on a distributed RC
line contains a time constant, where is
the interconnect resistance and and are the substrate and
coupling capacitances

(1)

where is resistivity of the conductor, is the insulator dielec-
tric constant, and , , and are the conductor’s width, thick-
ness, and separation from the substrate, respectively. The terms

and are the coupled length and spacing of the interconnect.
The coupling capacitance between two wires and can

also be represented as follows:

(2)

where and are the sizes of wiresand ,
is the unit length fringing capacitance between wiresand ,
is the overlap length of wiresand and is the distance
from the center line of wireto the center of wire (see Fig. 4).

We are trying to minimize the coupling. During routing, we
can control , , , and . By avoiding overlap between
two wires, can be minimized. In other words, we do not want
adjacent wires to run in parallel for long distances. We assume
that , , are fixed; we do not consider wire sizing and
spacing in our algorithm. But, this can be done as a postpro-
cessing step using a number of techniques (see [28] ad [29] for
a comprehensive survey and tutorial).

There are two problems introduced by coupling, delay deteri-
oration, and crosstalk. Delay deterioration refers to the fact that
the total capacitance seen by a gate is no longer a constant value.
The rising contribution of coupling capacitance to total load ca-
pacitance makes the Miller effect evident. Delay deterioration
occurs because the Miller effect causes the capacitance to vary.
For example, if two coupled nets switch in opposite directions
at the same time, the capacitance, hence the delay, will increase.

Crosstalk is a type of noise2 introduced by coupling between
two adjacent wires. A change in voltage or current on one of
the wires may interfere with the signal on the other wire. There
are two unwanted effects of crosstalk. First, the two wires form
a mutual inductor. This inductive effect must be considered as
circuit frequencies move above 500 MHz [30], [31]. Inductive
effects are not addressed in this work. The second effect is as-
sociated with coupling capacitance. Coupling capacitance can
cause a switching net to induce noise onto a neighboring net
possibly resulting in an incorrect functional response.

Coupling between nets is not always detrimental. In [32],
Kirkpatrick and Sangiovanni-Vincentelli introduce the notion

2Noise is defined as an unwanted variation which makes the behavior of a
manufactured circuit deviate from the expected response.

Fig. 4. (a) Physical coupling capacitance between two wires. (b) The wires
modeled by resistors and capacitors.

of crosstalk constraint generationwhich uses the concepts of
analog and digital sensitivityand a physical coupling term in
order to reduce the constraints given to layout synthesis. This
allows us to remove false crosstalk constraints. For example, a
net A may couple with net B. But, net A could have a high tol-
erance for delay and noise. Therefore, the A and B can couple
without negative circuit performance. We want to remove these
cases as they unnecessarily over-constrain the problem.

III. U SING PATTERNSWHILE MAINTAINING ROUTABILITY

In this section, we show the effect of pattern routing on the
quality of the routing solution. We show that you can pattern
route up to 80% of the nets with smallest bounding boxes while
incurring little or no loss of quality. Then, we show how a set of
nets that satisfies the-density routing problem (formally de-
fined in Section III-C) can be pattern routed without sacrificing
the routing quality. This gives us the ability to pattern route a
subset of all the nets, even if the nets have a large bounding box.

A. Benchmarks

To perform our experiments, we used five MCNC stan-
dard-cell benchmark circuits [33]. The characteristics of the
circuits are shown in Table I. The circuits were placed into
global bins using the Dragon global and detailed placement
engine [22]. Some of the benchmarks (i.e., prim1 and prim1.2)
are repeated. Repeated benchmarks differ in the number of
global bins; they consist of the same number of nets, cells, and
pins but may have a completely different placement.

B. Pattern Routing Analysis

For our experimental results, we choose to use L-shaped pat-
tern routing over Z-shaped for a several reasons. First, for two-
terminal nets there are only two possible L-shaped routes to
consider. The number of Z-shaped routes grows linearly with
the bounding box size. Since we are aiming toward predictable
routes, L-shaped patterns reduce the choices of routings. Sec-
ondly, we want the routing to execute quickly. The time to find
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TABLE I
BENCHMARK CIRCUIT INFORMATION

the congestion of the routes is , whereas the Z-shaped
routes is . Theorem 3.1 states the .

We comment on a few observations. Even though pure maze
routing has the greatest freedom in terms of finding the least
congested solution, the overall algorithm is a heuristic, therefore
it is not guaranteed to find the optimal solution. The tradeoff be-
tween fast routing time and reduced number of routings (better
predictability) favors L-shaped routing. Therefore, we will ex-
clusively use L-shaped routing for all of our pattern routing ex-
periments.

Our experiments focused on determining which nets we can
pattern route while incurring little to no congestion penalty. Our
first heuristic (referred to as the largest first pattern route (LFPR)
heuristic) splits the multiterminal nets into two terminal nets and
sorts them from largest bounding box to smallest bounding box.
Then, we pattern routed the largest nets while maze routing
the rest of the nets. The pattern routed nets were not rerouted
during the rip and reroute phase. As shown in Table II, pat-
tern routing large nets gives unfavorable overflow results. If you
pattern route only the largest 5% of the nets, your overflow in-
creases more than two-fold over maze routing every net. A sim-
ilar trend occurs as you increase the pattern route percentage.
Pattern routing only 20% of the nets results in an overflow over
four times the 0% overflow. (Note, the 0% pattern route is ex-
actly equivalent to maze routing every net; the rip and reroute
stage will consider every net.)

