
 Open access Report DOI:10.21236/ADA451780

Pattern search methods for linearly constrained minimization in the presence of
degeneracy — Source link

Olga A. Brezhneva, John E. Dennis

Institutions: University of Minnesota

Published on: 10 Aug 2003

Topics: Constrained optimization, Pattern search and Degeneracy (mathematics)

Related papers:

 Recursive Modified Pattern Search on High-Dimensional Simplex : A Blackbox Optimization Technique

 Multi-dimensional Parametric Mincuts for Constrained MAP Inference.

 A Parallel Projection Method for Metric Constrained Optimization

 Iterative Domain Optimization.

 Two Algorithms for Decision Tree Search

Share this paper:

View more about this paper here: https://typeset.io/papers/pattern-search-methods-for-linearly-constrained-minimization-
4mciblivfm

https://typeset.io/
https://www.doi.org/10.21236/ADA451780
https://typeset.io/papers/pattern-search-methods-for-linearly-constrained-minimization-4mciblivfm
https://typeset.io/authors/olga-a-brezhneva-4458zevnsd
https://typeset.io/authors/john-e-dennis-5695d49o2r
https://typeset.io/institutions/university-of-minnesota-2bv8nbl3
https://typeset.io/topics/constrained-optimization-5o0j10pa
https://typeset.io/topics/pattern-search-36ogr2kq
https://typeset.io/topics/degeneracy-mathematics-3ovfxc99
https://typeset.io/papers/recursive-modified-pattern-search-on-high-dimensional-3n2i40v870
https://typeset.io/papers/multi-dimensional-parametric-mincuts-for-constrained-map-2zzpk2k1cm
https://typeset.io/papers/a-parallel-projection-method-for-metric-constrained-21ol9gxjoz
https://typeset.io/papers/iterative-domain-optimization-129q0gdpof
https://typeset.io/papers/two-algorithms-for-decision-tree-search-4qxfpmav6f
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/pattern-search-methods-for-linearly-constrained-minimization-4mciblivfm
https://twitter.com/intent/tweet?text=Pattern%20search%20methods%20for%20linearly%20constrained%20minimization%20in%20the%20presence%20of%20degeneracy&url=https://typeset.io/papers/pattern-search-methods-for-linearly-constrained-minimization-4mciblivfm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/pattern-search-methods-for-linearly-constrained-minimization-4mciblivfm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/pattern-search-methods-for-linearly-constrained-minimization-4mciblivfm
https://typeset.io/papers/pattern-search-methods-for-linearly-constrained-minimization-4mciblivfm

PATTERN SEARCH METHODS FOR LINEARLY CONSTRAINED
MINIMIZATION IN THE PRESENCE OF DEGENERACY ∗

OLGA A. BREZHNEVA † AND J. E. DENNIS JR. ‡

Abstract. This paper deals with generalized pattern search (GPS) algorithms for linearly
constrained optimization. At each iteration, the GPS algorithm generates a set of directions that
conforms to the geometry of any nearby linear constraints, and this set is used to define the poll set
for that iteration. The contribution of this paper is to provide a detailed algorithm for constructing
the set of directions at a current iterate whether or not the constraints are degenerate. The main
difficulty in the degenerate case is in classifying constraints as redundant and nonredundant. We give
a short survey of the main definitions and methods concerning redundancy and propose an approach,
which may be useful for other active set algorithms, to identify the nonredundant constraints.

Key words. Pattern search, linearly constrained optimization, derivative-free optimization,
degeneracy, redundancy, constraint classification

AMS subject classifications. 65K05, 49M30, 90C30, 90C56

1. Introduction. This paper continues the development of the generalized pat-
tern search (GPS) algorithms [1, 9] for the linearly constrained optimization problems

min
x∈Ω

f(x) , (1.1)

where f : ℜn → ℜ∪ {∞} may be discontinuous, and the feasible region is given by

Ω = {x ∈ ℜn : aT
i x ≤ bi, i ∈ I} = {x ∈ ℜn : ATx ≤ b}, (1.2)

where ai ∈ ℜ
n, bi ∈ ℜ, and A ∈ Qn×|I| is a rational matrix. In [1, 9], the feasible

region Ω is defined as Ω = {x ∈ ℜn : l ≤ Âx ≤ u} where Â ∈ Qm×n is a rational
matrix, l, u ∈ {ℜ∪ {±∞}}m, and l < u. As is evident, (1.2) reduces to the definition

in [1, 9], where the rth row âr of the matrix Â is equal to some ith row aT
i of the

matrix AT with a coefficient of +1 or −1, and bi = ur or bi = −lr.
We target the case when the function f(x) can be an expensive black box, or

provides few correct digits and may fail to return a value even for feasible points
x ∈ Ω. In this situation, the accurate approximation of derivatives is not likely to be
practical. The GPS algorithms rely on decrease in f(x); an iterate xk+1 ∈ Ω with
f(xk+1) < f(xk) is considered successful.

Lewis and Torczon [9] introduced and analyzed the generalized pattern search
for linearly constrained minimization problems. They proved that if the objective
function is continuously differentiable and if the set of directions that defines a local
search is chosen properly with respect to the geometry of the boundary of the feasible
region, then the GPS converges globally to a Karush-Kuhn-Tucker point. Audet and

∗ Date: August 10, 2003
† Institute for Mathematics and its Applications, University of Minnesota, 400 Lind Hall, 207

Church St. SE, Minneapolis, MN 55455 (olga@ima.umn.edu).
‡ Computational and Applied Mathematics Department, Rice University - MS 134, 6100 Main

Street, Houston, Texas, 77005-1892 (dennis@rice.edu, http://www.caam.rice.edu/∼dennis). The
research of this author was supported in part by AFOSR F49620-01-1-0013, the Boeing Company,
Sandia CSRI, ExxonMobil, the LANL Computer Science (LACSI) contract 03891-99-23, by the Insti-
tute for Mathematics and its Applications with funds provided by the National Science Foundation,
and by funds from the Ordway Endowment at the University of Minnesota.

1

Dennis [1] simplified the analysis in [9] and provided new convergence results for a
locally Lipschitz objective function by applying the Clarke generalized directional
derivative [7] to the pattern search methods.

Generalized pattern search algorithms generate a sequence of iterates {xk} in ℜn

with non-increasing objective function values. In linearly constrained optimization, a
set of directions that defines the so-called poll step must conform to the geometry of
the boundary of the feasible region. The key idea, which was first suggested by May
in [10] and applied to the GPS in [9], is to use as search directions the generators
of cones that are polar to cones generated by the normals of faces near the current
iterate.

Lewis and Torczon [9] showed that in general it is possible to find the set of gener-
ators by vertex enumeration techniques [2], but, as they mentioned, an application of
this approach to constructing a set of generators can be expensive in the degenerate
case when the active constraints are linearly dependent. Lewis and Torczon [9] gave
an algorithm, based on the LU factorization, for constructing the set of generators in
the nondegenerate case, and left the degenerate case for future work.

Price and Coope [12] gave as an aside a result that can be used for constructing a
set of generators in the degenerate case. It follows from their result that, in order to
construct a set of generators, it is sufficient to consider maximal linearly independent
subsets of the active constraints. However, this approach implies enumeration of all
possible linearly independent subsets of maximal rank and does not take into account
properties of the problem that can help to reduce this enumeration. Price and Coope
[12] outlined an algorithm for constructing frames, but it was not their point to work
out details of the numerical implementation in the degenerate case.

