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Abstract

A spatiotemporal discrete predator–prey system is investigated for understanding the

pattern self-organization on the route to chaos. The discrete system is modelled by a

coupled map lattice and shows advection of populations in space. Based on the

conditions of stable stationary states and Hopf bifurcation, Turing pattern formation

conditions are determined. As the parameter value is changed, self-organization of

diverse patterns and complex phase transition among the patterns on the route to

chaos are observed in simulations. Ordered patterns of stripes, bands, circles, and

various disordered states are revealed. When we zoom in to observe the pattern

transition in smaller and smaller parameter ranges, subtle structures for transition

process are found: (1) alternation between self-organized structured patterns and

disordered states emerges as the main nonlinear characteristic; (2) when the

parameter value varies in the level from 10–3 to 10–4, a cyclic pattern transition

process occurs repeatedly; (3) when the parameter value shifts in the level of 10–5 or

below, stochastic pattern fluctuation dominates as essential regularity for pattern

variations. The results obtained in this research promote comprehending pattern

self-organization and pattern transition on the route to chaos in spatiotemporal

predator–prey systems.

Keywords: Self-organization; Chaos; Coupled map lattice; Bifurcation; Turing

instability; Predator–prey system

1 Introduction

In nature, the patterns are a type of non-uniform macroscopic structures with certain

orderliness, and they exist commonly and widespreadly [1, 2], and [3]. After decades of

research, pattern dynamics has become an important discipline widely applied in various

fields [1, 2], and [4]. In the field of ecology, many researchers found that spatial pattern for-

mation is one of the most basic nonlinear characteristics of ecological systems [5] and [6].

On the one hand, spatial composition of ecological relations is a key factor in determin-

ing formation and development of biological communities. For example, in predator–prey

systems, the predator exerts effort to capture the prey; in turn, the prey strives to escape

from the predator’s hunt. With such predator–prey interactions expanding in space, the
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dynamics and spatial distribution of predator and prey can be more accurately described

[7]. On the other hand, spatial pattern formation presents a widespread existence in eco-

logical systems and has attracted attention of many researchers [8]. For example, in arid

and semi-arid areas, the plants are often self-organized into regular spatial patterns due

to the competition for water resource. This has been verified by numerous field observa-

tions [9].

The investigation on spatial pattern formation in ecological systems extends the ap-

proach of temporal models and develops the temporal dynamics and stability to spa-

tiotemporal scale. Since spatial patterns often exist in multi-levels and multi-scales of

ecological systems, the pattern self-organization represents an important aspect of eco-

logical complexity, i.e., spatiotemporal complexity [10]. Usually, such spatiotemporal com-

plexity is manifested by pattern diversity, including spotted, striped, labyrinth, and spiral

patterns, as well as many spatiotemporally chaotic patterns [3] and [8]. As research on

pattern dynamics progressed, the researchers noticed that dynamical destabilization and

corresponding pattern formation had similarities with equilibrium phase transition [11].

It was also found that the self-organization of spatial patterns plays a key role in indicating

catastrophes in ecological systems [8]. Therefore, the study on spatial pattern formation

demonstrates great significance in ecology.

In ecological systems, interactions between species are important features. Among the

species interactions, predator–prey relationship is one of the most basic and widespread

existing interactions. Since the predator–prey interactions always take place over a range

of spatial and temporal scales, nonlinear interactions and spatial heterogeneity can often

lead to spontaneous formation of predator–prey patterns [3]. During last four decades,

spatial pattern formation in spatiotemporal predator–prey systems has received signifi-

cant attention from many researchers [3, 12], and [13]. Based on the research of pattern

self-organization in predator–prey systems, the comprehension of ecological spatiotem-

poral complexity is promoted.

Studies in mathematical models are informative in understanding the dynamic rela-

tionship between the predator and the prey and their complex properties [3] and [14].

For studying the pattern formation in predator–prey systems, a reaction–diffusion model

is the most mainstream theoretical model, of which the nonlinear mechanism for pat-

tern self-organization is known as Turing instability. In 1972, Segel and Jackson first ap-

plied reaction–diffusionmodel to study population dynamics: dissipative instability of the

copepods–phytoplankton interactions [15]. In the same year, Gierer and Meinhardt ex-

plained the biological mechanism of a reaction–diffusion model and studied the proper-

ties of corresponding Turing patterns [16]. In 1976, Levin and Segel published a paper in

Nature, suggesting that formation of Turing patterns may be the fundamental mechanism

for plankton patchiness [17]. Based upon the classical works of Segel and Jackson [15] and

Levin and Segel [16], intense research works have been performed to investigate the self-

organization of predator–prey patterns due to diffusive instability, with the application of

Turing’s instability theory. The reaction–diffusion models have contributed to revealing

and explaining the self-organization of various predator–prey patterns.

The reaction–diffusion models capture two basic nonlinear characteristics of reaction–

diffusion systems, i.e., “reaction” between system variables and diffusion motion of the

system variables in space [18]. With continuous development on the reaction–diffusion

models, many researchers found that a different type of population motion, advection,



Huang et al. Advances in Difference Equations  ( 2018)  2018:175 Page 3 of 21

can be incorporated [19] and [20]. In predator–prey systems, advection implies that the

spatial motion of population(s) has the characteristic of directional flow, i.e., the individ-

uals exhibit a correlated motion towards certain direction [21] and [22]. One of the most

typical advection motions may result from correlated motion caused by purely environ-

mental factors such as wind in case of seeds spreading or water current in case of plankton

communities [23]. In literature, a general predator–prey model incorporating advection

and diffusion can be described by

∂N

∂T
= F(N ,P) +C1

∂N

∂X
+D1

(

∂2N

∂X2
+

∂2N

∂Y 2

)

, (1a)

∂P

∂T
=G(N ,P) +C2

∂P

∂X
+D2

(

∂2P

∂X2
+

∂2P

∂Y 2

)

, (1b)

in which N and P are the predator and the prey, respectively; T is time and X and Y give

the two-dimensional space coordinates; F(N ,P) and G(N ,P) describe the temporal dy-

namics of the predator and prey; C1 and C2 are the advection rates, and D1 and D2 are the

diffusion coefficients. The system described by Eqs. (1a)–(1b) can be called advection–

reaction–diffusion predator–prey system. Liu [22] and Sun et al. [20] studied such sys-

tems, showing that advection has prominent effect on the pattern formation of the popu-

lation, i.e., changing Turing pattern into traveling pattern. Via the investigation of Sun et

al. [21], it is suggested that the combining effects of diffusion and advection can account

for dynamical complexity of ecosystems.

