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Abstract. We present a convergence theory for pattern search methods for solving bound
constrained nonlinear programs. The analysis relies on the abstract structure of pattern search
methods and an understanding of how the pattern interacts with the bound constraints. This analysis
makes it possible to develop pattern search methods for bound constrained problems while only
slightly restricting the flexibility present in pattern search methods for unconstrained problems.
We prove global convergence despite the fact that pattern search methods do not have explicit
information concerning the gradient and its projection onto the feasible region and consequently are
unable to enforce explicitly a notion of sufficient feasible decrease.
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1. Introduction. This paper extends the class of pattern search methods for
unconstrained minimization, considered in [16], to bound constrained problems:

minimize f(x)
subject to ` ≤ x ≤ u,

(1.1)

where f : Rn → R, `, x, u ∈ Rn, and ` < u. We allow the possibility that some
of the variables are unbounded either above or below by permitting `j, uj = ±∞,
j = 1, · · · , n.

Our convergence analysis is guided by that for pattern search methods for un-
constrained problems [16]. We can guarantee that if the objective f is continuously
differentiable, then a subsequence of the iterates produced by a pattern search method
for problems with bound constraints converges to a stationary point of problem (1.1).
By a stationary point of problem (1.1) we mean a feasible point x that satisfies the
first-order necessary condition for optimality: for all feasible z, (∇f(x) , z − x) ≥ 0.
Equivalently, x is a Karush–Kuhn–Tucker point for problem (1.1). As in the case of
unconstrained minimization, pattern search methods for bound constrained problems
accomplish this without an explicit representation of the gradient or the directional
derivative. In particular, we prove global convergence in the bound constrained case
even though pattern search methods do not have explicit information concerning the
gradient and its projection onto the feasible region and consequently do not explicitly
enforce a notion of sufficient feasible decrease.
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In (1.1), near the boundary of the feasible region, the proximity of the boundary
restricts the set of descent directions along which we can search and remain feasible
for a sufficiently long distance. In projected gradient methods, one circumvents this
inconvenience by combining knowledge about the local behavior of the objective f ,
namely the gradient, with the global structure of the feasible region by conducting
searches along the projected gradient path. In the case of pattern search methods,
we do not have recourse to this strategy; nonetheless, we can specify the pattern so
that it contains a sufficiently rich set of directions to ensure that we need not take too
short a step to obtain a new iterate that produces decrease in f and is also feasible.

So far as we know, ours is the first convergence analysis for pattern search meth-
ods for bound constrained minimization. However, the observation that forms the
basis of our analysis—the utility of having a sufficiently large subset of the pattern
oriented along the coordinate directions in order to handle the bounds—is not new.
For instance, in [10] Keefer notes that the pattern associated with the method of
Hooke and Jeeves [9] is well-suited for coping with bounds and proposes the Simpat
algorithm, which combines the use of the Nelder-Mead simplex algorithm [12] in the
interior of the feasible region with the use of the Hooke and Jeeves pattern search
algorithm near the boundary.

The general specification of pattern search methods for bound constrained min-
imization gives one broad latitude in designing such algorithms. Moreover, as we
shall discuss, classical pattern search methods for unconstrained minimization—such
as coordinate search with fixed step sizes and the original pattern search of Hooke
and Jeeves—can be generalized without modification to the bound constrained case.
We also will show that not all pattern search methods for unconstrained minimization
immediately generalize to bound constrained problems: in §2 we present a counterex-
ample that defeats G.E.P. Box’s method of evolutionary operation using two-level fac-
torial designs [1], [3, 14] and show how the convergence theory guides us to a remedy
that uses composite designs [2], instead of the simpler factorial or fractional factorial
designs. The multidirectional search algorithm of Dennis and Torczon [7, 15] also
requires us to augment the pattern used for the algorithm; again we find a straight-
forward extension, but one that reveals much about the interesting behavior of the
simplices which characterize that method.

2. Motivation. Before giving the technical specification of pattern search meth-
ods for bound constrained minimization, we consider an example that illustrates what
is needed for the generalization and how the bound constrained algorithms work. Con-
sider the following simple linear problem

minimize f(x) = −(x1 + 2x2)
subject to 0 ≤ x1 ≤ 1

x2 ≤ 0.

The solution of this problem is x∗ = (1, 0)T . Let us consider an iteration of the
pattern search method of evolutionary operation applied to this problem starting at
the initial iterate x0 = (0, 0)T .

The usual pattern is typically a factorial design comprising the points NW, NE,
SW, and SE indicated by the open circles in Fig. 2.1. We see that the values of f
at the points NW and NE are lower than that at x0. If there were no constraints,
as depicted in Fig. 2.1, the algorithm could choose either of these points as the next
iterate; most implementations would choose NE since it produces the greater decrease
in f .
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Fig. 2.1. The pattern for factorial design in the unconstrained case.

In the unconstrained case, pattern search methods work much like line-search
quasi-Newton methods. Pattern search methods include sufficient search directions
to guarantee that if the current iterate is not a stationary point, then at least one of the
search directions is a descent direction. Moreover, one can prove that as the iterations
progress these “good” search directions cannot become increasingly orthogonal to the
steepest descent direction. In the situation depicted above, for instance, regardless
of the direction of −∇f(x0), one of the four directions from x0 to the corners of the
square the pattern defines must make an angle of 45◦ or less with −∇f(x0). Finally,
the way the pattern is rescaled implements a form of backtracking that is the final
piece needed to guarantee convergence.