The purpose of this paper is to give detailed consideration to the GPS in the
degenerate case. Our purpose here is complementary to [1] and [9]. Our main result
is a detailed algorithm for constructing the set of generators at a current GPS iterate
in both the degenerate and nondegenerate cases. To construct the set of generators in
the degenerate case, we identify the redundant and nonredundant active constraints
and then use either QR or LU decomposition.

Classification of constraints as redundant or nonredundant is one of the main
issues here, because it is sufficient to construct the set of generators only for nonre-
dundant constraints. Several methods to classify constraints exist. For example, there
are deterministic algorithms [6, 8], probabilistic hit-and-run methods [3], a probabilis-
tic method based on an equivalence between the constraint classification problem and
the problem of finding a feasible solution to a set covering problem [5]. A survey and
comparison of strategies for classifying constraints are given in [5, 8]. Any of these
approaches can be applied in the framework of the GPS to identify redundant and
nonredundant constraints. However, in the paper, we propose a new projection ap-
proach to identify nonredundant constraints, that is more suitable for GPS methods.

The projection method is similar to the hit-and-run algorithm [3] in which nonre-
dundant constraints are searched for along random direction vectors from each point
in a sequence of random interior points. In contrast to the hit-and-run algorithm, the
projection method searches for a nonredundant constraint in a deterministic direction.

The major advantage of the projection method for our application is that the
number of direction vectors (in the terminology of the hit-and-run algorithm) is equal
to the number of constraints that have to be identified. For us this is generally a
small number. In the hit-and-run algorithm, this number is determined by a stop
criterion and can be large if many of the random generated directions do not detect a

2

nonredundant constraint. Moreover, the formulas used in the projection method are
simpler than those used for computing the intersection points of a direction vector
with the hyperplanes in the hit-and-run algorithm. Let us note that the goal of the hit-
and-run algorithm is detecting all nonredundant constraints in a full system of linear
inequalities. We use the projection method to detect the nonredundant constraints
among only active constraints in the case when they are linearly dependent.

As our numerical tests show, the projection method cheaply detects all, or almost
all, nonredundant constraints. To classify constraints that have not been detected by
the projection method, we use another approach outlined in [6]. As a result, we guar-
antee that every active constraint is detected as either redundant or nonredundant.
In the worst case, some vertex enumeration techniques [2] mentioned in [9] might be
necessary, but our procedure for classification of the constraints seems to eliminate
this expense for many cases.

The organization of the paper is as follows: in the next section, we give a brief
description of GPS as well as the convergence result for linearly constrained mini-
mization following papers by Audet and Dennis [1], and by Lewis and Torczon [9].

Section 3 is devoted to the topic of redundancy. In the first part of the section,
we introduce a definition of the ε-active constraints and discuss some scaling issues.
The second part of Section 3 contains essential definitions and results concerning re-
dundancy [6, 8, 11, 15] required for our analysis. Then we propose our projection
method to determine nonredundant constraints, and we briefly describe a more ex-
pensive follow up approach to be applied if some constraints are not identified by the
projection method.

In Section 4, we give an algorithm for the set of generators, and we discuss
implementation details, including rationality. Section 5 is devoted to some concluding
remarks.

2. Generalized pattern search algorithms. In this section, we give a brief
description with the convergence result for the GPS methods for linearly constrained
minimization. We follow papers by Audet and Dennis [1], and by Lewis and Tor-
czon [9], and we refer the reader there for details of managing the mesh size ∆k.
Throughout, we will always use the ℓ2 norm.

The GPS algorithms can be applied either to the objective function f or to the
barrier function fΩ = f + ψΩ : ℜ → ℜ ∪ {+∞}, where ψΩ is the indicator function
for Ω, which is zero on Ω and ∞ elsewhere. The value of fΩ is +∞ on all points that
are either infeasible or at which f is declared to be +∞. This barrier approach is
probably as old as direct search methods themselves.

A GPS algorithm for linearly constrained optimization generates a sequence of
iterates {xk} in Ω. The current iterate xk ∈ ℜ

n is chosen from a finite number of
points on a mesh, which is a discrete subset of ℜn. At iteration k, the mesh is centered
around the current mesh point (current iterate) xk and its fineness is parameterized
through the mesh size parameter ∆k > 0 as follows

Mk = {xk + ∆kDz : z ∈ Z
|D|
+ }, (2.1)

where Z
|D|
+ is the set of nonnegative integers, and D is a set of positive spanning

directions in ℜn. At each iteration, some positive spanning matrix Dk composed of
columns of D is used to construct the poll set Pk, i.e.,

Pk = {xk + ∆kd : d ∈ Dk}. (2.2)

3

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

☞
☞
☞

❆
❆

✘✘✘✘ xk

xk+∆kd

d∈Dk

If xk ∈ Ω is not near the boundary, then Dk is a positive spanning set for ℜn

[9]. If xk ∈ Ω is near the boundary, the matrix Dk is constructed so its columns dj

also span the cone of feasible directions at xk and conform to the geometry of the
boundary of Ω. Hence, the set D must be rich enough to contain generators for the
tangent cone TΩ(x) = cl{µ(ω − x) : µ ≥ 0, ω ∈ Ω} for every x ∈ Ω, as in:

Definition 2.1. A rule for selecting the positive spanning sets Dk ⊆ D conforms
to Ω for some ε > 0, if at each iteration k and for each y in the boundary of Ω for
which ‖y − xk‖ < ε, TΩ(y) is generated by a nonnegative linear combination of the
columns of a subset Dy

k of Dk.
Each GPS iteration is divided into two phases: an optional search and a local poll.

In the search step, the barrier objective function fΩ is evaluated at a finite number
of points on a mesh to try to find one that yields a lower objective function value than
the incumbent. This step is extremely flexible, and it can be used to incorporate the
user’s domain knowledge.

When the incumbent is replaced, i.e., when fΩ(xk+1) < fΩ(xk), or equivalently
when f(xk+1) < f(xk), then xk+1 is said to be an improved mesh point. When the
search step fails in providing an improved mesh point, the poll step is invoked. This
second step consists of evaluating the barrier objective function at the neighboring
mesh points to see if a lower function value can be found there. When the poll step
fails in providing an improved mesh point, then the current incumbent solution is said
to be a mesh local optimizer.

We remind the reader that the normal cone NΩ(x) to Ω at x is the nonnegative
span of all the outwardly pointing constraint normals at x and can be written as the
polar of the tangent cone: NΩ(x) = {v ∈ ℜn : ∀ω ∈ TΩ(x), vTω ≤ 0}.

Assumptions. We make the following standard assumptions [1]:
A1: A function fΩ and x0 ∈ ℜ

n (with fΩ(x0) <∞) are available.
A2: The constraint matrix A is rational.
A3: All iterates {xk} produced by the Generalized Pattern Search (GPS) algorithm
lie in a compact set.

Audet and Dennis [1] proved the following convergence result for the GPS in the
linearly constrained case using only these assumptions.

Theorem 2.2 (convergence to a Karush-Kuhn-Tucker point). [1] Under as-
sumptions A1–A3, if f is strictly differentiable at a limit point x̂ of a subsequence of
{xk} at which ∆k is decreased and for which the corresponding subsequence of {∆k}
goes to 0, and if the rule for selecting the positive spanning sets Dk ⊆ D conforms to

4

• Initialization:
Let x0 be such that fΩ(x0) is finite. Let D be a positive spanning set, and
let M0 be the mesh on ℜn defined by ∆0 > 0, and D0. Set the iteration
counter k to 0.
• Search and poll step:

Perform the search and possibly the poll steps (or only part of them)
until an improved mesh point xk+1 with the lowest fΩ value so far is found
on the mesh Mk defined by equation (2.1).