Based on the reaction–diffusionmodel, a newmodel, coupledmap lattice (CML), can be

developed [24, 25], and [26]. The CML is a type of spatiotemporally discrete model widely

applied in an ecological field. Since the pioneering work of May on the discrete logistic

model [14], many studies have revealed that the discrete model can exhibit rich nonlinear

dynamics for predator–prey systems [24, 27], and [28]. As is well known, flip bifurcation

and Hopf bifurcation are the key for triggering the route to chaos, on which complex dy-

namical behaviors always emerge, such as periodic window, invariant cycles, and chaotic

attractors. The research on the routes to chaos has contributed greatly to better com-

prehending the ordered and disordered states in predator–prey systems. Moreover, the

transition between the ordered and disordered states becomes one of the most important

topics and attracts the attention of many researchers [29] and [30]. Via comparison, the

researchers have also found that CMLs are more practical in describing nonlinear char-

acteristics and spatiotemporal complexity of predator–prey systems than the continuous

reaction–diffusionmodel.With the application of CMLs,many new attractive results have

been produced [12, 13, 18, 24, 25], and [26]. Rodrigues et al. [13] revealed a rich variety

of pattern formation scenarios in a space- and time-discrete predator–prey system with

strong Allee effect and found spatiotemporal multistability under the effects of different

initial conditions. Huang et al. [12] and [18] compared the spatial pattern formation be-

tween the reaction–diffusion model and its CML version, demonstrating that the nonlin-

ear mechanisms of CML better capture the dynamical complexity of the predator–prey

systems. In particular, CMLs can depict discontinuous properties (e.g., patchy environ-

ment or fragmented habitat) of predator–prey systems [25]. By the nonlinearmechanisms

of CMLs, the spatiotemporal complexity of predator–prey systems can be further revealed

and profoundly understood [12, 25, 31], and [26].
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In this research, the CMLwill be applied to investigate the spatiotemporal complexity of

the advection–reaction–diffusion system described by Eqs. (1a)–(1b). In former research,

Huang et al. have explored a reaction–diffusion predator–prey systemwith the same func-

tional response, suggesting that such an investigationwith discrete time variable and space

variable would discover new nonlinear characteristics and dynamical complexity [12]. Ex-

tending the study of Huang et al. [12], this research further investigates two more aspects.

First, the influence of advection on the spatiotemporal dynamics of a discrete predator–

prey system is still limitedly known and therefore deserves investigation. Second, pattern

self-organization and pattern transition on the route to chaos are an important topicwhich

still shows challenge. The exploration in this research is arranged as follows. Section 2

gives the CML model and the basic nonlinear characteristics of the discrete predator–

prey system. Section 3 performs the Turing instability analysis and determines the pat-

tern formation conditions. Section 4 demonstrates the numerical simulations, and Sect. 5

provides discussion and conclusions.

2 CMLmodel description and system characteristics

2.1 Description of the CMLmodel

Huang et al. [12] have investigated the spatiotemporal complexity of a space- and time-

discrete predator–prey system with Beddington–DeAngelis functional response. They

found that the CML model can exhibit a surprising variety of spatiotemporal patterns,

including regular and irregular patterns of spots, stripes, labyrinth, gaps, mosaics, spirals,

circles, and many intermediate patterns in-between. Based on the research of Huang et

al. [12], interest in three aspects is triggered. First, on the route to chaos induced by Hopf

bifurcation, how the coupled effects of Turing instability and Hopf instability lead to the

self-organization of complex patterns. Second, what are the results when spatial symme-

try breaking occurs on the homogeneous chaotic oscillating states on the route to chaos.

Third, how the dynamic transition occurs between ordered patterns and completely disor-

dered states along the routes to chaos. With these interests, we still consider investigating

the discrete Beddington–DeAngelis type predator–prey system in this research in order

to further know how the pattern self-organization and pattern transition emerge on the

route to chaos. Therefore, two functions F and G for determining the temporal dynamics

of predator and prey are utilized:

F(N ,P) = rN

(

1 –
N

K

)

–
βNP

B +N +wP
, (2a)

G(N ,P) =
εβNP

B +N +wP
– ηP, (2b)

where r stands formaximumper capita growth rate of the prey;K is the carrying capacity;

β is the maximum consumption rate; B is a half-saturation constant; w is the predator in-

terference parameter; ε is the conversion rate of eaten prey into new predator abundance;

η is the per capita predator death rate. The logistic term in Eq. (2a) is used to describe

the general prey growth. The Beddington–DeAngelis functional response, which is one of

the most important functional responses in predator–prey systems and has been exten-

sively investigated, describes the predation relationship with interference effects. Through

many research works, it has been found that the Beddington–DeAngelis functional re-

sponse is very important for the predator–prey systems exhibiting dynamical complexity
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[32] and [31]. Especially, a predator–prey system with Beddington–DeAngelis functional

responsemay generate various instability mechanisms, including Hopf–Turing instability,

Pitchfork–Turing instability, Bogdanov–Takens–Turing instability, and so on [31].