Now consider what happens in our simple example when we take into account the
constraints. We will consider only feasible points in the pattern, in order to ensure
that the algorithm produces only feasible iterates. In Fig. 2.2 we see that the only
feasible point is SE. Unfortunately, this step will produce increase in f . We cannot
remedy this by moving the pattern closer to x0—backtracking along the directions
from x0 to the points in the pattern—since the only feasible points that will ensue lie
along the line segment from x0 to SE and on this line segment f is larger than f(x0).
Consequently, evolutionary operation will never move from x0.

The problem is that while there are feasible directions of descent emanating from
x0, our pattern is not oriented in such a way as to capture any of this information
from its feasible point SE. The pattern associated with evolutionary operation is not
compatible with the geometry of the feasible region. A moment’s reflection reveals
that the problem is that the pattern does not allow us to move parallel to the bounds.

This problem goes away if, for instance, we augment the pattern using the idea
of composite design [2] (as opposed to factorial design). An example of such a design
is shown in Fig. 2.3. We now have a feasible step along the active constraint x2 ≤ 0
that will produce descent.

This simple example captures the essential idea for the generalization of pattern
search methods to bound constrained minimization. We restrict attention to patterns
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Fig. 2.2. An illustration of what can go wrong with factorial design in the bound constrained case.
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Fig. 2.3. An illustration of how the problem can be circumvented using a composite design.

that reflect the geometry of the feasible region by including enough directions oriented
along the coordinate axes so that we can move parallel and perpendicular to the
boundary of the feasible region. We can then guarantee global convergence to a
Karush-Kuhn-Tucker point.

Notation. We denote by R, Q, Z, and N the sets of real, rational, integer, and
natural numbers, respectively.

Unless otherwise noted, norms are assumed to be the Euclidean norm. The fea-
sible region for problem (1.1) we denote by Ω:

Ω = { x ∈ Rn | ` ≤ x ≤ u } .
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The projection onto Ω we denote by P . If for scalar t we define

pj(t) =







`j if t < `j
t if `j ≤ t ≤ uj

uj if t > uj ,

then the projection of x = (x1, · · · , xn)T is given by

P (x) =

n
∑

j=1

pj(xj)ej ,

where {ej}, j = 1, · · · , n are the standard basis vectors. On those few occasions where
we must denote components of subscripted vectors, we use the following notation: qk,j

denotes the jth component of the vector qk.
We will denote by g(x) the gradient ∇f(x) of the objective. Finally, let

LΩ(y) = { x ∈ Ω | f(x) ≤ f(y) } .

3. Pattern Search Methods. We begin by defining the general pattern search
method for the bound constrained problem (1.1); it differs from that for unconstrained
problems [16] in only a few particulars, which we summarize in §3.5.

3.1. The Pattern. As with pattern search methods for unconstrained problems,
to define a pattern we need two components: a basis matrix and a generating matrix.

The basis matrix is a nonsingular matrix B ∈ Rn×n.
The generating matrix is a matrix Ck ∈ Zn×p, where p > 2n. We partition the

generating matrix into components

Ck = [ Mk −Mk Lk ] = [ Γk Lk ].(3.1)

We require that Mk ∈ M ⊂ Zn×n, where M is a finite set of nonsingular matrices,
and that Lk ∈ Zn×(p−2n) and contains at least one column, a column of zeroes.

A pattern Pk is then defined by the columns of the matrix Pk = BCk. For con-
venience, we use the partition of the generating matrix Ck given in (3.1) to partition
Pk as follows:

Pk = BCk = [ BMk −BMk BLk ] = [ BΓk BLk ].

We also require the matrix BMk to be diagonal:

BMk = diag(di
k), i = 1, · · · , n.(3.2)

This condition, absent in the case of unconstrained minimization, is needed in order to
ensure that we can find feasible points in the pattern that will also produce decrease in
the objective. As we shall see, this condition is not especially restrictive and is satisfied
by all of the commonly encountered pattern search algorithms or straightforward
variants of them.

At iteration k, given ∆k ∈ R with ∆k > 0, we define a trial step to be a vector of
the form si

k = ∆kBc
i
k for some i ∈ {1, · · · , p}, where cik denotes the ith column of Ck

(i.e., Ck = [c1k · · · c
p
k ]). We call a trial step si

k feasible if (xk + si
k) ∈ Ω. At iteration k,

a trial point is any point of the form xi
k = xk + si

k, where xk is the current iterate.
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3.2. The Bound Constrained Exploratory Moves. Pattern search methods
proceed by conducting a series of exploratory moves about the current iterate xk to
choose a new iterate xk+1 = xk + sk, for some feasible step sk determined during
the course of the exploratory moves. The following hypotheses on the result of the
bound constrained exploratory moves allow a broad choice of exploratory moves while
ensuring the properties required to prove convergence. By abuse of notation, if A is
a matrix, y ∈ A means that the vector y is a column of A.

1. sk ∈ ∆kPk ≡ ∆kBCk ≡ ∆k [BΓk BLk].
2. (xk + sk) ∈ Ω.
3. If min { f(xk + y) | y ∈ ∆kBΓk, xk + y ∈ Ω } < f(xk),

then f(xk + sk) < f(xk).

Fig. 3.1. Hypotheses on the result of the bound constrained exploratory moves.

3.3. The Generalized Pattern Search Method. Fig. 3.2 states the gener-
alized pattern search method for minimization with bound constraints. To define a
particular pattern search method, we must specify the basis matrix B, the generating
matrix Ck, the bound constrained exploratory moves to be used to produce a feasible
step sk, and the algorithms for updating Ck and ∆k.

