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Pattern Spectrum and Multiscale Shape 
Representation 

PETROS MARAGOS, MEMBER, IEEE 

Abstract-This paper reports the results of a study of multiscale 

shape description, smoothing and representation. Multiscale nonlinear 

smoothing filters are first developed by using morphological openings 

and closings. These filters smooth signals while preserving their edges, 

and use a definition of scale that agrees with the spatial size of image 

objects. Matheron used openings and closings to obtain probabilistic 

size distributions of Euclidean-space sets (continuous binary images). 
We view these distributions as a concept of pattern spectrum (a shape- 

size descriptor). Then we develop a pattern spectrum for continuous 

graytone images and arbitrary multilevel signals, as well as for discrete 

images by using a discrete-size family of patterns. The pattern spec- 

trum quantifies various aspects of the shape-size content of a signal. 

Large impulses in the pattern spectrum at a certain scale indicate the 

existence of major (protruding or intruding) substructures of the sig- 

nal at that scale. An entropy-like shape-size complexity measure is also 
developed based on the pattern spectrum. For shape representation, a 

reduced morphological skeleton transform is introduced for discrete 

binary and graytone images. This transform is a sequence of skeleton 

components (sparse images) which represent the original shape at var- 

ious scales. It is shown that the partially reconstructed images from 

the inverse transform on subsequences of skeleton components are the 

openings of the image at a scale determined by the number of elimi- 

nated components: in addition, two-way correspondences are estab- 

lished among the degree of shape smoothing via multiscale openings or 

closings, the pattern spectrum zero values, and the elimination or 

nonexistence of skeleton components at certain scales. All the above 

results provide useful tools for multiscale shape representation and de- 
scription. 

Index Terms-Mathematical morphology, multiscale image analysis, 

nonlinear smoothing, shape description, shape representation, skele- 

tonization. 

I. INTRODUCTION 

T HE problem of shape representation and shape-size 
description is very important in computer vision and 

image processing. Toward this goal, this paper develops 
a shape-size descriptor, called pattern spectrum, which 
can detect critical scales in an image object and quantify 
various aspects of its shape-size content, as well as a re- 
lated multiscale shape representation scheme based on 
skeleton transforms. The unifying theme in both of these 
areas is the repeated use of families of multiscale nonlin- 
ear smoothing filters. Next, we provide a qualitative dis- 
cussion of the ideas presented in this paper. 
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By shape is meant any image conveying information 
about intensity or range, or any other finite-extent signal 
whose graph is viewed as an image object conveying some 
pictorial information. By scale we define here the smallest 
size of a shape pattern (generated by a prototype pattern 
of unit size) that can fit inside the image. Recently, the 
necessity of multiscale’ image analysis has been recog- 
nized in various tasks of computer vision [l]-[4]. Scale 
in all these approaches has been quantified by linearly 
convolving the image with a Gaussian function of stan- 
dard deviation u or with local weighted averagers of spa- 
tial span u L 0; the real number (J is the scale parameter. 
This linear filtering approach to multiscale image analysis 
has gained popularity because of its mathematical tract- 
ability, its close relationships with Fourier analysis, and 
its plausibility for being used at the early stages of the 
human visual system. However, we also see three rather 
weak points: 1) linear filters shift and blur important im- 
age features such as edges, 2) their implied scale param- 
eter (average width of their impulse response) is not di- 
rectly related to our aforementioned size-based definition 
of scale, and 3) the multiscale filtered versions of the sig- 
nal do not correspond to a compact shape representation, 
except for the obvious one, that is, the difference signals 
between filtered versions at successive scales. Altema- 
tively, there is a large class of nonlinear filters that avoid 
some or all of the three aforementioned problems. They 
include median filters and opening/closing filters [6]-[ 121. 

Matheron 161, [47] used openings of sets in Euclidean 
spaces by compact convex sets of varying size (scale) to 
axiomatize the concept of size. Openings of ID bounda- 
ries of continuous binary images by disks of varying ra- 
dius (scale) were used in [ 151 to obtain results for scale- 
space zero-crossing maps similar to [2], [3]. A multire- 
solution approach based on openings/closings was also 
developed in [ 161. Both median and opening/closing fil- 
ters can be defined based on a scale parameter and provide 
signal smoothing by eliminating impulses (whose spatial 
width is smaller than the filter’s scale) while preserving 
its edges. In this paper, we deal only with openings/clos- 
ings, because they are directly related [12] to a well- 
known shape representation, i.e., the medial axis trans- 
form (MAT), and we will use them to develop a shape- 
size descriptor, the pattern spectrum, explained next. 

‘Thls paper does ~wf deal with r,ru/rirr.\o/rr/iorl Image analysis. which 
involves both multiscale image filterin s and wbsampling the image at 
coarser xalcs: multiresolution approaches can be found in 151. 
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A measure of the spectral content of a signal s(t) in a 
certain frequency w can be obtained from multiplying s(t) 
with the complex sinusoid ePiw’ and measuring the area 
under the modulated signal s(t) e-‘W’. By varying the fre- 
quency w a frequency spectrum of the signal is obtained, 
which is the well known Fourier transform. From an ab- 
stract viewpoint, we can view eP“‘I as a probing pattern 
that interacts with the original signal s(t) and extracts 
some information (spectral content) from it by trans- 
forming it first via modulation and then by performing a 
measurement on the transformed signal. The probing pat- 