The smallest first pattern route (SFPR) heuristic gives more
encouraging results. This heuristic is similar to LFPR except
here we sort the two terminal nets from smallest to largest. Thus,
an SFPR of 5% will pattern route the smallest 5% of the nets.
Referring to Table III, we can see that we can pattern route up to
80% of the nets with only a small increase in overflow. In fact,
pattern routing the small nets actually leads to better overflow
results! These results add validity to our previous statement that
pattern routing can lead the maze router to better overflow so-
lution.

This SFPR heuristic results may seem surprising. Looking at
Table IV, you can see the percentage of the total route length
that the smallest of the nets comprises. Even when you
pattern route the smallest 90% of the nets, the route length of
these small nets is, on average, only 58.32% of the total route
length. This means that the remaining 10% of the nets that are
maze routed are much longer than the short nets. This allows the
maze router enough freedom to find a good routing, even when

TABLE II
CONGESTIONDATA FOR LARGESTFIRST-PATTERN ROUTE HEURISTIC. 0% IS

THE BASE CASE CONGESTION. THE REMAINING RESULTS TAKE THE

CONGESTION ANDSUBTRACT THE BASE CASE CONGESTION. SO 40 (AS IN

PRIM1 AT 5%) MEANS A TOTAL CONGESTION OF165+ 40= 205

TABLE III
CONGESTIONDATA FOR SMALLEST FIRST-PATTERN ROUTE HEURISTIC. 0% IS

THE BASE CASE CONGESTION. THE REMAINING RESULTS TAKE THE

CONGESTION ANDSUBTRACT THE BASE CASE CONGESTION. A NEGATIVE

RESULT MEANS THAT THE CURRENT CONGESTIONIS BETTER THAN

THE BASE CONGESTION

90% of the nets are fixed. This gives some insight as to why
the LFPR heuristic does not work. If you fix the long nets to a
pattern, you greatly reduce the routing freedom that the maze
router needs to produce a good route. Since the small nets are
close in physical proximity, there are limited number of routes
that these nets could take. Therefore, the maze router may find a
less congested solution, but due to the small number of feasible
routes, the pattern route solution will not significantly vary from
the best (i.e., maze-routed) solution. Additionally, small nets are
often entirely located within a congested region. In this case,
any shortest length path will be essentially equivalent in terms
of overflow minimization. Since there is no quality improve-
ment using maze routing, the pattern route is preferable due to
its faster run time and predictability.

We have shown that you can pattern route up to 80% of the
nets with small bounding boxes. Unfortunately, you cannot do
pattern routing on nets with large bounding boxes using the
LFPR heuristic without suffering a huge loss in the quality of
solution. Now, we will show that any set of-density nets can
be pattern routed without degrading the solution quality. This
allows us to pattern route the nets with large bounding boxes.

C. -Density Routing

The -density - routingproblem tries to find a one-bend
routing of two-terminal nets such that the routing demand of
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TABLE IV
PERCENTAGE OFROUTE LENGTH USED BY SFPR NETS. FOR EXAMPLE, WHEN

YOU PATTERN ROUTE THE 10% SMALLEST NETS IN PRIM1, THE ROUTE

LENGTH OFTHOSENETSIS ONLY 5.75%OF THETOTAL ROUTE LENGTH

every bin edge is less than. Let us define the -density routing
problem formally.

1) Given a set of two-terminal nets, a grid graph ,
and an integer .

2) Does there exist a one-bend routing for every net
such that for every edge ?

In Table V, we show that pattern routing on a set of one-dimen-
sional (1-D) or 2-D routable nets does not affect the overall
routing solution quality. Since we are trying to show that nets
with large bounding boxes can be pattern routed, we used a
heuristic that focused on finding such nets. Like the LFPR
heuristic, we sort the nets from largest to smallest bounding
box. Then, we assign an upper or lower routing to the nets so
that they can be - routed. Therefore, some of the largest
nets are always in the set of- nets. Table V also shows
the overflow results when we pattern route a set of 1-D, 2-D,
3-D, 4-D, and 5-D nets. Notice that some circuits allow up to
5-D routing without loss of quality. This highly depends on
the number of nets and number of bins in the benchmark. For
example, avqs is a large benchmark and the nets in the 3-D
routing only account for 17.7% of the total routing. Compare
this to prim1.2 where the nets of the 3-d routing are 35.5%
of the total routing. Notice that 1-D routing does not hurt the
solution quality for all but three benchmark (here avqs seems
to be an anomaly since the 2-D, 3-D, and 4-D routings show
no degradation of the overall routing quality). We believe that
as the capacity of the edges grows larger, the allowable density
(value of ) can increase while maintaining similar routability.

IV. USING PATTERNS TOREDUCE COUPLING

In Section III, we showed that it is possible to use L-shaped
patterns to routes some nets without affecting the quality of the
routing solution. By pattern routing the nets, we reduce their
interconnect delay (since the wirelength is minimal). But, cou-
pling is also an important component of delay that must be con-
sidered. Therefore, we need methods to reduce the coupling be-
tween nets. In this section, we present some theoretical aspects
to reduce coupling between nets and introduce some algorithms
to implement this theory. The ideas that we introduce provide a
framework from which more complex algorithms and methods
can be derived. We discuss some possible derivations to both the
global and detailed routing problems.

TABLE V
OVERFLOW INFORMATION FORPATTERN ROUTING A SET OF-d NETS. 