For developing the CMLmodel, a two-dimensional rectangular lattice divided into n×n

sites by space interval h is considered. Simultaneously, the time is divided into a series of

slices with time interval τ . Parameters τ and h are the time scale and the space scale for de-

scribing the predator–prey dynamics, respectively. Since the growth, death, feeding, and

migration of predator and prey individuals always occur periodically, the dynamics of a

predator–prey system can be observed by a particular time scale, which can be defined by

the generation span of the predator and prey populations and measures the regeneration

time of both populations. On the other hand, the space scale on which spatial movements

of predator and prey take place can be defined bymaximum size of dwelling sites of preda-

tor and prey individuals.

In such a spatiotemporal scale, two discrete state variables are defined as N(i,j,m) and

P(i,j,m) (i, j ∈ {1, 2, 3, . . . ,n}), which describes the prey density and the predator density in

(i, j) site atmth iteration (notice thatwith initial time t0, the time atmth iteration is t0+mτ ).

The prey and predator densities in each site change with time in course of the system

dynamics, due to the local inter- and intra-specific interactions as well as migration or

dispersal between different sites [25].

According to the research works about CML [12] and [25], the dynamics from mth to

m+1th iteration consists of two distinctly different stages, (a) the spatial movement stage

and (b) the “reaction” stage. The spatial movement stage can be obtained by discretizing

the spatial terms of Eqs. (1a)–(1b), i.e.,

φ′
(i,j,m) = φ(i,j,m) +

τ

h
Ck∇dφ(i,j,m) +

τ

h2
Dk∇2

dφ(i,j,m), (3)

in which φ denotes the state variable of eitherN or P, φ′
(i,j,m) is the prey or predator density

after advection and dispersal, Ck and Dk (k = 1, 2) are the advection rate and the diffusion

coefficient corresponding to the state variable φ as described in Eqs. (1a)–(1b), and ∇d

and ∇2
d are the discrete forms of advection operator and Laplacian operator, which can be

described as

∇dφ(i,j,m) = φ(i+1,j,m) – φ(i,j,m), (4a)

∇2
dφ(i,j,m) = φ(i+1,j,m) + φ(i–1,j,m) + φ(i,j+1,m) + φ(i,j–1,m) – 4φ(i,j,m). (4b)

The predator–prey reaction stage in the CML model can be expressed by the following

equations:

N(i,j,m+1) = f
(

N ′
(i,j,m),P

′
(i,j,m)

)

, (5a)

P(i,j,m+1) = g
(

N ′
(i,j,m),P

′
(i,j,m)

)

, (5b)

where f and g are the functions determined by the local inter- and intra-specific inter-

actions, and these two functions can be obtained via discretizing the non-spatial part of

Eqs. (1a)–(1b) [12, 18], and [24], i.e.,

f (N ,P) =N + τ

(

rN

(

1 –
N

K

)

–
βNP

B +N +wP

)

, (6a)
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g(N ,P) = P + τ

(

εβNP

B +N +wP
– ηP

)

. (6b)

Noticing that spatial movement of populations always happens before the reaction stage

at each iteration, combining Eqs. (3)–(6a)–(6b), we have

N(i,j,m+1) = f

(

N(i,j,m) +
τ

h
Ck∇dN(i,j,m) +

τ

h2
Dk∇2

dN(i,j,m),P(i,j,m)

+
τ

h
Ck∇dP(i,j,m) +

τ

h2
Dk∇2

dP(i,j,m)

)

, (7a)

P(i,j,m+1) = g

(

N(i,j,m) +
τ

h
Ck∇dN(i,j,m) +

τ

h2
Dk∇2

dN(i,j,m),P(i,j,m)

+
τ

h
Ck∇dP(i,j,m) +

τ

h2
Dk∇2

dP(i,j,m)

)

, (7b)

which gives a description of the CML model and describes a spatiotemporally discrete

advection–reaction–diffusion predator–prey system with Beddington–DeAngelis func-

tional response. From the ecological point of view, all the parameters involved in the CML

model are positive and the values of φ(i,j,t) are nonnegative. Moreover, for ensuring the

nonnegativity of N and P, the parameter values should be provided to make τCk/h and

τDk/h
2 (i = 1, 2) less than 0.5, based on the research of Huang et al. [12]. For applying the

CML model, we set periodic boundary conditions as follows:

φ(i,0,m) = φ(i,n,m), φ(i,1,m) = φ(i,n+1,m), φ(0,j,m) = φ(n,j,m), φ(1,j,m) = φ(n+1,j,m).

2.2 Non-spatial dynamic characteristics of the discrete system

The non-spatial dynamics of the discrete systemmeans no consideration of the advection

and diffusion in the above CML model. Actually, the discrete system satisfies

∇dφ(i,j,t) = 0 and ∇2
dφ(i,j,t) = 0. (8)

Therefore, the non-spatial dynamics also reveals the spatially homogeneous states of the

discrete system. Substituting Eq. (8) into the CMLmodel, the non-spatial dynamics of the

discrete system can be described by the following map:

(

N

P

)

→
(

N + τ (rN(1 – N
K
) – βNP

B+N+wP
)

P + τ ( εβNP
B+N+wP

– ηP)

)

. (9)

The above map (9) has been investigated in detail by Huang et al. [12]. Hereinafter, we

just present the main results of the map. Firstly, the fixed points of map (9) are described

as follows:

(N0,P0) : (0, 0); (N1,P1) : (K , 0);

(N2,P2) :

(

K

2rwε
C,

K(βε – η)

2rw2εη
C –

B

w

)

,
(10)

in which C = rwε – βε + η +
√

(rwε – βε + η)2 + 4rwBεη

K
.
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The stability of these fixed points was analyzed via the method of Jacobian matrix. Ac-

cording to the research of Huang et al. [12], we have

(1) (N0,P0) is unstable regardless of the parameter variations;

(2) when 0 < rτ < 2 and βεK
B+K

< η < 2
τ
+ βεK

B+K
, (N1,P1) is stable;

(3) (N2,P2) is stable when

a11a22 – a12a21 < 1, |a11 + a22| < 1 + a11a22 – a12a21, (11)

in which

a11 = 1 + rτ

(

1 –
2N2

K

)

–
a21

ε
, a12 = –

τη2

βε2

(

1 +
B

N2

)

,

a21 =
r2τε

β

(

w +
B

P2

)(

1 –
N2

K

)2

, a22 = 1 – τη – a12ε.