. 
tern e --I&’ is a signal depending on a single frequency pa- 
rameter w, and its own Fourier spectrum is an impulse at 
frequency w. Despite the monumental significance and 
usefulness of the Fourier spectrum in the evolution of sig- 
nal and image processing, it has little to offer in quanti- 
fying the shape and size content of signals (such as im- 
ages) possessing geometrical structure. However, the 
aforementioned abstract concepts that are implicitly used 
to obtain the Fourier spectrum are of general importance, 
and we use them in this paper to develop a pattern spec- 
trum for images and signals, reporting earlier work in 
[ 12]-[ 141 on this subject. To give the reader an intuitive 
feeling of these ideas, we outline our approach for binary 
images. Thus we replace the function representing the 
signal s(t) with a 2D set X representing a binary image; 
the complex sinusoid with a compact 2D set B,, depending 
on a size (scale) parameter n; the signal modulation with 
a shape-size transformation of X. Then we use the area of 
the transformed image to obtain a pattern spectrum of X 
that measures the size distribution in X relative to the 
shape of B,. The shape-size transformations of X by B, 
are morphological openings. Such openings of continu- 
ous-space sets (binary images) by one-parameter families 
of compact convex sets were developed by Matheron [6], 
[47] (who called them granulometries) to unify all sizing 
(sieving) set operations in Euclidean spaces; Lebesgue 
measures of the openings were then used to define prob- 
abilistic size distributions that form part of his theory for 
random sets. As described in [7, ch. lo], Serra and his 
co-workers have used extensively these size distributions 
in image analysis applications to petrogrography and bi- 
ology. In this paper we view these size distributions via 
the concept of a pattern spectrum. We also extend the size 
distributions and pattern spectrum to continuous-space 
graytone images and arbitrary multilevel signals, as well 
as to discrete-space binary and graytone images by intro- 
ducing a discrete-size family of patterns. All the afore- 
mentioned ideas are then related to the MAT. 

The MAT, also called the skeleton transform or the 
symmetric axis transform, since its first introduction by 
Blum [ 171, [ 181 has received much attention for 2D or 3D 
shape description [ 191, [20]. It is one of the major infor- 
mation preserving algorithms for shape analysis [2 11 and 
is closely related to the smoothed local symmetries [22] 
or to other axial shape representations [23]. The MAT is 
the set of the centers of the maximal disks (spheres) in- 
scribable inside the 2D (3D) image object. It can be found 
via a well-known wavefront propagation. This propaga- 

tion can be modeled either via the distance transform ap- 
proach [24]-1251, or via iterated shrink/expand operations 
for binary images [26] which become minlmax operations 
for graytone images [27]-[29]. Such shrink/expand image 
operations and other related Boolean-type signal convo- 
lutions [30], (311 have been used extensively in cellular 
array computers for image processing. All shrink/expand 
and min/max image operations can be formalized and fur- 
ther extended by a large class of nonlinear filters called 
morphological jilters [6]-[ 121, which include the erosion 
(shrink), dilation (expand), opening (cascade of shrink- 
expand), and closing (cascade of expand-shrink). In [ 121, 
[lo], [ 1 I] a unified theory has been developed which 
shows that a large class of nonlinear and linear image pro- 
cessing systems can be represented as a minimal super- 
position of erosions or dilations. Consequently, among 
the numerous approaches to find the MAT,’ it can also be 
obtained via erosions and openings [33], [7], [34]; we 
refer to this last approach as the morphological skeleton 
transform. The morphological approach to skeletoniza- 
tion is formal, avoids ad hoc algorithms, and has some 
other advantages [34]. In this paper, we modify the mor- 
phological skeleton transform to develop a reduced skel- 
eton rransform (RST). By “reduced” is meant that some 
(but not all) redundancy is taken out of the skeleton while 
preserving its ability for exact image reconstruction. The 
RST is a collection of skeleton components (sparse im- 
ages) that represent the original shape at various scales. 
In general, by eliminating components (bones) of the 
original or reduced skeleton transform, we reconstruct 
(from the pruned skeleton) smoother versions of the orig- 
inal shape; these smoother versions are its openings at 
successive scales. Thus, we achieve a multiscale shape 
representation which is in a one-to-one correspondence 
with a multiscale nonlinear shape smoothing. The reason 
for using reduced skeleton components is because of their 
direct relation to the pattern spectrum. That is, we show 
in this paper that eliminating any reduced skeleton com- 
ponent is equivalent to zeroing the value of the pattern 
spectrum at the corresponding scale. 

This paper is organized as follows. In Section II, we 
develop multiscale nonlinear smoothing filters (openings 
and closings) that depend on a structuring pattern and on 
a scale parameter. For continuous-space binary signals, 
the scale is based on a concept of size quantified via pos- 
itive homothetics; for multilevel signals we generalize this 
by using set-theoretic representations of signals. For dis- 
crete-space signals we introduce a definition of scale based 
on dilations. By using the continuous multiscale filters of 
Section II, Section III defines the pattern spectrum for 
continuous-space binary images and extends it to gray- 
tone images or arbitrary signals. The discrete multiscale 
filters of Section II are used in Section IV to develop a 
pattern spectrum for discrete-space images. Section V de- 

‘There is a voluminous literature on skeletonization algorithms, most of 
which can be defined via shrink/expand operations. Many of these algo- 
rithms. e.g.. 1321. emphasize the c~nrwc-ti~~ir~ of the skeleton, which is of 
no concern to us in this paper. 