Let x0 ∈ Ω and ∆0 > 0 be given.
For k = 0, 1, · · · ,

a) Compute f(xk).
b) Determine a step sk using a bound constrained exploratory moves algorithm.
c) If f(xk + sk) < f(xk), then xk+1 = xk + sk. Otherwise xk+1 = xk.
d) Update Ck and ∆k.

Fig. 3.2. The Generalized Pattern Search Method for Bound Constrained Problems.

3.4. The Updates. Fig. 3.3 specifies the rules for updating ∆k. The aim of the
update of ∆k is to force a strict reduction in f . An iteration with f(xk + sk) < f(xk)
is successful; otherwise, the iteration is unsuccessful. Note that to accept a step we
only require simple, as opposed to sufficient, decrease.

Let τ ∈ Q, τ > 1, and {w0, w1, · · · , wL} ⊂ Z, w0 < 0, and wi ≥ 0, i = 1, · · · , L. Let
θ = τw0 , and λk ∈ Λ = {τw1 , · · · , τwL}.

a) If f(xk + sk) ≥ f(xk) then ∆k+1 = θ∆k.
b) If f(xk + sk) < f(xk) then ∆k+1 = λk∆k.

Fig. 3.3. Rules for updating ∆k.

The conditions on θ and Λ ensure that 0 < θ < 1 and λi ≥ 1 for all λi ∈ Λ. Thus,
if an iteration is successful it may be possible to increase the step length parameter
∆k, but ∆k is not allowed to decrease.

3.5. Differences between Pattern Search Methods for Unconstrained

and Bound Constrained Minimization. There are only two additional restric-
tions required of pattern search methods to ensure convergence for the bound con-
strained case.

First note that as we have defined them, pattern search methods for bound con-
strained minimization are feasible point methods; the search begins with a point that
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satisfies the bounds and maintains feasibility throughout the search. This can be seen
in Fig. 3.2, where we require x0 ∈ Ω. This requirement also appears in the hypotheses
on the result of the bound constrained exploratory moves given in Fig. 3.1: if simple
decrease on the function value at the current iterate can be found among any of the
feasible trial steps contained in the columns of ∆kBΓk, then the exploratory moves
must produce a feasible step sk that also gives simple decrease on the function value
at the current iterate.

The second, and more interesting, restriction is that the core pattern BMk must
be defined by a diagonal matrix. Because the columns of the pattern matrix determine
the directions of the steps that may be considered, we need to ensure that if we are not
at a constrained stationary point, we have at least one feasible direction of descent.
Moreover, we need a feasible direction of descent along which we will remain feasible
for a sufficiently long distance to avoid taking too short a step. This is a crucial point
since we do not enforce any notion of sufficient decrease. Practically, we must ensure
that we have directions that allow us to move parallel to the constraints. Requiring
BMk to be a diagonal matrix is sufficient, and as we saw in §2, such a requirement is
unavoidable.

We note an equivalence between pattern search methods for bound constrained
problems and an exact penalization approach to problem (1.1). Applying a pattern
search method for problem (1.1) produces exactly the same iterates as applying such
an algorithm to the unconstrained problem

minimize F (x),

where

F (x) =

{

f(x) if x ∈ Ω
∞ otherwise.

In fact, this is one classical approach used with direct search methods to ensure that
the iterates produced remain feasible (see, for instance, [10, 12, 13]). In the case of
pattern search methods this formulation is not simply a conceptual approach; pattern
search methods are directly applicable to this exact penalty function since they do
not rely on derivatives. However, as we demonstrated in §2, this exact penalization
approach cannot be applied with an arbitrary pattern search method for unconstrained
minimization; we require that BMk be diagonal.

3.6. Results from the unconstrained theory. We recall the following results
from [16], to which we refer the reader for the proofs. The first result indicates one
sense in which ∆k regulates step length.

Lemma 3.1 (Lemma 3.1 from [16]). There exists a constant ζ∗ > 0, independent
of k, such that for any trial step si

k 6= 0 produced by a generalized pattern search
method (Fig. 3.2) we have

∥

∥ si
k

∥

∥ ≥ ζ∗∆k.
The next result is key to the convergence of pattern search methods. It states that

the iterates produced by a pattern search method have a rigid algebraic structure.
Theorem 3.2 (Theorem 3.2 from [16]). Any iterate xN produced by a generalized

pattern search method (Fig. 3.2) can be expressed in the following form:

xN = x0 +
(

βrLBα−rUB

)

∆0B

N−1
∑

k=0

zk,(3.3)

where
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• x0 is the initial guess,
• β/α ≡ τ , with α, β ∈ N and relatively prime, and τ is as defined in the rules

for updating ∆k given in Fig. 3.3,
• rLB and rUB are integers depending on N ,
• ∆0 is the initial choice for the step length control parameter,
• B is the basis matrix, and
• zk ∈ Zn, k = 0, · · · , N − 1.

The last result we recollect says, in conjunction with Lemma 3.1, that if we bound
the size of the elements of the generating matrix (which is a reasonable thing to do),
then ∆k completely regulates the size of the steps a pattern search method takes.
This result is a direct consequence of the fact that si

k = ∆kBc
i
k.

Lemma 3.3 (Lemma 3.6 from [16]). If there exists a constant C > 0 such that for
all k, C > ‖cik‖, for all i = 1, · · · , p, then there exists a constant ψ∗ > 0, independent
of k, such that for any trial step si

k produced by a generalized pattern search method
(Fig. 3.2) we have ∆k ≥ ψ∗‖s

i
k‖.

4. Convergence Theory. We now present the first-order constrained stationary
point convergence theory for pattern search methods for bound constrained problems.
We begin by defining, for feasible x, the quantity

q(x) = P (x− g(x)) − x.

