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ABSTRACT

Time series anonymization is an important problem. One prominent example of time series are energy consumption

records, which might reveal details of the daily routine of a household. Existing privacy approaches for time series,

e.g., from the field of trajectory anonymization, assume that every single value of a time series contains sensitive

information and reduce the data quality very much. In contrast, we consider time series where it is combinations of

tuples that represent personal information. We propose (n, l, k)-anonymity, geared to anonymization of time-series

data with minimal information loss, assuming that an adversary may learn a few data points. We propose several

heuristics to obtain (n, l, k)-anonymity, and we evaluate our approach both with synthetic and real data. Our

experiments confirm that it is sufficient to modify time series only moderately in order to fulfill meaningful privacy

requirements.
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1 INTRODUCTION

The anonymization of time series is an important con-

cern. Time series such as GPS trajectories, energy con-

sumption data or records of physical activities reveal

many personal details about an individual. In many sit-

uations, such data should be published, e.g., to give way

to scientific insights or to foster innovations. For exam-

ple, effective regulation of energy production and con-

sumption will only be possible if energy-consumption

time series of households are available to the parties in-

volved [32]. Thus, there is an antagonism between pri-

vacy concerns on the one hand and the need to publish

time series data on the other hand.

In a nutshell, time-series data tends to be either

what we call point-sensitive or pattern-sensitive. In

point-sensitive time series, every single (time, data)-

point might reveal sensitive information. For example,

each (time, position)-tuple in a GPS track may reveal

where an individual lives, works, etc. Existing privacy

measures [30, 10, 23] and privacy-enhancing technolog

-ies [27] typically try to make sets of point-sensitive time

series indistinguishable as a whole, e.g., by computing

their averages. This causes a severe loss of information,

e.g., when the values averaged are dissimilar.

This paper studies pattern-sensitive time series where

combinations of (time, data)-tuples represent personal

information. An example is energy-consumption data.

Figure 1 indicates that the daily routine and the appli-

ances used in the household can be inferred from pat-

terns contained in such data. It requires several values
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Figure 1: Example of Smart Meter data, reprinted

from [26] with author permission

to detect a certain pattern, e.g., the switching period of

the thermostat of a water heater. However, knowing the

consumption value at one specific point of time typically

is not informative and does not violate the privacy. For

pattern-sensitive time series, a sufficient degree of pri-

vacy might be obtainable without making time series en-

tirely indistinguishable. In particular, it might be accept-

able to expose a few data points if the information loss

caused by the anonymization is much smaller. The dis-

tinction between point-sensitive and pattern-sensitive is

not always clear-cut. For example, GPS trajectories of

commuters might be pattern-sensitive and point-sensitive

at the same time. This is because trajectories reveal the

commuting route (pattern) as well as the places of work

and living (points). Still, there usually is a tendency to-

wards one category, and studying the implications of this

differentiation on information exposure is worthwhile.

Given a set of time series with patterns containing per-

sonal information, an adversary having certain limited

amount of (time, value)-tuples as external knowledge of

an individual may find out the values at other points of

time. We refer to this as inference. This paper stud-

ies the relationship between the degree of anonymiza-

tion and the number of data points that can be inferred

for time series with patterns as personal details. Ap-

proaches for trajectory anonymization, e.g., [1] and [27],

provide privacy guarantees under the worst case assump-

tion of exhaustive external knowledge, i.e., an adversary

knows entire time series. This is a theoretical limit – an

adversary with such knowledge does not need to break

any anonymization, since he already knows everything.

Guarantees for this theoretical extreme case require to

reduce the data quality very much.

In this paper, we investigate how to anonymize a

database of time series with minimal information loss,

assuming that an adversary knowing a limited number of

(time, data)-tuples from a time series is allowed to learn a

few tuples from the same time series that were unknown

to her so far. However, an adversary must not learn the

entire time series. This is challenging, for two reasons:

(1) Anonymity is hard to obtain without making many

households indistinguishable, e.g., by generalization, so

that the data quality is low. Otherwise, a stakeholder

with access to time series and external knowledge about

a few tuples of a certain individual could single out can-

didate time series belonging to this individual. (2) Be-

ing anonymous does not necessarily prevent an adver-

sary from gaining information about an individual. For

example, it is sufficient to know that an individual is the

originator of one element of a set of similar time series

to learn further information. Since time series data are

identifying and sensitive at the same time, it is not possi-

ble to use approaches for micro databases, e.g., [23].

In this paper, we use time series of smart meter

data [11] as a prominent example of data containing sen-

sitive patterns to motivate and evaluate our approach. We

make the following contributions:

• We introduce (n, l, k)-anonymity, a privacy mea-

sure that allows to specify a degree of anonymity

and an upper bound of the information exposed,

given the extent of external knowledge of an adver-

sary. To our knowledge, the idea of having such an

upper bound for information exposure has not been

investigated for time-series anonymization yet.

• We propose several heuristics that transform a set

of time series so that it is (n, l, k)-anonymous. Our

heuristics strives to minimize the information loss

caused by the transformation. We propose and test

three heuristics that differ regarding the way the

data is modified.

• We evaluate our approach by extensive experiments

both with real-world smart meter data and with syn-

thetic data. Our evaluation with the real-world data

shows that it is sufficient to modify each value by

less than 10% on average to ensure that each time

series is indistinguishable to a high degree. In other

words, even though the indistinguishability is many

times higher compared to the original data set, only

slight modifications suffice.

Paper structure: Section 2 discusses the technical back-

ground and related work. Section 3 introduces (n, l, k)-
anonymity, followed by our anonymization method in

Section 4. Section 5 is our evaluation, and Section 6

concludes.

2 BACKGROUND

In this section, we briefly describe the smart grid and

explain how it threatens the privacy of households. Fur-

thermore, we review related privacy approaches.
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2.1 The Smart Grid

The smart grid is an initiative to save energy, based

on consumption forecasts, the optimization of energy

consumption, fine-grained resource planning and seam-

less integration of decentralized energy sources. On the

consumer side, the smart grid strives for flexible tar-

iff models which motivate consumers to reduce peak

loads and shift consumption to periods when more en-

ergy is available, e.g., from fluctuating renewable en-

ergy sources [14, 25]. Smart meters are an important

part of the smart grid. They record energy consumption

with a high resolution and transfer the readings automat-

ically to a measuring point operator. Advanced smart

meters measure energy consumption, active power, reac-

tive power and other parameters [13] in small time inter-

vals and are able to collect other data of the household

in addition, e.g., water, gas or heat consumption. Fur-

thermore, smart meters can communicate with other ap-

pliances as part of the ”smart home” vision [11]. Nu-

merous initiatives support the smart grid deployment:

e.g. ”European Smart Grid Technology Platform” [12]

or the NIST Framework/Roadmap for smart grids [28].

In some countries (e.g., in Germany), the installation of

smart meters is required by law for new or reconstructed

buildings [4]. Thus, smart meters are relevant for large

parts of society.

Example 1 (Smart meter data set): Let Alice (a),

Bob (b) and Carol (c) be three persons/households with

smart meters installed. Figure 2b contains the consump-

tion data, the corresponding chart is in Fig. 2a. There

are three time series (a, b and c) consisting of four tu-

ples each. (09:00, 0.7kwh) is a tuple that is part of two

time series a and b. �

2.2 Privacy Threats

Since smart meters collect data with a high level of de-

tail, the data measured allows to infer a lot of personal

information, as follows.

