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PATTERN SEARCH ALGORITHMS FOR
MIXED VARIABLE PROGRAMMING �

CHARLES AUDET y AND J�E� DENNIS JR� z

Abstract� Many engineering optimization problems involve a special kind of discrete variable
that can be represented by a number� but this representation has no signi�cance� Such variables arise
when a decision involves some situation like a choice from an unordered list of categories� This has
two implications� The standard approach of solving problems with continuous relaxations of discrete
variables is not available� and the notion of local optimality must be de�ned through a user�speci�ed
set of neighboring points� We present a class of direct search algorithms to provide limit points that
satisfy some appropriate necessary conditions for local optimality for such problems� We give a more
expensive� version of the algorithm that guarantees additional necessary optimality conditions� A
small example illustrates the di�erences between the two versions� A real thermal insulation system
design problem illustrates the e�cacy of the user controls for this class of algorithms�

Key words� Pattern search algorithm� convergence analysis� bound constrained optimization�
mixed variable programming� derivative�free optimization�

�� Introduction� Torczon ���� de�ned a class of generalized pattern search
methods to minimize a function f � �n � � without any knowledge of its deriva�
tives	 She shows that the class includes algorithms such as coordinate search with
�xed step sizes
 evolutionary operation using factorial design ���
 the original pattern
search algorithm ���
 and the multidirectional search algorithm ��	 In ���� she gave
general convergence results under the assumption of continuous di�erentiability	

The main result of ���� is that for f � C�
 the sequence of iterates fxkg of �n

generated by any GPS �generalized pattern search� method satis�es

lim inf
k��

krf�xk�k � ���	��

without ever computing or explicitly approximating derivatives	 At each iteration

the function is evaluated at trial points on a discrete mesh containing the current
iterate in search of one yielding any decrease in the objective function value	 Lewis
and Torczon ���� use positive basis theory to strengthen the result by roughly cutting
in half the worst case number of trial points at each iteration without a�ecting the
convergence result	 Lewis and Torczon ��� ���� extend pattern search algorithms and
the convergence theory to bound and linearly constrained minimization by adapting
the exploration of the domain near the boundary of the feasible region	 The optimality
condition guaranteed by their approach is the existence of a limit point �x of the the
sequence of iterates fxkg that satis�es

�x� �x�Trf��x� � � for any feasible x���	��
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This condition reduces to ��	�� in the event that �x is a strictly interior point	
Our purpose here is to further generalize the problem to be solved because many

engineering optimization problems contain both continuous and discrete variables	
Moreover
 the discrete variables are often categorical ones
 i	e	
 they refer to a list
or set of categories and thus the standard mixed integer approach of solving with
continuous relaxations through branch and bound is not available	 Of course
 when
branch and bound can be used
 it probably should be
 but that is not the issue here	
Indeed
 the context in which our algorithm is to be applied is that the variables are
provided by the algorithm as input to a black box simulation	 It would be surprising
if one could run the simulation code with a continuous variable where the simulation
expects a discrete input � perhaps specifying the state of the physical medium under
investigation	

We consider the problem of minimizing the function f � � � �
 where the
domain is partitioned into continuous and discrete variables �c and �d �some or all
of the discrete variables may be categorical�	 The domain of the continuous variables
is bound constrained �c � ��� u�
 where �� u � �nc � f��g
 � � u
 and nc is the
dimension of the space	 The domain of the discrete variable �d has dimension nd

and may be represented by a subset of Znd 	 The continuous and discrete components
of the iterates generated by the method will be denoted by xk � �xck� x

d
k�
 where

xck � �
nc and xdk � Z

nd 	 We understand that we are abusing notation here
 since we

certainly mean that xk � �n
c

	Zn
d

	 However
 the purpose of notation is to explicate

not to be pedantic
 and we are sure the reader will forgive us	

The function f is assumed to be continuously di�erentiable when the discrete
variables in �d are �xed	 We present a general mixed variable pattern search method
GMVP that reduces to that of Lewis and Torczon ��� when the dimension nd is �xed
to zero	 Thus
 like them
 we deal with infeasible trial points by setting f�x� to a large
value	

A second objective of the paper is to slightly generalize the part of the algorithm
that deals with the continuous variables and to revise and shorten the arguments
developed in ���� and in ����	 We �rst show how to obtain a limit point �x of the
sequence of iterates that satis�es �rst�order optimality conditions with respect to
the continuous variables	 These conditions reduce to ��	�� when there are no discrete
variables	 We also guarantee that the same limit point �x satis�es some local optimality
conditions with respect to the discrete variables	 The notion of local optimality is
de�ned through the user�speci�ed set of neighbors N �x� 
 � described in Section �	�	
We also present a second version of the algorithm that guarantees stronger results	

The paper is structured as follows	 First
 we present a de�nition of local optimality
for mixed variable programming and the optimality conditions guaranteed by our
algorithm	 We use a design problem for a thermal insulation system to illustrate
categorical variables and our version of local optimality	 Then in Section �
 we formally
describe a general framework for pattern search algorithms with mixed variables	 In
Section �
 we provide the analysis to specify a subsequence of iterates whose limit
points satisfy optimality conditions
 including a stronger version of the algorithm
that uses more function evaluations per iteration to guarantee an additional necessary
optimality condition	 Section  illustrates the di�erence between the two versions of
the algorithm on a small example
 and it reports results for the algorithm applied to
the problem in Section �	�	 We use that example to illustrate some controls the user
has to spend more function evaluations to gain a better local optimum	
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�� Mixed Variables�

���� Local Optimality for Mixed Variables� In the absence of discrete vari�
ables
 the de�nition of local optimality is straightforward� �x � ��� u� is a local mini�
mizer of the bound constrained function f if there exists an � � � such that f��x� �
f�v� for all v � ��� u� in a ball B��� �x� of radius � around �x	

When the optimization problem contains only discrete variables
 a de�nition of
local optimality might be� f��x� � f�y� for all y in N ��x�
 where N ��x� is a �nite set of
neighbors including and around the discrete variable �x	 This speci�es the quality of
the solution for which one is willing to pay the necessary function values by de�ning
the notion of �local optimality� the algorithm is to achieve with respect to the discrete
variables	

An example is the Quadratic Assignment Problem �QAP� in which n facilities
must be assigned to n locations� each assignment may be represented using one of
the n� permutations of the vector ��� �� � � � � n�	 The key point in the de�nition is for
the user to answer the question� �What property must the solution provided by the
algorithm satisfy in order for it to be a satisfactory local solution�� One might decide
for example that a QAP solution is interesting if a given assignment x could not be
improved by changing x in at most two locations �or more stringently � in at most
three locations�	 Our approach is completely �exible in this respect� however
 the
more stringent the conditions of local optimality the user wants to impose
 the more
expensive the GMVP poll step will be	

Consider for example the QAP with three facilities	 It may be modeled with three
discrete variables �xd � Z��	 Not all the points of the integer lattice Z� represent
feasible assignments
 only the permutations of ��� �� �� are	 Also
 the ordering is not
the classical one associated with an inherited metric
 since for the set of neighbors
N ��� �� �� � f��� �� ��� ��� ����� �������� �������g
 the assignment ��� �� �� seems nearer
than ��� �� �� to ��� �� ��	 Observe that in this example
 the constraints that de�ne
�d �i	e	
 the set of permutations� are modeled through the de�nition of the set of
neighbors N 	

Thus
 de�nition of the set of neighbors N represents one of the tuning knobs
available to the user willing to pay more for a guarantee of a stronger local optimizer	
As our thermal example shows
 this does not guarantee �nding a lower function value

but it does guarantee a wider set of changes that will not produce a better function
value	 A better way to use this knob is the way we used it in the thermal example �
to save evaluating alternatives that are highly unlikely to improve the function value

and thus decrease the cost of the more expensive poll steps in which local exploration
is required	