Moreover, through bifurcation analysis on map (9), by applying the Hopf bifurcation

theorem, Huang et al. [12] found that the discrete system undergoes supercritical Hopf

bifurcation if the following conditions are satisfied:

(a11 – a22)
2 + 4a12a21 < 0, a11a22 – a12a21 = 1,

βτ0(1 –wε)N2P2

(B +N2 +wP2)2
–
rτ0N2

K
�= –3,–2,

d =
rN2

2K2βP2

(

KβP + r(wε – 1)(K –N2)
2
)

> 0,

a = –Re

(

(1 – 2λ̄)λ̄2

1 – λ
ξ11ξ20

)

–
1

2
|ξ11|2 – |ξ02|2 + Re(λ̄ξ21) < 0.

(12)

For detailed expressions of the above conditions, one can refer to Huang et al. [12].

Each fixed point of map (9) is exactly equivalent to a homogeneous stationary state of

the discrete system. Therefore, (N2,P2) can represent a stable spatially homogeneous sta-

tionary state. Moreover, when supercritical Hopf bifurcation occurs, attracting invariant

closed curves will emerge in the discrete system, representing the spatially homogeneous

oscillating states.

3 Turing instability analysis and pattern formation conditions

Turing instability occurs when spatial symmetry breaking takes place and results in the

change from spatially homogeneous states to Turing patterns. According to the previous

description, the discrete system has two types of homogeneous states: homogeneous sta-

tionary state and homogeneous oscillating state. Turing instability occurring on the ho-

mogeneous stationary state is generally called pure Turing instability; Turing instability

occurring on the homogeneous oscillating state often comes along with Hopf instability

and therefore is calledHopf–Turing instability [12] and [18]. Under the influence of Turing

instability, local spatially heterogeneous perturbations on the stable homogeneous states

can gradually expand to the global spatial domain.

Spatially heterogeneous perturbations are introduced to perform the Turing instability

analysis. Applying such perturbations to perturb the stable homogeneous stationary state
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(N2,P2) gives

N(i,j,m) =N2 + Ñ(i,j,m), P(i,j,m) = P2 + P̃(i,j,m), (13)

where Ñ(i,j,m) and P̃(i,j,m) are the perturbations on prey density and predator density in ijth

site at mth iteration. Simultaneously, it should be noticed that

∇dφ(i,j,m) = ∇dφ̃(i,j,m), ∇2
dφ(i,j,m) = ∇2

d φ̃(i,j,m). (14)

Substituting Eqs. (13) and (14) into the equations of the CML model, we get

Ñ(i,j,m+1) = a11

(

Ñ(i,j,m) +
τ

h
C1∇dÑ(i,j,m) +

τ

h2
D1∇2

dÑ(i,j,m)

)

+ a12

(

P̃(i,j,m) +
τ

h
C2∇dP̃(i,j,m) +

τ

h2
D2∇2

d P̃(i,j,m)

)

+O2, (15a)

P̃(i,j,m+1) = a21

(

Ñ(i,j,m) +
τ

h
C1∇dÑ(i,j,m) +

τ

h2
D1∇2

dÑ(i,j,m)

)

+ a22

(

P̃(i,j,m) +
τ

h
C2∇dP̃(i,j,m) +

τ

h2
D2∇2

d P̃(i,j,m)

)

+O2, (15b)

in which O2 stands for a polynomial function with order at least two in the variables of

|Ñ(i,j,m)| and |P̃(i,j,m)|. When the perturbations are small, O2 can be ignored. Before we go

to the next step of calculation on Eqs. (15a)–(15b), the eigenvalues of operators ∇d and∇2
d

should be determined. Consider the following equations:

∇dX
ij + λ(1)Xij = 0, (16a)

∇2
dY

ij + λ(2)Y ij = 0, (16b)

with periodic boundary conditions. Using the method described in Bai and Zhang [33],

the eigenvalues of the two operators can be solved and described as follows:

λ
(1)
kl = 2 sinφk exp

((

φk –
π

2

)

i′
)

, (17a)

λ
(2)
kl = 4

(

sin2 φk + sin2 φl

)

, (17b)

in which φk =
(k–1)π

n
, φl =

(l–1)π
n

, i′ =
√
–1, and k, l ∈ {1, 2, 3, . . . ,n}. Simultaneously, one can

verify that ∇2
d and ∇d are commuting operators. Hence, a common set of eigenfunctions

exists for both operators. Let X
ij

kl be the common eigenfunction of the eigenvalues λ
(1)
kl and

λ
(2)
kl . Applying X

ij

kl to multiply Eqs. (15a)–(15b) gives

Ñ(i,j,m+1) = a11X
ij

klÑ(i,j,m) + a12X
ij

klP̃(i,j,m) +
τ

h
a11C1X

ij

kl∇dÑ(i,j,m) +
τ

h
a12C2X

ij

kl∇dP̃(i,j,m)

+
τ

h2
a11D1X

ij

kl∇
2
dÑ(i,j,m) +

τ

h2
a12D2X

ij

kl∇
2
d P̃(i,j,m) +O2, (18a)

P̃(i,j,m+1) = a21X
ij

klÑ(i,j,m) + a22X
ij

klP̃(i,j,m) +
τ

h
a21C1X

ij

kl∇dÑ(i,j,m) +
τ

h
a22C2X

ij

kl∇dP̃(i,j,m)

+
τ

h2
a21D1X

ij

kl∇
2
dÑ(i,j,m) +

τ

h2
a22D2X

ij

kl∇
2
d P̃(i,j,m) +O2. (18b)
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Summing Eqs. (18a)–(18b) for all of ij and defining

N̄m =

n
∑

i,j=1

X
ij

klÑ(i,j,m), P̄m =

n
∑

i,j=1

X
ij

klP̃(i,j,m), (19)

we can get the following transformed equations under the periodic boundary conditions