MARAGOS. PATTERN SPECTRUM AND MULTISCALE SHAPE REPRESENTATION 703 

fines an oriented pattern spectrum, which is able to ex- 
tract information about 1D structures located in 2D space. 
In Section VI, an “entropy-like” shape-size complexity 
measure is introduced based on the pattern spectrum. The 
multiscale shape representation based on RST is devel- 
oped in Section VII for binary images and in Section VIII 
for graytone images; these sections also relate the RST to 
the pattern spectrum and the multiscale nonlinear smooth- 
ing. In Section IX, we conclude and outline some possible 
applications of the pattern spectrum and the RST. 

II. MULTISCALE NONLINEAR SMOOTHING 

A. A Dejinition of Size (Scale) 

1) Continuous Size: Let R and 2 denote, respectively, 
the set of real numbers and integers. Let B be a compact 
connected subset of the plane R2; we call such B a con- 
tinuous-space binary pattern. If B has size (by conven- 
tion) one, then the set 

rB = {rb: bEB}, r 1 0, (1) 

defines a pattern of continuous size r where r is any non- 
negative real number. The pattern rB has the same shape 
as B. 

Let g (x, v) be a 2D real-valued function whose support 
is a compact connected subset of R’. Its umbra [8] is the 
set 

U(g) = {(x, y, a) E R’: g(x, y) 2 a}. (2) 

From U( g) we can reconstruct g since 

g(x. y) = sup {a E R: (x, y, a) E U(g)). (3) 

If we view g as a graytone pattern of size one, then we 
define as a pattern of continuous size r > 0 the function 

(rg)(x. y) = sup { aER:(dr,y,a)ErU(g)} (4) 

where rU( g) is obtained from (1). That is, U( rg) = 
rV( g). The function rg has the same shape as g, but both 
its support and range will be scaled by a factor r. 

2) Discrete Size: Both (1) and (4) are not useful for 
defining the size of discrete patterns. For example, Fig. 
1 shows that, if B is a 2D discrete square of size one, then 
the definition 28 via (1) gives not a square of size 2 but 
the comer points of such a square. This led us to give an 
alternative definition of discrete size based on set dilation. 
If X. Y are subsets of R”’ or Z”‘, the dilation (also known 
as Minkowski sum [35]) of X and Y is the set 

X@Y=(~+~:~EX,~EY)=UX+~ (5) 
PEY 

where X + p = {a + p: a E X } denotes the translate of 
X by the vectorp. (Note that, if a = (a,, aI), b = (b,, 

62) E R’ and r E R, we use the notation a + b = (a, f 
b,. a, k 6,) and rb = (rb,, rb2).) Let B be a discrete- 
space binary pattern, that is, a finite connected subset of 
the discrete plane Z’. If B is of size (by convention) one, 
then the finite sets 

nB = B 0 B 0 . . . 0 B 
L (6) 

II times 

define a family of binary patterns generated by B and pa- 
rameterized by the discrete size parameter n = 0, 1, 2, 
. . . . If n = 0, nB = { (0, 0) } by convention. Note that 

nB 0 mB = (n + m) B for any set B and for any non- 
negative integers m, n. If B is convex, then nB is shaped 
like B but has size n, as Fig. 1 shows. The shape of nB 
is controlled by the shape of the primary pattern B, 
whereas y1 controls the size. This concept of discrete 
shape-size family of patterns was used in [ 121, [34] for 
morphological skeletonization. 

Similarly, let g (x, y) be a discrete-space graytone pat- 
tern, that is, a real-valued function whose support is a 
finite connected subset of Z’, of size one. If 

(f@ g)(x, Y) = max (,,,i {fb - i,Y -j> + gw) 

(7) 

denotes the dilation [8] of some function f and g, the func- 
tion 

defines a function pattern of discrete size n = 0, 1, 2, 
. . . . Note that our definition of size in (l), (4), (6), and 
(8) is independent of the area of the size-one pattern B or 

g. 
The definitions (1) and (6) of continuous and discrete 

size are compatible when B c R2 is convex [6] because 
then 2B = { 2b: b E B } = B 0 B. Hence, the set dilation 
can provide us with a discrete-size family of convex pat- 
terns B, which are identical to those obtained via the pos- 
itive homothetics rB of (1) for r evaluated at integer val- 
ues. Similar ideas apply for a continuous graytone pattern 
g whose umbra is convex because then the definitions (4) 
and (8) are compatible for integer r. Examples of patterns 
nB and ng are shown in Fig. 2. 

B. Filters for Binary Images 

For sets X, Yin R” or Z”, the opening [35], [6] of X 
by Y is the set X 0 Y = (X 0 Y) 0 Y, where 

XOY={a:Y+aGX}=UX-p (9) 
PEY 

is the erosion [35], [7] of Y from X. The set X l Y = (X 

0 Y) 0 Y is called3 the closing [6] of X by Y. 
We henceforth denote a discrete-space binary image by 

asetXinZ2; the set complement X“ denotes the image 
background. Let B C Z2 be a fixed pattern. (In the con- 
text of morphology B is called a set structuring element 
[7]. ) We define as a multiscale opening of X by B at scale 

‘In the recent literature on morphology, there are mainly two slightly 
different sets of definitions: one of [6], [7], and another of [8], [9]. Mar- 
agos and Schafer used in [lo]-[14] and [34], [36] the definitions from 
Matheron and Serra. In this paper, we follow the definitions of Stemberg, 
Haralick et al. because they are simpler. Our only difference is to use the 
group-theoretic notation S + x for set translation. Note also that Hadwiger 
[35] originally called Minkowski sum and difference what we call here 
dilation and erosion. 
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Fig. 1. TWO definitions of discrete size. (Pixels with a l denote points in 
the image (set) X; empty pixels are points m the complement X’ ) 