For mixed variable programming
 the de�nition of local optimality must take into
account variations of both the continuous and discrete variables	 Indeed
 in de�ning
N �x�
 one would probably need to allow for changes in the continuous as well as
the discrete components	 That is to say
 changing the discrete variables may make
no sense without some attendant change in the continuous components as well	 We
propose the following de�nition�

Definition ���� The solution �x � ��xc� �xd� � � is said to be a local minimizer of
f with respect to the set of neighbors N ��x� if there exists an � � � such that

f��x� � f�v� for any v �
�

y�N ��x�

�
���� u��B��� yc�� 	 yd

�

where N ��x� 
 � is a �nite set of points�
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We require a notion of continuity with respect to the set of neighbors� If fxkg is
a sequence that converges to �x then N �xk� converges to N ��x�
 i	e	
 for any � � � and
�y in the set of neighbors N ��x�
 there exists a yk in N �xk� that also belongs to the
ball B��� �y�	

This de�nition of local optimality requires the user to decide how to de�ne the
neighbors
 and then we produce a point at which we guarantee that there are no
better solutions than �x in any of the balls �in the continuous space and intersected
with the box ��� u�� around the points in the user�de�ned set of neighbors	 Observe
that when there are no discrete variables
 or else no continuous ones
 this de�nition
reduces to the appropriate one presented above	

Of course
 one can generally prove only that an optimization algorithm converges
to a point satisfying some necessary conditions for optimality	 Thus
 we prove that
our algorithm produces a limit point �x that satis�es

�xc � �xc�Trcf��x� � � for any feasible �xc� �xd���	��

�where rcf�x� � �n
c

denotes the gradient of f with respect to the continuous vari�
ables xc while keeping the discrete xd �xed�
 and for any �y � � in the set of neighbors
N ��x�

f��x� � f��y� ���	��

In the cases where f��y� � f��x��� �for a speci�ed � � �� then there exists a point �z � �
whose discrete components �zd are identical to �yd that satis�es f��x� � f��z� � f��y�
and

�zc � �zc�Trcf��z� � � for any feasible �zc� �zd� ���	��

Furthermore
 in the cases where f��x� � f��y� and �y � �z then

f��x� � f��y���	��

for an in�nite number of intermediate points �y � � between �y and �z �we show in
Section �	� how to construct these intermediate points�	 Moreover
 we present a
stronger version of the algorithm that guarantees that

�yc � �yc�Trcf��y� � � for any feasible �yc� �yd���	�

whenever f��x� � f��y� 	

���� An illustrative application� We illustrate our approach on a thermal
insulation system	 The problem is thoroughly described in � �
 where we show that
by considering the two categorical variables we obtain a !" better objective func�
tion value than in the earlier work of Hilal and Boom �!�
 who considered only the
continuous variables	

The setting of the problem is as follows	 One wishes to control the heat �ow
from a hot to a cold surface by inserting some shields �heat intercepts� between them	
Each shield is kept at a �xed temperature
 and the spaces between them are �lled
by various insulators	 The objective is to minimize the power f �with an extra cost
for each additional shield� required to keep the shields at their temperatures	 This is
illustrated in Figure �	�	

The temperature of the hot TH and cold TC surfaces are given	 The decision
variables are the number of shields n
 their temperatures T � �n
 the spacing #x �
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Fig� ���� Schematic of a general thermal insulation system�

�n�� between them �or equivalently the thickness of the insulators�
 and the types
of insulators I between the shields	 These last variables are taken from a �nite list
I of insulators whose thermal conductivity properties are known	 The optimization
problem may be formulated as

min
�x�T�n�I

f�#x� T� n� I�

subject to #x � �� TC � Ti � TH � i � �� �� � � � � n
n � Z�� Ij � I j � �� �� � � � � n� ��

The continuous variables are #x and T 
 and the categorical ones are n and I	
An interesting and challenging aspect of this problem is that the number of decision
variables depends on a decision variable n	 This does not add any complication to
the theory	

Section 	� contains numerical results for this problem with local optimality de�
�ned through sets of neighbors N as follows�

� changing the type of one insulator

� removing one shield and an adjacent insulator

� adding a shield and a insulator	

�� Pattern Search Methods� The underlying structure of a pattern search
algorithm is as follows	 It is an iterative method that generates a sequence of feasible
iterates whose objective function value is nonincreasing	 At any given iteration
 the
objective function is evaluated at a �nite number of points on a mesh in order to try
to �nd one that yields a decrease in the objective function value	

Any iteration k of a pattern search method is initiated with the incumbent so�

lution xk
 as well as with an enumerable subset Mk of the domain � 
 �n
c

	 Znd 	
Construction of the meshMk is formally described in Section �	�
 and its �neness
 or
resolution
 is parameterized by a positive real number #k	 The goal of each iteration
is to obtain a new incumbent solution on the current mesh whose objective function
value is strictly less �by any amount� than the old incumbent	

Exploration of the mesh is conducted in one or two phases	 First
 a �nite search

free of any other rules imposed by the algorithm
 is performed anywhere on the mesh	
Any strategy can be used
 as long as it searches �nitely many points �including none�	
This part of the algorithm has the advantage that the user can put in place any ad
hoc search he$she might favor for improving the incumbent with the knowledge that
if this fails
 the next phase will provide a failsafe	
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If the search does not succeed in improving the incumbent
 the second phase is
called	 A potentially exhaustive �but always �nite� search in a local mesh neighbor�
hood around xk and around promising points in its set of neighbors is performed	 The
�rst phase �called the search step� provides �exibility to the method and determines
in practice the global quality of the solution� a user can do a more extensive
 and
expensive
 search in hopes of �nding a better local solution	 The second phase �called
the poll step� follows stricter rules and guarantees theoretical convergence to a local
minimizer of a quality speci�ed by the user	 The set of points visited by this phase is
referred to as the poll set	 Rules for constructing this set are detailed in Section �	�	

If a point with a better objective value than xk is found in either phase
 then the
iteration is declared successful
 the better point becomes the new incumbent and next
iteration is initiated with a �possibly� coarser �and di�erent� mesh around the new
incumbent solution	

Otherwise
 the iteration is declared unsuccessful	 The next iteration is initiated at
the same incumbent solution
 but with a �ner mesh on the continuous variables
 and
a set of neighbors �closer� �if possible� to the incumbent solution	 A key property of
the mesh exploration is that if an iteration is unsuccessful
 then the current objective
function value is less than or equal to the objective function values evaluated at all
points in the trial set consisting of all points considered in the search and poll set	

In order to properly present the pattern search algorithm
 we �rst detail in the
following subsections the construction of the mesh and the poll set	

���� The Mesh� At any given iteration k
 the current mesh Mk is a discrete
set of points in � from which the algorithm selects the next iterate	 The mesh is
conceptual� it is not actually constructed	 The coarseness or �neness of the mesh is
dictated by the strictly positive mesh size parameter #k � ��	 Both the mesh and
mesh size parameter are updated at every iteration	

The mesh is the direct product of the union of a �nite number of lattices in

�n
c

with the integer space Zn
d

	 Our presentation of the lattices di�ers from that
of Torczon ����
 but the sets produced are equivalent	 Consider the basis matrix
GB � �n

c�nc and for j varying from � to jmax ��
 consider the generating matrices
Gj � Zn

c�nc 
 then de�ne the pattern matrices Pj � �n
c�nc to be the products

GBGj	 The continuous variables are chosen from one of the translated �by xck� lattices�
xck �#kPjz � z � Znc