Usage of electrical appliances: There are several

proposals for the non-intrusive detection of electri-

cal appliances present in a household and their usage

periods [17, 26]. Figure 1 shows an example: It dis-

plays the power consumption of a household annotated

with the detected appliances in use. Depending on the

temporal resolution of the data, it is possible to iden-

tify the appliances used, e.g., oven, microwave or televi-

sion [29]. With advanced smart meters, it is even possi-

ble to distinguish individual devices, e.g., different game

consoles [19].

Personal details: Information on the usage times of ap-

pliances allows deep insight into the household’s habits.

Based on the amount of energy used during a spe-
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Figure 2: example data

cific time, it is possible to determine the daily routine,

e.g., when residents take their breakfast, leave or return

home [6]. An adversary can draw conclusions, e.g., if in-

dividuals are shift workers or go to church on Sundays.

The daily power usage also gives evidence regarding the

lifestyle, i.e., how many people live in a household, how

long the individuals are at home, or if the households

prepare meals in the oven or in the microwave.

Re-identification: Since energy consumption reflects

many personal details of the households, smart meter

data can be assumed to be inherently identifying. In par-

ticular, a set of values from a time series of smart meter

data can be a quasi-identifier [30]. These values allow

to assign the time series to an individual household. The

process of linking anonymous data to an individual is

called re-identification. Re-identification needs external

knowledge on the power consumption of the household,

as we will explain in section 3.2.

Note that the privacy threats described are a result

of inferring information from several values of energy-

consumption data, i.e., one consumption value at a spe-

cific time is neither sufficient to identify devices nor
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habits. In other words, smart meter produce pattern-

sensitive time series.

2.3 Privacy Approaches

In this section we discuss some recent privacy ap-

proaches for different use cases.

Relational anonymity criteria: k-anonymity [30] de-

fines anonymity as being indistinguishable amongst k−1
other records, with respect to a quasi-identifier, in a re-

lational data set. This principle and its improvements (l-
diversity [23] and t-closeness [20]) usually discern the

attributes as quasi-identifying and sensitive. Since this

distinction is impossible for time series where the val-

ues are identifying and contain sensitive information at

the same time, k-anonymity and its successors cannot be

directly applied to time series.

Differential privacy: Differential privacy [10] is an ap-

proach for anonymizing query results, e.g., on trajectory

data [7] or smart meter data [2]. The approach guaran-

tees that a query result does not change much, if a record

about a particular person is appended to the database.

However, such strict privacy guarantees require total ex-

ante knowledge about all queries that are executed on the

database. Furthermore, the approach perturbs the data

set very much [22]. In contrast, we strive for an approach

that reduces the amount of perturbation by taking sensi-

tive patterns into account. Furthermore, we want to pub-

lish data without restricting the queries that are allowed

on the data set.

Anonymity approaches for transaction data: Time se-

ries of transactions, e.g., from Internet shops or work-

flow systems, contain private information. A recent

approach for anonymization of transaction data is ρ-

uncertainty [5], which divides transaction data into sen-

sitive and non-sensitive one and exploits the hierarchi-

cal structure of transactional data to generalize informa-

tion, e.g., in a shopping cart scenario “diapers” → “baby

goods”. [33] extends this concept by considering an

upper bound for the external knowledge for transaction

data, but still distinguishes between sensitive and non-

sensitive items. [31] does not depend on such a distinc-

tion. However, those approaches cannot be applied to

our case, because time series do not have a hierarchical

structure that can be exploited for anonymization.

Anonymity for moving object data: Moving object

databases store trajectories, i.e., sequences of (time,

position)-tuples. Privacy approaches for this kind of

data, e.g., [9, 15, 18, 34, 27, 8], assume parts of the tra-

jectory to be quasi-identifiers [35]. A popular approach

is to transform trajectory sets into equivalence classes

of at least k members [34]. [8] extends this concept

by considering an upper bound for external knowledge.

All approaches assume that parts of the trajectory can

be clearly identified as quasi-identifiers for each individ-

ual, and this does not change over time, e.g., the path

between the workplace and home. However, time series

of smart meter data do not contain such “ideal” identi-

fiers. Instead, identifying parts may be repeated at dif-

ferent points of time. [27] renders sets of trajectories

indistinguishable to at least k others by using cluster-

ing, i.e., the approach assumes that each time series is

a quasi-identifier as a whole covering the theoretical ex-

treme case of an adversary having the complete time se-

ries as external knowledge. Since this assumption is un-

due for pattern-sensitive time series, the approach modi-

fies such time series too much.

Anonymity for smart meter data: A recent ap-

proach [11] for smart meter privacy assumes that only

consumption values measured with a high temporal res-

olution contain private information. This is motivated

by the fact that it requires a high metering frequency

to clearly identify electrical appliances (cf. Figure 1).

The approach proposes an architecture where high res-

olution data is assigned to pseudonyms, while low reso-

lution data is assigned to identifiers for, say, accounting.

However, it is possible to map energy consumption data

identified by pseudonyms to households, i.e., to break

the anonymization. This is called re-identification [3]. It

makes use of patterns in the energy consumption that are

characteristic for a single household. Such patterns may

appear in consumption data metered with any frequency.

For example, vacation weeks can be as characteristic for

a household as the morning routine. Thus, a separation

in high- and low-resolution data is not general enough

for our purpose.

Adversaries and external knowledge: Finally, the im-

pact of aggregated external knowledge like “the average

age of the individuals in a database is 48” on anonymiza-

tion has been studied, e.g., in [21, 24]. However, none of

the approaches we are aware of considers exact knowl-

edge of some parts of the database or allows to specify

an upper bound on information exposure suitable for a

set of pattern-sensitive time series.

3 (n, l, k)-ANONYMITY

In this section, we introduce our terms and assump-

tions, we formalize our adversary model and we de-

scribe (n, l, k)-anonymity, our privacy measure for sets

of pattern-sensitive time series. Intuitively, (n, l, k)-
anonymity allows to specify a degree of anonymity, a

limit on the information an adversary can learn about a

household, and an upper bound on the external knowl-

edge the adversary might possess. First, we state the fol-

lowing assumptions:
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• The database contains a number of time series

that is sufficient for anonymization. Intuitively,

the (n, l, k)-anonymity parameters must not require

each time series to be indistinguishable from more

time series than contained in the database, and an

adversary cannot know more values of a time series

than the database actually contains.

• We assume that all values of the time series are

equally sensitive. In other words, we consider the

most general case where each value poses the same

potential privacy threat.

• All smart meters measure the energy consumption

at the same points of time and with fixed time in-

tervals. While our approach can be extended for

flexible points of time, we do not address this issue

here.

3.1 Terms and Definitions

Let T be a set of points of time, e.g., from time series

of power consumption values measured by a smart me-

ter. M is the range of values measured. Thus, we model

a time series as a set of (t,m) tuples where t ∈ T is a

timestamp, and m ∈ M is the consumption value mea-

sured. Such a set contains exactly one tuple for each

t ∈ T. Thus, a time series implies a function f : T → M.

For a given T and M, a database DB = {f1, · · · , fn} is

a set of such functions. Each time series f ∈ DB is as-

signed a random identifier, i.e., there is no direct relation

between the time series and the households H that have

produced the time series.

VDB
t refers to the existing values in a data set at t:

m ∈ VDB
t ⇔ ∃f ∈ DB : f(t) = m. Table 1 shows all

symbols used. Our approach can be extended to multi-

dimensional time series, e.g., smart meters measuring

power, water and gas consumption. However, to ease

presentation, we use a one-dimensional numerical range

in this paper, i.e., M = R.