IS VARIED FROM 1—5. THE BASE CASE IS THE TOTAL OVERFLOW

WITH PURE MAZE ROUTING. THE NEXT COLUMNS ARE CURRENT

OVERFLOW—BASE CASE. A LOWER VALUE MEANS BETTER OVERFLOW,
HENCE A BETTER SOLUTION

A. Coupling-Free Routing

Every route consists of horizontal and/or vertical line seg-
ments. We say two wirescoupleif the line segments forming
them are closer thanunits for more than units. Two line seg-
mentsintersectif they have at least one point in common and
overlapif they have more than one point in common.

For a given set of nets
, a (single-bend) layout of is coupling-free if

there are no two routes that run in parallel at a distance equal
to or closer than units for more than continuous units. Ex-
amples of coupled and noncoupled layouts are given in Fig. 6.
Given a set of two-terminal nets, the problem of obtaining a
coupling-free routing of nets is called thecoupling-free routing
problem(CFR problem). A more complex formulation to decide
coupling can be substituted in lieu of our coupling-free defi-
nition. For example, we can use a complex coupling equation,
e.g., (2), and define two nets as coupling-free if they have a cou-
pling capacitance less than some threshold value. The theory
and equations we present will hold for any pairwise definition
of coupling.3 Additionally, it is straightforward to extend the
formulation to consider the cumulative coupling effect caused
by multiple neighboring nets. Consider the situation in Fig. 5.
When considered separately, the lower-L routing of two nets A
and B do not couple with upper-L routing of Net C. But, when
both A and B are routed in a lower-L the additive effect of the
coupling causes a coupling violation for the upper-L routing of
C. We will explain how to handle such cases. Unfortunately, by
considering these cases, the complexity of the problem substan-
tially increases.4

We consider routing only a subset of nets for a few reasons.
First, by routing a subset of the critical nets as patterns, we
guarantee that the nets have the minimum wirelength, which re-
duces the interconnect delay of the nets so that the timing con-
straints can be met. The remaining critical nets can be routed
using other more general coupling aware routing techniques,
e.g., maze routing that considers coupling and timing as in [34].
We are presenting a fundamental algorithm with polynomial

3Note: the runtime may increase due to increased complexity of coupling cal-
culation.

4We go from solving 2-SAT to solving the general SAT problem, which is
NP-complete.
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Fig. 5. The combination of two routings cause a noncoupling-free layout.

Fig. 6. (a) Coupling-free routings. (b) Noncoupling-free routings.

runtime and basic theoretical properties. Additional heuristics
can easily be added onto this algorithm to increase its applica-
tion. We believe that a solid framework with fundamental prop-
erties is needed for every heuristic [35]; this paper presents a
basic coupling algorithm to which heuristic extensions can be
added. Now, we discuss some possible applications and exten-
sions that may be added to our base algorithm.

As very large scale integration (VLSI) fabrication technology
progresses, more routing layers become available. Therefore,
we can afford to set asidepreferred layersfor critical nets. A
preferred layer usually has a lower wiring resistance due to po-
sition of the layer (lower layers have lower resistance) and width
of the wires on that layer (large wire widths have lower resis-
tance). Power, ground, and clock nets are already routed on pre-
ferred layers. We propose using the preferred layers for routing
critical nets. Critical nets are allotted very little slack in order
to meet timing constraints. Since interconnect is becoming a
dominate factor in delay of a circuit and coupling plays are
large role in interconnect delay, these nets should be routed in
order to minimize coupling and wirelength. Therefore, we can
use notion of coupling-free routing to provide a detailed routing
for the critical nets. Since the nets are routed with at most one
bend, they have minimum wirelength. In addition, coupling-free
routing minimizes the coupling of the routed nets. Combining
these two factors, we have a routing of the critical nets with min-
imal interconnect delay. After we have a coupling-free layout,
noncritical nets can be routed, using any type of routing method,
e.g., maze routing, on the preferred layers to maximize routing
resources. Additionally, we can consider all minimum length
routes, e.g., z-shapes. It is possible to extend our algorithms to
consider z-shapes, though this extension creates a dramatic in-
crease in complexity.5

5Once again, the formulation goes from 2-SAT to the general SAT problem.

Many single-layer routing algorithms have been suggested.
Liao et al. [36] propose density routing or maze routing to per-
form this task. A more recent paper by Lin and Ro [37] improves
on the work by Liaoet al.They employ a two step process. First,
they find a planar set of single-bend nets without considering
coupling. Then, they use a method based on rubberband equiv-
alent to find a routing for the remaining nets. CFR can easily
be incorporated into the first stage of Lin and Ro’s algorithm to
obtain a planar layout that is coupling-free.

Generally, coupling at the global routing stage is hard to de-
termine. A global route is not exact. Therefore, a net could pos-
sibly couple with every net that is routed in the same global bin.
But, the net will only couple with its immediate neighbors.6 Ul-
timately, track assignment (which can be done at the global or
detailed routing stage) determines the coupling. Additionally,
the detailed router will often make local changes which can af-
fect the coupling of nets [38]. But, the detailed router can only
make local changes, therefore considering coupling at the global
stage, even if it is not exact, is beneficial as it can provide a way
to make large scale changes to a layout that otherwise cannot
be done at the detailed level. If we have coupling-free layout at
the global stage, then the layout will remain coupling-free at the
detailed stage. Therefore, we can use CFR at the global routing
stage to reduce coupling for the detailed router. This is similar to
wire planning; we are trying to find a general area for the net’s
routing. Then, the detailed router can consider more exact cou-
pling while making track changes, locally permuting the wiring
(adding additional bends) and changing the spacing between
wires as in [39]. Additionally, we could “freeze” the routings
at the detailed level to insure that they remain coupling-free.