�

 for j � �� �� � � � � jmax	 The continuous part x

c
k of the current

iterate belongs to each of the jmax lattices regardless of the value of the parameter
#k	 The basis matrix GB is constant over all iterations	 However in practice
 the
generating matrices Gj �and thus Pj� that de�ne the lattices can be determined as
the iteration unfolds
 as long as only a �nite number of them is generated	

Each of these lattices is enumerable
 and the minimum distance between two
distinct points is proportional to the mesh size parameter #k	 When an iteration is
successful
 the continuous part of the next iterate is chosen in any of these lattices

and thus belongs to their unionM�#k� �

Sjmax
j	�

�
xck �#kPjz � z � Znc

�

 the discrete

part is chosen in the integer lattice Znd 	
At iteration k
 the current mesh is de�ned to be the direct product ofM�#k���c

by �d

Mk �
�
M�#k�	 Z

n
d
�
� ��

The mesh is completely de�ned by the current iterate xk and the mesh size parameter
#k	 Whether the iteration is successful or not
 the next iterate xk�� is always selected
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in the current mesh Mk	
In the case where the search step in the current mesh is unsuccessful
 a second

exploration phase must be conducted by the algorithm in the poll set before the
iteration is declared unsuccessful	 The poll step veri�es if the incumbent solution is
a local mesh minimizer
 as de�ned in the next subsection	

���� The Poll Set� Polling occurs when the search step was unable to obtain
a point on the current mesh that decreased the incumbent value	 Polling is conducted
in up to three stages �not necessarily in this order��

� polling with respect to the continuous variables�
� polling on the current set of neighbors N �
� extended polling �in the case where f�y� for some y in the set of neighbors is
close to the incumbent value�	

The �rst stage is identical to the typical polling in pattern search algorithms for
continuous variables only	 The second one is the natural generalization to the discrete
variables using the set of neighbors	 We introduced the last one to explore around
some promising points in the set of neighbors and strengthen the optimality conditions
achieved by the limit points	

Polling with respect to the continuous variables requires the use of positive bases

or at least positive spanning sets
 on �n

c

	 A positive basis is a set of nonzero vectors
in �n

c

whose nonnegative linear combinations span �n
c


 but no proper subset does
so	 Each positive bases contains at least nc � � and at most �nc vectors	 These are
referred to as minimal and maximal positive bases �see Davis ��� for characterization
of positive bases�	 The following key property of positive spanning sets is used in this
document	 For any nonzero vector a in �n

c

and positive spanning set B on �n
c


 there
exists a vector b of B such that

aT b � ����	��

Let B be a �nite set of positive spanning set on �n
c

such that every column b of
every positive spanning set of B is of the form Pjz for some z � Zn

c

and � � j � jmax	
The pattern matrices Pj are the same ones used to construct the lattices in Section �	�	
In a way similar to ���
 we assume that at least one positive spanning set of B is a
maximal positive basis whose columns may be partitioned in a way to form two
nonsingular diagonal nc 	 nc matrices	 Let B 
 B be the set of all these bases	
Conceptually
 the set B is �xed throughout all iterations
 but it may evolve as the
solution process proceeds as long as it remains �nite	

The poll points with respect to the continuous variables are obtained by scaling
a basis B by the mesh size parameter as follows� at iteration k
 for any mesh point x

de�ne N c�x�
 the mesh neighborhood of the continuous variables around x
 to be

N c�x� � fx�#k�b� �� � � � b � Bk�x�g��	��

for some positive spanning set Bk�x� � B that depends on both the iteration number
k and the point x	 Moreover
 in order to avoid the infeasibility problem described
in ���
 we require that if one of the component of the current iterate xck is within
a tolerance parameter 	 � � of either its lower or upper bound
 then the positive
spanning set for this iteration must be chosen in B	

This de�nition ensures that the mesh neighborhood N c�xk� is a subset of the
current mesh Mk	 Moreover
 N c�xk� is constructed using a single positive spanning
set chosen from a �nite set
 and thus there are only a �nite number of possible ways
to de�ne mesh neighborhoods	
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The motivation for introducing positive spanning sets for the continuous variables
is that if the gradient rcf of the function f with respect to the continuous variables
is nonzero
 then at least one vector of the set de�nes a descent direction	 The original
work of Torczon ���� uses a maximal positive basis for unconstrained optimization	 It
was latter generalized in Lewis and Torczon ���� to any positive basis
 thus reducing
the maximum number of points in the polling set from �nc to nc � �	 However
 for
bound constrained optimization
 they show that taking the maximal positive bases
generated by the coordinate directions guarantees �nding a feasible descent direction
�if there is one� even on the boundary of the feasible region	

The discrete stage of the poll step depends on the set of neighbors de�ned by
the user �as in Section �	��	 In order to allow for varying the de�nition of the set
of neighbors for a �nite number of iterations
 we de�ne the current set of neighbors
Nk to be such that Nk di�ers from N �xk� at most at a �nite number of iterations
k	 This �exibility allows �nitely many rede�nitions of Nk to allow the user another
knob to adjust the cost of a poll step �see Section �	�� and the likely quality of the
limit point	

If none of the above�mentioned polling points �i	e	
 those in the mesh neighbor�
hood N c�xk� and in the set of neighbors Nk� yield decrease in the objective function
value
 a third stage might be required before declaring the iteration unsuccessful	
This stage is triggered by the last of our user controlled knobs � � � to pay more
for a likely better �nal function value	 An extended poll step must be conducted
around each point of the set of neighbors Nk of xk at which the function value
 even
though it is larger
 is within � of f�xk� 	 Intuitively
 � represents a tolerance which is
such that if a discrete neighbor y in Nk provides such a near function value
 then the
user wishes us to poll in the continuous variables around y since this may produce
a new best solution	 Our convergence analysis is independent of the value of �
 but
intuitively a larger � means extended polling will be carried out at more iterations

which may cost more function evaluations
 but should give a better local minimizer	
Of course
 it would be simple to construct examples showing the opposite behavior

but our thermal example shows how this can work	

More precisely
 consider any point y in the set of neighbors Nk �the variable y

should be indexed with the iteration number k and with respect to the set of neighbors
Nk
 but this would obscure the notation�	 In the case where f�y� � f�xk� � � or
f�y� � f�v� for all v in N c�y� then the poll step need not be extended and so we set
the index J to ��	 In all other cases
 y
 is set to y and for j � � we select the feasible
point yj in the mesh neighborhood N c�yj��� iteratively so that f�yj � � f�yj��� until
it is no longer possible �or until f�yj � � f�xk� in which case iteration k is successful
and xk�� is set to yj�	 It follows that the last point �whose index is denoted by J�
satis�es f�yJ � � f�v� for all v in N c�yJ �	 De�ne z to be the endpoint yJ of the
extended poll step	 Keep in mind that z depends on the iteration number k and
on the neighbor y in Nk	 These trial points are illustrated in Figure �	�
 where they
are indexed with the iteration number	

With this construction
 the function values f�y� � f�y
�� f�y��� � � � � f�yJ � � f�z�
are monotonically decreasing unless y � z	 Only at the endpoint z is the function
required to be evaluated at every point of its mesh neighborhood N c�z�	 Observe that
the index J may be �
 in which case y � z	 This happens either when f�y� � f�xk���

or when f�y� � f�v� for all v in N c�y�	 The index J is �nite since all generated
points yj are distinct and belong to the meshMk intersected with the compact level
set L��x
� �see assumption �A�� in Section �	��	
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Fig� ���� Limit points of the iterates and the extended poll points�

The set of all points visited by the poll step at iteration k is denoted X
�
k and

may be explicitly written as

X
�

k
� N c�xk�

�
Nk

�

y�Nk

f�xk��f�y��f�xk���

E�y��

where E�y� is the extended poll set
 which contains fy�� y�� � � � � yJg � N c�z� as well
as some points of N �yj � for some j%s in f�� �� � � �� J � �g	