In the bound constrained theory the quantity q(x) plays the role of g(x) in the un-
constrained theory, giving us a continuous measure of how close we are to constrained
stationarity, as in the theory for methods based explicitly on derivatives (e.g., [5, 6, 8]).
The following proposition summarizes two results concerning q that we will shortly
need, particularly the fact that x is a constrained stationary point for (1.1) if and
only if q(x) = 0. While stated for the particular domain Ω, the proposition holds for
any closed convex domain. The results are classical; see §2 of [8], for instance.

Proposition 4.1. Let x ∈ Ω. Then

‖ q(x) ‖ ≤ ‖ g(x) ‖ ,

and x is a stationary point for problem (1.1) if and only if q(x) = 0.
We can now state the first convergence result for the general pattern search

method for bound constrained minimization. Henceforth we will assume that LΩ(x0)
is compact and that f is continuously differentiable on an open neighborhood D of
LΩ(x0).

Theorem 4.2. Let LΩ(x0) be compact and suppose f is continuously differen-
tiable on an open neighborhood D of LΩ(x0). Let {xk} be the sequence of iterates
produced by a generalized pattern search method for bound constrained minimization
(Fig. 3.2). Then

lim inf
k→+∞

‖ q(xk) ‖ = 0 .

The proof of this theorem is given in §5.1, after we have established the necessary
intermediate results.

We can strengthen the result given in Theorem 4.2 in the same way that we do
in the unconstrained case [16]. First, we require the columns of the generating matrix
Ck to remain bounded in norm, i.e., that there exists a constant C > 0 such that for
all k, C > ‖cik‖, for all i = 1, · · · , p. Second, we replace the original hypotheses on the
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result of the bound constrained exploratory moves with a stronger version, given in
Fig. 4.1. Third, we require that limk→+∞ ∆k = 0. All the algorithms described in §6,
except multidirectional search, satisfy this third condition because of the customary
choice of Λ = {1} ≡ {τ0}. However, it is not necessary to force the steps to be
non-increasing.

1. sk ∈ ∆kPk ≡ ∆kBCk ≡ ∆k [BΓk BLk].
2. (xk + sk) ∈ Ω.
3. If min { f(xk + y) | y ∈ ∆kBΓk, xk + y ∈ Ω } < f(xk),

then f(xk + sk) ≤ min { f(xk + y) | y ∈ ∆kBΓk, xk + y ∈ Ω }.

Fig. 4.1. Strong hypotheses on the result of the bound constrained exploratory moves.

Theorem 4.3. Let LΩ(x0) be compact and suppose f is continuously differen-
tiable on an open neighborhood D of LΩ(x0). In addition, assume that the columns
of the generating matrices are uniformly bounded in norm, that limk→+∞ ∆k = 0,
and that the generalized pattern search method for bound constrained minimization
(Fig. 3.2) enforces the strong hypotheses on the result of the bound constrained ex-
ploratory moves (Fig. 4.1). Then for the sequence of iterates {xk} produced by the
generalized pattern search method for bound constrained minimization,

lim
k→+∞

‖q(xk)‖ = 0 .

The proof will be found in §5.2.

5. Proof of Theorems 4.2 and 4.3. Throughout this section, xk will refer to
an iterate produced by a pattern search algorithm for bound constrained minimization.
By design xk is feasible, i.e., xk ∈ Ω. Given an iterate xk, let gk = g(xk) and
qk = q(xk). Let B(x, δ) be the ball with center x and radius δ, and let ω denote the
following modulus of continuity of g(x): given x ∈ LΩ(x0) and ε > 0,

ω(x, ε) = sup { δ > 0 | B(x, δ) ⊂ D and ‖ g(y) − g(x) ‖ < ε for all y ∈ B(x, δ) } .

We begin with an elementary proposition concerning descent directions.
Proposition 5.1. Let s ∈ Rn and x ∈ LΩ(x0). Assume, too, that g(x) 6= 0 and

g(x)T s ≤ −ε ‖ s ‖. Then, if ‖ s ‖ < ω(x, ε
2 ),

f(x+ s) − f(x) ≤ −
ε

2
‖ s ‖ .

Proof. If ‖ s ‖ < ω(x, ε
2 ), then the closed line segment [x, x + s] from x to x + s

is contained in D, where f is continuously differentiable. We may thus apply the
mean-value theorem; we have, for some y on the line segment between x and x+ s,

f(x+ s) − f(x) = g(x)T s+ (g(y) − g(x))
T
s

≤ −ε ‖ s ‖ + ‖ g(y) − g(x) ‖ ‖ s ‖ .

If ‖ s ‖ < ω(x, ε
2 ), then ‖ g(y) − g(x) ‖ ≤ ε

2 and the result follows.
It is in the proof of the next result that the bound constrained and the un-

constrained cases most differ. The proof of Proposition 5.2 implicitly relies on the
fact that in the bound constrained case, the directions in the pattern defined by the
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columns of BMk are coordinate directions and thus are oriented normal and tangent
to the faces of the feasible region. That this is not merely convenient is clear from
the example given in §2.

Proposition 5.2. Suppose that qk 6= 0. Then there exists a νk > 0 such that
if ∆k < νk, then there is a trial step si

k defined by a column of ∆kBΓk for which
(xk + si

k) ∈ Ω and

gT
k s

i
k ≤ −n− 1

2 ‖ qk ‖
∥

∥ si
k

∥

∥ .