– Optional search: Evaluate fΩ on a finite subset of trial points on the
mesh Mk defined by equation (2.1) (the strategy that gives the set of
points is usually provided by the user; it must be finite and the set
can be empty).

– Local poll: Evaluate fΩ on the poll set defined in equation (2.2).
• Parameter update:

If the search or the poll step produced an improved mesh point, i.e., a
feasible iterate xk+1 ∈ Mk ∩ Ω for which fΩ(xk+1) < fΩ(xk), then update
∆k+1 ≥ ∆k.
Otherwise, fΩ(xk) ≤ fΩ(xk +∆kd) for all d ∈ Dk and so xk is a mesh local
optimizer. Set xk+1 = xk, update ∆k+1 < ∆k.
Increase k ← k + 1 and go back to the search and poll step.

Fig. 2.1. A simple GPS algorithm

Ω for some ε > 0, then ∇f(x̂)Tω ≥ 0 for all ω ∈ TΩ(x̂) and so −∇f(x̂) ∈ NΩ(x̂).
Thus, x̂ is a Karush-Kuhn-Tucker point.

The purpose of this paper is to provide an algorithm for constructing sets Dk

that conform to the boundary of Ω. If the active constraints are linearly dependent,
we apply strategies for the identification of redundant and nonredundant constraints,
which are described in the next section, and then construct setsDk taking into account
only nonredundant constraints. We now pause to outline the main results concerning
redundancy from mathematical programming, and then in Section 4, we continue
consideration of the GPS and strategies for constructing the sets Dk.

3. Redundancy. In this section, we give essential definitions and results con-
cerning redundancy [3, 6, 8, 11, 15] that are required for our analysis. Then we
propose our approach, the projection method, to determining the nonredundant con-
straints and briefly describe another approach that is applied if some constraints are
not identified by the projection method.

We consider the feasible region Ω defined by (1.2), and refer to the inequality
aT

j x ≤ bj as the j-th constraint. The region represented by all but the jth constraint
is given by

Ωj = {x ∈ ℜn : aT
i x ≤ bi, i ∈ I\j},

where I\j is the set I with element j removed.

3.1. ε–active constraints. In this subsection, we introduce a definition of the
ε–active constraints and discuss some scaling issues. First we give the definitions used

5

by Lewis and Torczon [9] and by Price and Coope [12].
Definition 3.1. (e.g., [12]). Let some scalar ε > 0 be given and xk ∈ Ω. The

jth constraint is ε–active at xk if

0 ≤ bj − a
T
j xk ≤ ε. (3.1)

Definition 3.2. (e.g., [9]). Let some scalar ε > 0 be given and xk ∈ Ω. The jth
constraint is ε–active at xk if

dist(xk,Hj) ≤ ε, (3.2)

where Hj = {x ∈ ℜn : aT
j x = bj}, and dist(xk,Hj) = min

y∈Hj

‖y − xk‖ is the distance

from xk to the hyperplane Hj.
As is easy to see, the jth constraint can be made ε–active at xk in the sense

of Definition 3.1 by multiplying the inequality bj − a
T
j xk ≥ 0 by a sufficiently small

number. On the other hand, this multiplication does not change the distance between
the point xk and any Hj defined in Definition 3.2. In the paper, we prefer to use
Definition 3.1, since it is easier to check than Definition 3.2. However, Definition 3.1
is proper, if we assume preliminary scaling of the constraints so that the following
lemma applies.

Lemma 3.3. Let some scalar ε > 0 be given, xk ∈ Ω, and ‖aj‖ = 1 for all j ∈ I
in (1.2). Then, for any j ∈ I, Definition 3.1 of the ε–active constraint is equivalent
to Definition 3.2, and the projection Pj(xk) of the point xk onto the hyperplane Hj =
{x ∈ ℜn : aT

j x = bj} is defined by

Pj(xk) = xk + aj(bj − a
T
j xk). (3.3)

Proof. For any j ∈ I, the distance from xk to the hyperplane Hj = {x ∈ ℜn :
aT

j x = bj} is given by

dist(xk,Hj) =
|bj − a

T
j xk|

‖aj‖
. (3.4)

Hence, if ‖aj‖ = 1 and xk ∈ Ω, (3.1) is equivalent to (3.2).
By definition of the projection of xk onto Hj ,

‖Pj(xk)− xk‖ = dist(xk,Hj).

Since xk ∈ Ω and ‖aj‖ = 1, it follows from (3.4) that dist(xk,Hj) = bj − a
T
j xk and

Pj(xk) = xk + aj dist(xk,Hj) = xk + aj(bj − a
T
j xk).

Hence, (3.3) holds.
To satisfy the conditions of Lemma 3.3, we introduce the matrix Ā that is an

additional scaled copy of the matrix A given in (1.2) and a scaled vector b̄ such that

āi =
ai

‖ai‖
, b̄i =

bi

‖ai‖
, i ∈ I. (3.5)

Consequently, ‖āi‖ = 1 for all i ∈ I and Ω = {x ∈ ℜn : ATx ≤ b} = {x ∈ ℜn :
ĀTx ≤ b̄} = {x ∈ ℜn : āT

i x ≤ b̄i, i ∈ I}.

6

We use the matrix Ā and the vector b̄ to define the set of indices of the ε–active
constraints:

I(xk, ε) = {i ∈ I : 0 ≤ b̄i − ā
T
i xk ≤ ε}, (3.6)

as well as to apply the projection method for detection of the nonredundant constraints
(see Section 3.3.1 for more details.) We refer to the set I(xk, ε) as the working index
set at the current iterate xk.

The paper also makes use of the regions given by

Ω(xk, ε) = {x ∈ ℜn : aT
i x ≤ bi, i ∈ I(xk, ε)}, (3.7)

Ωj(xk, ε) = {x ∈ ℜn : aT
i x ≤ bi, i ∈ I(xk, ε)\j}, j ∈ I(xk, ε).

Clearly, Ω ⊆ Ω(xk, ε) ⊆ Ωj(xk, ε).

3.2. Redundancy in mathematical programming. In this subsection, we
give definitions and theorems consistent with the mathematical programming litera-
ture [3, 6, 8, 11, 15].

The following definitions and results are from [11, 15].
Definition 3.4 (Polyhedron). A subset of ℜn described by a finite set of linear

constraints P = {x ∈ ℜn : Cx ≤ d} is a polyhedron.
Obviously, Ω given by (1.2) and Ω(xk, ε) given by (3.7) are polyhedra.
Definition 3.5. The points x1, . . . , xk ∈ ℜn are affinely independent if the k−1

directions x2− x1, . . . , xk − x1 are linearly independent, or alternatively the k vectors
(x1, 1), . . . , (xk, 1) ∈ ℜn+1 are linearly independent.

Definition 3.6. The dimension of P , denoted dim(P), is one less than the
maximum number of affinely independent points in P .

This means that P ⊆ ℜn is full-dimensional if and only if dim(P) = n. We will
assume that Ω is full-dimensional. If it were not, then a barrier GPS approach would
not be a reasonable way to handle the constraints because it would be difficult to find
search or poll points in Ω. Since we assume Ω is full dimensional, this implies that
its supersets Ω(xk, ε) and Ωj(xk, ε) are full-dimensional.