�

�

�

xc
�

xc
�

xd

xd
k

�
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�
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�
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�
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e
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l

N �xk� � fxk� y
�� y


�g

f�xk� � f�y
�� � f�xk� � � � f�y
��

X
�

k � ff� g� hg � fxk� y
�� y


�g � fy

�
�g � fa� b� cg

Fig� ���� Construction of the current mesh neighborhood X
�

k
around xk�

Figure �	� illustrates an instance in which there are two continuous variables
and one discrete variable	 The set of neighbors of the iterate xk is assumed to be
Nk � N �xk� � fxk� y
�� y



�g
 where the subscripts � and � are added to distinguish

the points in the set of neighbors N �xk� �note that the points in Nk do not have the
same values for the continuous variables�	 The iterate xk is a local minimizer of the

function f on X
�
k if f�xk� is less than or equal to the function value evaluated at all

/ •..•.••..•.. / 

// 

--< 
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points in balls around xk
 y
� and y
�	 The letters a to l in the �gure represent mesh
neighborhoods of the continuous variables�

N c�y
�� � fd� e� y
�
�g� N

c�y��� � fa� b� cg� N
c�xk� � ff� g� hg and N

c�y
�� � fi� j� k� lg�

In this example
 since f�xk� � f�y
� � � f�xk� � � � f�y
�� the poll set X�

k
contains

points in N c�xk� and N c�y
�� �among others�	 Assuming that f�y��� � f�y
�� but

f�a� � f�y�� �
 f�b� � f�y�� � and f�c� � f�y��� leads to the poll set X�
k � ff� g� hg �

fxk� y


�� y



�g � E�y�g where E�y� � fy

�
�g � fa� b� cg	 Note that depending on the order

in which the function values are evaluated
 it is possible that the extended poll set
also contains d or e	

Using the above notation
 we can now present the GMVP algorithm	

���� The generalized mixed variable pattern search algorithm� Our pre�
sentation of the pattern search algorithm is closer to that of Booker et al� ��� than
to that of Torczon ����	 Consider the given initial mesh M
 
 � with mesh size
parameter #
 and initial point x
 of M
	 Also
 let � � � be the objective function
change tolerance used to trigger extended polling in the construction of the poll set	
Recall that if f�xk� � f�y� � f�xk� � � for some y in the set of neighbors Nk then
the polling step must be extended around y	

Throughout the sequel
 the following assumptions are made�
�A�� The level set L��x
� � fx � � � f�x� � f�x
� � �g is compact	
�A�� f is continuously di�erentiable over a neighborhood of L��x
� when variables in

Znd are �xed
 i	e	
 for any xd � �d the function xc �� f�xc� xd� is continuously
di�erentiable in a neighborhood of fxc � �xc� xd� � L��x
�g	

At any iteration k � �
 the general rules for choosing xk�� in the current mesh
Mk and obtaining the next mesh size parameter #k�� are as follows�

General Mixed Variable Pattern Search Algorithm � GMVP
�� search step �in current mesh�� Employ some �nite strategy to obtain an
xk�� � Mk satisfying f�xk��� � f�xk�	 If such an xk�� is found
 declare the
search step �as well as the iteration� successful
 then expand the mesh at Step �	
�� poll step� This step is reached only if the search step is unsuccessful	 If
f�xk� � f�x� for every x in the poll set X�

k 
 then declare the poll step �as well
as the iteration� unsuccessful and shrink the mesh at Step �	 Otherwise
 choose

xk�� � X
�

k
to be a point such that f�xk��� � f�xk�
 declare the poll step �as well

as the iteration� successful
 and expand the mesh at Step �	

�� Mesh expansion �at successful iterations�� Let #k�� � 
m
�

k #k �for


m
�

k � � de�ned below�	 Increase k
 and initiate the next iteration at Step �	
�� Mesh reduction �at unsuccessful iterations�� Set xk�� to xk and let

#k�� � 
m
�

k #k �for � � 
m
�

k � � de�ned below�	 Increase k
 and initiate the next
iteration at Step �	

In the search and poll steps
 the number of candidate points among which the
next iterate can be chosen is �nite
 since they must belong to the intersection of the
enumerable current mesh and the compact set L��x
�	

The parameters in the two last steps are the rational number 
 � � and the
integers �whose absolute values are bounded above by a constant mmax � �� m�

k � �
and m�k � ��	 In ����
 the mesh reduction parameter m�k was �xed for all k � �	
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This restriction is relaxed here without a�ecting the convergence results	 We plan to
exploit this �exibility in subsequent work to increase the practical convergence speed	

The conditions on these parameters imply the simple decrease property used
throughout the growing literature on GPS methods� Iteration k is successful if and
only if f�xk��� � f�xk�
 if and only if #k�� � #k and
 if and only if xk�� � xk	
Another important implication of the parameters% de�nition is that if the iteration
k is unsuccessful
 then f�xk� � f�v� for all v � X

�

k
and thus f�xk� � f�y� for all

y � N c�xk� and whenever f�y� � f�xk� � � for some y � Nk then f�z� � f�v� for all
v � N c�z� where z is the end point of the extended poll step initiated at y	 Moreover

#k�� is obtained by multiplying #k by a �nite positive or negative integer power of

 	 Therefore
 for any k � �
 we can write

#k � #


rk ���	��

for some rk belonging to Z	

Notice that the cost of the poll step is expected to depend on both � and on the
de�nition of the set of neighbors N 	 Thus
 the user can pay more function evaluations
for a stronger local solution by de�ning a larger � or a larger neighborhoodN 	 Another
way that the user can likely improve the quality of the solution is through the search
step	 In that step
 the user can use his knoweldge of the problem
 and$or his favorite
heuristics to improve the solution	 He can also try to evaluate the function at various
places in the variable space and design interpolary models
 or use surrogate functions
�as discussed in Booker et al� ����	 The search strategy
 which aims at �nding the best
solution on the current mesh
 can be as sophisticated as one wants
 but may increase
the number of function evaluations	

�� Proof of Convergence� This section contains the convergence proof for
the GMVP algorithm	 We start by studying the behavior of the mesh size pa�
rameter #k	 The �rst important result
 due to Torczon for the continuous case

is lim infk���#k � � which implies the existence of a subsequence of mesh size
parameters that converges to zero	 A key to our simpler proof is to conclude from
this that there is an in�nite number of unsuccessful iterations	 We analyze converging
subsequences of unsuccessful iterates whose mesh size parameters converge to zero	
We show that any limit point of such a subsequence satis�es the optimality condi�
tions ��	�����	��	 By focusing on unsuccessful iterations
 the result for the continuous
variables is shown using a much shorter proof than in ���� and ���	 We also present
a stronger version of the algorithm that yields a stronger result
 i	e	
 the optimality
condition ��	�	

Thus
 when we move to consider the analysis of this class of algorithms
 it is the
sequences of unsuccessful iterates that we show converge	 The terminology success�
ful�unsuccessful that made perfect sense in explaining the algorithm
 suddenly jars
because of the pejorative connotation of the word �unsuccessful�	 In fact
 an iteration
is unsuccessful because the corresponding iterate is a local mesh minimizer
 and so the
discrete resolution of the domainmust be re�ned by reducing #k before we can expect
to proceed downhill	 Likewise
 an iteration is successful because it moves us towards
�nding a local mesh minimizer	 Thus
 in a sense
 successful�unsuccessful could be
replaced by inner�outer or minor�major as labels for the two types of iterations	 We
hesitate to suggest such a change to well established terminology too quickly
 but we
hope this short warning discussion will alleviate the confusion readers have expressed
to us	
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���� Behavior of the Mesh Size� To show that there is a subsequence of mesh
size parameters #k that converges to zero
 we �rst show that these parameters are
bounded above by a constant
 independent of the iteration number k	