3.2 Adversary model

In our scenario, an adverary has access to the

anonymized database DB′, which is a copy of DB that

has been modified using (n, l, k)-anonymity. Further-

more, the adversary knows a limited number of (t,m)
tuples from a certain household h ∈ H, which he knows

as well (external knowledge K). The objective of the ad-

versary is to learn more tuples from the same household

in order to observe patterns that reveal personal infor-

mation. In the following, we formalize the notions of

external knowledge and of an attack.

Definition 1 (external knowledge K): External knowl-

edge K is a set of tuples (t,m) (with all t pairwise dif-

ferent). �

Intuitively, K contains a limited number of tuples an

adversary knows about a specific household h ∈ H. It

depends on the anonymization scheme if those tuples

match tuples from none, one or multiple time series in

the anonymized database DB′.

Example 2 (External knowledge): Suppose that an

adversary has access to the data illustrated in Figure 2.

His aim is to get additional information on a specific in-

dividual. The adversary only knows the content of the

table. In particular, he does not know the mapping from

random identifiers in DB′ to households H .Without ad-

ditional information, he cannot decide whether time se-

ries a,b or c belong to the household he is interested

in. In the following we call these time series candidates,

and an adversary cannot determine which one belongs

to the household in question. Given the candidates a, b
and c, he is uncertain regarding the consumption values

at 11:00. On the other hand, if he knows that a specific

household consumes 0.7 at 09:00 and 10:00, he can ex-

clude household c. Uncertainty at 11:00 now only is

between a and b. Finally, if an adversary knows the

consumption value of c at 09:00, he learns the one from

10:00 as well. �

In the following, we assume that all tuples in K relate

to the same household. Note that this is the most spe-

cific knowledge an adversary might have. Examples of

less specific knowledge include cases where time series

depend on each other, e.g., if an adversary possesses con-

sumption values from several households and knows that

these households have breakfast and lunch roughly at the

same time. The objective of an adversary is to know at

least l tuples from h in total to observe patterns in the

time series, e.g., to identify breakfast time or the usage

frequency of the microwave oven. We assume that it is

sufficient for the adversary to learn that tuples belong to

a specific household with a probability P > 1/k, i.e.,

exact knowledge is not required. Thus, we specify our

adversary as follows:

Definition 2 (Adversary AK): The adversary AK pos-

sesses n = ‖K‖ tuples (with n < l) from a specific

household h ∈ H, and he has access to the anonymized

database DB′. The adversary wants to assign a set of at

least l − n tuples in addition to those n ones to h with

probability P > 1/k. Formally, the adversary is suc-

cessful if he learns a data set S:

7
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Symbol Description

DB Data set of time series (DB = {f1, · · · , fn} )

DB′ Anonymized data set of time series

H Set of households the smart meter data originates from

K External knowledge

n Anonymization parameter for external knowledge

l Upper bound for information exposure (includes knowledge)

k Anonymity parameter for the size of indistinguishable sets

IKDB(t) Set of indistinguishable time-series at t with external knowledge K
M Set containing possible (power consumption) values, mostly range

(t,m) referred as tuple if a time series f for which f(t) = m applies exists

T Set containing points of time, mostly used as domain of time series

VDB
t Set containing actual (power consumption) values at t

Table 1: List of frequently used abbreviations

∃S ⊆ {(t,m)|f ∈ DB′ : f(t) = m} :

‖S‖ ≥ (l − n) ∧ S ∩K = ∅

And for S it holds that:

∀(t,m) ∈ S : P ((t,m) was generated by h) >
1

k

�

Note that we do not make any assumptions regard-

ing the frequency or the appearance of sensitive patterns.

Thus, we use a set of (t,m) tuples containing timestamps

t and values m as a generalization of a pattern. Accord-

ing to our definition an attack is successful as soon as an

attacker has uncovered a total of l − n tuples different

from the ones already known to him.

3.3 Anonymity in a data set of time series

For (n, l, k)-anonymity, we adapt the principle of k-

anonymity for time series, i.e., we define anonymity as

being indistinguishable amongst k individuals. Thus, we

must prevent a tuple from being assigned to a specific

household with a probability of more than 1/k (cf. Def-

inition 2). External knowledge (see Def. 1) restricts the

set of time series that may belong to the individual. For

example, if K = {(t1, y1), (t2, y2)}, the time series be-

longing to the individual must include both (t1, y1) and

(t2, y2).

Definition 3 (candidate time series for K in data set

DB: CTSDB(K)): A candidate time series f for

a given K is a time series with the following charac-

teristic: For every tuple (t,m) ∈ K, f(t) = m holds.

CTSDB(K) is the set of all candidate time series for K
in a data set DB. �

Suppose that an adversary can constrain the time se-

ries to CTSDB(K). The fewer time series are in this set,

the more delimiting is K. We now determine the degree

of indistinguishability/anonymity at points of time for

which an attacker does not have any external knowledge.

In Figure 3, the callout box points to the (time, data)-

tuple contained in the time series listed. The figure illus-

trates that the set of candidate time series CTSDB(K)
might or might not violate anonymity. In Figures 3a and

3b, the sets of candidates are different. But in both cases,

an individual described by K1 or K2 respectively can-

not be distinguished from 19 others. So the degree of

anonymity is the same. In Figure 3c, the candidates have

different values at the point of time in question. How-

ever, it is still impossible to distinguish the individual

from 19 others. Thus, all three figures are equivalent in

terms of anonymity. Based on this intuition, indistin-

guishability is the size of a set of time series at a specific

point of time.

Definition 4 (Set of indistinguishable time series at

point of time t for data set DB and external knowl-

edge K: IKDB(t)): IKDB(t) includes all candi-

date time series as well as time series with the same

value as a candidate at t. Formally, IKDB(t) =
{f ∈ DB|∃f ′ ∈ CTSDB(K) : f(t) = f ′(t)}. �

The idea behind IKDB(t) is that an adversary has an un-

certainty between all time series assigned to tuples that

also are assigned to a candidate time series. If time series

have the same value at a point of time, one cannot dis-

tinguish them there. The following example illustrates

this:

Example 3 (Indistinguishability example): Suppose an

adversary knows the data set without personal identifiers

from Figure 2b. Furthermore, he knows that the follow-

ing tuple belongs to an individual: K = {(11:00, 0.6)}.

Since only for the time series a a value of 0.6 exists at

8
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(a) CTSDB(K1) = {c1, c2} (b) CTSDB(K2) = {c1, c2, c3} (c) CTSDB(K3) = {c1, c11}

Figure 3: Indistinguishability with different CTSDB(Ki)

11:00, the candidate time series is CTSDB(K) = {a}.

Even if the adversary knows that a is the only possi-

ble pseudo-identifier, the number of indistinguishable

time series at 10:00 and 12:00 is two:
∥

∥IKDB(10:00)
∥

∥ =

‖{a, b}‖ = 2 respectively
∥

∥IKDB(12:00)
∥

∥ = ‖{a, c}‖ =
2. �

The two principles behind that definition are as fol-

lows:

1. Privacy of an individual is better protected if several

tuples may belong to the individual an adversary is

interested in at a point of time.

2. The more time series are assigned to a tuple, the

better the protection of privacy, since the less addi-

tional information is revealed to the adversary.

In the smart meter scenario, this can be illustrated as

follows: Between 2am and 3am, many time series have

the same, low power-consumption value. This value is

relatively ”uninteresting” for an adversary because it is

frequent at this point of time. Indistinguishability, which

is related to the frequency of the value, is a characteristic

of one certain point of time and is independent of other

points. Thus, it is feasible to look at the indistinguisha-

bility of each point of time in isolation.