[34]:

N̄m+1 = a11

(

1 –
τ

h
C1λ

(1)
kl –

τ

h2
D1λ

(2)
kl

)

N̄m

+ a12

(

1 –
τ

h
C2λ

(1)
kl –

τ

h2
D2λ

(2)
kl

)

P̄m + Ō2, (20a)

P̄m+1 = a21

(

1 –
τ

h
C1λ

(1)
kl –

τ

h2
D1λ

(2)
kl

)

N̄m

+ a22

(

1 –
τ

h
C2λ

(1)
kl –

τ

h2
D2λ

(2)
kl

)

P̄m + Ō2. (20b)

Similarly, Ō2 is a polynomial function with order at least two in the variables of |N̄m| and
|P̄m|.
According to the research work in literature, when one of the two eigenvalues of dy-

namic equations (20a)–(20b) is larger than one, the local heterogeneous perturbations

introduced in (13) can diverge to the global spatial domain and lead to the formation of

Turing patterns. Easily, the Jacobian matrix of linear dynamic equations (20a)–(20b) is

found as

J =

[

a11(1 –
τ
h
C1λ

(1)
kl – τ

h2
D1λ

(2)
kl ) a12(1 –

τ
h
C2λ

(1)
kl – τ

h2
D2λ

(2)
kl )

a21(1 –
τ
h
C1λ

(1)
kl – τ

h2
D1λ

(2)
kl ) a22(1 –

τ
h
C2λ

(1)
kl – τ

h2
D2λ

(2)
kl )

]

, (21)

and the two eigenvalues of (21) can be calculated as

λ±(k, l) =
1

2
tr(J)±

1

2

√

tr(J)2 – 4det(J), (22)

where tr(J) and det(J) are the trace and determinant of Jacobian matrix (21). If we take

one group of kl to make the maximum value of λ±(k, l) larger than one, divergence of

perturbations takes place. Define

λm =
n

max
k=1

n
max
l=1

max
(
∣

∣λ+(k, l)
∣

∣,
∣

∣λ–(k, l)
∣

∣

)

, (23)

and when

λm > 1, (24)

Turing instability emerges in the discrete system and the self-organization of Turing pat-

terns can be observed.
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4 Numerical simulations

Simulations are carried out to exhibit the spatiotemporal dynamics of the discrete system.

Based on the calculations in Sect. 3, parametric conditions for numerical simulations can

be provided. Combining with the research of Huang et al. [12], the values of the following

parameters can be fixed as β = 0.6, ε = 1, B = 0.4, w = 0.4, η = 0.25, K = 1.8, and r = 0.8.

Simultaneously, we can choose C1 = 0.1, C2 = 0.01, D1 = 0.01, D2 = 0.1, h = 10, and n =

100, and shift the value of parameter τ to observe the dynamical variations of the discrete

system.

Figure 1 demonstrates the change of dynamical characterizations as the value of pa-

rameter τ grows. With the parametric conditions given as r = 0.8, K = 1.8, β = 0.6, ε = 1,

B = 0.4, w = 0.4, η = 0.25, the Hopf bifurcation point of the discrete system can be deter-

mined at about τ0 = 3.0714 (Fig. 1(a)). Simultaneously, we can verify that at the critical

bifurcation point, λ1,2 = 0.7352± 0.6778i′ and |λ1,2| = 1. The values of γ and a0 are deter-

mined as d = 0.0862 and a = –0.5024. Since d > 0 and a < 0, based on the conditions for

Hopf bifurcation provided in Sect. 2, we know that when τ < τ0, a stable fixed point takes

place in theN–P state space, and that when τ ≥ τ0, the fixed point turns to be unstable and

the dynamics of the discrete system is attracted to an invariant closed curve. Moreover,

the Hopf bifurcation starts a route to chaos, in which periodic windows repeatedly occur.

As demonstrated in Fig. 1(b), it can be found that the discrete system enters a chaotic dy-

namics zone at about τ = 4.2243 from the maximum Lyapunov exponent larger than one.

Fig. 1(c) exhibits the variation of the value of λm, determining the range of τ for occurrence

of Turing instability. Explicitly via λm = 1, the threshold value for Turing instability occur-

(a)

(b)

(c)

Figure 1 Diagrams of (a) Hopf bifurcation, (b) maximum Lyapunov exponent (MLE), and (c) λm ,

demonstrating the change of dynamical properties of the discrete system corresponding to variation of

parameter τ . r = 0.8, K = 1.8, β = 0.6, ε = 1, B = 0.4, w = 0.4, η = 0.25, C1 = 0.1, C2 = 0.01, D1 = 0.01, D2 = 0.1,

h = 10, and n = 100
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(a) τ = 3.034 (b) τ = 3.331

(c) τ = 3.907 (d) τ = 4.087

(e) τ = 4.114 (f ) τ = 4.15

Figure 2 Phase diagrams corresponding to the bifurcation diagram in Fig. 1(a), demonstrating the dynamic

transition on the route to chaos induced by the Hopf bifurcation

rence is at about τ = 3.0714. This suggests the overlap of a Hopf bifurcation point and a

Turing bifurcation point, forming the Hopf–Turing bifurcation point. When the value of

parameter τ is larger than the Hopf–Turing bifurcation point, the occurrence of Turing

instability along the route to chaos can bring the formation of Turing patterns.

Figure 2 exhibits different dynamic behaviors in the N–P state space corresponding to

the bifurcation diagram. Fig. 2(a) shows a stable fixed point, which is a focus. Over the

Hopf bifurcation point, an attracting closed curve appears in the state space (Fig. 2(b)).