Lemma ���� There exists a positive integer ru such that #k � #


ru for any

k � ��
Proof� Let # be a mesh size parameter large enough so that the union of latticesM�#�
intersects the compact feasible level set fxc � x � L��x
�g only at the translation
parameter xck
 i	e	
 for any � � j � jmax� z � Znc and x in L��x
� the solution
xc � #Pjz does not belong to the projection of L��x
� on the continuous variables
space
 unless it equals xck	 Therefore
 if at iteration k the mesh size parameter #k is
greater than or equal to # then

Mk � L��x
� 
 fx
c
kg 	 �d�

Moreover
 only a �nite number of iterations will follow before the mesh size param�
eter drops below #	 Indeed
 the continuous part of all these iterates will necessarily
be equal to xck
 and the discrete part of these iterates can only take a �nite number of
values because the set L��x
� is bounded	 Let dmax be the total number of distinct
values that the discrete variables may take in L��x
�	 Therefore
 there will be no
more than dmax successful iterations before the mesh size parameter goes below #	

Recall that the expansion mesh size control parameter is bounded above by 
mmax 	
Let ru be a large enough integer so that #



ru � #�
mmax �dmax 	 It follows that the
mesh size parameter at any iteration will never exceed #



ru 	
We now study the convergence behavior of the mesh size parameter	 The proof

of this result is essentially identical to that of Torczon ���� despite the presence of
discrete variables	

Theorem ���� The mesh size parameters satisfy lim inf
k���

#k � ��

Proof� Suppose by way of contradiction that there exists a negative integer r� such

that � � #


r� � #k for all k � �	 Equation ��	�� states that for every k � � there

is a rk � Z such that #k � 
 rk#
	 Combining this with Lemma �	� implies that
for any k � �
 rk takes its value among the integers of the bounded interval �r�� ru�	
Therefore
 rk and #k can only take a �nite number of values for all k � �	

For any k
 the continuous part of the next iterate xck�� belongs to a lattice and

can be written xck �#kPjkzk for some zk � Znc and � � jk � jmax	 By substituting
#k � #



rk and Pj � GBGjk 
 it follows that for any integer N

xcN � xc
 �
N��X
k	�

#kPjkzk

� xc
 �#
G
B

N��X
k	�


 rkGjkzk � xc
 �
pr

�

qr
u#
G

B

N��X
k	�

prk�r
�

qr
u�rkGjkzk

where p and q are relatively prime integers satisfying 
 � p

q
	

Since for any k the term prk�r
�

qr
u�rkGjkzk appearing in this last sum is an

integer
 it follows that the continuous part of all iterates lies on the translated integer

lattice generated by xc
 and the columns of pr
�

qr
u#
G

B	 Moreover
 the discrete part of

all iterates also lies on the integer lattice Znd 	
Therefore
 since all iterates belong to the compact set L��x
�
 it follows that

there is only a �nite number of di�erent iterates
 and thus one of them must be

• 
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visited in�nitely many times	 Simple decrease ensures that the mesh size parameters
converge to zero
 which is a contradiction	

���� The main results� Lewis and Torczon ��� show that condition ��	�� holds

i	e	
 there exists a limit point �x of the sequence of iterates for which sTrf��x� � �
for any feasible direction s	 Through a shorter proof
 we show a stronger result	 We
show the existence of a limit point �x of the sequence of unsuccessful iterates that
satis�es ��	�� and is a local optimizer with respect to the set of neighbors N ��x� in
the sense of conditions ��	��
 ��	�� and ��	��	 Recall that iteration k is unsuccessful
if and only if xk�� � xk
 which is equivalent to #k�� � #k	 Thus
 the number of
unsuccessful iterations is in�nite since lim infk���#k � � by Theorem �	�	

Consider the indices of the unsuccessful iterations whose corresponding mesh size
parameters go to zero	 For any limit point of such a subsequence
 there is an iterate
xk arbitrarily close to it for which no trial point of the poll set X�

k yields decrease in
the objective function value	 The following result details properties of a limit point �x
of the subsequence of unsuccessful iterations whose mesh size parameters converge to
� �Figure �	� depicts this result�	

Proposition ���� There is a point �x � L��x
� and a subset of indices of unsuc�
cessful iterates K 
 fk � xk�� � xkg such that

lim
k�K

#k � �� lim
k�K

xk � �x and Nk � N �xk� �k � K�

Moreover� if �y belongs to the set of neighbors N ��x�� then there exists a �z � ��zc� �yd� � �
such that

lim
k�K

yk � �y and lim
k�K

zk � �z�

where zk � � is the endpoint of the extended poll step initiated at yk � N �xk� at
iteration k � K�
Proof� Theorem �	� guarantees that lim infk���#k � �
 thus there is an in�nite
subset of indices of unsuccessful iterations K	 
 fk � xk�� � xkg � fk � #k�� � #kg
such that the subsequence f#kgk�K� converges to zero	

Since all iterates xk lie in the compact set L��x
�
 we can extract an in�nite
subset of indices K		 
 K	 such that the subsequence fxkgk�K�� converges	 Let �x
in L��x
� be the limit point of such a subsequence	 Moreover
 since Nk di�ers from
N �xk� at most at a �nite number of iterates
 we may assume without any loss of
generality that xdk � �xd for all xk � K 			

Let �y � � be a point of the set of neighbors N ��x�	 Recall that we assumed in
Section �	� a notion of continuity of the sets of neighbors	 Therefore
 �y is a limit
point of a subsequence yk � Nk	 Let �z � � be a limit point of the sequence zk � � of
endpoints of the extended poll step initiated at yk	 By de�nition
 the endpoint zk
is equal to yk in the case that the extended poll step is not required	

Choose K 
 K		 to be such that both fykgk�K converges to �y and fzkgk�K is
convergent �let �z denote the limit point�	

Torczon ���� observes that setting the mesh size increase parameter m�
k
to zero

�in the mesh expansion step of the GPS algorithm� ensures that limk��#k � �	
Thus the mesh is never expanded� at unsuccessful iterations
 the mesh size parameter
#k�� is set to be equal to #k	 The same observation holds for our algorithm	 It
follows that in this case
 all the convergence results below hold for every limit point
of the sequence of unsuccessful iterates	

• 

• 
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For the rest of this subsection
 we assume that �x and K satisfy the conditions of
Proposition �	�	 The main results can now be proved	 We �rst show that �x is a local
optimal solution with respect to the set of neighbors N ��x� 
 �	

Theorem ���� The limit point �x satis�es f��x� � f��y� for all �y � N ��x��
Proof� Suppose by way of contradiction that there is a �y � N ��x� such that f��x� �
f��y�	 Continuity of the function f with respect to the continuous variables guarantees
the existence of an � � � such that if v belongs to the ball B��� �y� of radius � centered
at �y then f�v� � f��x�	

Proposition �	� guarantees that the subsequences fxkgk�K and fykgk�K �where
yk � N �xk�� respectively converge to �x and �y	 We required in Section �	� that the
set N �xk� converges for k � K to N ��x� in the sense that if k � K is large enough

then there exists a yk � N �xk� such that yk � B��� �y�	

Therefore
 there exists an iteration k � K such that yk belongs to Nk�B��� �y� and
satis�es f�yk� � f��x� � f�xk�	 It follows that the iteration is successful
 contradicting
the fact that k belongs to K 
 fk � xk�� � xkg	

In the case where the inequality in Theorem �	� is strict
 i	e	
 f��x� � f��y�
 then
the notion of local optimality for mixed integer programming presented in Section �	�
is veri�ed� There exists an � � � such that f��x� � f�v� for any v in a ball of radius
� around �y	 This follows from the continuity of the function f with respect to the
continuous variables	