On the other hand, if the set of indistinguishable time

series is small, one single point of time may reveal infor-

mation to the adversary.

Definition 5 (Inferring point of time t): We say that t
is inferred if the number of indistinguishable time series

at t is below the user-defined k, i.e.,
∥

∥IKDB(t)
∥

∥ < k. �

Depending on the other user-defined parameters n and

l, the adversary may infer certain values without breach-

ing (n, l, k)-anonymity, as follows:

Definition 6 ((n, l, k)-anonymity): Let a data set

DB and a number of n tuples of external knowledge K
be given. DB is (n, l, k)-anonymous if there does not

exist a set S′ of at least l − n points of time t where
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Figure 4: Example for a (2, 3, 6)-anonymous data set

∥

∥IKDB(t)
∥

∥ < k. Therefore, a data set DB is (n, l, k)-
anonymous if the following holds for an arbitrary set

K of n tuples:

∄S′ ⊆ T : ||S′‖ ≥ l − n ∧ ∀t ∈ S′ :
∥

∥IKDB(t)
∥

∥ < k

�

Thus, an adversary AK cannot infer a set of at least

l − n tuples if he has access to the (n, l, k)-anonymous

database DB′ and n tuples of external knowledge K.

This is because the probability that the adversary can as-

sign tuples from DB′ to a household is greater than 1
k

for less than l − n tuples.

Example 4 ((2, 3, 6)-anonymity): Figure 4 shows a

(2, 3, 6)-anonymous data set. For instance, let K =
{(09:00, 10), (10:00, 8)}. Thus, CTSDB(K) = {e, f}.

The number of indistinguishable households at 11:00

is six. This is because both tuples ((11:00, 5) and

(11:00, 10)) are possible. Thus, the probability to assign

the tuples to a specific household is 1
6 . Since it is im-

possible for an adversary AK with external knowledge of

any two tuples to infer a third one, the data set is (2, 3, 6)-
anonymous. �

We will propose techniques for ensuring (n, l, k)-
anonymity in Section 4.

3.4 Data quality in anonymized time series

First of all, we define the function anon(DB,DB′)(f) to

ease our presentation later on.
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Definition 7 (anon(DB,DB′)(f)): Let DB be the

original data set of time series and DB′ the correspond-

ing anonymized version of the data set. The function

anon(DB,DB′)(f) maps the original time series to the

anonymized one. �

Generally speaking, anonymizing a set of time series

means modifying their values, e.g., if f(t) = m is the

non-anonymized value, the value of the modified time

series might be anon(DB,DB′)(f) = m′. Thus, DB′

contains the modified time series anon(DB,DB′)(f) ∈
DB′ for each time series f ∈ DB. In line with other

researchers, we assume that, the larger the difference

between the original values and the anonymized ones,

the more information is lost. For instance, modifying

each time series f ∈ DB to a time series of zeros

(anon(DB,DB′)(f)(t) = 0, ∀t ∈ T) suffices (n, l, k)-
anonymity, but leads to a loss of any information. How-

ever, to keep the utility of the anonymized data, we need

a measure as feedback for the anonymization method

that quantifies the loss of information.

The Euclidean information loss is appropriate to this

end. Intuitively, it is the sum of all differences between

the original and the anonymized time series at each point

of time. However, our approach does not depend on this

particular measure.

Definition 8 (Euclidian information loss): Let DB be

the original data set and DB′ the modified set. The loss

of information at point of time t is: ILt(DB,DB′) =
∑

f∈DB

∣

∣f(t)− anon(DB,DB′)(f)(t)
∣

∣ This means

for the information loss of a complete data set:

IL(DB,DB′) =
∑

∀t∈T
ILt(DB,DB′) �

3.5 Privacy Protection in an (n, l, k)-Ano-
nymous Data-Set

After having explained (n, l, k)-anonymity, in this sec-

tion we describe its impact on the privacy protection of

individuals in more detail. Consider again the threats de-

scribed in Section 2.2. They all have in common that

an adversary needs several values of consumption data

to extract information. For example, detecting the usage

of a specific electrical appliance requires a specific se-

quence of time-value tuples. Suppose that it is necessary

to know s exact power consumption tuples to detect a

given appliance. In an (n, l, k)-anonymous data set with

l − n ≤ s, an adversary can infer at most l − n tuples.

For the remaining s − (l − n) tuples that would be nec-

essary for the detection there is an uncertainty of 1
k

(k
time series are indistinguishable). This also holds for the

re-identification threat and the extraction of information

on personal habits.

The choice of the values of n,l and k is a tradeoff be-

tween data quality and privacy. A better privacy protec-

tion is achieved, the higher the n, the lower l−n and the

higher k.

Usually, it is assumed that an adversary has a small

number of tuples as external knowledge, compared to

the total number of points of time. Although this is a

realistic assumption, it also eases the privacy protection.

To investigate privacy protection in more detail, we dis-

cuss a worst-case scenario assuming unlimited external

knowledge of an adversary in the following.

3.5.1 Worst-Case Scenario

Suppose that an adversary has unlimited external knowl-

edge. In our scenario this means that n = ‖T‖ − 1, thus

l is set to l = ‖T‖. This is an extreme case: First, an

adversary having almost the actual data set as external

knowledge usually does not need to extract any informa-

tion from an anonymized version of the data. Second,

since we have limited the complete knowledge of an ad-

versary in the assumptions to the size of the data set this

is the largest possible set of external knowledge. The ad-

versary achieves complete knowledge inferring the value

of a single point of time. The results are clusters of size

k, since arbitrary external knowledge is possible. This

means that each household is indistinguishable amongst

k − 1 others at each point of time.

The example shows that the indistinguishability re-

quired for privacy protection is independent of the exter-

nal knowledge, and this differs from other approaches.

For example, even in the worst case k = 2 is applica-

ble. For other scenarios where n << ‖T|, the number of

values actually exposed (l − n) is also independent of k.

4 AN APPROACH FOR (n, l, k)-
ANONYMIZATION

In what follows, a cluster Ct is a set of time series such

that all elements of the cluster have the same value at t.
We refer to t as the point of time of cluster Ct.

In this section, we propose heuristics for the compu-

tationally efficient transformation of a set of time series

so that the result is (n, l, k)-anonymous. Our heuristic

is structured according to three observations, which we

will explain subsequently: (1) If an algorithm modifies

the data set for each point of time so that it contains only

clusters of at least k time series, the data set is (n, l, k)-
anonymous already (Lemma 1). (2) In some cases, even

clusters of less than k time series do not allow an adver-

sary to infer values (Example 4). Furthermore, (n, l, k)-
anonymity allows to infer l−n points of time. (3) Build-

ing clusters of less than k time series at one point of time

might influence other clusters at a different point of time

(Example 5).
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To obtain anonymization, our heuristic modifies val-

ues of a set of time series. The modified set of time series

consists of clusters where all members of a cluster have

the same value, the mean of the original values. We use

this as the cluster representative.

It is sufficient that all clusters at all points of time

consist of at least k time series to guarantee (n, l, k)-
anonymity. Lemma 1 acknowledges this by defining a

lower bound on the number of indistinguishable time se-

ries.