And then, as the value of parameter τ continuously rises, the transition of predator–prey

dynamics in the state space sequentially experiences from period-7 orbit (Fig. 2(c)), to

complex invariant closed cycles (Fig. 2(d)–(f )), then to period-20 orbit (Fig. 2(g)), and
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(g) τ = 4.222 (h) τ = 4.285

(i) τ = 4.528

Figure 2 Continued

finally to chaotic attractors (Fig. 2(h)–(i)). In the discrete system, the periodic orbit, in-

variant closed cycles, and chaotic attractors correspond to different states that are homo-

geneous in space and periodic, quasiperiodic, and chaotic oscillating in time, respectively.

Turing instability induces spatial symmetry breaking on these states. Therefore, diversity

and complexity of the pattern self-organization in the discrete system may be exhibited.

Pattern formation simulations are then performed. In this research, initial conditions

for pattern formation simulations are provided as follows:

N =N2(1 + ξ ) + 0.05, (25a)

P = P2(1 + ξ ) + 0.05, (25b)

where ξ is a random variable uniformly distributed in (–0.05, 0.05). Under Hopf–Turing

instability mechanism, the pattern formation process is very sensitive to initial conditions

[12] and [18]. For comparing the self-organized patterns on the route to chaos induced by

the Hopf bifurcation, initial conditions with the same random perturbations as described

in (25a)–(25b) are applied for all pattern simulations. On the other hand, the patterns

self-organized on the route to chaos also show oscillating property with time. Therefore,

transient states of predator and prey at large evolution time are chosen for displaying such

pattern formation. The choice of large evolution time needs avoiding the influence of ini-

tial pattern evolution process. Through a great number of pattern simulations, a large

evolution time such as t = 20,000 would satisfy this condition. Furthermore, parametric
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conditions for pattern simulations are given the same as those in Fig. 1, and the value of

parameter τ ranges in [2.8, 4.6]. The advection direction in each pattern graph is set from

up to down. Since predator and prey patterns always show similar configuration, we here

only demonstrate the prey pattern. Lastly, it should be noticed that exactly the same sim-

ulation conditions are utilized for all simulations, except the change of τ value, for the

purpose of pattern comparison.

With a large amount of numerical simulations, we find that the discrete system often

presents two counter types of heterogeneous states. The first type holds distinguishable

self-organized ordered structures in configuration, such as circles, stripes, and lines. This

type of heterogeneous states is called ordered patterns in this research. Nevertheless, for

another type, the spatial distribution of population density is so irregular, scattered, or

chaotic that we can hardly visually recognize any ordered structures in the configura-

tion. Therefore, we named the second type of heterogeneous states disordered states here-

inafter.

Moreover, we still choose the parameter τ as the main variable inducing pattern transi-

tion on the route to chaos.Mathematically, this parameter shows an equal role to other pa-

rameters in the discrete system, which can be also chosen to make similar demonstration.

From ecology point of view, parameter τ measures the time scale on which predator–prey

dynamics takes place, including the growth, death, predating, feeding, and migration of

predator and prey individuals, and can be defined by the generation span of the predator

and prey populations. With the change of this parameter, we find that the population re-

generation is important for determining the spatiotemporal predator–prey dynamics. In

literature, this parameter has been also used to explore the dynamic transition from pe-

riodic to chaotic behaviors on the route to chaos [27] and [28]. The values of parameters

C1, C2, D1, and D2 are best to range in (0, 1], in which the variation of these parameters

may hardly change the trend of pattern transition. Based on the numerical simulations,

variation of these parameters mainly controls the configuration and occurrence range of

striped patterns.

In order to investigate the pattern transition in the range [2.8, 4.6], the range is divided

into 50 segments and pattern simulations are carried out at each segmentation point. Fig-

ure 3 shows the transition process with main types of prey patterns. At the beginning, the

(a) τ = 3.088 (b) τ = 4.168 (c) τ = 4.204 (d) τ = 4.24 (e) τ = 4.276 (f ) τ = 4.312

(g) τ = 4.348 (h) τ = 4.384 (i) τ = 4.42 (j) τ = 4.456 (k) τ = 4.528 (l) τ = 4.6

Figure 3 Pattern self-organization and transition on the route to chaos with the variation of τ covering

[2.8, 4.6]. t = 20,000, the parametric conditions are the same as those in Fig. 1. The initial conditions are given

by (25a)–(25b) and are exactly the same for each pattern graph. The advection direction is from up to down.

These conditions are also the same for all the pattern simulations hereinafter
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dynamics of the discrete system is dominated by homogeneous and approximately homo-

geneous states until the τ value is larger than 4.132 (see Fig. 3(a)). Then the striped pattern

emerges suddenly, with striped patches parallel to the advection direction (see Fig. 3(b)).

After the transition of intermediate patterns (Fig. 3(c)–(d)), the striped pattern gradually

changes to disordered states in which the prey patches distribute irregularly (Fig. 3(e)–

(i) and 3(k)–(l)). Nevertheless, the discrete system may return to the striped pattern in

between the disordered states.

To quantitatively determine the regularity of pattern transition along the route to chaos,

three aspects of pattern characterizations are utilized.

(a) Mean value of N pattern (MVN), defined as

MVN =

i=n
∑

i=1

j=n
∑

j=1

N(i, j, t)
/

n2. (26)

(b) Main states of N pattern (MSN), defined as

MSN =
{

N(i, j, t)|pos
(

N(i, j, t)
)

≥ 0.001
}

, (27)

in which pos(N(i, j, t)) represents the occurrence possibility of the state N(i, j, t) in

the prey pattern. To exhibit the main states of the pattern, we need to remove the

states of very low occurrence possibility (such as 0.001). With the given n value as

100, pos(N(i, j, t)) = 0.001means the occurrence frequency of N(i, j, t) equals 10.

Hence, MSN does not contain the states with occurrence frequency less than 10.