Next, we propose an exact algorithm for determining if a
set of nets can be a coupling-free routing. Then, we describe a
couple heuristics for solving themaximum coupling-free layout
problem— the maximum number of nets that can be laid out in
a coupling-free fashion.

B. The Coupling-Free Routing Decision Problem

Given a set of two-terminal nets, is there a single-bend
routing for every net in such that no two routings couple?
That is, do there exist any routes that run in parallel at a dis-
tance equal to or closer thanunits for more than continuous
units?

We solve the coupling-free routing decision problem by
transforming it into an instance of the 2-satisfiability (2-SAT)
problem.

The 2-Satisfiability Problem: Given a set of variables, a
collection of clauses such that each clause has .
Is there a satisfying truth assignment for?

The 2-SAT problem can be solved in time [40].
In order to transform an instance of CFR decision problem to

2-SAT, we assign a boolean variable to each net. Without loss
of generality, we say if net A has an upper-L route if its variable
is true and a lower-L route if its variable is false . A
routing of a net mayforcea routing of another net. For example,
assume net A is routed in an upper-L. If the upper-L routing

6Theoretically, a net couples with every net on the chip. But, the neighboring
nets act as a shield which makes the coupling capacitance seen by the other nets
minimal.
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Fig. 7. Examples of the ten interactions for the coupling-free routing problem.
The solid points and lines correspond to net A. The dotted lines and circles
correspond to the the bounding box and terminals of net B, respectively.

of A couples with the lower-L routing of B , then
net B must be routed as an upper-L to avoid coupling. Hence

forces . With respect to two nets A and B, there are ten
possible forcing interactions between these nets.

1) A and B are independent. Either layout for each net does
not directly influence the layout for the other.

2) A and B cannot be couple-free routed.
3) The lower-L routing for A forces the upper-L routing for

B. However, the upper-L routing for A does not influ-
ence the routing of B. The next three cases are similar.

4) The lower-L routing of A forces the lower-L routing of
B.

5) The upper-L routing of A forces the upper-L routing of
B.

6) The upper-L routing of A forces the lower-L routing of
B.

7) The lower-L routing of A forces a lower-L routing of B.
Also, the upper-L routing of A forces an upper-L routing
of B. The next three cases are similar to this case.

8) Lower-L of A forces lower-L of B; Upper-L of A forces
lower-L of B.

9) Lower-L of A forces upper-L of B; Upper-L of A forces
upper-L of B.

10) Lower-L of A forces upper-L of B; Upper-L of A forces
lower-L of B.

Examples of all of these cases are given in Fig. 7.
The algorithm proceeds as follows.

Stage 1: Consider the interactions where
is the set of nets under consideration. If two nets cannot be
couple-free routed (corresponding to interaction 2), the algo-
rithm terminates and returns FALSE. For each pair of nets,
and , we determine the interaction betweenand . Using
this information, we can determine which wires are forced.
Stage 2: The constraint information must be encoded into
boolean expression with these properties:

1) It is in conjunctive normal form (CNF) (see [41])
2) It contains at most two literals per clause
3) It is satisfiable if and only if the corresponding wire

set can be laid out (without coupling) in a single bend
fashion.

Each of the ten interactions can be encapsulated as a binary
relation.

1) A and B are independent. No encoding
2) A and B can not be couple-free routed. No encoding,

the algorithm will terminate and return FALSE if this
case is found.

3) The lower-L routing for A forces the upper-L routing
for B. Encoded as

4) The lower-L routing of A forces the lower-L routing
of B. Encoded as

5) The upper-L routing of A forces the upper-L routing
of B. Encoded as

6) The upper-L routing of A forces the lower-L routing
of B. Encoded as

7) The lower-L routing of A forces a lower-L routing of
B. Also, the upper-L routing of A forces an upper-L
routing of B. Encoded as

8) Lower-L of A forces lower-L of B; Upper-L of A
forces lower-L of B. Encoded as

9) Lower-L of A forces upper-L of B; Upper-L of A
forces upper-L of B. Encoded as

10) Lower-L of A forces upper-L of B; Upper-L of A
forces lower-L of B. Encoded as

For each forced wire A, if the wire is forced to an upper-L
route, this is encoded as ; if the wire is forced to a lower-L
route, this is encoded as .

Every net is given a boolean variable. Therefore,
. The entire set of interaction relations are

encoded as specified. Each of these relations becomes a clause
in the 2-SAT instance.

Lemma 1: .
Proof 1: Since there are at most two relations per interac-

tions, .
The 2-SAT instance is obtained by letting each netbe a

boolean variable . The set of clauses are the encoded net
interactions.

Theorem 2: The coupling-free routing decision problem can
be solved in time.

Proof 2: The CFRDP 2-SAT in time. An in-
stance of 2-SAT can be solved in linear time. Therefore, we
can solve the coupling-free routing decision problem in
time.