Lemma 1: For any point of time t, the set of

indistinguishable time series IKDB(t) contains at least

as many time series as the number of time series as-

signed to any v ∈ VDB
t . Formally, let count(t,m) =

‖{f ∈ DB|f(t) = m}‖ be the number of time series

having value m at t. For f ∈ DB,
∥

∥IKDB(t)
∥

∥ ≥
minf∈DB(count(t, f(t)) holds.

Proof of Lemma 1: Suppose that K gives way to

one candidate time series f . Having only one candi-

date left is the minimal possible uncertainty an adversary

can have. (In contrast, having zero candidates left would

be the maximum uncertainty, since the adversary would

not even know if the individual is in the data set.) To

calculate the indistinguishability at point of time t we

have to count the time series assigned to (t,m), with

f(t) = m. Let kt = minm∈VDB
t

(count(t,m)) be the

minimal number of time series assigned to a value at t.
Thus, the indistinguishability at a specific point of time

will always be greater than or equal to kt, irrespective of

the candidate time series. �

The more time series have to be modified in order

to create a cluster, the more the data set is perturbed.

While creating clusters of at least k time series guaran-

tees (n, l, k)-anonymity, it may also be feasible to cre-

ate smaller clusters and still have (n, l, k)-anonymity, as

seen in Example 4.

(n, l, k)-anonymity does not allow many clusters hav-

ing fewer than k time series. Because the anonymization

at a point of time t1 depends on the anonymization at an-

other point t2 if it is possible to infer point of time t2.

The following example shows that creating clusters with

less than k time series may require to create clusters with

k or more elements at other points of time.

Example 5 (Requiring clusters of k time series): Re-

consider the data in Fig. 4: A cluster consisting of e and

f at 11:00 would break the (2, 3, 6)-anonymity: An ad-

versary knowing (09:00, 10) can infer the cluster {e, f}
at 11:00. �

Generally speaking, in order to (n, l, k)-anonymize a

data set, we have to generate clusters of time series. For

this purpose, we come up with a heuristic consisting of

two stages: Clustering and Splitting. Clustering creates

clusters with size ≥ k for each point of time in isolation.

Splitting generates clusters of size < k, but has to con-

sider that clusters from different points of time depend

on each other. The order of these two stages is not fixed;

in principle it could be either way. However, unless the

(n, l, k)-anonymity parameters allow the adversary to in-

fer large parts of the database, clusters of fewer than k
time series will occur infrequently. Thus, our heuristic

does “divide and conquer” and solves the coarse prob-

lem of computing clusters of k time series first, before

creating clusters with less than k time series by splitting

larger ones.

4.1 Stage 1: Clustering

The objective of this stage is to come up with clusters

of at least k similar time series at each point of time. In

order to identify similar time series, our heuristic clus-

ters the values of all time series for each point of time in

isolation (see. Def. 4). Recall that our approach can be

used for time series of multi-dimensional values. If M
is one-dimensional, other approaches to create clusters

of k time series, e.g., discretization, are feasible and are

simpler than clustering.

For each point of time, this stage starts with a single

cluster consisting of all tuples. We use an approach sim-

ilar to hierarchical divisive clustering [16] to split this

cluster successively into smaller clusters of at least k tu-

ples. In order to limit the loss of information, we split

between the two original values with the highest differ-

ence. 6.1 shows our algorithm in pseudocode. In this

stage, more data may be changed than necessary to ful-

fill (n, l, k)-anonymity, cf. Example 4.

4.2 Stage 2: Splitting

This stage splits the clusters from Stage 1 into clusters

smaller than k. Splitting means dividing a cluster into

two. The stage has to ensure that an adversary knowing

n tuples of a time series cannot infer more than l − n
further data points. Thus, in this stage we consider time

series at different points of time. The goal is to minimize

the Euclidean information loss as a whole.

Intuitively, if a cluster is smaller than k, the number

of inferable values from all time series might exceed the

limit l − n. Thus, if a certain cluster at point of time t
is split, another one at t′ might be prohibited to split in

order to not violate (n, l, k)-anonymity. The following

example illustrates the difficulties of splitting.

Example 6 (Alternative for (2, 3, 6)-anonymity): Re-

consider Example 4: This (2, 3, 6)-anonymous data set

contains two clusters of three time-series at 09:00. If the

same clusters were present at 10:00, the data set would

not be (2, 3, 6)-anonymous anymore. However, Figure 5

11



Open Journal of Information Systems (OJIS), Volume 1, Issue 1, 2014

0

5

10

15

09:00 10:00 11:00

a

b

c 

d 

e

f 

a 

b 

c 

d 

e 

f 

c

d 

f 

a

b 

e 

Figure 5: Alternative splitting example for a (2, 3, 6)-
anonymous data set

shows another (2, 3, 6) anonymous cluster configuration

with two clusters at 10:00 and one single cluster at 09:00.

If the clustering stage creates two clusters with all time-

series at 09:00 and 10:00, the splitting stage can decide

to split the clusters at 09:00 or 10:00 but not both. �

Definition 9 (Splitting of a cluster Ct between f and

f ′): Cluster Ct contains the neighbors f and f ′, with

f(t) > f ′(t) in the original data set. ”Neighbor” means

that there is no time series between f and f ′: ∄h: f(t) >
h(t) > f ′(t). Then, the split between f(t) and f ′(t)
creates clusters Ct

1 and Ct
2. Ct

1 contains f and all time

series g ∈ Ct with g(t) ≥ f(t), while Ct
2 contains all g

with g(t) ≤ f ′(t). Since f and f ′ are neighbors, Ct
1 and

Ct
2 partition Ct. �

In the following, we present two heuristics for this op-

timization problem, MostInformationLoss and Member-

sTimesHeight. Both try to split as many clusters as pos-

sible.

4.2.1 MostInformationLoss (MIL)

The intuition behind MIL is to split clusters in the order

of information loss, starting with the highest. Let DB′

be the data set after Stage 1 has processed the original

database DB. Therefore, DB′ contains only clusters of

at least k time series. MIL computes the information loss

between the original database DB and the anonymized

database DB′ for each cluster Ct at each point of time t.
However, a cluster is split only if the result still satisfies

(n, l, k)-anonymity. 6.2.1 shows MIL in pseudocode.

4.2.2 MembersTimesHeight (MTH)

MTH uses two criteria to determine the order of cluster

splits: The difference between the largest (mCt

max) and

the smallest (mCt

min) value in the original data set of time

series within a cluster Ct, and the number of time series

‖Ct‖ assigned to that cluster. Thus, for each cluster Ct,

MTH computes Score(Ct) = (mCt

max −mCt

min) · ‖C
t‖.

The intuition is as follows: The more time series are as-

signed to a cluster, the more time series will probably be

assigned to the splitted clusters, and the fewer time se-

ries have to be indistinguishable at other points of time.

For instance, reconsider Figure 3c. If one of the clus-

ters was smaller, more time series would have to be in

CTSDB(K3) in order to prevent inference. The more

time series the resulting clusters contain, the more candi-

date sets exist that keep the number of indistinguishable

time series higher than k, giving way to further splits.

This heuristic takes successive the clusters with the high-

est score and tries to perform as much splits as possible

in the single clusters. The larger the distance between

the highest and the lowest value (in the original data set)

of the cluster members, the higher has been the infor-

mation loss in Stage 1. For the multidimensional case,

the difference between the minimum and the maximum

has to be defined slightly differently, e.g., as the sum of

the difference in each dimension. 6.2.2 shows MTH in

pseudocode.

4.2.3 Validation

Splitting clusters of size greater than or equal to k results

in new clusters of size less than k. Thus it may be pos-

sible that values at certain points of time can be inferred.