SET DILATION nB = B @B@ “’ OB 

FUNCTION DILATION ng=gOgO., Og 

ILLA 
Fig. 2. Discrete-size families of binary and graytone patterns 

n = 0, 1, 2, * * * , theopening 

X0 nB = (X 0 nB) 0 nB (10) 

of X by nB. A dual (with respect to complementation) 
multiscale filter is the closing of X by nB: 

XanB = (X0 nB) 0 nB = (X”ot&)(’ (11) 

where B = { -b: b E B } is the r&cted (symmetric) set 
of B. If n = 0, then X 0 nB = X l nB = X. For any sets 

A, B, C, (A 0 B) 0 C = A 0 (B 0 C) and (A 0 B) 
0 C = A 0 (B 0 C); hence, (10) can be implemented 
more efficiently as 

X 2 nB = [(X G B) 0 B . . . 8 B] 
L J v 

II t,me\ 

Likewise for X l nB. The implementation (12) has linear 
complexity with respect to the number of points in B, 
whereas (10) has quudraric complexity [34]. If B has a 
regular shape, then X 0 nB and X l nB provide multiscale 
nonlinear smoothing of the boundary of X, but they are 
region-based image operations. Fig. 3 shows the multi- 
scale opening and closing of a binary image X by a pattern 
B, which is the octagon of Fig. 4. The opening suppresses 
the sharp capes and cuts the narrow (relative to nB) isth- 

(8) (0 (e) (a) (b) Cc) (d) 

Fig. 3. Multiscale SP opemngs and closings. (a) Discrete binary image X 
of 85 x 128 pixels. (b) X $ nB. n = I, 2, 3 (top to bottom) where B is 
the octagon of Fig. 4. (c) X 2 nB, n = 4, 5, 6 (top to bottom). (d) X c 
nB. II = 7, 8. 9 (top to bottom). (e) X l nB. )I = 1. 2. 3 (too to bottom). 
(f) X l nB, n = 4.‘5, 6 (top to bottom). (g) X l nB, n = 7: 8, 9 (top to 
bottom). 

S? 

OCTAGON 

m 

R&%&h 
LSE 

Fig. 4. Binary patterns in 2’. 

muses of X. The closing X l tzB provides a multi-scale 
nonlinear smoothing of the background of X. That is, the 
closing fills in the gulfs and the small (relative to nB) 
holes of X. 

From (lo), (5) and (9) it follows that 

X 0 nB = u (nB) + ,7. (13) 
Ill3 +; G x 

Hence, X 0 nB eliminates from X all objects of size < n 
(with respect to B), that is, objects inside which nB can- 
not fit. That is why, we use the size n of nB as synony- 
mous to the scale at which the filter X 0 nB operates. 

C. Filters for Graytone Images 

Following the terminology of [lo], we call (10) and 
(11) ser-processing (SP) opening/closing because both 
their inputs and outputs are sets (binary images). Simi- 
larly, we henceforth represent graFtone images by ,func- 
tions; filters whose inputs and outputs are functions (mul- 
tilevel signals) are called~fitnction-processing (FP) filters. 
Letf(x, x) be a finite-support graytone image function on 
Z’, and let <q (.u, .v) be a fixed graytone pattern of size one. 
(In the context of morphology. R is called a function 
structuring element [7]. ) The erosion [S] off by <q is the 
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may also be smaller than the dimensionality of the signal 
X 0r.f. 

III. PATTERN SPECTRUM OF CONTINUOUS-SPACE 

IMAGES 

Consider a compact binary image X G R2 and disks rD 
of radius r. The area of the opening of X by each disk 
rD, normalized by the area A( X ) of X, creates the 
monotonic decreasing function F(r) = A( X 0 
rD)/A(X), r I 0, which is continuous from the left. In 
[6], [7] the function 1 - F(r) was related to probabilistic 
measures of the size distribution in X, either itself as a 
cumulative distribution function, or its derivative as a 
probability density function. It was also extended to neg- 
ative values of r by considering the closings of X by rD. 
The disk D can be replaced by any compact convex set in 
R'. Discrete versions were used in [7, pp. 336-3441 for 
hexagonally-sampled images by replacing the disks with 
discrete hexagons. In this section we view these size dis- 
tributions as a concept of a pattern spectrum for continu- 
ous-space binary images. Then we extend them by for- 
mally defining a pattern spectrum for continuous-space 
graytone images and arbitrary multilevel signals. 

A. Binary Images 

We define the pattern spectrum of a compact binary im- 
age X C R2 relative to a convex binary pattern B G R2 
as the (differential size distribution) function 

-dA(X 0 rB) 
PSx(r, B) = dr ’ r 2 0. (22) 

The size parameter r defines the scale. The rationale be- 
hind our term “pattern spectrum” is the fact that [see also 

(13)] the opening X 0 rB is the union of all rB + z with 
rB + z C X, that is, of all the patterns shaped like B of 
size r (located at points Z) that can fit inside X. Thus, 
A (X 0 rB ) is a measure of the pattern content of X relative 
to the pattern rB. By varying both r and the shape of B 
we obtain a shape-size spectrum of X, which is the full 
pattern spectrum of X relative to all the patterns that can 
fit inside X. By keeping B fixed, (22) becomes a size his- 
togram of X relative to B. If any of X or B is fixed, we 
will suppress it from the general notation of (22). By using 

closings, (22) can be extended to “negative” sizes r, i.e., 

PSx( -r, B) = 
dA(X l rB) 

dr , r > 0. (23) 