Definition 3.7 (Valid inequality). An inequality cjx ≤ dj is a valid inequality
for P ⊆ ℜn if cjx ≤ dj for all x ∈ P .

Definition 3.8 (Face and Facet). (i) F defines a face of the polyhedron P if
F = {x ∈ P : cjx = dj} for some valid inequality cjx ≤ dj of P . F 6= ∅ is said to be
a proper face of P if F 6= P .
(ii) F is a facet of P if F is a face of P and dim(F) = dim(P)− 1.

Definition 3.9 (Dominance of inequalities). If cix ≤ di and cjx ≤ dj are two
valid inequalities for P ⊂ ℜn

+, cix ≤ di dominates cjx ≤ dj if there exists u > 0 such
that ci ≥ ucj and di ≤ udj, and (ci, di) 6= (ucj , udj).

Definition 3.10 (Redundant inequality). A valid inequality cjx ≤ dj is redun-
dant in the description of P (in other words, the jth constraint is redundant) if there
exist k ≥ 1 valid inequalities cix ≤ di for i = 1, . . . , k for P , and weights αi > 0 for
i = 1, . . . , k such that (

∑k

i=1
αici)x ≤

∑k

i=1
αidi dominates cjx ≤ dj.

The following example illustrates that we can not replace αi > 0 with αi ≥ 0 in
Definition 3.10.

Example 1. Let the following inequalities in R2 be valid inequalities for some
polyhedron P :

(
c1x ≤ d1

c2x ≤ d2

)
=

(
x1 ≤ 1
−x1 ≤ 1

)
. (3.8)

7

If α1 were equal to zero in Definition 3.10, we would obtain α1c1 = (0, 0), α1d1 = 0,
and

(0, 0) = α1c1 ≥ uc2 = (−1, 0), 0 = α1d1 ≤ ud2 = 1, u = 1.

Hence, by Definition 3.9, the first inequality in (3.8) would dominate the second
one and we would make the wrong conclusion, by Definition (3.10), that the second
inequality is redundant in the description of P .

Let us note that since Ω ⊆ Ω(xk, ε), if the jth constraint is redundant in the
description of Ω(xk, ε), it is redundant in the description of Ω.

� �✁ ✁

✂ ✂
✂ ✂
✄ ✄
✄ ✄

☎ ☎ ☎
☎ ☎ ☎
☎ ☎ ☎

✆ ✆ ✆
✆ ✆ ✆
✆ ✆ ✆

✝ ✝
✝ ✝
✞ ✞
✞ ✞

✟ ✟ ✟
✟ ✟ ✟
✟ ✟ ✟

✠ ✠ ✠
✠ ✠ ✠
✠ ✠ ✠

✡ ✡ ✡
✡ ✡ ✡
✡ ✡ ✡
✡ ✡ ✡

☛ ☛ ☛
☛ ☛ ☛
☛ ☛ ☛
☛ ☛ ☛

☞ ☞ ☞
☞ ☞ ☞
☞ ☞ ☞

✌ ✌ ✌
✌ ✌ ✌
✌ ✌ ✌

✍ ✍ ✍ ✍
✍ ✍ ✍ ✍
✍ ✍ ✍ ✍
✍ ✍ ✍ ✍
✍ ✍ ✍ ✍

✎ ✎ ✎ ✎
✎ ✎ ✎ ✎
✎ ✎ ✎ ✎
✎ ✎ ✎ ✎
✎ ✎ ✎ ✎

✏ ✏ ✏ ✏ ✏
✏ ✏ ✏ ✏ ✏
✏ ✏ ✏ ✏ ✏
✏ ✏ ✏ ✏ ✏
✏ ✏ ✏ ✏ ✏

✑ ✑ ✑ ✑ ✑
✑ ✑ ✑ ✑ ✑
✑ ✑ ✑ ✑ ✑
✑ ✑ ✑ ✑ ✑
✑ ✑ ✑ ✑ ✑

✒ ✒ ✒ ✒ ✒
✒ ✒ ✒ ✒ ✒
✒ ✒ ✒ ✒ ✒
✒ ✒ ✒ ✒ ✒
✒ ✒ ✒ ✒ ✒

✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓

✔ ✔ ✔ ✔ ✔
✔ ✔ ✔ ✔ ✔
✔ ✔ ✔ ✔ ✔
✔ ✔ ✔ ✔ ✔
✔ ✔ ✔ ✔ ✔
✔ ✔ ✔ ✔ ✔

✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕
✕ ✕ ✕ ✕ ✕

✖ ✖ ✖ ✖ ✖ ✖
✖ ✖ ✖ ✖ ✖ ✖
✖ ✖ ✖ ✖ ✖ ✖
✖ ✖ ✖ ✖ ✖ ✖
✖ ✖ ✖ ✖ ✖ ✖

✗ ✗ ✗ ✗ ✗
✗ ✗ ✗ ✗ ✗
✗ ✗ ✗ ✗ ✗
✗ ✗ ✗ ✗ ✗
✗ ✗ ✗ ✗ ✗

✘ ✘ ✘ ✘ ✘
✘ ✘ ✘ ✘ ✘
✘ ✘ ✘ ✘ ✘
✘ ✘ ✘ ✘ ✘
✘ ✘ ✘ ✘ ✘
✘ ✘ ✘ ✘ ✘

✙ ✙ ✙ ✙ ✙
✙ ✙ ✙ ✙ ✙
✙ ✙ ✙ ✙ ✙
✙ ✙ ✙ ✙ ✙
✙ ✙ ✙ ✙ ✙
✙ ✙ ✙ ✙ ✙

✚ ✚ ✚ ✚ ✚ ✚
✚ ✚ ✚ ✚ ✚ ✚
✚ ✚ ✚ ✚ ✚ ✚
✚ ✚ ✚ ✚ ✚ ✚
✚ ✚ ✚ ✚ ✚ ✚
✚ ✚ ✚ ✚ ✚ ✚

✛ ✛ ✛ ✛ ✛ ✛
✛ ✛ ✛ ✛ ✛ ✛
✛ ✛ ✛ ✛ ✛ ✛
✛ ✛ ✛ ✛ ✛ ✛
✛ ✛ ✛ ✛ ✛ ✛
✛ ✛ ✛ ✛ ✛ ✛

✜ ✜ ✜ ✜ ✜ ✜ ✜
✜ ✜ ✜ ✜ ✜ ✜ ✜
✜ ✜ ✜ ✜ ✜ ✜ ✜
✜ ✜ ✜ ✜ ✜ ✜ ✜
✜ ✜ ✜ ✜ ✜ ✜ ✜
✜ ✜ ✜ ✜ ✜ ✜ ✜
✜ ✜ ✜ ✜ ✜ ✜ ✜

✢ ✢ ✢ ✢ ✢ ✢
✢ ✢ ✢ ✢ ✢ ✢
✢ ✢ ✢ ✢ ✢ ✢
✢ ✢ ✢ ✢ ✢ ✢
✢ ✢ ✢ ✢ ✢ ✢
✢ ✢ ✢ ✢ ✢ ✢
✢ ✢ ✢ ✢ ✢ ✢

✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣
✣ ✣ ✣ ✣ ✣ ✣ ✣ ✣

✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤
✤ ✤ ✤ ✤ ✤ ✤ ✤ ✤

✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥
✥ ✥ ✥ ✥ ✥ ✥

✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦
✦ ✦ ✦ ✦ ✦ ✦

✧ ✧ ✧ ✧ ✧ ✧ ✧
✧ ✧ ✧ ✧ ✧ ✧ ✧
✧ ✧ ✧ ✧ ✧ ✧ ✧
✧ ✧ ✧ ✧ ✧ ✧ ✧
✧ ✧ ✧ ✧ ✧ ✧ ✧
✧ ✧ ✧ ✧ ✧ ✧ ✧
✧ ✧ ✧ ✧ ✧ ✧ ✧

★ ★ ★ ★ ★ ★ ★
★ ★ ★ ★ ★ ★ ★
★ ★ ★ ★ ★ ★ ★
★ ★ ★ ★ ★ ★ ★
★ ★ ★ ★ ★ ★ ★
★ ★ ★ ★ ★ ★ ★
★ ★ ★ ★ ★ ★ ★

✩ ✩ ✩ ✩ ✩ ✩ ✩
✩ ✩ ✩ ✩ ✩ ✩ ✩
✩ ✩ ✩ ✩ ✩ ✩ ✩
✩ ✩ ✩ ✩ ✩ ✩ ✩
✩ ✩ ✩ ✩ ✩ ✩ ✩
✩ ✩ ✩ ✩ ✩ ✩ ✩

✪ ✪ ✪ ✪ ✪ ✪
✪ ✪ ✪ ✪ ✪ ✪
✪ ✪ ✪ ✪ ✪ ✪
✪ ✪ ✪ ✪ ✪ ✪
✪ ✪ ✪ ✪ ✪ ✪
✪ ✪ ✪ ✪ ✪ ✪

✫ ✫ ✫ ✫ ✫ ✫
✫ ✫ ✫ ✫ ✫ ✫
✫ ✫ ✫ ✫ ✫ ✫
✫ ✫ ✫ ✫ ✫ ✫
✫ ✫ ✫ ✫ ✫ ✫

✬ ✬ ✬ ✬ ✬
✬ ✬ ✬ ✬ ✬
✬ ✬ ✬ ✬ ✬
✬ ✬ ✬ ✬ ✬
✬ ✬ ✬ ✬ ✬

✭ ✭ ✭ ✭
✭ ✭ ✭ ✭
✭ ✭ ✭ ✭
✭ ✭ ✭ ✭
✭ ✭ ✭ ✭

✮ ✮ ✮ ✮
✮ ✮ ✮ ✮
✮ ✮ ✮ ✮
✮ ✮ ✮ ✮
✮ ✮ ✮ ✮

✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯
✯ ✯ ✯ ✯ ✯

✰ ✰ ✰ ✰ ✰
✰ ✰ ✰ ✰ ✰
✰ ✰ ✰ ✰ ✰
✰ ✰ ✰ ✰ ✰

✱ ✱✲ ✲

✳ ✳ ✳ ✳
✳ ✳ ✳ ✳
✳ ✳ ✳ ✳
✳ ✳ ✳ ✳
✳ ✳ ✳ ✳

✴ ✴ ✴ ✴
✴ ✴ ✴ ✴
✴ ✴ ✴ ✴
✴ ✴ ✴ ✴
✴ ✴ ✴ ✴

x

2

3

1

Fig. 3.1. An illustration of ε-active and redundant constraints. Constraints 1, 2, and 3 are

ε-active at the current iterate x and constraint 2 is redundant.

Definition 3.11 (Interior point). A point x ∈ P is called an interior point of P
if Cx < d.

We need the following results from integer programming [15, pp. 142–144] and
[11, pp. 85–92].

Proposition 3.12. [11, Corollary 2.5] A polyhedron is full dimensional if and
only if it has an interior point.

Theorem 3.13. [15, Theorem 9.1] If P is a full-dimensional polyhedron, it has
a unique minimal description

P = {x ∈ ℜn : cix ≤ di, i = 1, . . . ,m},

where each inequality is unique to within a positive multiple.
Corollary 3.14. [15, Proposition 9.2] If P is full-dimensional, a valid inequality

cjx ≤ dj is necessary in the description of P if and only if it defines a facet of P .
Corollary 3.14 means that the following concepts are equivalent for Ω(xk, ε) de-

fined in (3.7).
• The jth inequality aT

j x ≤ bj defines a facet of Ω(xk, ε).

• The jth inequality aT
j x ≤ bj is nonredundant in the description of Ω(xk, ε).

• The jth inequality aT
j x ≤ bj is necessary in description of Ω(xk, ε), or in other

words,

Ω(xk, ε) (Ωj(xk, ε). (3.9)

Our approach to the identification of nonredundant constraints is based primarily
on the following proposition.

Proposition 3.15. Let a working index set I(xk, ε) be given. An inequality
aT

j x ≤ bj, j ∈ I(xk, ε), is nonredundant in the description of Ω(xk, ε) if and only if

8

either I(xk, ε) = {j} or there exists x̄ ∈ ℜn such that aT
j x̄ = bj and aT

i x̄ < bi for all
i ∈ I(xk, ε)\j.

Proof. Since the case I(xk, ε) = {j} is trivial, we give the proof for the case when
I(xk, ε)\j 6= ∅.

Necessity. Since the inequality aT
j x ≤ bj is nonredundant, then, by (3.9), there

exists x∗ ∈ ℜn such that aT
i x

∗ ≤ bi for all i ∈ I(xk, ε)\j, and aT
j x

∗ > bj . By

Proposition 3.12, there exists an interior point x̂ ∈ Ω(xk, ε) such that aT
i x̂ < bi for

all i ∈ I(xk, ε). Thus on the line between x∗ and x̂ there is a point x̄ ∈ ℜn satisfying
aT

j x̄ = bj and aT
i x̄ < bi for all i ∈ I(xk, ε)\j.

Sufficiency. To obtain a contradiction, we suppose that there exists x̄ ∈ ℜn such
that aT

j x̄ = bj and aT
i x̄ < bi for all i ∈ I(xk, ε)\j, but the inequality aT

j x ≤ bj
is redundant. Then, using Definition 3.10, we obtain that there exist k ≥ 1 valid
inequalities aT

i x ≤ bi for i = 1, . . . , k for Ω(xk, ε), and weights αi > 0 for i = 1, . . . , k

such that (
∑k

i=1
αia

T
i)x ≤

∑k

i=1
αibi dominates aT

j x ≤ bj . Thus, by Definition 3.9,
there exists u > 0 such that

uajx ≤ (
k∑

i=1

αia
T
i)x ≤

k∑

i=1

αibi ≤ ubj . (3.10)

Since by hypothesis, aT
i x̄ < bi for all i 6= j, it follows from (3.10) that

(
k∑

i=1

αia
T
i)x̄ <

k∑

i=1

αibi.

Hence, by (3.10), aj x̄ < bj . This contradicts the supposition that aj x̄ = bj .
Proposition 3.15 means that if the jth constraint, j ∈ I(xk, ε), is nonredundant,

then there exists a feasible point x̄ ∈ Ω(xk, ε) such that only this constraint holds
with equality at x̄.

Our approach to the identification of the redundant constraints is based primarily
on the following theorem [6].

Theorem 3.16. The jth constraint is redundant in system (1.2) if and only if

maximize aT
j x, subject to x ∈ Ωj . (3.11)

has an optimal solution x∗ such that aT
j x

∗ ≤ bj.

3.3. Approaches to identification of redundant and nonredundant con-
straints. In section 4, to identify the redundant constraints, we use an approach
proposed in [6], based on Theorem 3.16 and briefly outlined in Section 3.3.2, and to
determine the nonredundnat constraints, we apply a method presented in the next
subsection.