Before conducting a split, the optimization heuristics

in Stage 2 must validate that the data set is (n, l, k)-
anonymous afterwards (see Algorithms 2 and 3).

A canonical solution would be to inspect all external

knowledge that is possible and to compute what an ad-

versary can infer. If there is no potential external knowl-

edge based on which an attacker can infer at least l − n
tuples, the data set is (n, l, k)-anonymous. However, this

solution is infeasible in practice. This is because for each

individual
(

‖T‖
n

)

possible sets of external knowledge ex-

ist. We approach the problem from the opposite direction

with the so-called fast validation, see Algorithm 5 and

Section 6.3: Only points of time where clusters with less

than k time series exist are inferrable. We can compute

candidate sets of time series an adversary must be able

to single out in order to infer those points of time:

• The candidate set creation considers only points of

time with at least one cluster containing less than k
time series. For such a point of time t candidates

ct are combinations of clusters at t with less than k
time series in total. If the set of indistinguishable

time series is a subset of such a combination, the

point of time t is inferred.

• Candidate sets of different points of time (ct1 and

ct2) are combined by calculating the intersection of

the two sets (ct1∩ct2). If the set of indistinguishable

households is a subset of ct1 ∩ ct2, t1 as well as t2
are inferred.

• Candidates for l − n points of time are created by

intersecting all candidates of l − n different points

of time.
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Figure 6: Example of a validation for a non (2, 3, 6)-
anonymous data set

Algorithm 4 is the candidate creation. Example 7 il-

lustrates this generation for a single point of time.

Example 7 (Candidate time series): Assume that

there are three clusters at t: {a, b} , {c, d} , {e, f}.

For k = 5 there exist three candidates: {a, b, c, d},

{a, b, e, f} , {c, d, e, f} �

In order to test if this is possible we have to inspect

clusters containing time series of these candidates in

DB′ and check if they single out one of these candidates.

The following example illustrates the fast validation.

Example 8 (Example for the fast validation): Assume

that we want to validate if the data set in Figure 6 is

(2, 3, 6)-anonymous. In this case it is not. One candi-

date is the set {e, f} at 10:00. The fast validation algo-

rithm can choose up to two points of time, to find a set

of indistinguishable time series that is a subset of {e, f}.

Choosing the upper cluster at 09:00 already shows that

the data set is not (2, 3, 6) anonymous. �

4.3 Complexity Analysis

To keep the presentation simple, we define the variable

p = ‖DB‖ · ‖T‖, i.e., the product of the number of time

series and the number of points of time.

4.3.1 Clustering

The Clustering Stage (see Algorithm 1) has complexity

O(p2): Adding a time-value tuple to a cluster has con-

stant complexity. Building the initial clusters has com-

plexity O(‖DB| · ‖T‖). In the worst case, for k = 2,

the algorithm has to split the initial clusters at each point

of time
‖DB‖

2 times to result in clusters of two elements.

This leads to the following total complexity:

O(‖DB| · ‖T‖ ·
‖DB‖

2
· ‖T‖) = O(p ·

p

2
) = O(p2)

4.3.2 Validation

The validation if a data-set is (n, l, k)-anonymous is in

the complexity class O(p3).
In the worst case, the validation algorithm has to check

every combination of n tuples for every time-series at ev-

ery point of time ‖DB‖ ·
(

‖T‖
n

)

. This results in a com-

plexity of O(‖DB‖ ·
(

‖T‖
n

)

) = O(p2). Given a com-

bination of n tuples, the complexity for the validation

of a single point of time is the number of clusters, with

O(p) as an upper bound. This results in the overall com-

plexity O(p3). The same complexity also holds for the

algorithm described in 6.3 that reduces the candidate set.

4.3.3 Optimization Heuristics

The complexity of MIL is O(p2 · p3) = O(p5), as well

as the complexity of MTH. Validation (O(p3)) has the

highest complexity of the optimization steps.

MIL (see Algorithm 2) behaves like the clustering in

Stage 1 without the limit of a cluster size and with the

validation of the (n, l, k)-anonymity. This leads to a

complexity of O(p2 · p3). With MTH (see Algorithm 3),

each cluster Ct is split at most ‖Ct‖ times. The upper

bound on the number of splits for all clusters is p. There

are p clusters containing at most one time series. Thus,

the upper bound for the complexity of MTH is O(p2 ·p3).

5 EVALUATION

5.1 Experimental setup

We perform experiments both with real-world data and

synthetic data. Experiments with synthetic data are nec-

essary to investigate dependencies on exogenous param-

eters systematically.

Real-world setup For real-world experiments, 180

households have measured their power consumption ev-

ery hour for two weeks. A metering point reflects the

power consumption in the last 60 minutes. We have

anonymized this data set to become (n, l, k)-anonymous,

with different parameters. In the following we will

present the most interesting results of these experiments.

k = 10 means that any individual is indistinguishable

to nine others, there is only a 10% chance for an attacker

to guess the original time series. The value of n reflects

how hard it is for an attacker to get actual values. l de-

pends on how sensitive a single value is in the specific

scenario. We evaluate a broad range of parameters: n
ranges from n = 3 to n = 10, and l − n varies be-

tween 1 and 12. This is reasonable in terms of privacy: It

means that an attacker has observed the consumption of

a household for 3 to 10 hours, and he is allowed to have

a total of 12 values at most in order to identify sensitive

patterns that might have an impact on the privacy of the

households.

Synthetic setup We generate time series in two differ-

ent ways: randomly and sinus curves (a+ b · sin(x · c))
with randomly chosen and equally distributed values for

a, b, c. For each run, we set the number of households
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to 1000 and the number of points of time to 168 (this

equates to one week of hourly measurements). For split-

ting we have used MTH since it has performed better

in preliminary experiments with the real-world setup.

We report on the evaluation of two scenarios: (1) Ran-

domly generated values in the [10 . . . 30] range. (2) Si-

nus curves, with a ∈ [30 . . . 50], b ∈ [1 . . . 5] and

c ∈ [0.2 . . . 2].

5.2 Quality of anonymized data

5.2.1 Normalized divergence

To study how strongly anonymization changes the data,

we define the normalized divergence as the ratio of the

average value of the data points in the original data set

and the Euclidean information loss for each data point:

NormDiv =

IL(DB,DB′)
|T|·|DB|

∑
t∈T,f∈DB f(t)

|T|·|DB|

=
IL(DB,DB′)
∑

t∈T,f∈DB f(t)
,

where DB is the original and DB′ the anonymized ver-

sion of the database.

A high normalized divergence means a high relative

distance between the anonymized values and the original

ones. Figures 7a and 7b graph the results of the cluster-

ing (Stage 1) and of the splitting (Stage 2). Since dif-

ferent n and l parameters affect only Stage 2, there is

a separate curve for these configurations. Both graphs

show that the resulting normalized divergence of a tuple

is, even for k = 20, between 15% and 18%. Setting k to

20 means that Stage 1 reduces the number of tuples per

point of time from 180 (the number of households/smart

meters) to 180/20 = 9. In other words, the number of

distinct data points is reduced by 95%, and the normal-

ized divergence is only 15 - 18%. If an indistinguishabil-

ity of only k = 10 is required, and the number of distinct

values is reduced by 90%, the divergence will only be

around 10%. Our results on synthetic data in Figure 8a

show an even smaller divergence, implying that compa-

rable results can be achieved even with a higher k and

many more households.