Next
 we study the gradient of the function f with respect to the continuous
variables at the limit point �x	 The proof of Theorem �	� for the continuous case is
much shorter than the original one of Torczon ����	 Its proof
 as well as that for the
extended poll step �Theorem �	 �
 rely on the two following lemmas	

The �rst lemma shows that the gradient is zero in the strict interior of the bound�
ary of the feasible region	 These results concern points around which polling is un�
successful �i	e	
 pk in the lemmas will take the value of xk or zk�	

Lemma ���� Let fpkgk�Kbe a subsequence of unsuccessful poll points and let �p
be a limit point� If the continuous part of the limit point �p is in the strict interior of
the feasible region ��� u�� then rcf��p� � ��
Proof� Since k � K and �p is strictly feasible it follows that f#kgk�K goes to zero and
fpk �#k�b� �� � b � Bk�pk�g is contained in � for k large enough	 Equation ��	�� and
the mean value theorem imply that

f�pk� � min
v�N c�pk�

f�v� � min
v�fpk��k�b�
�b�Bk�pk�g

f�v�

� min
b�Bk�pk�

f�pk �#k�b� ���

� min
b�Bk�pk�

f�pk� � #kb
Trcf�pk � �bk#k�b� ���

� f�pk� � #k min
b�Bk�pk�

bTrcf�pk � �bk#k�b� ���

for some �bk � ��� �� that depends on both the positive basis vector b and iteration
number k	 Therefore

� � min
b�Bk�pk�

bTrcf�pk � �bk#k�b� ����

Taking the limit for k �� yields � � min
b�B

bTrcf��p� for at least one positive spanning

set B of the �nite set B since f is assumed to be continuously di�erentiable	 The
positive spanning set property ��	�� guarantees that rcf��p� � �	

• 

• 
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The second lemma shows that there are no descent directions for points on the
boundary of the feasible region	

Lemma ���� Let fpkgk�K be a subsequence of unsuccessful poll points and let �p
be a limit point� If the continuous part of the limit point �p is on the boundary of the
feasible region ��� u�� then �pc � �pc�Trcf��p� � � for any feasible �pc� �pd��
Proof� If the continuous part of pk is within 	 of the boundary of the feasible region
��� u�
 then Bk�pk� is a maximal positive basis belonging to B constructed from two
diagonal matrices �see the discussion preceding the de�nition of the mesh neighbor�
hood ��	���	

As in Lemma �	
 but only for the feasible positive basis directions b of Bk�pk�

we have that

� � bTrcf�pk � �bk#k�b� ����

The result follows since any feasible direction �pc � �pc� at �p is a convex combination
of some feasible positive basis directions	

We can now state our �rst main result	
Theorem ��	� The limit point �x satis�es �xc � �xc�Trcf��x� � � for any feasible

�xc� �xd��
Proof� The result follows directly from Lemmas �	 and �	! where xk plays the role
of pk and from the results on the sequence fxkgk�K of Proposition �	�	

Audet ��� shows through a small example containing two continuous variables
and no discrete ones that in the unconstrained case
 this result cannot be strength�
ened to limk�� krcf�xk�k � � since there may be a limit point whose gradient is
nonzero	 It is also shown there that no second�order optimality conditions can be
guaranteed
 which is as it should be for an algorithm that uses only function values
and no derivatives	

The following result shows that the gradient norm at the end points of the ex

tended poll converges to zero for k � K	

Theorem ���� The limit point �x� and any point �y in the set of neighbors N ��x�
satisfying f��y� � f��x� � �� are such that �zc � �zc�Trcf��z� � � for any feasible
�zc� �zd�� where �z is any limit point of the extended poll endpoints�
Proof� The result follows directly from Lemmas �	 and �	! where zk plays the role
of pk and the results on the sequence fzkgk�K of Proposition �	�	

The next result shows that the function is constant at an in�nite number of
intermediate points between �y and the endpoint �z whenever f��y� � f��x�	 In order
to show this result
 we add the index k here to avoid confusion	 The extended poll
points at iteration k initiated at yk are denoted y
k � yk� y

�
k� � � � � y

J
k � zk
 where the

index J depends on both k and yk	 Again
 this is illustrated in Figure �	�	
Proposition ���� The limit point �x� and any �y � N ��x� satisfying f��y� � f��x��

are such that any limit point �y of the sequence of extended poll points fyjkg satis�es
f��y� � f��x�� Moreover� if �y � �z� then there are in�nitely many of these limit points�
Proof� Let �y in N ��x� be such that f��y� � f��x�	 Let �y be a limit point distinct from
�y and �z of the sequence of extended poll points fyjkg	

Since f��x� � f�yj��k � � f�yjk� for j � �� �� � � � � J and since the subsequence�
f�y
k�

�
k�K

converges to f��x�
 we conclude that f��x� � f��y�	

To show the second part of the result
 we �rst let d � k�y � �zk be the nonzero
distance between �y and �z	 This makes sense because both share the same discrete
components	 Second
 for any scalar p in the open interval ��� d�
 we de�ne the set

Yp �
n
y
j

k � k � K� j � f�� �� � � � � Jg� kyjk � �yk � p� kyj��k � �yk � pk
o
�

• 

• 

• 
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Since y
k � yk � �y and yJk � zk � �z
 it follows that the set Yp contains in�nitely
many points for any p in ��� ��	 Any limit point �yp of Yp satis�es k�yp� �yk � p since #k

converges to � �in K� and y
j��
k is equal to y

j

k �#kb
j

k for some vector bjk of the basis

Bk�y
j
k� of the �nite set B	 Therefore
 if p � q then �yp � �yq and the result follows	

���� Stronger results� Theorem �	 may be strengthened under the following
�more expensive� version of extended polling	
strong extended poll step

� yj��
k

� arg min
y�N c �yj

k
�
f�y� for a given y
k and j � �� �� � � � � J at iteration k�

� the same positive basis in B must be used throughout the strong extended
poll step	

This requires performing a complete extended poll step
 i	e	
 yj��k is chosen
only after evaluating the function value at all feasible points of the continuous mesh
neighborhood around y

j
k and retaining the one that yields the smallest value �ties are

broken arbitrarily�	
This also means that the matrix Bk�y

j

k� in N c�yjk� � fyjk � #k�b� �� � � � b �

Bk�y
j

k
�g does not depend on the index j
 it can however vary with the iteration number

k	 This positive basis is maximal and constructed from diagonal matrices	 This is to
make sure that the basis directions are correctly chosen in the event that the extended
poll iterates approach the boundary of the feasible region	