Convexity of B guarantees nonnegativity of the pattern 
spectrum for all r E R because X 0 rB 2 X 0 sB if r < s 

[61. 
Since X is compact, there is a maximum positive size p 

such that X 0 rB = 0 for all r > p. Thus, the pattern 
spectrum will contain at least one Dirac impulse (at r = 
p). In addition, if CH( X) denotes the convex hull of X, 
that is, the smallest convex set containing X, then X l rB 
G X* sB G CH(X) for all s > r I 0 [6, p. 211. Hence, 
there is a size c > 0 such that X l cB = e = lim,,, X 
l rB. Obviously, e G CH(X) and PS( -r) = 0 for all 

FOURIER SPECTRUM PATTERN SPECTRUM 

t 
3- {e’“‘} 

Fig. 7. Conceptual analogies between Fourier spectrum and pattern spec- 
trum. 

A 

V 

Fig. 8. Pattern spectra of binary images relative to a disk. (The hand- 
drawings are only qualitative. and some examples are adapted from Serra 
17, p. 3371.) 

r > c. If B has a nonempty interior and admits a finite 

curvature at each point of its boundary (e.g., if B is a 
disk), then e = CH(X) [6], [7, p. 1001. Fig. 7 shows 
PS,( r) (B is a disk) for X being a disk, circle, and a disk 
with a hole; their pattern spectra are reminiscent of Fou- 
rier transforms of e lwof, ePiw”‘, and cos wet, respectively. 
Additional examples of pattern spectra are shown in Fig. 
8; there we see that reconstruction of an image from the 
pattern spectrum may not be generally possible because 
there may exist two different images with similar pattern 
spectra. 

The pattern spectrum conveys four (among others) use- 
ful types of information about X. First, the boundary 
roughness of X relative to B manifests itself as contribu- 
tions in the lower size part of the pattern spectrum. Sec- 
ond, the existence of long capes or bulky protruding parts 
in X that consist of patterns sB shows up as isolated im- 
pulses in the pattern spectrum around positive r = s. 
Third, the B-shapiness of X, that is, the maximal degree 
that X contains the pattern B (or that X contains 
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function 

(f0 g)(x. y) = min { f(x + i. y + j) - g(i, j)}. 
(i.j) 

( 14) 

Then the opening and closing [8] off by g are, respec- 

tively, the functions f 0 g = ( f 0 g ) 0 g and f l g = 

( f 0 g) 0 g. To implement (7) and (14) we assume that 
f and g are equal to - 03 outside their supports where Spt 
Cf) = (x:f(x) # -w> d enotes the support off. Thus, 
essentially, these max-of-sums and min-of-differences 
operations take place only over the moving finite support 
of g. A more detailed discussion of the definitions and 
properties of graytone image erosions, dilations, open- 
ings, and closings can be found in [7]-[12]. 

We define the function 

f c ng = (f0 ng) 8 rig (15) 

as the multiscale FP opening of ,f by g at scale n = 0, 1, 
2, * . . . Likewise, the function 

fa ng = (f0 t7g) 0 ng (16) 

is the multiscale FP closing off by g. As in (12), we can 
implement (15) more efficiently as 

fong=[(fOg)Og.** Og]OgOg*** Og 
-M 

n nnles n times 

(17) 

Likewise forfe ng. Examples of multiscale opening/clos- 
ing of a graytone image by a graytone pattern g (the upper 
half of a discrete approximation to a sphere) are shown in 
Fig. 5. 

D. Filters for Graytone and Binary Images 

Referring to Section II-C, if g is binary function equal 

to 0 inside its support and - 00 elsewhere, then f 0 g and 

f 0 g become, respectively, 

(f@ B)(x,y) = max {f(x - i,y -j)} (18) 
(i.j)cB 

(f 0 B)(xs Y> = (yjt:, {f(x + i,y +j)j (19) 
I 

where B = Spt ( g) is a binary pattern. That is, f 0 B and 
f 0 B are the moving local max and min image operations 
investigated in [27], [29]. If f is binary, then f 0 B andf 

0 B yield binary images (sets). Hence, we call such op- 
erations function- and set-processing (FSP). Further, we 
define the functions 

fo nB = (f 0 nB) 0 nB, (20) 

f l nB = (f0 nB) 0 nB, (21) 

respectively, as the multiscale FSP opening and closing 
off by B at scale n = 0, 1, 2, * * * Obviously, FSP 
multiscale opening/closing are special cases of their FP 
counterparts. Meyer [45] used closings by hexagons of 
increasing sizes in analyzing digital graytone biomedical 
images. Examples of FSP opening and closing of a gray- 

(e) Cd) (b) (cl 
Fig. 5. Multiscale FP openings and closings. (a) Graytone image f(256 

x 256 pixels). (b) fo ng, H = I, 2. 3 (top to bottom). The pattern g is 

defined on Z’as g(x, v) = 545 - X’ - $, 0 5 x2 + $ I 5, andg(x, 
y) = --OD ifx’ + J’ > 5. (c)f0 ng, n = 4, 5, 6 (top to bottom). (d)f 
l ng. n = 1, 2, 3 (top to bottom). (e)f* ng, n = 4, 5, 6 (top to bottom). 