5.2.2 Standard deviation

The absolute difference between the standard deviation

of values of the original data set and of the anonymized

one tells us how strong the influence of the anonymiza-

tion on the distribution of data points of the anonymized

time series is. This is in contrast to the normalized diver-

gence, which only reflects the change of single points.

The standard deviation of a data set DB is as follows:

S(DB) =
√

1
‖T‖·‖DB‖

∑

∀f∈DB,∀t∈T
(f(t)−DB)2,
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Figure 7: Real-world scenario: normalized diver-

gence of a data point

where DB is the mean of all values. Figure 9a and 9b

show the shift of the standard deviation for different pa-

rameter values, it never exceeds 11%. For k = 10, it

is only around 3%. This is rather low if we take into

account that, for k = 10, a reduction of the number of

distinct values in the original data set of 90% is necessary

to create mostly clusters of 10 time series. Again, for the

synthetic scenarios (Figure 8b), the results are similar.

5.2.3 Fraction of diverging points

Figure 10 shows the distribution of the divergence for

different parameter settings. We choose n = 7 and l =
10 as average values of the previous experiments. For

each setting, we have computed the divergence between

each anonymized value and the original value, and we

have categorized them into five classes, ranging from 0−
2% divergence to 30 − 50%. For instance, the figure

shows that approximately 35% of the data points have a

divergence of less than 2 % for (7, 10, 10). Further, for a

higher k, the fraction of points with a higher divergence

increases. However, even for k = 15, more than 60% of

the points have a divergence of less than 20%. Recall that

executing Stage 1 with k = 15 and 180 data points (one

for each household) results into 180
15 = 12 distinct data

points/clusters. In a nutshell, Figure 10 shows that a high

percentage of data points has a low pointwise divergence.
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Figure 8: Synthetic scenario

Even if the number of distinct data points in the var-

ious time series has been reduced very much, the diver-

gence of the data points and the standard deviation are

low. Thus, (n, l, k)-anonymity gives way to high qual-

ity data. The higher the difference between l and n, the

better splitting works.

5.2.4 Comparison of MTH and MIL

Finally, we have evaluated MTH and MIL with (n, l, k)-
anonymity parameters ranging from k = 3 to k = 8,

from n = 3 to 10 and from l − n = 1 to 12. Fig-

ure 11 summarizes our results. For each different k, we

have calculated the average information loss. The fig-

ure shows that on average MTH reduces the information

loss roughly twice as much as MIL. On the other hand,

since MIL splits clusters with the highest information

loss first, it tends to preserve outliers (c.f. 4.2). Thus,

if the anonymized data set will be used for tasks like out-

lier mining, one should choose MIL.

5.3 Computation Time

We have measured the computation time on an AMD

Athlon 64 X2 Dual Core 4800+ Processor with Java

1.6 and heap space of 2GB and on the real-world data

set. Figure 12 features the computation time for Stage 1

Clustering, and Figure 13 contains the run times for

Stage 2. The clustering itself is much faster than the
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Figure 9: Real-world scenario: shift of standard de-

viation

 20

 30

 40

 50

 60

 70

 80

 90

 100

(7,10,10) (7,10,11) (7,10,12) (7,10,13) (7,10,14) (7,10,15)

fr
a

c
ti
o

n
 o

f 
p

o
in

ts
 h

a
v
in

g
 

 d
iv

e
rg

e
n

c
e

parameters

< 2%
< 5%

< 20%
< 30%
< 50%
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gence

optimization because the validation is complex. The

higher the difference between l and n, the more time

takes the optimization: First, the heuristics can split

more clusters the higher l − n is. This is because more

points of time can be inferred without violating (n, l, k)-
anonymity. Second, if more clusters are split, the valida-

tion requires more computation time. This is because a

larger number of candidate sets for inference exists (see

Section 4.2.3). The MTH module is usually faster, since

it results in fewer cluster splits.

Even with large differences between n and l, the total

run time in our setup never has exceeded 12 minutes.

This shows that our proposed method is applicable with

acceptable runtime.
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6 CONCLUSIONS

From one perspective, personal data should be widely

available to facilitate scientific insights. In the smart

grid scenario, this would mean that consumption data of

households should be published. However, the data is

personal and sensitive, and privacy of the individuals has

to be protected.

Time series such as the energy consumption of house-

holds contain patterns of sensitive information. This

means that several values are necessary to extract use-

ful information. A definition of privacy taking those pat-

terns into account has been missing so far. However, an

important objective regarding anonymization is to keep

the data quality as high as possible.

This paper has proposed (n, l, k)-anonymity, allow-

ing a limited number of values to be inferred by an ad-

versary. In addition, we have proposed various heuris-

tics to anonymize time series into a (n, l, k)-anonymous

version. Our evaluation has shown that the quality of

(n, l, k)-anonymized data is high. Our evaluation has

used domain-independent measures, indicating that our

results might be applicable to a broad range of scenarios.
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APPENDICES

6.1 (n, l, k)-Anonymization: Clustering

We use the following data structures: A ClusterSet is

the set of time series belonging to a specific Cluster.

We describe a Cluster as a tuple consisting of a

ClusterSet and the mean value as center of the cluster.

ClusterConfiguration is a set containing all clusters

(represented by a Cluster tuple) of the currently pro-

cessed point of time t.
Listing 1 shows our clustering approach. First, we put

all time series into the same cluster (Line 5). The mean

value of all tuples represents the data point for this clus-

ter (Line 7). Let m1, ...,mn be the sorted metering val-

ues of the original time series at point of time t. The

17
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order implies that mi is the neighbor of mi−1 and mi+1

(if existent) at t (Line 12). Regarding the loss of infor-

mation, a good split would be between the two metering

values with the highest distance and result in two clusters

with more than k members (Line 12-24). A split leads to

two new clusters represented by the mean value of the

original data points.

6.2 Optimization Heuristics

6.2.1 MostInformationLoss (MIL)

Algorithm 2 contains the pseudo code of MIL. First,

MIL computes the information loss between the origi-

nal database DB and the anonymized database DB′ for

each cluster Ct at each point of time t (sort function in

Line 6). MIL then iterates over each point of time, start-

ing with the highest information loss (Line 8). For each

point of time, it tries to split the clusters that incur the

highest information loss (Line 11 - 18). Since the result-

ing clusters are smaller than k, this is not always pos-

sible. Thus, before a cluster is split into f(t) and f ′(t),
function isNlkAnonymous(DB′, t, f, f ′) checks if the

resulting database of times series DB′ still satisfies

(n, l, k)-anonymity (Line 14).

6.2.2 MembersTimesHeight (MTH)

In contrast to the MIL algorithm, the MTH heuristic or-

ders all clusters (regardless of their point of time) instead

of iterating over the points of time and processing the

clusters in that order. Thus, there are only two nested

loops in the MTH algorithm on algorithm 3 in Line 6

and 8. The check if the split does not violate the (n, l, k)-
anonymity remains the same (Line 9).

6.3 Validation Algorithm

Algorithm 5 contains pseudo code of the fast valida-

tion algorithm. It returns true if the data set is (n, l, k)-
anonymous and false otherwise. First of all, it requires

the building of candidate sets in Line 11. As we have

explained in Section 4.2.3, we build a candidate set from

points of time with combinations of clusters smaller than

k and from their intersections with other points of time.

Algorithm 4 is an implementation of this step.