3.3.1. A projection method. In this subsection, we propose the projection
method that is intended to identify nonredundant constraints. The main idea of this
method is to construct, if it is possible, a point x̄ such that aT

j x̄ = bj and aT
i x̄ < bi for

all i ∈ I(xk, ε)\j. If such a point x̄ exists, then by Proposition 3.15, the jth constraint
is nonredundant.

We recall that, in (3.5), we defined a scaled copy Ā of the matrix A and a scaled
vector b̄. We denote by Pj(xk), the projection of the point xk ∈ ℜ

n onto the hy-
perplane Hj = {x ∈ ℜn : āT

j x = b̄j}. Assume that xk ∈ Ω. Then by (3.3) and by

9

‖āj‖ = 1,

Pj(xk) = xk + āj(b̄j − ā
T
j xk). (3.12)

The following proposition is the main one for the projection method.
Proposition 3.17. Let xk ∈ Ω and let a working index set I(xk, ε) be given. An

inequality aT
j x ≤ bj, j ∈ I(xk, ε), is nonredundant in the description of Ω(xk, ε) if

āT
i Pj(xk) < b̄i for all i ∈ I(xk, ε)\j, (3.13)

where Pj(xk) is a projection of xk onto Hj.
Proof. The proof follows from Proposition 3.15.
An application of the projection method follows from Proposition 3.17. Namely,

we classify the jth constraint as nonredundant, where j ∈ I(xk, ε), if (3.13) holds for
all i ∈ I(xk, ε)\j with Pj(xk) given by (3.12).

3.3.2. Approach for identifying redundant and nonredundant const-
raints. If some constraints have not been identified by the projection method, we
apply another approach based on Theorem 3.16 to identify redundant and nonredun-
dant constraints. The book [8] contains description of different methods in the context
of this approach. These methods use some very special propositions concerning slack
variables and allow the authors to simplify numerical solution of the linear program-
ming (LP) problem (3.11) or to substitute solving the LP problem by some other
procedure, which is less expensive from the numerical point of view. We have not
included these details of numerical implementation of the solution of the LP problem
into the paper, since the reader can find them in [8].

4. Construction of the set of generators. The purpose of this section is to
provide a detailed algorithm for constructing the set Dk introduced in Section 2.

Let some scalar ε > 0 be given, and let āT
i be the ith row of the matrix ĀT in

(3.5). At the current iterate xk, we construct the working index set I(xk, ε) as follows:

0 ≤ b̄i − ā
T
i xk ≤ ε ⇐⇒ i ∈ I(xk, ε).

The last inequality means that every constraint that is active at xk or at some point
near xk appears in I(xk, ε). In [1], the authors suggest not setting ε so small that ∆k

is made small by approaching the boundary too closely before including conforming
directions that allow the iterates to move along the boundary of Ω.

Without loss of generality, we assume that I(xk, ε) = {1, . . . ,m}, for m ≥ 2. This
avoids more cumbersome notation, like I(xk, ε) = {i1(xk, ε), . . . , im(xk, ε)}.

We denote by Bk, the matrix whose columns are the columns of A corresponding
to the indices I(xk, ε) = {1, . . . ,m}; i.e.,

Bk = [a1 . . . am]. (4.1)

4.1. Classification of degeneracy at the current iterate. Let the matrix
Bk be defined by (4.1). At the current iterate xk, one of the following cases holds:
• a nondegenerate case when the matrix Bk has full rank;
• a degenerate case when Bk does not have full rank and all nonredundant constraints
are linearly independent;
• a degenerate nonredundant case when Bk does not have full rank and all nonredun-
dant constraints are linearly dependent. This case can be illustrated by the following
example.

10

Example 2. (Charles Audet sent this example to us.) Suppose that the feasible
region Ω (1.2) is defined by the following system shown in Figure 4.1.

x1 − 2x2 − 2x3 ≤ 0
−2x1 + x2 − 2x3 ≤ 0
−2x1 − 2x2 + x3 ≤ 0
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0

(4.2)

If xk ∈ ℜ
3 is near the origin, all six constraints are active, linearly dependent,

and nonredundant. The matrix Bk is given as

Bk =




1 −2 −2 −1 0 0
−2 1 −2 0 −1 0
−2 −2 1 0 0 −1



 .

0 x

x

x

x

3

2

1

k

Fig. 4.1. Example 2. An illustration of the degenerate nonredundant case.

4.2. Set of generators. Following [9], we define the cone K(xk, ε) as the cone
generated by the normals to the ε–active constraints, and K0(xk, ε) as its polar:

K0(xk, ε) = {w ∈ ℜn : aT
i w ≤ 0 ∀i ∈ I(xk, ε)}. (4.3)

The cone K0(xk, ε) defined by (4.3) can be rewritten as a finitely generated cone
[14]:

K0(xk, ε) = {w : w =

r∑

j=1

λjvj , λj ≥ 0, j = 1, . . . , r}, (4.4)

where the vectors v1, . . . , vr are a set of generators for the cone K0(xk, ε) defined as
follows.

Definition 4.1 (Set of generators). A set V = {v1, . . . , vr} is called a set of
generators of the cone K0(xk, ε) defined by (4.3) if
(i) any vector v ∈ K0(xk, ε) can be represented as a nonnegative linear combination
of vectors vi from V , i.e. (4.4) holds;
(ii) no subset of {v1, . . . , vr} satisfies (4.4).

11

The key idea, which was first suggested by May in [10] and applied to the GPS
in [9], is to include in Dk the generators of the cone K0(xk, ε). Hence, the problem
of construction of the set Dk reduces to the problem of constructing the generators
{v1, . . . , vr} of the cone K0(xk, ε) and then completing them to a positive spanning
set for ℜn.

The following proposition means that it is sufficient to construct the set of gen-
erators only for nonredundant constraints.

Proposition 4.2. Let I(xk, ε) be a set of indices of constraints that are ε–active
at the point xk. Let IN (xk, ε) ⊆ I(xk, ε) be the subset of indices of the nonredundant
constraints that define Ω(xk, ε). Let the cone K0(xk, ε) be defined by (4.3) and let the
cone K0

N (xk, ε) be given by

K0
N (xk, ε) = {w ∈ ℜn : aT

i w ≤ 0 ∀i ∈ IN (xk, ε)}.

If {v1, . . . , vp} is a set of generators for K0
N (xk, ε), then the set of vectors {v1, . . . , vp}

is a set of generators for K0(xk, ε).
Proof. The proof of this proposition follows from Corollary 3.14.
As is mentioned in [9], pattern search methods require their iterates to lie on a

rational lattice. To arrange this, Lewis and Torczon [9] placed an additional require-
ment that the matrix of constraints AT in (1.2) is rational. Under this requirement,
Lewis and Torczon [9] showed, in the following theorem, that it is always possible to
find rational generators for the cones K0(xk, ε), which, with the rational mesh size
parameter ∆k, makes the GPS points lie on a rational lattice.

Theorem 4.3. Suppose K is a cone with rational generators V . Then there
exists a set of rational generators for K0.

Moreover, for the case of linearly independent active constraints, Lewis and
Torczon [9] proposed constructing the set of generators for all the cones K(xk, ε),
0 ≤ ε ≤ δ, as follows:

Theorem 4.4. Suppose that for some δ, K(x, δ) has a linearly independent set
of rational generators V . Let N be a rational positive basis for the nullspace of V T .