The following result bounds the decrease in the objective function value under
precise conditions	 We will denote by b

j

k the vector of the positive basis used by the

extended poll step at the point yjk for some j � J 	 The next point is therefore

y
j��
k � y

j
k �#kb

j
k	

Lemma ����� Let �y � N ��x�� For any � � �� there exist  � � and � � �
both independent of the iteration number k� such that all extended poll iterates y

j

k

for which j � J � #k � � yjdk � �yd and for which �bjk�
Trcf�yjk� �

�

� also satisfy

f�yjk�� f�yj��k � � �kyjk � y
j��
k k�

Proof� Let � � � be given	 Continuous di�erentiability of the function f with respect
to the continuous variables over a neighborhood of the compact set L��x
� implies
the existence of  � � such that� Any y � L��x
� and w � � that satisfy kw � yk �

 	maxfkbk � b � B � Bg also satisfy kbT �rcf�w� �rcf�y��k � j�j
� for each feasible

direction b � B � B at y
 and in particular bTrcf�w� � bTrcf�y� � �

� 	

Let �y � N ��x� and consider the extended poll iterate y
j��
k � y

j

k
� #kb

j

k
where

y
jd

k � �yd	 Applying the mean value theorem yields

f�yj��k � � f�yjk� � #k�b
j

k�
Trcf�wj

k���	��

for some wj

k � y
j

k � �
j

k#kb
j

k where �j

k is a real number in the interval ��� ��	

Assume that yjk satis�es �bjk�
Trcf�yjk� �

�

� � if no such point exists
 then the result
is trivial	 Observe that

#k �
kyjk � y

j��
k k

kbjkk
�

kyjk � y
j��
k k

maxfkbk � b � B � Bg
���	��

Moreover
 if #k �  then w
j
k � � is within  	maxfkbk � b � B � Bg of yjk � L��x
�

since

kwj
k � y

j
kk � �

j
k#kkb

j
kk � �	 kbjkk �  	maxfkbk � b � B � Bg�

• 
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Therefore
 �bjk�
Trcf�wj

k� � �bjk�
Trcf�yjk� �

�
� � �

� �
�
� � �

� 
 and it follows by ��	��
and ��	�� that

f�yj��k �� f�yjk� � #k

�

!
�

�kyjk � y
j��
k k

!maxfkbk � b � B � Bg
�

Setting � � j�j
�maxfkbkb�B�Bg � � concludes the proof	

This second lemma relates �bj
k
�Trcf�yjk� to �blk�

Trcf�ylk� when #k is small	
For the remainder of the section
 we assume that the strong extended poll

step is used
 and that �y is a limit point of the subsequence fy
j�k�
k gk�K for which the

continuous part �yc is in the strict interior of the feasible region ��� u�
 where j�k� is an
index between � and J �where J depends on k�	 Moreover
 we assume without any
loss in generality that all iterates of this subsequence use the same positive basis that
we denote by B	 Note that the results of Proposition �	� concerning the other limit
points still hold	

Lemma ����� For any � � � there exists an � � � and a 	 � � such that if
kyjk � �yk � � and kylk � y

j
kk � � and #k � 	 for some k� j and l then �bjk�

Trcf�yjk��
�blk�

Trcf�ylk� �
�

� �

Proof� Let � � � be given	 De�ne � � � be such that if kyjk� �yk � � and kylk�y
j
kk � �


then

kbT �rcf�ylk� �rcf�yj
k
��k �

j�j

��
���	��

for all b � B

Using the mean value theorem
 de�ne wl
k � ylk � �lk#kb

l
k and w

j
k � ylk � �

j
k#kb

j
k

�where both �lk and �
j
k are in ��� ��� to be such that f�ylk � #kb

l
k� � f�ylk� �

#k�blk�
Trcf�wl

k� and f�ylk �#kb
j
k� � f�ylk� � #k�b

j
k�

Trcf�wj
k�	

Let 	 � � be such that if #k � 	 for some k � K then ylk � #kb � � for all
positive bases directions b � B	 This is possible since �yc belongs to the strict interior
of ��� u�	

k�blk�
T �rcf�wl

k��rcf�ylk��k �
j�j

!
and k�bjk�

T �rcf�wj
k��rcf�ylk��k �

j�j

��
���	��

Combining ��	�� �using b � b
j
k� with the second inequality of ��	�� yields

k�bjk�
T �rcf�wj

k� �rcf�yjk��k �
j�j

!
���	�

In summary
 we have shown in the �rst inequality of ��	�� and in ��	� that

�blk�
Trcf�wl

k� � �blk�
Trcf�ylk� � �l and �bjk�

Trcf�wj
k� � �bjk�

Trcf�yjk� � �j���	!�

where j�lj � j�j
� and j�jj � j�j

� 	
Moreover
 since blk is obtained through the strong extended poll steps
 and

since ylk � #kb
j

k is feasible
 then it follows that f�ylk � #kb
l
k� � f�ylk � #kb

j

k�
 and

therefore �blk�
Trcf�wl

k� � �bjk�
Trcf�wj

k�	 Using the two equalities of ��	!� we get

�blk�
Trcf�ylk�� �bjk�

Trcf�yjk� � uj � ul � j�j
� 	

The following result strengthens Theorem �	 by showing that there are no feasible
descent directions at the limit points �y of Proposition �	�	

• 

• 
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Theorem ����� If the limit points �x and �y � N ��x� obtained under the strong
extended poll step satisfy f��y� � f��x�� then rcf��y� � ��
Proof� Suppose by way of contradiction that the limit point �y � �z satis�esrcf��y� � �	
Set � � min

b�B
bTrcf��y� � �
 and let  and � be from Lemma �	��
 and � and 	 be

from Lemma �	��	 Let k be an index in K such that the following six conditions hold�

i� #k � � iv� bTrcf�zk� �
�

� for all feasible directions b � B�

ii� #k � 	� v� kyj�k�
k

� �yk � ��

iii� �b
j�k�
k �Trcf�y

j�k�
k � � ��

� � vi� f�y
j�k�
k �� f�ylk� � �� for any l � j�k��

Conditions i and ii hold since #k � �	 Condition iii holds since b
j�k�
k is chosen

with the strong extended poll step	 Theorem �	 implies condition iv	 Condition

v follows since y
j�k�
k � �y	 Proposition �	� guarantees condition vi since f�y

j�k�
k � �

f���� � f��x�	
De�ne the index l�k� � min

�
l � j�k� � �blk�

Trcf�ylk� �
�

�

�
�condition iv guaran�

tees that l�k� � J�	 Therefore
 Condition i and Lemma �	�� ensure that f�yjk� �

f�yj��k � � �kyjk � y
j��
k k when j�k� � j � l�k�	 Writing out the telescopic sum leads

to

f�y
j�k�
k �� f�y

l�k�
k � �

l�k���X
j	j�k�

�
f�yjk�� f�yj��k �

�

� �

l�k���X
j	j�k�

kyjk � y
j��
k k � �ky

j�k�
k � y

l�k�
k k�

Together with condition vi
 this gives kyj�k�
k

� y
l�k�
k
k � �	 Combining this with condi�

tions ii to v and with Lemma �	�� leads to

��

�
� �b

j�k�
k �Trcf�y

j�k�
k �

� �b
l�k�
k �Trcf�y

l�k�
k � �

�
�b

j�k�
k �Trcf�y

j�k�
k � � �b

l�k�
k �Trcf�y

l�k�
k �

�

�
�

�
�

�

�
�

��

�
�

which is a contradiction	
In the next section
 we illustrate the behavior of the algorithm on two examples	

	� Examples� The �rst example shows the value of the strong extended

poll versus the cheaper extended poll step	 This illustrates the di�erence between
Proposition �	� and Theorem �	��	 The second example shows how the algorithm
behaves on the larger problem presented in Section �	�	

	��� Illustration of the stronger version of the algorithm� Consider the
following example in which there are two continuous variables and a single binary one	
In order to simplify notation
 the continuous variables xc are written xc � �a� b�	 The
objective function is

f�x� � f�a� b� xd� � g�a� b���� xd� � h�a� b�xd�

where g�a� b� � a��b� and h�a� b� � a�v�a���b�� Both variables are constrained to
be in the interval ���� ��
 but these bounds are never approached by the trial points	

• 
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The pattern search algorithm we apply here does not have a search step
 we
use only a poll and an extended poll step triggered by � � �	 The current mesh
neighborhood at iteration k is de�ned to be

N c�x� � fx�#k��� �� ��� x�#k������ ��� x�#k�� �� ��� x�#k���� �� ��g

for any x � �a� b� xd� except when the iterate may be written x � ��#k� ��#k� �� in
which case it is