After the creation of the candidates, the algorithm tries

to build a set of indistinguishable households (that are a

subset of one candidate) with at most n points of time

as external knowledge. If this is possible, exactly l − n
points of time are inferred. In order to build such exter-

nal knowledge, the algorithm takes a cluster as a starting

point of possible time series (Line 17) and searches for

other points of time that reduce this set (Line 23). If the

algorithm finds external knowledge with at most n points

of time that is a subset of a candidate set, it returns false

since this violates the (n, l, k)-anonymity property.

18



Stephan Kessler et al.: Pattern-sensitive Time-series Anonymization and its Application to Energy-Consumption Data

Algorithm 1: Top Down Clustering

1 DB : O r i g i n a l d a t a s e t

DB′ = DB : Mod i f i ed d a t a s e t , i n i t i a l i z e d wi th copy

3

f o r each t ∈ T{ / / Cluster point of time t
5 C l u s t e r S e t C =

⋃

f∈DB
{f}

/ / Define Cluster as tuple: (representing Value, set of time series)

7 C l u s t e r c = ( c a l c C e n t e r (C , t ) , C)

C l u s t e r C o n f i g u r a t i o n CF = {c}
9 / / f and g are neighbors if no point is between (t, f(t)) and (t, g(t))

L i s t ln = L i s t o f n e i g h b o r s (f, g)
11

f o r a l l ( (f, f ′) ∈ ln i n a s c o r d e r o f d i s t . be tween n e i g h b o r s ) {
13 i f c l u s t e r i n c l u d i n g f, f ′ e x i s t s {

C l u s t e r S e t C1 = {f}
15 C l u s t e r S e t C2 = {f ′}

add a l l g ∈ C t o C1 or C2 depend ing on g(t)
17

i f ( |C1| ≥ k and |C2| ≥ k ) {
19 CF = CF\ ( c e n t e r , C)

CF = CF ∪(calcCenter(C1, t), C1)
21 CF = CF ∪(calcCenter(C2, t), C2)

}
23 }

}}
25

/ / Helper function: Calcs the average value of a set of time series at t
27 f l o a t c a l c C e n t e r ( S e t o f t ime s e r i e s F , p o i n t o f t ime t )

re turn

∑
∀f∈F f(t)

‖F‖

Algorithm 2: MostInformationLoss

DB : O r i g i n a l d a t a s e t

2 DB′ : Data s e t a f t e r c l u s t e r i n g i n s t a g e 1

sort(S, desc/asc, f) : r e t u r n s a s o r t e d l i s t o f e l e m e n t s i n s e t S , s o r t e d d e s c e n d i n g /

a s c e n d i n g by t h e e x p r e s s i o n f
4 getClusterConfig(DB, t) : r e t u r n s a s e t o f c l u s t e r s ( r e p r e s e n t e d as a s e t o f t ime s e r i e s )

a t p o i n t o f t ime t

6 Tsorted = sort(T,desc , ILt(DB,DB′)

8 f o r e a c h (d ∈ Tsorted ) {
L i s t lneighbors = [(f, t), (f ′, t)), ...] , f, f ′ a r e n e i g h b o r s i n DB

10

f o r e a c h ( c ∈ s o r t ( g e t C l u s t e r C o n f i g (DB’ , t ) , desc , ILc
t(DB,DB′) ) ) {

12 L i s t lneighbors = [((f, t), (f ′, t)), ...] , f, f ′ ∈ c n e i g h b o r s i n DB

f o r e a c h ( ((f, t), (f ′, t)) ∈ s o r t ( lneighbors , desc , |f(d), f ′(d)| ) ) {
14 i f ( isNlkAnonymous (DB’ , d , f , f ’ , (n,l,k) ) ) {

s p l i t (DB’ , d , f , f ’ )

16 }
}

18 } } }
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Algorithm 3: MembersTimesHeight

DB : O r i g i n a l d a t a s e t

2 DB′ : Data s e t a f t e r c l u s t e r i n g i n s t a g e 1

sort(S, desc/asc, f) : r e t u r n s a s o r t e d l i s t o f e l e m e n t s i n s e t S , s o r t e d d e s c e n d i n g /

a s c e n d i n g by t h e e x p r e s s i o n f
4 getClusterConfig(DB) : R e t u r n s a m u l t i s e t o f a l l c l u s t e r s o f t h e d a t a s e t

6 f o r e a c h ( c ∈ s o r t ( g e t C l u s t e r C o n f i g (DB’ ) , desc , Score(c) ) {
L i s t lneighbors = [((f, t), (f ′, t)), ...] , f, f ′ ∈ c n e i g h b o r s i n DB

8 f o r e a c h ( ((f, t), (f ′, t)) ∈ s o r t ( lneighbors , desc , |f(t)− f ′(t)| ) ) {
i f ( isNlkAnonymous (DB’ , t , f , f ’ , (n,l,k) ) ) {

10 s p l i t (DB’ , t , f , f ’ )

}
12 } }

}

Algorithm 4: calculateCandidateSets(): Creation of candidate sets for the fast validation

1 DB : Data s e t

(n,l,k) : P r i v a c y p a r a m e t e r s

3

/ / set containing set of candidates of single points of time

5 clusterCandidates = {} ;

7 f o r e a c h ( t ∈ T ) {
f o r e a c h ( Combina t ion o f c l u s t e r s a t t Ci

t wi th
∑

∣

∣Ci
t

∣

∣ ≤ k ) {
9 CC =

{
⋃

∀i C
i
t

}

clusterCandidates = clusterCandidates ∪ CC ;

11 }
}

13

candidates = {} ;

15 f o r e a c h ( Combina t ion o f l − n Ct ∈ clusterCandidates wi th d i f f e r e n t t ) {
candidate =

{

Ct1 ∩ . . . ∩ Ct(l−n)

}

;

17 candidates = candidates ∪ candidate ;

}
19

re turn candidates ;
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Algorithm 5: isNlkAnonymous(): Algorithm for the (fast) validation

1 DB′ : Data s e t r e q u i r i n g v a l i d a t i o n

(n,l,k) : P r i v a c y p a r a m e t e r s

3 t, f, f ′ : P o i n t o f t ime and t ime s e r i e s , t h a t d e f i n e t h e p o s s i b l e s p l i t

5 / / copy and split in order to test if DB is still (n,l,k)-anonymous

DB = copy (DB’ ) ;

7 DB = s p l i t (DB, t , f , f ’ ) ;

9 f o r each f ∈ DB{ / / take every time-series of DB

/ / creates candidate sets that infer l − n points of time

11 C a n d i d a t e S e t s candidateSets = calculateCandidateSets(DB,n, l, k) ;

13 f o r e a c h ( t ∈ T ) {
C l u s t e r Ct

f = C l u s t e r a t t c o n t a i n i n g f ;

15 f o r e a c h ( C a n d i d a t e S e t s ∈ candidateSets ) {
/ / pTS is the current knowledge of possible time series of an adversary

17 S e t pTS = Ct
f ;

/ / try to break the candidate set s
19 S e t diff = pTS\s ;

21 K = {t} ;

whi le (‖K‖ ≤ n ) {
23 f o r e a c h ( t2 ∈ T\t ) {

i f ∃ C l u s t e r Ct2 c o n t a i n i n g an e l e m e n t o f diff and e x c l u d i n g ( a t l e a s t )

one o f pTS{
25 / / add it to the knowledge

K = K ∪ {t2} ;

27 / / reduce the possible time series

pTS = pTS\Ct2 ;

29 }
/ / is the candidate set already singled out

31 i f (pTS ⊆ s ) {
/ / not valid

33 re turn f a l s e ;

}
35 }

}
37 }

}
39 }

/ / valid

41 re turn t ru e ;
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