Proof. We restrict our attention to the steps defined by the columns of ∆kBΓk; by
hypothesis, ∆kBΓk ≡ ∆kB[Mk −Mk] = ∆k[diag(di

k) − diag(di
k)] (see (3.2)). Choose

an index m for which

| qk,m | = ‖ qk ‖∞ ≥ n− 1
2 ‖ qk ‖ ,(5.1)

where qk,m is the mth component of qk. Note that it is also the case that

| gk,m | ≥ | qk,m |(5.2)

and sign(gk,m) = sign(qk,m).
Let si

k = − sign(gk,m)∆k | d
m
k | em; this vector will be among the columns of

∆kBΓk. Since xk + qk = P (xk − gk) is feasible, we have ` ≤ xk + qk ≤ u and
thus

`m ≤ xk,m + qk,m ≤ um.

It follows that if ∆k |d
m
k | ≤ | qk,m |, then the trial point xi

k = xk + si
k will be feasible.

Moreover, from (5.1) and (5.2),

gT
k s

i
k = − sign(gk,m)∆k | d

m
k | gk,m = −

∥

∥ si
k

∥

∥ | gk,m | ≤ −n− 1
2

∥

∥ si
k

∥

∥ ‖ qk ‖ .

Defining νk = ‖ qk ‖∞ / |dm
k | then does the trick.

Proposition 5.3. Given any η > 0, there exists δ > 0, independent of k, such
that if ∆k < δ and ‖ qk ‖ > η, the pattern search method for bound constrained
minimization (Fig. 3.2) will find an acceptable step sk; i.e., f(xk + sk) < f(xk) and
(xk + sk) ∈ Ω.

If, in addition, the columns of the generating matrix remain bounded in norm and
we enforce the strong hypotheses on the result of the bound constrained exploratory
moves (Fig.4.1), then, given any η > 0, there exist δ > 0 and σ > 0, independent of
k, such that if ∆k < δ and ‖ qk ‖ > η, then

f(xk+1) ≤ f(xk) − σ ‖ qk ‖ ‖ sk ‖ .

Proof. Since g(x) is uniformly continuous on LΩ(x0) and LΩ(x0) is a compact
subset of the open set D, there exists ω∗ > 0 such that

ω
(

xk, n
− 1

2 η
)

≥ ω∗

for all k for which ‖ qk ‖ > η.
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Next, choose d∗ > 0 such that di
k ≤ d∗ for all i and k. This we can do because

the set {di
k} is finite (see (3.2) and the conditions on Mk given in §3.1). Let

ν∗ =
n− 1

2 η

d∗
;

then

ν∗ =
n− 1

2 η

d∗
≤
n− 1

2 ‖ qk ‖

d∗
≤

‖ qk ‖∞
d∗

≤ νk

for all k for which ‖ qk ‖ > η, where νk is as in Proposition 5.2.
Finally, let

δ = min (ν∗, ω∗/d
∗) .

Now suppose ‖ qk ‖ > η and ∆k < δ. Since ∆k < νk, Proposition 5.2 assures us of
the existence of a step si

k defined by a column of ∆kBΓk such that (xk + si
k) ∈ Ω and

gT
k s

i
k ≤ −n− 1

2 ‖ qk ‖
∥

∥ si
k

∥

∥ .

At the same time, we also have

∥

∥ si
k

∥

∥ ≤ ∆kd
∗ ≤ ω∗ ≤ ω

(

xk, n
− 1

2 ‖ qk ‖
)

.

So by Proposition 5.1,

f(xk + si
k) − f(xk) ≤ −

1

2
n− 1

2 ‖ qk ‖
∥

∥ si
k

∥

∥ .

Thus, when ∆k < δ, f(xi
k) ≡ f(xk +si

k) < f(xk) for at least one feasible si
k ∈ ∆kBΓk.

The hypotheses on the result of the bound constrained exploratory moves guarantee
that if

min { f(xk + y) | y ∈ ∆kBΓk, xk + y ∈ Ω } < f(xk),

then f(xk + sk) < f(xk) and (xk + sk) ∈ Ω. This proves the first part of the
Proposition.

If, in addition, we enforce the strong hypotheses on the result of the bound con-
strained exploratory moves, then we actually have

f(xk+1) − f(xk) ≤ −
1

2
n− 1

2 ‖ qk ‖
∥

∥ si
k

∥

∥ .

Lemma 3.1 then ensures that

f(xk+1) ≤ f(xk) −
1

2
n− 1

2 ζ∗∆k ‖ qk ‖ .

Applying Lemma 3.3, we arrive at

f(xk+1) ≤ f(xk) − σ ‖ qk ‖ ‖ sk ‖ ,

where σ = 1
2n

− 1
2 ζ∗ψ∗.
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Corollary 5.4. If lim infk→+∞ ‖ qk ‖ 6= 0, then there exists a constant
∆∗ > 0 such that for all k, ∆k > ∆∗.

Proof. By hypothesis, there existsK and η > 0 such that for all k > K, ‖ qk ‖ > η.
By Proposition 5.3, we can find δ such that if k > K and ∆k < δ, then we will find an
acceptable step. In view of the rules for updating ∆k given in Fig. 3.3, we are assured
that for all k > K, ∆k > θδ. We may then take ∆∗ = min{∆0, · · · ,∆K , θδ}.

The next theorem combines the strict algebraic structure of the iterates with
the simple decrease condition of the generalized pattern search algorithm for bound
constrained problems (Fig. 3.2), along with the rules for updating ∆k (Fig. 3.3), to
give us a useful fact about the limiting behavior of ∆k.