Cc) (b) 

Fig. 6. Multiscale FSP openings and closings. (a) Graytone image f of 
Fig. 5(a). (b)fo nB, 1 5 II 5 6 where B is the octagon of Fig. 4. (c)f 
l HB, 1 5 II 5 6. The twelve filtered images have been arranged by the 
size n exactly as in Figs. 5(b)-(e). 

tone image by a binary pattern B at multiple scales are 
shown in Fig. 6. The nonlinear smoothing effects of the 
multiscale opening/closing by B are very comparable to 
the similar smoothing by g in Fig. 5 because B and g had 
the same (2 1 pixel) support. However, at large scales n 
the opening f 0 nB creates some large flat plateaus shaped 
like nB; likewise, the closing f 0 nB creates large flat sinks 
shaped liked nB. By contrast, the multiscale opening 
(closing) by g will give these summits (sinks) a form of 
peaks (valleys) shaped like ng; thus, it proceeds slower 
than by B because of the smooth 3D shaping (e.g., spher- 
ical) of g. On the opposite side, the FSP opening/closing 
by nB is computationally less demanding than the FP 
opening/closing by ng. (See [lo] for more comparisons.) 

All the above definitions of 2D SP, FSP, and FP open- 
ings and closings are valid for signals of any dimensional- 
ity, simply by using signals f, X, and patterns g, B defined 
on R"' or Z”, m 2 1. For continuous-space signals, we 
must replace the minimax of all the FP or FSP operations 
with inf/sup, the finite support of B and g with compact 
sets, and the discrete patterns nB, ng with the continuous 
patterns rB, rg. The dimensionality of the pattern B or g 
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shapes like B) can be measured by PSx( p, B)/A (X). 
Finally, the negative-size portion in the pattern spectrum 
is useful because big impulses at negative sizes illustrate 
the existence of prominent intruding gulfs or holes in X. 
Next we compute analytically the pattern spectra of some 
simple binary images over R*. 

Example I: Let X be a disk annulus of width a with a 
concentric hole of radius b, like that of Fig. 7. Then, if 
D is a disk of unit radius and 6 (r) is the Dirac impulse 
function, 

PS,(r, D) = rb’&(r + b) + ra(a + 2b) 6 r - E 
( 1 

. 

(24) 

Example 2: Let Y be a rectangle with side lengths a 
and b, a I b. Then 

PSy(r, D) = 2r(4 - r) u(r) - 
[ u(6)] 

+ (25) 

where u (r) = j ‘, 6 (x) dx is the unit step function. By 
contrast, if S is a square (whose one side is parallel to one 
side of Y) of unit side length, 

PSy(r, S) = ab6(r - a). (26) 

Example 3: Let W be a regular polygon with n sides, 
n 1 3, each of length a. Then its pattern spectra relative 
to the disk D and to a (unit side length) regular n-gon 
pattern T = (l/a) Ware 

PS,+,(r, D) = 2r n tan 
( w 

’ [“(ri-u[r-2ta~~,))] 

S(r - a). (27) 

If W is inscribed inside a disk of$xed radius p, then a = 
2p sin (r/n) and 

PSw(r, D) = 2r n tan 
( 

.[u(r)-u(r-pcos(t))] 

+ lrp* cos* (:)6/r-pcos(t)). 

(28) 

Inthelimitasn+ ~o,ntan(r/n)la,cos(~/n)+ 1, 
and (28) tends to the pattern spectrum of a disk, i.e., a 
Dirac impulse at r = p. 

B. Graytone Images (Multilevel Signals) 

Our analysis in Section III-A is also valid for sets X, B 
s R" of any dimensionality. In particular, if we let X 
and B become, respectively, the umbrae of an input mul- 
tilevel signal and a graytone pattern, then we can extend 
the pattern spectrum to multilevel signals. Specifically, 
letf(x), x E R", m = 1, 2, * * * , be a nonnegative m - 
D multilevel signal (e.g., a graytone image if m = 2), 
and let g(x) be any graytone pattern with a convex umbra 
U( g). Then we define the pattern spectrum off by 

PSf( +r, s> = - 
dA(fO rd 

dr ) r-20 

PS,( -r, g) = “‘fdr rg), r > 0 (29) 

where A ( f ) = jR,,, f(x) dx is the finite area under the 
graph of f.4 If g is binary and B C R" is its compact and 
convex support, then we can obtain the pattern spectrum 

off relative to binary patterns B by replacing the multi- 
scale FP openings f 0 rg and closings f l rg with their 
FSP counterparts f 0 rB and f l rB. For example, Fig. 9 
shows a 1D function f and its pattern spectrum with re- 
spect to a binary g whose umbra is a semiinfinite rectan- 
gle, i.e., the top 1D segment B of the rectangle is the 
support of g. In Fig. 9, we see that the pattern spectrum 
off has impulses at sizes (with respect to B) r = 1, 3, 
and 5 because f contains protruding peaks at these sizes, 
whereas peaks of size 2 or 4 are not observed. Similarly, 
f contains many intruding valleys at size 2 which show up 
as a large impulse in the pattern spectrum at size r = -2. 

IV. PATTERN SPECTRUM OF DISCRETE-SPACE IMAGES 

The analog pattern spectrum, except for very simple 
input signals and very simple probing patterns B or g, is 
very difficult to compute analytically. Thus, in order to 
efficiently use arbitrary B or g we extend here the pattern 
spectrum ideas to discrete-space binary and graytone im- 
ages by using the definition of discrete size introduced in 
Section II-A. 