N c�x� � fx�#k������ ��� x�#k�� �� ��� x�#k���� �� ��g�

The set of neighbors of x � �a� b� xd� is N �x� � f�a� b� � � xd�� �a� b� xd�g	 This
de�nition ensures that the discrete variable always remain binary	 Iteration k is
declared successful and stops as soon as the incumbent is improved and #k�� � #k	
Otherwise #k�� �

�k

� 	
The algorithm is initiated at x
 � ��� �� �� with #
 �

�
� and with incumbent value

f�x
� � �	 The poll step evaluates the function at the points ofN c�x
� � f���
�
� � �� �

��
�� � f���

��
� � �� � ��

�� � f�
�
� � �� �� �

��
�� � f�

��
� � �� �� � �

�� � This �rst iteration is successful	
Iteration � starts at x� � ���� � �� �� with #
 � �

� and f�x�� � �
�� 	 The poll

step computes f in N c�x�� � f�
��
� � �� � �� �

�

�� � f�

��
� � ��� � �� � �


�� � f�
�
� � �� �� �

�
� � This

iteration is also successful	
Iteration � starts at x� � ��� � �� �� with #
 � �

� and f�x�� �
�
� 	 The poll step

computes f in N c�x�� � f�
�
� �

�
� � �� �

�
�� � f�

�
� �
��
� � �� � �

�� � f�
�
� � �� �� �

��
�� � f�

��
� � �� �� �

��
�� � Before declaring this iteration unsuccessful
 polling must be conducted on the set
of neighbors N �x�� � f�

�
� � �� �� �

�
� 	 This value is within � of f�x�� and so extended

polling must be conducted around this last point y
� 	 The extended poll step
�nds y�� � ��� �

�
� � �� in N

c�y
�� with f�y�� � �
�
�� 
 then y�� � ��� �

�
� � �� in N

c�y��� with
f�y��� � �

� 
 and y�� � ��� �
�
� � �� in N c�y��� with f�y��� � �

�� 	 It does not succeed in
improving this last value in N c�y��� � f�

�
� �

�
� � �� �

��
�� � f�

�
� � �� �� �

��
�� � f�

��
� � �� �� � ��

�� 	
Thus
 iteration � is unsuccessful and iteration � starts at the same point x� � ��� � �� ��
with #
 �

�
� and f�x�� �

�
� 	

Table ���

In three consecutive iterations� the iterates go from xk � ����k � � to xk�� � ����k�� �
�
�

xk xk ��k��� �� �� xk ��k������ �� xk ��k��� �� �� xk ��k���� �� ��
�	���� �� �	���� �� �	������� �
�� �� �� ����� �� ��
���� ���� ���� ��� 
��

������� �� ������� �� ���������� ����� �� �� �������� ��

�� ���� ���� 	�� �����

������ �� ������ �� ��������� ���� �� �� ����� �� ��
	�� ��� ��� 	
�� ����

extended yk � y
�
k y

�
k y

�
k � � � zk � y

J
k

poll� ���� �� �� �������� ���� ��� �� ���� � � �� ��
�� ����� ��� � ���� ����� ����� ���� ������ ����

zk ��k������ �� zk ��k���� �� �� zk ��k��� �� ��
N

c�zk� � ���� �� ��� �� ���� �� �� ����� �� ��
����	� 	��� 	
�� ����

Table 	� shows that the algorithm generates cycles composed of two successful
iterations
 followed by an unsuccessful one	 The three iterations detailed above
 i	e	

the �rst cycle
 appear in the table by letting � � �

� 	 Iteration � initiates a new cycle
with � � �

� 	
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Fig� ���� Extended polling from y � 	������
 to z � 	����� ���


Figure 	� displays the iterates of the extended poll step from yk to zk	 The
circles represent the points yjk for j � �� �� � � �J 	 All these points are on the same line
as the function decreases linearly when the variable a is �xed to ��	 At the last point
zk
 the current mesh neighborhood is evaluated using a di�erent positive basis	 The
set N c�zk� is represented by the three circled crosses	 As k goes to in�nity
 the points
fyjk � j � �� �� � � � � Jg converge to the line segment from �y � ��� �� �� to �z � ��� �� ��

which is the thick line on Figure 	�	 The objective function value is equal to � there	
The gradient norm is nonzero at �y but decreases to zero at �z	

In order to ensure that the gradient norm is zero at all points of N ��x�
 the
stronger version of the algorithm must be used	 By doing this
 the extended poll

step at iteration � discovers the point y� � ���� � �� �� of N c�y
� whose function value
is ��� 	 This iteration is successful
 and the iterates eventually converge to the global
minimizer of f over �	

	��� A thermal insulation system� We ran the MVP algorithm on the exam�
ple of Section �	�	 The behavior was typical of derivative�free algorithms in making
rapid improvement of the objective function value and then reaching a plateau where
the objective function value does not decrease signi�cantly	

The initial point was a single shield at temperature T� � �� surrounded by M� �
te�on and M� � nylon of thickness #x� � #x� � �	 An upper bound of ��� was
imposed on the number of shields �this bound was large enough so that it was never
reached�	 The MVP algorithm later used the third insulator �epoxy��berglass�	 We
used the set of discrete neighbors suggested in Section �	�	 The algorithm consisted
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mainly of poll steps	 A simple search step was invoked if the previous iteration was
successful and the incumbent solution �xck� x

d
k� di�ered from the previous one only in

its continuous components� xck � xck��	 This search step consisted of a point further

in the same successful direction� �xck � ��xck � xck���� x
d
k�	

The mesh size parameter was initially set at �� and not increased	 It decreased
at local mesh optimizers	 Figure 	� shows the improvement of the objective function
value with the number of function evaluations for four runs	 They illustrate the user%s
control in de�ning local optimality and in triggering extended polling with respect to
the categorical variables	 The y�axis is truncated for readability since f�x
� � �!�	
The line on the graph starts at the � �th iteration	
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Fig� ���� Progress of the objective function value� without or with extra information� and with

� � �� or ���

The right�hand graphs use properties of the insulators �such as te�on is a much
better insulator than nylon at high temperatures� to further restrict the discrete
poll set	 The top graphs use �i � �"f�xi� to trigger the extended poll step	 The
bottom graphs use the larger value �i � "f�xi�	 As expected
 a larger value triggers
more extended poll steps and uses more objective function evaluations
 but �nds
a better solution	 Also
 the runs that use the extra information converge using fewer
function evaluations	

The numbers on the curves indicate the number of shields at local mesh optimiz�
ers
 i	e	
 at unsuccessful iterations	 For the top left graph and for #k � ��� � �� and
�
�� 
 there were � �� � and � shields respectively	 The number of shields did not increase
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monotonically	 Before reaching �ve shields
 The MVP algorithm added a third one

then immediately removed another	 On the bottom graphs
 it added a tenth shield
and later removed it �this is indicated by the number in parentheses on the graphs�	

On the top left graph
 the algorithm converged to a solution containing � shields
and a combination of all three types of insulators	 The best solution was found
after �!�� function evaluations and an additional �� � showed it to be a local mesh
optimizer � a total of ���� function evaluations	 The top right graph gives the progress
using the more restrictive de�nition of the set of neighbors discussed above	 It found
the same local mesh optimizer but with ��" fewer function evaluations	 It took ���
evaluations to �nd the solution
 and � !� more to show it to be a local mesh optimizer
� a total of ���! function evaluations	

On the bottom left graph
 the algorithm converged after a total of ����� function
evaluations to a solution that uses the three insulators and whose objective function
value is reduced by more than !"	 The same solution was found on the bottom
right
 but using ���� function evaluations �approximately �" fewer�	 All four runs
produced a solution having � shields	 The di�erence in the objective function values
suggests the presence of local optimum solutions	

Further computational results on this and related problems can be found with a
more engineering slant in � �	
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