(c) Information entropy of N pattern (IEN), defined as

IEN = –
∑

pos
(

N(i, j, t)
)

log
(

pos
(

N(i, j, t)
))

. (28)

The graphs of MVN, MSN, and IEN in Fig. 4 demonstrate a general trend of pattern

transition as the parameter τ ranges in [2.8, 4.6]. When the τ value crosses the Hopf–

Turing bifurcation point, the following dynamic characteristics can be described. First, the

change of MVN is sensitive to parameter variation and presents large fluctuation. Corre-

spondingly, in Fig. 4(a), the distribution exhibits an appearance of point cloud. Second,

two types of patterns can be distinguished from the MSN as shown in Fig. 4(b). One has

low number and discontinuousmain states, which also fluctuate around theMVN. In such

a case, homogeneous states, approximately homogeneous states, or simple two-phase het-

erogeneous patternsmay be dominant. The other has large numbers and continuousmain

states, and complex and diverse patterns prevail. The dividing point of these two types of

patterns is at about τ = 4.1572. Compared with the bifurcation diagram, the non-spatial

dynamics of the discrete system at this dividing point is just the beginning of the peri-

odic window, after which chaotic dynamics sequentially follows. Third, the above divid-

ing point is also the key for the change of IEN (Fig. 4(c)). Before the dividing point, IEN

shows low values. It should be noticed that IEN equal to zero corresponds to homogenous

states. Therefore, Fig. 4(c) demonstrates the alternation between homogeneous states and

heterogeneous patterns in the range of [3.0714, 4.1572]. After the diving point, IEN has

large values. Compared with Fig. 3, we find that large IEN implies the self-organization of

complex and diverse patterns.
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(a) (b)

(c)

Figure 4 Graphs of (a) MVN, (b) MSN, and (c) IEN corresponding to Fig. 3, demonstrating the general trend of

pattern transition on the route to chaos with parameter τ ranging in [2.8, 4.6]

(a) τ = 4.2128 (b) τ = 4.2216 (c) τ = 4.2304 (d) τ = 4.2568 (e) τ = 4.2656 (f ) τ = 4.2744

(g) τ = 4.2832 (h) τ = 4.3272 (i) τ = 4.3624 (j) τ = 4.4064 (k) τ = 4.4152 (l) τ = 4.4328

Figure 5 Pattern self-organization and transition with τ value ranging in [4.16, 4.44]. Various striped patterns,

circled patterns, and disordered patterns are demonstrated. The conditions for pattern simulations are exactly

the same as those in Fig. 3

To further reveal the spatiotemporal complexity and dynamic variation on the route

to chaos, we zoom in to observe the self-organization of patterns and pattern transition

in the range [4.16, 4.44]. We also divide this range into 50 segments and then perform

the pattern formation simulations. In Fig. 5, different striped patterns as well as a cir-

cled pattern are demonstrated. The stripes in the striped patterns may be parallel or per-

pendicular to the advection direction (Fig. 5(a), 5(b), and 5(g)). Especially, the stripes can

reach and combine with each other and lead to the self-organization of a circular struc-
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(a) τ = 4.25592 (b) τ = 4.25856 (c) τ = 4.2612 (d) τ = 4.26296 (e) τ = 4.26648 (f ) τ = 4.26824

(g) τ = 4.27088 (h) τ = 4.27264 (i) τ = 4.27528 (j) τ = 4.27616 (k) τ = 4.28056 (l) τ = 4.28672

Figure 6 Pattern self-organization and transition with τ value ranging in [4.248, 4.292]. Alternation between

self-organized structured patterns and disordered states is shown in this range. The conditions for pattern

simulations are exactly the same as those in Fig. 3

(a) τ = 4.2733 (b) τ = 4.2735 (c) τ = 4.2737 (d) τ = 4.2739 (e) τ = 4.2741 (f ) τ = 4.2744

(g) τ = 4.2746 (h) τ = 4.2748 (i) τ = 4.2751 (j) τ = 4.2755 (k) τ = 4.276 (l) τ = 4.2765

Figure 7 Pattern self-organization and transition with τ value ranging in [4.272, 4.277]. Cyclic transitions of

patterns are found in the alternation between ordered patterns and disordered states. The conditions for

pattern simulations are exactly the same as those in Fig. 3

ture (Fig. 5(d)). Moreover, direct combination of two or several stripes may result in the

formation of wide bands in the pattern (Fig. 5(f )). In between these patterns which have

explicit self-organized structures, disordered states repeatedly emerge (such as Fig. 5(c),

5(h), and 5(k)).

When we further zoom in to investigate the pattern self-organization on the route

to chaos, we find that the alternation between self-organized structured patterns and

disordered states also takes place in a smaller parameter range, such as in the range

[4.248, 4.292] (see Fig. 6). Such alternation reveals that the ordered and disordered states

of the discrete system can keep in continuous transition from one to the other. However,

the regularity of the alternation is implicit. Only further zooming in on smaller parameter

ranges (see Figs. 7 and 8), we find interesting phenomena of dynamic variation: the alterna-

tion between ordered patterns and disordered states results from many cyclic transitions

of patterns. As shown in Fig. 7, the cyclic transition process occurs repeatedly in the range

[4.272, 4.277]. Figure 8 illustrates the detailed information of the cyclic transition process

as the value of parameter τ increases in [4.2734, 4.2739]: at first, the pattern is disordered

with low prey density (Fig. 8(a)); gradually, a few circles and bands just “grow” from the

disordered background (Fig. 8(b)–8(d)); the emerging circles and bands may combine to-

gether, leading to the self-organization of pattern structures (Fig. 8(e)–8(h)); as τ value
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(a) τ = 4.27344 (b) τ = 4.27348 (c) τ = 4.27351 (d) τ = 4.27356 (e) τ = 4.2736 (f ) τ = 4.27363

(g) τ = 4.27367 (h) τ = 4.27371 (i) τ = 4.27376 (j) τ = 4.27382 (k) τ = 4.27385 (l) τ = 4.27389

Figure 8 Pattern transition with the variation of τ covering [4.2734, 4.2739]. Detailed information of the cyclic

transition process in Fig. 7 is shown. The conditions for pattern simulations are exactly the same as those in

Fig. 3

(a) (b)

(c)

Figure 9 Graphs of (a) MVN, (b) MSN, and (c) IEN corresponding to Fig. 7. The waved variations of MVN, MSN,

and IEN explicitly display the cyclic pattern transition process in Fig. 7

further rises, the above process will go through in a reversed way, i.e., the pattern struc-

tures decompose, then circles and bands disappear, and finally disordered states dominate

again (Fig. 8(i)–8(l)). The cyclic pattern transition process is also explicitly verified by the

waved variations of MVN, MSN, and IEN in Fig. 9.