If we want to consider the cumulative effect of coupling be-
tween a set of nets, we can add additional clauses to the 2-SAT
formulation we have just described. First, we must identify the
set of nets that cumulatively cause a coupling violation as in
Fig. 5. For each case, we add an additional clauses and vari-
ables. The clauses added will have a cardinality greater than 2,
i.e., we will no longer have a 2-SAT formulation. For the ex-
ample in Fig. 5, we add two additional clausesand and one
additional variable as follows:

. The new variable indicates if both nets A and
B are routed in a lower-L fashion. If that is the case, clause
forces net C to be routed as a lower-L to avoid the joint coupling
effect. The additional clauses and variables for other cases can
be derived in a similar manner.

C. Implication Graph

In this section, we show how an instance of the CFR problem
is transformable into animplication graph. Then, we define
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some properties associated with the implication graph. We can
utilize the properties of the implication graph to solve the CFR
problem.

D. 2-SAT Implication Graph

First, we show how an instance of 2-SAT is transformable into
an implication graph. In Section IV, we show how to transform
an instance of the CFR problem to an instance of 2-SAT. Since
CFR 2-SAT implication graph, CFR implication graph.
The multistep transformation allows us to elegantly prove many
properties associated with the implication graph. But, we will
also show how to directly transform the CFR problem to an
implication graph.

Let be an instance of 2-SAT, where are
literals over . We want to know when SAT(C)
is true. Define a digraph by letting be the set of
literals and if and only if is one of the clauses.
Recall that is equivalent to (implication). We can
assume there is no clause of the form since that is always
true. Finally, note that implies .

Theorem 3: If there is a cycle in containing both and
for all , C is not SAT.

Proof 3: The reason is that if , then must be false.
But since there is a cycle which means must be true.
We have a contradiction. Therefore, C is SAT iff does not
contain any cycles including and for any literal .

We call the digraph an implication graph since it models
the implications between the literals.

E. Coupling-Free Routing Implication Graph

Now we show how the CFR problem is directly transformable
into an implication graph.

Given a set of nets . The implication graph is a directed
graph (digraph) . Let every vertex corre-
spond an upper-L routing and lower-L routing of each net

. Therefore, . Then, if and only if
forces or, equivalently, . We call this an implication.

Theorem 4: If there is an implication , there is
contrapositive implication .

Proof 4: Since , the upper-L routing of must
couple the lower-L routing of . Therefore, a lower-L routing
of net B will force a lower-L routing of net A .

Theorem 5: Given a set of nets , the construction of the
corresponding implication graph takes running time .

Proof 5: First, we must determine the forcing interactions
between every net. There are possible inter-
actions. Determining whether coupling exists in each interaction
take time. Therefore, it takes time to determine
the interactions. The number of vertices in the implication graph
is exactly . The maximum number of edges is

The forcing interactions determine whether or not an edge exist.
This requires a simple lookup into an interaction table.
Adding up the complexities gives us the runtime of .

Fig. 8. (a) The layout of nets A, B, and C. (b) The implications of the nets.
(c) The implication graph.x indicates an upper-L routing of neti. The
implication graph does not have any cycles containingx andx , i 2 A;B;C;
therefore, the nets are coupling-free routable.

Lemma 2: Consider a set of nets and its corresponding
implication graph . If there is a cycle in containing and

where , then the nets are not couple-free routable.
Proof 2: This is a direct consequence of Theorem 4.1.

This should not be surprising since we can transform the CFR
problem into 2-SAT.

Lemma 3: Given a set of nets , there is an algo-
rithm to determine if these nets are coupling-free routable.

Proof 3: Theorem 5 says that an implication graph is cre-
ated in time. According to Lemma 2, if we find a cycle
containing and the nets are not coupling-free routable.
We can look for these cycles by doing a depth-first search from
every vertex. If there is a path from to and a path from

to , there is a cycle containing and . We can do this
for every vertex in . . There-
fore, we can determine if the nets are coupling-free routable in

.
For each implication case, up to two clauses are added to

2-SAT in the transformation. These clauses correspond directly
to edges in the implication digraph. Fig. 8 shows a simple ex-
ample for three nets. Focusing on nets A and B, we see that an
upper-L routing of net A forces a lower-L routing for net B (cor-
responding to case 6). Therefore, we add the clause
to the 2-SAT instance. In the implication graph, we add an edge
from vertex to vertex . Notice that an upper-L routing
of net B forces a lower-L routing of net A. This corresponds to

which is the contrapositive of the previous statement.
The other cases are similar. Notice that there are no cycles in the
implication graph in Fig. 8(c). This means that these three nets
can be coupling-free routed.

F. Properties

1) Direct Forcing: Assume that we have implication graph
which is constructed from an instance of a CFR

problem containing the set of nets. Remember that every
vertex in the implication graph corresponds to a routing of a
net . Therefore, there are two vertices per net, one vertex
for the upper-L routing and one vertex for the lower-L routing.
We define the routing corresponding to vertexas route .
Let be two unique vertices. If there is a directed edge
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Fig. 9. (a) The layout of the nets. (b) The implication graph for routes 1, 2, 3,
and 4.

, then the route forces route . This is a direct con-
sequence of the way that the implication graph is constructed.

Theoutdegreeof vertex in a digraph is the number of ver-
tices adjacent to. In an implication graph, the outdegree of
corresponds to the number of routings that routeforces. We
call this adirect forcing.