Then, for any ε, 0 ≤ ε ≤ δ, a set of rational generators for K0(x, ε) can be found
among the columns of N , V (V TV)−1, and −V (V TV)−1.

As is shown in [9], the matrix N can be constructed by taking columns of the
matrices ±(I − V (V TV)−1V T).

Let us recall that we use the scaled matrix Ā defined in (3.5) to determine ε-active,
redundant, and nonredundant constraints. Then we use the result stated in Theorem
4.4 together with rational columns of A, which correspond to the nonredundant and
ε-active constraints, to obtain a set of rational generators.

A set of generators, which may be irrational in exact arithmetic, can also be found
by using the QR factorization of the matrix V . The following corollary shows how to
use the QR factorization of V to construct the generators for all the cones K0(xk, ε),
0 ≤ ε ≤ δ. We recall that the full QR factorization of V can be represented as

V = [Q1Q2]

[
R1 R2

0 0

]
,

where R1 is upper triangular and rankR1 = rankV , and the columns of Q1 form an
orthonormal basis for the space spanned by the columns of V , while the columns of
Q2 constitute an orthonormal basis for nullspace of V T .

Corollary 4.5. Suppose that for some δ, K(x, δ) has a linearly independent set
of rational generators V . Then, for any ε, 0 ≤ ε ≤ δ, a set of generators for K0(x, ε)
can be found among the columns of Q2, Q1R1(R

T
1 R1)

−1, and −Q1R1(R
T
1 R1)

−1.

12

Proof. By substituting V = QR and using the properties of the matrices in the
QR factorization, we obtain

V (V TV)−1 = QR((QR)T (QR))−1 = QR(RTQTQR)−1 = QR(RTR)−1.

By applying Theorem 4.4 and by taking into account that columns of Q2 span the
nullspace of V T , we obtain the statement of the corollary.

From the theoretical point of view, a set of generators obtained by using Corollary
4.5 may be irrational since an implementation of the QR decomposition involves
calculation of square roots. Of course, we use floating point arithmetic, and so these
generators are rational, but they probably generate a different cone due to numerical
errors. Still the same is true of generators found by using the LU factorization.

4.3. An algorithm for constructing the set of generators. This section
presents an algorithm for constructing a set of generators for the cone K0(xk, ε) at
the current iterate xk for a given parameter ε.

4.3.1. Comments on the algorithm. The algorithm consists of two main
parts. In the first part, we determine the set of indices of the nonredundant ε-active
constraints IN (xk, ε) ⊆ I(xk, ε) and form the matrix BN whose columns are the
columns of A corresponding to the indices in IN (xk, ε). We use information about
the set IN (xk, ε) from the previous iterations of the GPS algorithm. Namely, we put
into the set IN (xk, ε) all indices that correspond to the ε–active constraints at the
current iterate and that were detected as indices of the nonredundant constraints at
the previous iterations of the algorithm. In the second part of the algorithm, we
construct the set of generators Dk required by the GPS and by Theorem 2.2.

First of all, we try to identify the nonredundant active constraints. If the matrix
Bk defined by (4.1) has full rank, then all ε-active constraints are nonredundant,
IN (xk, ε) = I(xk, ε), and BN = Bk.

If the matrix Bk does not have full rank and we have indices that have not been
classified at the previous iterations of the algorithm, we suggest using two steps in
succession.

The first strategy is intended to determine nonredundant constraints cheaply by
applying the projection method described in section 3.3.1. By Proposition 3.17, if
the projection Pj(xk) of the current iterate xk onto the hyperplane Hj = {x ∈ ℜn :
āT

j x = b̄j} is feasible, and only the jth constraint holds with equality at Pj(xk), then
the jth constraint is nonredundant, and we can put index j into the set IN (xk, ε).
If some constraints have not been identified by the projection method, we can either
apply the projection method with some other point x̃ 6= xk or apply the second
strategy.

The second strategy is intended to classify redundant and nonredundant con-
straints among those constraints that have not been determined as nonredundant by
the projection method. To identify the constraint, an approach outlined in [6] is ap-
plied. The basis of this second strategy is provided by Theorem 3.16. If the number
of constraints we have to identify is too big, we can skip an application of the second
strategy to the algorithm and construct a set of generators using the set IN (xk, ε)
defined by application of the first strategy. Then, while doing the poll step, if we find
some point x̄ = xk + ∆d̄, where d̄ is some column of Dk, such that aT

j x̄ > bj and

aT
i x̄ ≤ bi for all i ∈ I(xk, ε)\j, we can conclude that Ω(xk, ε) (Ωj(xk, ε). Hence, by

Corollary 3.14, the jth constraint is nonredundant and we include j into set IN (xk, ε).

13

When we have specified all redundant and nonredundant constraints, we compose
the matrix BN of those columns of the rational matrix A that correspond to nonre-
dundant constraints. To determine the rank of BN , the QR factorization can be used.
If BN has full rank, we can apply the function Set QR or Set LU , which uses the
QR or LU decomposition of BN , to construct the set of generators. Both functions
are constructed on the basis of results proved in Theorem 4.4 and in Corollary 4.5,
where V = BN .

If the matrix BN does not have full rank, we apply the result proved in [12].
Specifically, to construct the set Dk, it is sufficient to apply the function Set QR or
Set LU to all maximal linearly independent subsets of the columns of BN . We can
estimate the number S of these subsets. If BN has mN columns and rank r, then

S =
mN !

r!(mN − r)!
. (4.5)

In this worst case, some vertex enumeration techniques [2] mentioned in [9] might be
necessary, but our procedure for classification of the constraints should eliminate this
expense for many cases.

4.3.2. Algorithm. We denote the set of indices of the nonredundant active
constraints by IN (xk, ε). Thus, for j ∈ I(xk, ε),
(i) if j ∈ IN (xk, ε), the inequality aT

j x ≤ bj is nonredundant; and

(ii) if j ∈ I(xk, ε)\IN (xk, ε), the inequality aT
j x ≤ bj is redundant.

We use IN ⊆ I to denote the set of indices that are detected as nonredundant at
some iteration of the algorithm. Thus IN = ∅ in the beginning of the algorithm.

We denote the rational matrix in (1.2) by AT and the scaled matrix defined in
(3.5) by ĀT . The matrix Bk is defined by (4.1) and is composed of columns aj

of A, where j ∈ I(xk, ε), while the matrix BN is composed of those columns of A
whose indices are in the set IN (xk, ε). Thus BN consists of the normal vectors to the
nonredundant constraints.

Algorithm for constructing the set of generators Dk.
Let the current iterate xk and a parameter ε > 0 be given.