Theorem 5.5. Assume that LΩ(x0) is compact. Then lim infk→+∞ ∆k = 0.
Proof. The proof is like that of Theorem 3.3 in [16]. Suppose 0 < ∆LB ≤ ∆k for

all k. Using the rules for updating ∆k found in Fig. 3.3, it is possible to write ∆k as
∆k = τrk∆0, where rk ∈ Z.

The hypothesis that ∆LB ≤ ∆k for all k means that the sequence {τrk} is bounded
away from zero. Meanwhile, we also know that the sequence {∆k} is bounded above
because all the iterates xk must lie inside the set LΩ(x0) = {x ∈ Ω : f(x) ≤ f(x0)}
and the latter set is compact; Lemma 3.1 then guarantees an upper bound ∆UB for
{∆k}. This, in turn, means that the sequence {τrk} is bounded above. Consequently,
the sequence {τrk} is a finite set. Equivalently, the sequence {rk} is bounded above
and below.

Next we recall the exact identity of the quantities rLB and rUB in Theorem 3.2;
the details are found in the proof of Theorem 3.3 in [16]. At iteration N we have

rLB = min
0≤k<N

{rk} rUB = max
0≤k<N

{rk}.

If, in the matter at hand, we let

rLB = min
0≤k<+∞

{rk} rUB = max
0≤k<+∞

{rk},(5.3)

then (3.3) holds for the bounds given in (5.3), and we see that for all k, xk lies in the
translated integer lattice G generated by x0 and the columns of βrLBα−rUB∆0B.

The intersection of the compact set LΩ(x0) with the lattice G is finite. Thus,
there must exist at least one point x∗ in the lattice for which xk = x∗ for infinitely
many k.

We now appeal to the simple decrease condition (c) in Fig. 3.2, which guarantees
that an iterate cannot be revisited infinitely many times since we accept a new step
sk if and only if f(xk) > f(xk + sk) and (xk + sk) ∈ Ω. Thus there exists an N such
that for all k ≥ N , xk = x∗, which implies that f(xk) = f(xk + sk).

We now appeal to the rules for updating ∆k (Fig. 3.3 (a)) to see that ∆k → 0,
thus leading to a contradiction.

5.1. The Proof of Theorem 4.2. The proof is like that of Theorem 3.5 in [16].
Suppose that lim infk→+∞ ‖ q(xk) ‖ 6= 0. Then Corollary 5.4 tells us that there exists
∆∗ > 0 such that for all k, ∆k ≥ ∆∗. But this contradicts Theorem 5.5.

5.2. The Proof of Theorem 4.3. The proof, also by contradiction, follows
that of Theorem 3.7 in [16]. Suppose lim supk→+∞ ‖ q(xk) ‖ 6= 0. Let ε > 0 be such
that there exists a subsequence ‖ q(xmi

) ‖ ≥ ε. Since

lim inf
k→+∞

‖ q(xk) ‖ = 0,
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given any 0 < η < ε, there exists an associated subsequence li such that

‖ q(xk) ‖ > η for mi ≤ k < li, ‖ q(xli) ‖ < η.

Since ∆k → 0, we can appeal to Proposition 5.3 to obtain formi ≤ k < li, i sufficiently
large,

f(xk) − f(xk+1) ≥ σ ‖ q(xk) ‖ ‖ sk ‖ ≥ ση ‖ sk ‖ ,

where σ > 0. Then the telescoping sum:

(f(xmi
) − f(xmi+1)) + (f(xmi+1) − f(xmi+2)) + · · · + (f(xli−1) − f(xli))

≥

li
∑

k=mi

ση ‖ sk ‖

gives us

f(xmi
) − f(xli) ≥

∑li
k=mi

ση ‖ sk ‖ ≥ c′ ‖ xmi
− xli ‖ .

Since f is bounded below, f(xmi
) − f(xli) → 0 as i → +∞, so ‖ xmi

− xli ‖ → 0
as i → +∞. Then, because q is uniformly continuous, ‖ q(xmi

) − q(xli) ‖ < η, for i
sufficiently large. However,

‖ q(xmi
) ‖ ≤ ‖ q(xmi

) − q(xli) ‖ + ‖ q(xli) ‖ ≤ 2η.(5.4)

Since (5.4) must hold for any η, 0 < η < ε, we have a contradiction (e.g., try η = ε
4 ).

6. Examples of pattern search methods for bound constrained mini-

mization. A section of [16] is devoted to showing that each of the following four
algorithms:

• coordinate search with fixed step lengths,
• evolutionary operation using two-level factorial designs ([1] and [3, 14]),
• the original pattern search method of Hooke and Jeeves [9], and
• the multidirectional search algorithm of Dennis and Torczon ([7] and [15])

are pattern search methods for unconstrained minimization. In this section we will
discuss how these algorithms may be extended to bound constrained problems. We
shall see that coordinate search and the pattern search method of Hooke and Jeeves
extend without modification to the bound constrained case. On the other hand,
in the case of multidirectional search, we must require the initial basis matrix to
be a diagonal matrix (in the unconstrained case, we can allow any nonsingular basis
matrix); in addition, we must augment the columns of the generating matrix to ensure
a sufficient set of search directions. In the case of evolutionary operation, we also must
augment the columns of the generating matrix, which we do using a classical variant
of factorial designs [2].

The difference between pattern search methods for unconstrained problems and
bound constrained problems lies in the two additional conditions discussed in §3.5.
First, pattern search methods for bound constrained problems must start with a
feasible iterate and choose feasible trial steps. Second, the core pattern BMk must
be defined by a diagonal matrix.