2) Indirect Forcing: A routing may force a net even if it is
not a direct forcing. Referring to Fig. 9, Route 1 directly forces
only one route, Route 2. But, Route 2 forces Route 3 which
forces Route 4. So, if we choose to route the net A in an upper-L
manner (Route 1), then nets B, C, and D must be laid out as
Routes 2, 3, and 4, respectively, if we want to route every net.
Route 1 forces three routes even though it only directly forces
Route 2. We say that Route 1 indirectly forces Routes 2, 3, and
4.

Given an implication graph and vertices
. A indirectly forces if there is a path from to . The

number of total forcings (direct and indirect) ofis calculated
by determining the number of vertices that are connected to.
A slightly modified version of depth-first search can be used to
determine the number of indirect forcing in time .

G. Maximum Coupling-Free Layout

The Maximum Coupling-Free Layout Problem
(MAX-CFL) : Given a set of two-terminal nets and a
positive integer . Is there a single-bend routing for at
least nets in such that no two routings couple?

Theorem 6: The maximum coupling-free layout problem for
planar layouts is NP-Complete.

Proof 6: We make a transformation from the MAXWIRE
problem. The MAXWIRE problem is defined as finding a subset
of nets where and such that all the wires in

can be laid out in a single bend fashion on one layer. The
MAXWIRE problem is NP-Complete [42]. By setting the cou-
pling variables and , we can directly transform
any instance of MAXWIRE to an instance of MAX-CFL. This
essentially removes any coupling restrictions from the problem.

MAX-CFL can be extended for consideration criticality. The
criticality of a net can be defined in numerous ways. Most often,
a net’s criticality is determined by the amount of timing slack
that is available to that net. Also, the length of a net can be used.

If we consider criticality, MAX-CFL tries to route a subset of
nets with maximum criticality. A subset with maximum criti-
cality will not always be the subset of maximum size.

Additional routing restrictions to the MAX-CFL problem are
often needed. For example, we can use MAX-CFL to find a
subset of planar nets. In this case, we must slightly modify
the algorithms to consider intersection between the nets. An-
other common routing problem allows two layers to route the
nets—one for vertical segments, one for horizontal segments.
In this case, we must consider overlap between the nets. The
algorithms that we present next assume that there are no restric-
tions. With the proper simple modifications, they can consider
such restrictions.

Now, we look at a few heuristics to solve the MAX-CFL
problem.

1) Greedy Algorithm:The first and most obvious algorithm
that we consider is the greedy algorithm. This algorithm chooses
the most critical net and, if possible, routes the net in an upper-L
or lower-L fashion. If both the upper-L and lower-L routings
couple with net that has already been laid out, the current net is
not laid out; the most critical remaining net is then considered.
The algorithm iterates until all nets have been considered.

Theorem 7: The maximum coupling-free routing greedy
heuristic takes time.

Proof 7: The sorting step takes time. The
“for” loop will complete after iterations. Hence, we have

run time for the algorithm.
The greedy heuristic is a simple and fast method of finding a

maximum coupling-free layout solution.
Of course, there are many shortcomings to this algorithm.

First, the greedy nature of the algorithm may cause a critical net
that couples with many other less critical nets to be routed. By
not routing a critical net, you may be able to route a large number
of other less critical nets which can lead to a better overall solu-
tion. A simple example of this situation is shown in Fig. 10. The
greedy algorithm will place net A first. Then, it will place net
B in an upper-L routing because it is the most critical unrouted
net. Now, neither net C or net D can be placed since they both
couple with net B. The best solution in terms of number of nets
routed and total criticality routed is routing nets A, C, and D.

2) Implication Algorithm: We showed how to generate an
implication graph from an instance of the coupling-free routing
problem in Section IV-C. Now, we use some of the proper-
ties of the implication graph to create a heuristic to solve the
MAX-CFL problem.

The implication algorithm tries to eliminate the bad deci-
sions made by the greedy algorithm. It starts by determining the
forcing interactions between every pair of nets. Then, it finds
the nets that have a truly independent routing (either upper-L
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Fig. 10. An unrouted net is displayed as a dotted line; a routed net has a solid
line. Assume that criticality of netA = 100, B = 50, andC = D = 40.
(a) Greedy algorithm solution. Two nets are placed with a total criticality of
150. (b) Best solution. Three nets are placed with a total criticality of 180.

or lower-L) and routes them in the appropriate manner. An in-
dependent routing is equivalent to a route that forces no other
nets (corresponding to interactions 1, 3–6 from Fig. 7). If a net
only forces other nets when it is routed in a lower-L (upper-L),
it will be routed in an upper-L (lower-L). The upper-L situa-
tions corresponds to interactions 3 and 5 while the lower-L situ-
ations corresponds to interactions 4 and 6. Since these routings
are independent, routing these nets cannot cause a situation as
described in Fig. 10. The remaining nets are routed according
to a function of number of nets that they directly and indirectly
force. The net with lowest value according to that function is
routed first, as long it does not couple with any net that is al-
ready routed. This process continues until all of the nets have
been considered.

Theorem 8: The running time of the implication algorithm is
.

Proof 8: According to Theorem 4.3, the construction of
the implication graph takes time. There are
vertices in the implication graph, therefore the first “for” loop
has iterations. As stated in Theorem 5.4, the Forcings
algorithm has a run time of . Note that

and . Therefore, the total run time
of the “for” loop is . Sorting takes time.
The final “for” loop is time. Therefore, the algorithm
requires time.