A. Binary Images 

Let X s 2’ be a finite-extent discrete binary image, 
and let the discrete binary pattern B be any finite subset 
of 2’. Recall that the nonnegativity of the pattern spec- 
trum for continuous-space images was guaranteed only if 
the pattern B was convex. However, due to our definition 
of discrete size, the convexity requirement of B is not 
needed for discrete-space images. To prove this, let F, G, 

H E Z’ such that G = F 0 H. Then. G 0 F = G and Y 
OGC YoFs Y*FL YmGforanyYs Z*[47],[7]. 

'Assume that f c ‘8 2 0 for all r 
achieved by adding a dc-bias to f. 

thatfn rg # - 
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Fig. 9. Pattern spectrum of a 1D multilevel signal. 
(b) 

Hence, (6) implies that for all II L 1, 

. . . cXo(n+l)BcXonB*** EXG -.* 

X.nBc_X*(n+ l)BE .*a. (30) 

Thus, A (X 0 nB) can only decrease as n increases where 
A ( * ) denotes here finite set cardinality. Since X is finite, 
there is a positive integer N = max { ~1: X 0 nB # 0 } 
such that X 0 nB = @ for all n > N. Likewise, there is 
a limit size for successive closings. That is, let CH(X) 
be the convex hull of X, i.e., the intersection of all half 
planes in 2’ that contain X. For any closed S c R’ and 
bounded G G R’, S l G E CH( S ) [6]. Hence, since X 
C 2’ is closed (by being discrete) and nB E Z’ is 
bounded (by being finite), we infer that the finite CH(X) 
includes all terms of the increasing set sequence X l nB. 
Thus lim,,,, (X l nB) = d: C CH(X) where 

b:=ux l nB = X l KB. (31) 
li 2 0 

The set limit S. will be attained for a finite size y1 = K 
because X is finite. Obviously, N, K, and d: depend on 
both X and B. Fig. 10 shows the different limits sets ob- 
tained by using an octagon and a square pattern B, none 
of which achieves the true convex hull of X. 

We define the pattern spectrum of X as the nonnegative 
function 

PS,( +n, B) = A[X 0 nB\Xo (n + l)B], 

n>O 

PS,( -n, B) = A[X l nB\X* (n - l)B], 

n21 (32) 

where in (32) S \ Q = {x E S: x 6 Q } denotes set differ- 
ence. Due to (30), PS,(n, B) = A(Xo nB) - A[Xo (n 
+ 1) B 1; hence the discrete pattern spectrum can be ob- 

Fig. IO. Approximations b: to the convex hulls of discrete binary images. 
(a) Binary image X of 85 X 128 pixels. (b) Set limit d: with respect to 
the octagon of Fig. 4 (K = 8). (c) d: with respect to the square of Fig. 
4 (K = 15). 

tained via a forward area difference. We will suppress X 
or B from the general notation of (32) if they are assumed. 
Obviously, PS( n) = 0 for all n > N and all n < -K. 
The B-shapiness of X can be measured by PS,(N, 
B )/A (X ). As a simple example, Fig. 11 shows a binary 
image and its pattern spectrum with respect to four pat- 
terns of Fig. 4. The shapiness of the image in Fig. 1 l(a) 
relative to the line, triangle, square, and rhombus of Fig. 
4 is 0.16, 0.98, 0.5, and 0.5, respectively; hence, it is 
shaped mostly like a triangle. 

As an aside, if a finite binary image X is not connected, 
it will be in general equal to the union of its I (disjoint) 
connected components Y’. Then A (X 0 nB = Ui Y’ 0 nB) 
= Ci A (Y’ 0 nB) because Y’ fl Y’ = @ Vi # j. Hence, 
the pattern spectrum of X is the sum 

PS,(n, B) = $, P&6 B) (33) 

of the pattern spectra of its connected components. 

B. Gruytone Images (Multilevel Signals) 

Let f(x, y), (x, .v) E Z2, be a (nonnegative) gruytone 
image function with a finite support. Then we define the 

pattern spectrum off relative to a discrete graytone pat- 
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(a) 

size n IId 2 13 I4 15 16 171 

PS(n,rhombus) 5 8 12 25 0 0 0 0 

(b) 

pattern av. size av. roughness 

line 3.92 2.65 

triangle 5.88 0.14 

square 2.92 1.95 

rhombus 2.14 1.75 

(Cl 

Fig. 11. (a) A finite &connected binary image X. (b) Pattern spectrum of 

X. (c) Average size and roughness of X. 

tern g by the nonnegative function 

PSf( fn, g) = A[f” ng -f” (n + l)g], 

O<n<N 

PSf( -n, g) = A[ f”  ng -f l (n - l)g], 

l<nlK (34) 

where in (34) A(f) = Y&,,!)f(x, y), and (a - b)(x) = 
a(x) - b(x) denotes the pointwise algebraic difference 
between functions a(x) and b(x). N is the maximum 
(positive) size n such that f 0 ng is not all --03; if g is 
not binary, it is assumed that f has sufficient dc-bias so 
that f 0 ng 1 0 Vn 5 N. K is the minimum size n such 
that U(f* Kg) = lim,,, U(f*ng) E CMU(f)l. 
Obviously, PS( n) = 0 for all n > N and all n < -K. 
By contrast to the continuous case (29), convexity of 
U( g) is not needed to guarantee the nonnegativity of (34), 
because for all n 2 1, 

. . . Ifo(n + 1)g Ifong f** Ifs ... 

f’ng If* (n + 1)g 5 **. (35) 

where, for two functions a (x) and b (x), a 5 b means 
that a(x) i b(x) for all x. Hence, P$(n, g) = A(fo 
ng) - A[fo (n + l)g] L 0 Vn 2 0. 