We assume that we begin with a feasible iterate; by design pattern search methods
for bound constrained problems thereafter accept only feasible iterates. Thus, the only
thing we need to check is that the core pattern BMk is defined by a diagonal matrix.
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It is this latter condition that causes us to restrict the admissible choice of the basis
matrix in multidirectional search and then augment the columns of the generating
matrix. Moreover, G.E.P. Box’s method of evolutionary operation using two-level
factorial designs does not satisfy this diagonality condition; in §2 we presented a simple
counterexample that showed how evolutionary operation can fail as a consequence in
the bound constrained case.

6.1. Coordinate search and the pattern search method of Hooke and

Jeeves. Coordinate search and the pattern search method of Hooke and Jeeves ex-
tend to bound constrained problems without change. In both cases the basis matrix
B is typically chosen to be a diagonal matrix: either the identity or a matrix whose
entries reflect the relative scaling of the variables. Furthermore, the first 3n columns
of Ck, which are fixed for all iterations k of both algorithms, are composed of all
possible combinations of {−1, 0, 1}. In [16] these columns are organized so that the
first 2n consist of the identity matrix I and its negative −I. In terms of our formal-
ism, then, Mk = I for all iterations k. It follows that BMk is a diagonal matrix, as
required.

6.2. Evolutionary operation using factorial design. In §2 a simple example
sufficed to show that evolutionary operation cannot be used for bound constrained
minimization without alteration. In terms of our formalism, the problem is the follow-
ing. For the evolutionary operation algorithm using factorial designs, the basis matrix
B is usually selected to be the identity or a diagonal matrix chosen so that the entries
along the diagonal represent the relative scaling among the variables. However, this
convention is not sufficient to ensure that BMk is a diagonal matrix. The problem
lies with the generating matrix C = [M −M L]. (The generating matrix C is fixed
across all iterations of evolutionary operation.) The generating matrix contains in its
columns all possible combinations of {−1, 1} to which is appended a column of zeroes.
Clearly, no subset of n columns of C can be chosen to form a diagonal matrix M .

As noted in §2, one remedy would be to use a composite design [2]. An exam-
ple of such a design that satisfies the requirements of the bound constrained global
convergence theory would be to choose M to be the diagonal matrix with entries of
2 along the diagonal. These 2n columns augment the original pattern of factorial
design. This was illustrated in Fig. 2.3.

6.3. Multidirectional Search. The reader should be forewarned that our de-
scription and discussion of multidirectional search take a point of view that is os-
tensibly at odds with the formalism of §3.1. The generating matrix Γ is viewed as
fixed; typically Γ = [M −M ] ≡ [I −I]. The basis matrix, on the other hand, is
viewed as varying from iteration to iteration so that Bk corresponds to the edges in
the current simplex that are adjacent to the current iterate xk. This is the reverse
of the discussion in §3.1, where B is fixed and Γk varies. However, the former view
of multidirectional search is not incompatible with the formalism of pattern search
methods, as noted in [16], and as we shall have reason to discuss here.

The extension of multidirectional search to problems with bound constraints re-
quires us to restrict the choice of a starting simplex and to augment the columns of
the generating matrix.

The first restriction is minor and is usually satisfied by the customary choices
made in practice. In multidirectional search, the columns of B0 are formed from the
edges of an initial simplex adjacent to the initial iterate x0, which is one of the n+ 1
vertices of the simplex. In the case of bound constraints, we restrict the starting
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simplex to be a right-angled simplex, i.e., the vertices of the simplex are x0 and the
points x0+αiei, where αi ∈ R and i = 1, · · · , n. Because of this choice, B0 = diag(αi).
Since M ≡ I, the product B0M is a diagonal matrix.

However, even if the initial simplex is restricted to be a right-angled simplex so
that B0M is diagonal, there is no guarantee that in subsequent iterations BkM will be
diagonal. To understand why this is so, and how this may be corrected by augmenting
the columns of the generating matrix, we need to discuss how multidirectional search
fits within the formalism of pattern search methods. These details are absent from
[16], so we present them here.

At iteration k, the basis matrix is

Bk =
[

b1k · · · b
n
k

]

=
[

(v1
k − v0

k) · · · (vn
k − v0

k)
]

,

where vi
k, i = 0, · · · , n are the vertices of the simplex associated with multidirectional

search at this iteration. Define

Ti =

{

I i = 0
−

(

I − eie
T
i −

∑n

m=1 eie
T
m

)

i = 1, · · · , n.

Now consider what happens in the next iteration. If the iteration is unsuccessful, then
v0

k+1 = v0
k and the new basis for the pattern, which is determined by the edges of the

simplex emanating from v0
k+1, is

Bk+1 = Bk = BkT0.

If, on the other hand, the iteration is successful, then v0
k+1 = v0

k − (vj
k − v0

k) for some
j ∈ {1, · · · , n}, and the new basis will be the set of vectors

bik+1 =

{

bjk if i = j

−bik + bjk otherwise.

In this case,

Bk+1 = BkTj .