A careful observation on Fig. 9(a) and 9(c) finds that the wave of MVN or IEN presents

discontinuous property. This suggests that there may be some kind of subtle structures

existing locally. Figure 10 shows the pattern transition in a tiny range [4.27384, 4.27389].

All the patterns exhibit similar configuration, but the pattern structures fluctuate during
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(a) τ = 4.273842 (b) τ = 4.27385 (c) τ = 4.273858 (d) τ = 4.273862 (e) τ = 4.273868 (f ) τ = 4.273877

(g) τ = 4.273878 (h) τ = 4.27388 (i) τ = 4.273881 (j) τ = 4.273883 (k) τ = 4.273887 (l) τ = 4.273888

Figure 10 Pattern transition with the variation of τ covering [4.27384, 4.27389]. In this range, all the patterns

exhibit similar configuration but the pattern structures fluctuate. The conditions for pattern simulations are

exactly the same as those in Fig. 3

(a) (b)

(c)

Figure 11 Graphs of (a) MVN, (b) MSN, and (c) IEN corresponding to Fig. 10, demonstrating stochastic pattern

fluctuation in the pattern transition

the entire range. To quantitatively determine the nonlinear characteristics of the pattern

transition in the range, the graphs of MVN, MSN, and IEN are also plotted. Figure 11 ex-

plicitly demonstrates stochastic pattern fluctuation, which emerges based on a common

background with the main states of N(i, j) ranging about in [0.3, 0.8] (Fig. 11(b)). This ex-

plains similarity and variation of the patterns in the range [4.27384, 4.27389]. Moreover,

the pattern fluctuation presents the property of self-similarity when the τ value varies in
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(a) (b)

(c)

Figure 12 Graphs of (a) MVN, (b) MSN, and (c) IEN corresponding to the pattern transition with the variation

of τ covering [4.273876, 4.273881], suggesting a property of self-similarity in the pattern fluctuation. The

conditions for pattern simulations are exactly the same as those in Fig. 3

the level of 10–5 or below (Figs. 11 and 12). This may be essential regularity for the pattern

variations in tiny parameter ranges.

5 Discussion and conclusion

For predator–prey systems, self-organization of ordered patterns, resulting from spatial

symmetry breaking induced by Turing instability, also plays a key role in revealing and

explaining regular population distribution involved in predation relationship. Previously,

research works have been focused upon how the pattern self-organization takes place un-

der Turing instability conditions. A great deal of research works demonstrated that Turing

instability can generate diverse and complex patterns in the predator–prey systems [3, 12,

25, 32], and [31]. Particularly, Hopf–Turing instability induces spatial symmetry breaking

at homogeneous oscillating states and leads to the formation of oscillatory patterns, where

the dynamics of predator and prey is always varying spatially and temporally [12] and [31].

A few research works even found that the Hopf–Turing instability can produce patterns

with spatiotemporal chaos, which plays a vital role in the spatiotemporal organization of

ecological systems [13] and [35].

When the Turing instability occurs on the routes to chaos, the discrete system can

exhibit surprising spatiotemporal complexity. Nevertheless, the study on pattern self-

organization and pattern transition on the route to chaos is still seldom documented in

the literature. Huang andZhang [24] investigated the pattern transition along the routes to

chaos induced by flip bifurcation and Hopf bifurcation, finding a transition from ordered
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spiral patterns, through spiral fragmentation, to spatiotemporal chaos with complete dis-

order. Such a transition process accords with the dynamic variation on the route to chaos.

Kaneko studied the pattern formation on the transition route from torus to chaos, reveal-

ing rich spatiotemporal dynamics such as frozen random pattern, Brownian motion of

defect, defect turbulence, pattern competition intermittency, fully developed turbulence,

and so on [36]. Compared with former research works, the present approach also finds

rich spatiotemporal dynamics and some new nonlinear characteristics for the discrete

predator–prey systems. The following concluding remarks can be summarized.

(1) Hopf bifurcation starts a route to chaos, on which the predator–prey dynamics

experiences transition from an invariant closed curve, to complex invariant cycles,

and finally to chaotic attractors, with periodic windows repeatedly

occurringin-between. The dynamic variation on the route to chaos demonstrates a

transition from ordered states to disordered states.

(2) Hopf–Turing instability occurring on the route to chaos leads to self-organization

of diverse patterns. Ordered patterns of stripes, bands, circles, and various

disordered states are revealed. Moreover, tiny variation of parameter value can

result in two different patterns, reflecting pattern diversity on the route to chaos.

(3) When the information entropy of patterns shows high values, rich self-organized

patterns may be indicated.

(4) Complex pattern transition takes place on the route to chaos. When we zoom in to

observe the pattern transition in smaller and smaller parameter ranges, subtle

structures for transition process can be found.

(5) Alternation between self-organized structured patterns and disordered patterns

emerges as the main nonlinear characteristic for pattern transition. Such alternation

reveals that ordered patterns and disordered states can keep in continuous

transition from one to the other in the discrete system.

(6) When the value of parameter τ varies in the level from 10–3 to 10–4, cyclic pattern

transition process occurs repeatedly. Such a dynamical phenomenon can be

explicitly verified by waved variations of the entropy of patterns.

(7) When the value of parameter τ varies in the level of 10–5 or below, stochastic

pattern fluctuation dominates the pattern transition. Moreover, the pattern

fluctuation presents a property of self-similarity, reflecting basic regularity for

pattern variations in tiny parameter ranges.
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