3) Maximum 2—Satisfiability Algorithm:In Section IV-B,
we showed how to transform the coupling-free routing problem
into an instance of 2-SAT. In this section, we show how one
can use the well-known problem of maximum 2-satisfiability
(MAX-2SAT) to solve MAX-CFL.

Given a set of boolean variables,, a collection of clauses
such that each clause has , and for an integer

, themaximum 2-satisfiability (MAX-2SAT)problem is
defined as finding a truth assignment forsuch that at least
clauses are satisfied. MAX-2SAT is NP-complete [41].

It seems that solving the MAX-2SAT problem on a trans-
formed 2-SAT instance of CFR would be equivalent to solving
MAX-CFL. Yet there are some subtle differences between them.
First, the objective of MAX-2SAT maximizes the number of
satisfied clauses by finding an appropriate truth assignment to
the boolean variables. But, in MAX-CFL, we wish to maximize
the number of routed nets; this means that we wish to mini-
mize the number of variables in unsatisfied clauses of the equiv-
alent MAX-2SAT instance. These are two different objective
functions.

Remember that each variable corresponds to the routing of
exactly one net. If a clause is unsatisfied, then the value of the
two variables in that clause are not valid. For example, assume
that we have two nets, A and B, that have a coupling interaction
specified by the clause .7 If that clause is unsatisfied,
it implies that and are bothfalse, i.e., both nets and
are routed in a lower-L pattern which causes coupling between
the two nets. Therefore, we cannot route either netor net
and still keep a coupling-free routing.

We may have a large number of unsatisfied clauses, hence
we must eliminate at least one net for each unsatisfied clause.
Of course, eliminating the routing of one net corresponds
to removing all the forcing interactions, i.e., all the clauses
where that variable exists, between that net and every other net.
Therefore, the real problem becomes finding a maximum set of
nets such that they are coupling-free, i.e., their 2-SAT instance
is completely satisfied. This in itself is another optimization
problem.

Despite these differences, a correlation between the number
of satisfied clauses in the MAX-2SAT instance and the number
of coupling-free routed nets exists. Therefore, we can still use a
MAX-2SAT algorithm to solve the MAX-CFL problem as long
as we take into account the differences. We do this by deter-
mining the number of variables in the unsatisfied clauses and
removing the routing of the nets that correspond to those vari-
ables. This yields a lower bound for the MAX-CFL problem,
as it is possible to remove only a subset of these nets and still
maintain a valid solution.

4) Evaluation: To perform our experiments, we used five
MCNC standard-cell benchmark circuits and five benchmarks
from the ISPD98 benchmark suite [43] (ibm01–05). The circuits
were placed into using the Dragon global and detailed place-
ment engine [22].

Our experiments focus on reducing the added delay caused by
coupling. Long nets (in terms of wirelength) have the greatest
opportunity for coupling and have the largest amount of inter-
connect delay. Therefore, we look at the longest nets from each
of these circuits. We attempt to find a coupling-free 1-D routing
for the set of nets since we showed in the previous section that
a set of 1-D nets will not affect the overall routability of the
circuit.

First, we investigate the sensitivity of the coupling threshold.
Fig. 11 shows the number of constraints when we vary the cou-

7This corresponds to the lower-L routing forA forcing the upper-L routing
for B. See Section IV-B, interaction 3.
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Fig. 11. The number of coupling constraints over the ISPD98 benchmark files.
The coupling width over all the benchmarks is 1 unit. The coupling length varies
from 5–45 units according to the legend.

Fig. 12. The number of coupling constraints over the ISPD98 benchmark files.
The coupling width over all the benchmarks is 2 unit. The coupling length varies
from 5–45 units according to the legend.

pling length while the coupling width remains at 1 unit. Fig. 12
shows a similar figure when the coupling width is 2 units. Re-
call that two nets have a coupling interaction iff they have line
segments that are at a distance of the coupling width or less and
run in parallel to another for more than the coupling length. We
use the ISPD98 benchmarks for comparison since they roughly
have the same grid size. Furthermore, we consider the case when
there are 100 nets.

We expect two general trends. First, the number of constraints
should monotonically increase as the coupling length decreases.
Second, the number of constraints should monotonically de-
crease as the coupling width increases. The rate of increase/de-
crease is the relevant data. It is interesting to note that the differ-
ence in the number of constraints between the two charts differs
significantly when the coupling length is small (e.g., 10, 20), yet
the difference is minimal when the coupling length is large (e.g.,
40, 45). As the coupling length decreases, the benchmarks tend
to show an exponential decrease in the number of constraints.

We compare the greedy algorithm, implication, and
MAX-2SAT algorithms in terms of the number of nets routed
and criticality of the nets that are routed. Net criticality is
normally defined at the logic synthesis stage and is a function
of the amount of slack available on a net. Unfortunately, the
benchmarks do not include timing information. Hence, we need
another measure of criticality. It has been shown that the delay
for a wire of length increases at the rate of without
wire sizing, with optimal wire sizing and linearly with

Fig. 13. Fraction of nets placed averaged over all benchmarks.

proper buffer insertion [44]. We did experiments using linear
, l-root-l , and quadratic functions. Of course, the

criticality function can easily be changed to incorporate some
other function.