Thus, in general,

Bk+1 = BkTjk+1
,(6.1)

and so

Bk = Bk−1Tjk
= Bk−2Tjk−1

Tjk
= · · · = B0

k
∏

i=1

Tji
.(6.2)

Our next goal is to simplify this relation further.
First note that

T`ei =

{

e` if i = `
e` − ei if i 6= `

.(6.3)

Let E(i, `) denote the elementary permutation matrix that swaps the ith and `th

columns when acting on matrices from the right; we have

E(i, `) = I − eie
T
i − e`e

T
` + e`e

T
i + eie

T
` .
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Using (6.3), we find that if i 6= ` then

T`E(i, `) = T` + eie
T
i − eie

T
`(6.4)

and

(Ti (−T`)) ei = e`.(6.5)

Meanwhile, a short calculation shows that for i, ` = 1, · · · , n,

TiT` = I − e`e
T
` −

n
∑

m=1

e`e
T
m − eie

T
i + δi

`eie
T
` + δi

`

n
∑

m=1

eie
T
m + eie

T
` ,

where δi
` is the Kronecker delta. If i = `, this reduces to

TiTi = I(6.6)

and if i 6= `, using (6.4) we obtain

TiT` = I − e`e
T
` −

n
∑

m=1

e`e
T
m − eie

T
i + eie

T
` = −T` − eie

T
i + eie

T
` = −T`E(i, `).(6.7)

¿From (6.6) and (6.7) we obtain the rule

TiT` =

{

I if i = `
−T`E(i, `) otherwise.

(6.8)

We can then use (6.8) to reduce (6.2) to

Bk = ±B0T`k
Πk,

for some T`k
and permutation matrix Πk.

This relationship reveals several things. The first is that it reconciles the usual
description of multidirectional search with the formal abstract definition of a pattern
search method; the pattern matrix is given by

BkC = ±B0Tjk
Πk[I −I 0] = B0[Tjk

− Tjk
0]Πk ≡ BCk.(6.9)

That is, we may interpret multidirectional search in terms of a fixed basis B and a
changing generating matrix Ck.

We can also see that while BΓ0 will be diagonal, this diagonality may be lost
in subsequent iterations. However, the form of the generic pattern from the un-
constrained algorithm suggests one way to circumvent this problem in the bound
constrained case. This remedy will, moreover, preserve the geometric interpretation
of the pattern in multidirectional search in terms of a simplex.

First, if we ignore the permutation in (6.9), which only affects column ordering,
the pattern at iteration k in the unconstrained case is given by

BkC ≡ BCk = B0[Tjk
− Tjk

0].

Suppose we augment the columns of C to include all the Ti:

C = [−T0 −T1 · · · −Tn 0].
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At any iteration k, up to a column permutation, the basis matrix is the matrix
Bk = ±BTjk

, jk ∈ {0, · · · , n}. When we then form the pattern Pk = ∆kBkC, we
have

Pk = ∆kBkC = ∆kB[±Tjk
T0 ±Tjk

T1 · · · ±Tjk
Tn] ≡ ∆kBCk.

Now note that (6.5) means that for jk 6= l the jthk column of −Tjk
T` is the `th basis

vector. Consequently, we are guaranteed that by a permutation of the columns of Ck,

Ck = [I −I Lk] ≡ [Γ Lk],

where Lk changes at each iteration, but Γ does not. Since we require the initial simplex
to be a right-angled simplex, we may then be assured that BΓ = [diag(αi) −diag(αi)],
as required.

Moreover, this augmentation of C and the search through its columns can be
implemented in a way that preserves the relationship of the pattern to the moving
simplex that characterizes multidirectional search. This is possible because the ma-
trices Ti, i = 0, · · · , n capture how the basis changes in association with a change
of simplex. This is the gist of (6.1). The implications for any implementation of
this modification to multidirectional search to handle bound constraints will appear
elsewhere.

7. Conclusion. We have presented a reasonable extension of pattern search
methods for unconstrained minimization to bound constrained problems. The ex-
tension is supported by a global convergence theory as strong as that for the un-
constrained case. The generalization imposes few additional requirements and as we
have seen in §6, the classical pattern search methods for unconstrained minimization
or straightforward variants thereof carry over to the bound constrained case.

One issue we have not discussed is that of identifying active constraints, as in
[4, 5]. One would wish to show that if the sequence {xk} converges to a nondegenerate
stationary point x∗, then in a finite number of iterations the iterates xk land on the
constraints active at x∗ and remain thereafter on those constraints.

There are three difficulties in proving such a result for pattern search methods for
bound constrained minimization. The first is minor. If the iterates xk are to identify
the active constraints for a stationary point on the boundary of the feasible region,
we must ensure that the lattice manifest in Theorem 3.2 actually allows iterates to
land on the boundary. This requires additional but straightforward conditions on
such quantities as x0, τ,∆0, and the pattern matrices Pk (see, for instance, [17]). A
related but more subtle difficulty is that the relative sizes of the steps in the core
pattern and the remaining points in the pattern must obey certain relations in order
to ensure that the algorithm does not take a purely interior approach to a point on
the boundary. This rules out, for instance, certain of the composite designs suggested
by G.E.P. Box and K.B. Wilson [2].

The most serious obstacle is showing that ultimately the iterates will land on
the active constraints and remain there. For algorithms such as those considered
in [4, 5], this is not a problem because the explicit use of the gradient impels the
iterates to do this in the neighborhood of a nondegenerate stationary point. However,
pattern search methods do not have this information. On the other hand, the kinship
of pattern search methods and gradient projection methods makes us hopeful that
ultimately we will be able to prove that pattern search methods also identify the
active constraints in a finite number of iterations.
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One can also extend pattern search methods to linearly constrained minimization
[11]. The specification of pattern search methods for handling general linear inequal-
ities is more involved and the analysis is lengthier and more complicated. For bound
constrained problems the analysis is enormously simplified because of the straightfor-
ward geometry of the feasible region and the fact that we know the explicit form of
the projected gradient.

Acknowledgments. We wish to thank Margaret Wright for her suggestion that
we include an introductory example that provides some intuition about how these
methods work; we think this has improved the presentation. We also wish to thank
Chen Xin for catching an error in an earlier version of this paper.
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