% Part I. Constructing the set IN (xk, ε)

% Constructing the working index set I(xk, ε)
for i = 1 to |I|

if 0 ≤ b̄i − ā
T
i xk ≤ ε

I(xk, ε)← i; Bk ← ai;

endif
endfor

if rank (Bk) = |I(xk, ε)|
% Bk has full rank, hence, all constraints are nonredundant

IN (xk, ε)← I(xk, ε); BN ← Bk;

else

% using information from the previous iterations of the algorithm
IN (xk, ε)← {I(xk, ε)

⋂
IN};

if {I(xk, ε)\IN (xk, ε)} 6= ∅
% there are active constraints that have not been identified
% at the previous iterations

14

% Identification of the nonredundant and redundant constraints
for j = 1 to |I(xk, ε)|

% the first strategy
% Pj(xk) is the projection of xk onto {x ∈ ℜn : āT

j x = b̄j}

Pj(xk) = xk + āj(b̄j − ā
T
j xk);

if āT
i Pj(xk) < b̄i for all i ∈ I\j

% equality at Pj(xk) holds for only the jth constraint

IN (xk, ε)← j; BN ← aj ;

else % at least two constraints hold with equality at Pj(xk)
% or the point Pj(xk) is infeasible;

% the second strategy

solve LP problem (3.16); let x∗ be a solution to (3.16);

if aT
j x

∗ ≤ bj % the jth constraint is redundant
take ajx ≤ bj out of Ω and
take j out of the sets I and I(xk, ε);

else % the jth constraint is nonredundant
IN (xk, ε)← j; BN ← aj ;

endif

endif
endfor

endif

endif

%saving information for the next iterations

IN ← IN (xk, ε);

% Part II. Constructing the set of generators Dk

if rank(BN) = |(IN)(xk, ε)|
% nondegenerate case

[Dk] = Set QR(BN) or [Dk] = Set LU(BN);

else
% degenerate nonredundant case

[Dk] = Set(BN);

endif

Function Set QR constructs a set of generators by using the QR decomposition.
The procedure is defined as follows.

function [D] = Set QR (B)
[Q,R] = qr(B);
r=rank(R);
[Q1, Q2, R1] = decomposition (Q, R, r);
D1← ±(Q1 ∗R1 ∗ inv(R1′ ∗R1));
D2← ±Q2;
D = [D1 D2];

end

15

Function Set LU is described next and constructs a set of generators by using the
LU factorization.

function [D] = Set LU (B)
D1← ±(V ∗ inv(V ′ ∗ V));
D2← ±(I − V ∗ inv(V ′ ∗ V) ∗ V ′);
D = [D1 D2];

end

Function Set constructs a set of generators in the case when the matrix BN does
not have full rank. If BN has mN columns and rank r, then the number S of the
maximal linearly independent subsets of the columns of BN is given by (4.5).

function [D] = Set (B)
for i = 1 to S

Bi is composed of r linearly independent columns of B;
[Di] = Set QR(Bi) or [Di] = Set LU(Bi);
D ← D ∩Di;
%D ∩Di eliminates the identical vectors from the set D %

endfor

end

To reduce the number of operations in the function Set, we can use properties of
QR factorizations. Namely, at the first step, a QR decomposition of B is computed.
Then at the ith step, i = 2, . . . , S, only one of the first r columns of B is replaced
with some jth column of B, where j > r, in such a way that Bi1 6= Bi2 for any steps
i1 and i2, and this is used to simplify computing another QR factorization of B. The
QR factorization of B is used to construct a set of generators for Bi, since Bi can be
defined as the first r columns of B at the ith step.

In the next two tables, we present some numerical results. In Table 4.1, we report
results regarding identification of the nonredundant and redundant constraints at the
current iterate xk and regarding constructing the set of the nonredundant constraints
IN (xk, ε). In Table 4.2, we report results concerning the number of iterations in
the GPS algorithm that is described in Fig.2.1 and is applied to a problem with an
increasing number of redundant constraints.

Table 4.1
Constructing the set IN (xk, ε) at the current iterate xk

|I(xk, ε)| |IN (xk, ε)| detected as nonredundant
variables ε-active nonredundant by the projection by the LP program

constraints constraints method
3 6 6 6
5 6 5 4 1
5 7 7 6 1
5 7 7 5 2

In Table 4.2, we report results for the same problem with no redundant constraints
in the first row, with one additional redundant constraint in the second row, and with
two additional redundant constraints in the third row. Since the algorithm detects
the redundant constraints and takes them out, the number of iterations is the same
in all three tests.

16

Table 4.2
GPS algorithm in the degenerate case

variables constraints redundant iterations
constraints

5 9 0 18
5 10 1 18
5 11 2 18

5. Concluding remarks. It is interesting to compare our results with those of
Lewis and Torczon [9] and of Price and Coope [12]. Lewis and Torczon [9] proved that
it is possible to find a set of generators for the cones K0(xk, ε) in both the degenerate
and nondegenerate case, but left all details of numerical implementation for future
work.

Price and Coope [12] presented a new result that can be used for constructing a
set of generators in the degenerate case. It follows from their result that, in order to
construct a set of generators, it is sufficient to consider maximal linearly independent
subsets of the active constraints. However, this approach implies enumeration of all
possible linearly independent subsets of maximal rank and does not take into account
properties of the problem that can help to reduce this enumeration. Price and Coope
[12] outlined an algorithm for constructing frames, but did not consider details of the
numerical implementation in the degenerate case.

To construct the set of generators, we first classify constraints as redundant and
nonredundant by applying some results concerning redundancy from the mathemat-
ical programming literature and by using our approach presented in the paper. We
give a detailed algorithm for constructing the set of generators. However, the de-
generate nonredundant case, when all constraints are nonredundant but linearly de-
pendent, still implies enumeration of all maximal linearly independent subsets of the
constraints. Therefore, the issue left for future analysis is whether it is possible to
reduce the enumeration of the subsets in the degenerate nonredundant case.

This work was begun at the IMA while the first author was a postdoctoral fellow
and the second was a longterm visitor. We thank the IMA for providing such a fine
atmosphere for collaboration.

REFERENCES

[1] C. Audet and J. E. Dennis JR., Analysis of generalized pattern searches, SIAM J. Optim.,
13 (2003), pp. 889–903.

[2] D. M. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of

arrangements and polyhedra, Discrete Comput. Geom., 8 (1992), pp. 295–313.
[3] H. C. P. Berbee, C. G. E. Boender, A. H. G. R. Kan, C. L. Scheffer, R. L. Smith, and J.

Telgen, Hit-and-run algorithms for the identification of nonredundant linear inequalities,
Math. program., 37 (1987), pp. 184–207.

[4] D. P. Bertsekas, Nonlinear programming, Athena Scientific, Belmont, MA, 1999.
[5] A. Boneh, S. Boneh, and R. J. Caron, Constraint classification in mathematical program-

ming, Math. program., 61 (1993), pp. 61–73.
[6] R. J. Caron, J. F. McDonald, and C. M. Ponic, A degenerate extreme point strategy for

the classification of linear constraints as redundant or necessary, J. Optim. Theory Appl.,
62 (1989), pp. 225–237.

[7] F. H. Clarke, Optimization and nonsmooth analysis, SIAM Classics in applied mathematics
Vol.5 (1990), Philadephia.

17

[8] M. H. Karwan, V. Lotfi, J. Telgen, and S. Zionts, Redundancy in Mathematical program-

ming, Springer-Verlag, Berlin, 1983.
[9] R. M. Lewis and V. Torczon, Pattern search methods for linearly constrained minimization,

SIAM J. Optim., 10 (2000), pp. 917–941.
[10] J. H. May, Linearly constrained nonlinear programming: a solution method that does not

require analytic derivatives, PhD thesis, Yale University, December 1974.
[11] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimization, John Wiley &

Sons, New York, 1988.
[12] C. J. Price and I. D. Coope, Frames and grids in unconstrained and linearly constrained

optimization: a non-smooth approach, Optimization and Engineering, to appear.
[13] L. N. Trefethen and D. Bau, III, Numerical linear algebra, SIAM, Philadelphia, 1997.
[14] J. Van Tiel, Convex Analysis, John Wiley & Sons, New York, 1984.
[15] L. A. Wolsey, Integer programming, John Wiley & Sons, New York, 1998.

18