To solve the MAX-2SAT problem, we used the FMSAT
solver from the University of Michigan [45]. The algorithm
used is similar to the Fiduccia–Mattheyses algorithm for hyper-
graph partitioning except that the gain update is different and
there is no balance constraint. Unlike many other satisfiability
solvers, FMSAT has the ability to output partially satisfied
(MAX-SAT) answers when a fully satisfied answer is not
achieved. In order to obtain a solution, we removed all the
variables (hence nets) that are in unsatisfied clauses. Therefore,
the MAX-SAT solution we obtain is a lower bound on the best
possible solution generated from the solver. We could possibly
obtain a better solution by removing only a subset of these nets.
Yet, this is another optimization problem itself; we only wish
to use the MAX-SAT solver as a comparison with the other
algorithms and leave this optimization problem as potential
future work.

Fig. 13 shows the fraction of nets that are placed by the
greedy, implication, and MAX-2SAT algorithms. In this
experiment, we used the linear function indirect_forcing
2 direct_forcing for the implication algorithm. We set the
coupling width and length thresholds to 1 and 10, respectively.

We can see that the implication algorithm consistently finds a
routing for a larger percentage of nets. Over all the experiments
that we ran, the implication algorithm routes, on average, 3.38%
more nets than the greedy algorithm. Both these algorithms per-
form much better than the MAX-2SAT solver. We believe there
are several reasons for the poor performance of the MAX-2SAT
algorithm. First, we are trying to maximize the number of vi-
olated variables (variables in unsatisifed clauses) which is dif-
ferent from the MAX-SAT objective function (maximizing the
number of unviolated clauses). Also, a MAX-SAT solver is not
generated specifically for MAX-2SAT. A solver that focuses on
2-SAT instances would undoubtedly perform better. Finally, as
we discussed earlier, the number of violated variables is only a
lower bound on the number of routable nets.

When the problem is highly constrained, the greedy and im-
plication algorithms perform similarly. A smaller grid size and
the larger number of nets adds constraints to the problem. With
fewer constraints on the problem, the implication algorithm per-
forms notably better. Table VI shows the routed net results for
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TABLE VI
PERCENTAGE OFROUTESLAID OUT FOR LARGE BENCHMARKS

Fig. 14. Relative criticality of nets placed by the greedy algorithm compared
to the implication algorithm. The results are averaged over all benchmarks.
The criticality of the benchmarks are normalized to the criticality result of
the implication algorithm. Therefore, a result ofy indicates that the greedy
algorithm laid outy� (criticality of implication algorithm).

some of the larger benchmarks. You can see that the perfor-
mance of the implication algorithm is quite good on the large
benchmarks, especially when we consider a small number of
nets.

If we only look at the criticality of the nets routed, we see
that the greedy algorithm is better than the implication algo-
rithm. Fig. 14 confirms that the greedy algorithm outperforms
the implication algorithm using a quadratic function, l-root-l,
and linear function. For a linear criticality function, the greedy
algorithm was approximately 1.1 times better than the impli-
cation algorithm. If we use the quadratic function, the greedy
function outperforms the implication heuristic by a factor of 1.8
(when we consider the 250 most critical nets). This should be
of little surprise, however, since the implication algorithm does
not use the idea criticality to find a routing of the nets.

In summary, the results indicate that the implication algo-
rithm is the best algorithm for routing the maximum number of
nets. The greedy algorithm tends to find a layout with maximum
criticality but performs poorly with respect to maximizing the
number of nets.

V. CONCLUSION

In this work, we show show that pattern routing is a useful
concept for handling coupling and increasing predictability of
the routing without affecting the routability of the circuit. We ar-
gued that pattern routing is beneficial to higher level CAD tools

since it allows them to choose the routings of a subset of nets
while insuring the quality of the routing solution. In addition, we
showed that pattern routing can help even at the global routing
stage by leading the router find a better solution.

In the first part of the paper, we looked for nets that can be
pattern routed without degrading the quality of the routing so-
lution. Even with this limitation, we show that we can pattern
route up to 80% of the nets. Also, we show that pattern routing
works with large nets if they are- routable.

In the second part of the paper, we address the issue of cou-
pling during routing. We present algorithms and theory for a new
problem named CFR which is a coupling formulation for pat-
tern routing. We purposely define a CFR problem to be generic;
this allows us to use the problem as a base algorithm to which a
wide variety of extensions can be added to create more complex
heuristics. We mention some possible extensions to CFR for de-
tailed routing, single layer routing, and global routing. Addition-
ally, we discuss an extension to the algorithm that considers the
cumulative effects of coupling from multiple nets.

We show how to transform CFR to an implication graph,
which takes an instance of the problem and models the depen-
dencies or forcings that exist between the nets. We present an
exact, efficient algorithm for the CFR decision problem via a
transformation to the 2-satisfiability problem. The CFR decision
problem will determine whether every net within a specified set
is coupling-free routable.

The MAX-CFL problem is defined as finding a coupling-free
routing for the maximum number of nets in a set. We show that
the planar MAX-CFL problem is NP-complete. Also, we give a
few heuristics for solving the general MAX-CFL problem and
the greedy, implication, and MAX-2SAT algorithms.

The greedy algorithm is quite simple, yet it is an effective
way of obtaining a layout with maximal criticality with small
runtime complexity. The implication algorithm uses some prop-
erties associated with the implication graph to formulate a so-
lution. The MAX-2SAT algorithm transforms the MAX-CFL
problem into a 2-satisfiability instance and generates an answer
using a MAX-SAT solver. Our experiments show that the impli-
cation algorithm is the best algorithm at routing the maximum
number of nets; it consistently routes the largest number of nets.
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