We can also define a pattern spectrum off relative to 
discrete binary patterns B by replacing f 0 ng and f l ng 
in (34) and (35) with their FSP counterparts f 0 nB and f 
l nB. In addition, fand g could be 1D or multi-D multi- 
level signals. 

V. ORIENTED PATTERN SPECTRUM 

Fig. 12(a) shows a 2D set X consisting of four circle 
diagonals spaced by 45”. Its pattern spectrum with re- 

AH- -I 

/ \ 

: 
\ 
I 

.it 

(a) 
\ I 
‘1 /’ 

\ 
--_ .’ 

Oriented Patfern Spectrum 

Puf tern Spectrum 

I 

(with QZ ) 

t 
(with o disk) 

Fig. 12. (a) A binary image X E R'. (b) Pattern spectrum (nonnegative- 

size part) of X relative to a disk. (c) Oriented pattern spectrum of X. 

spect to a disk [see Fig. 12(b)] conveys no useful infor- 
mation. To enable the pattern spectrum to extract infor- 
mation about the 1 D line structures of X that live on a 2D 
space, we introduce the oriented pattern spectrum 

OPS,( +r) = - 
dA(,.orLfl) r20 

dr ’ 

dAk X-L4 
OP&( -r) = 

dr ’ 

r > o (36) 
where Le is a unit-length line segment L passing through 
the origin of R2 and forming an angle f3 with the horizon- 
tal. In (36) 8 can vary continuously, e.g., 0 I 0 < 27r, 
or can assume only a finite number of orientations. For 
example, for discrete binary images we can choose L as 
the line pattern of Fig. 4, 8 E { 0”, 45”, 90”, 135” }, and 
r becomes the discrete size ~1. Fig. 12(c) shows the ori- 
ented pattern spectrum of Fig. 12(a) [ 0 assumed only four 
orientations: 0”) 45’, 90”) 135’ 1, which indicates the ex- 
istence of major substructure(s) at size equal to the diag- 
onal length. 

For 2D graytone image functions f (x, y), we define 
their oriented pattern spectrum by 

dA[max {f” rgti(x, Y)}] 
OPSf( +r) = - ’ dr 9 

r 2 0, 

OPSf(-r) = 
dA[min {f” rta(x, Y)}] 

dr 

r>O (37) 

where g0 (Z ) is a 1 D function oriented at angle 8 with com- 
pact support and convex umbra. Discrete oriented pattern 
spectra are obtained by replacing in (36) and (37) the de- 
rivatives with finite differences, and rgO with ngs com- 
puted as in (8). The idea of using (for feature extraction) 
discrete 2D max-of-openings by several 1D sets at differ- 
ent orientations appears in [7]. Areas of oriented openings 
were used in [46] for texture analysis. 2D max of open- 
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ings followed by closings by four 1D sets was also inves- which implies that the shape-size complexity of X is never 

tigated in [37] for noise suppression and compared to sim- smaller than the area-weighted average of the complexi- 
ilar max-of-medians. ties of its connected components. 

VI. SHAPE-SIZE COMPLEXITY 

In the theory of random sets Y E R2, the size&fiction 
Ay(x) = sup { r I 0: x E Y 0 rD } can be viewed for 
each x E Y as a random variable representing the size of 
the set Y measured at point x with respect to a disk D (the 
measuring “standard”) [6], [7]. Keeping B fixed, we de- 
fine for the finite image X G Z2 the discrete random vari- 
able 

X,(z) = max (n:zEXonB}, ZEX. (38) 

Assuming stationary random sets, the probability function 

px(k) = Prob (X,(z) = k} of h is equal to PS,(k, 
B )/A (X ), 0 5 k 5 N, and hence it is directly related to 
the pattern spectrum. Now we can treat the size distribu- 
tion of X from a probabilistic viewpoint. Thus we can de- 
fine the average size Z( X/B) of X relative to B as the 
expected value of X 

V/B) = .zo npdn). 
Using concepts from information theory, the function 

W/B) = -,,zo PA(~) log [PA(~)] (40) 

is the average uncertainty (entropy) of the random vari- 
able X. The maximum value of H(X/B) is attained when- 
ever the size histogram is flat. Its minimum value (0) is 
attained whenever the size histogram contains just an im- 
pulse at, say, n = k; then X is the union only of maximal 
(by set inclusion) patterns kB. We define as roughness of 
X relative to nB the number log [ 1 /px (n)], which is a 
measure of how little the maximal patterns nB that are not 
covered by unions of larger patterns protrude in X. That 
is, the larger the normalized area X 0 nB \ X 0 (n + 1) B 
(which measures the protrusion of nB) is, the more X 
consists of protruding patterns nB, and thus the smoother 
(less rough) X is relative to nB. Then H( X/B) is the av- 
erage roughness of X relative to B; it quantifies the shape- 
size complexity of X by measuring its boundary roughness 
averaged over all depths that B reaches. Thus, H(X/B) 
is maximum (log (N + 1) ) iff X contains maximal pat- 
terns nB at equal area portions in all sizes n, and mini- 
mum (zero) iff X is the union of maximal patterns of only 
one size. For example, the average size and roughness of 
the image in Fig. 1 l(a) relative to various patterns are 
tabulated in Fig. 1 l(c). 

If X is the union of (disjoint) connected components Y’, 
i=l a.. I, let pi be the size probability function of 
each if relative to B. From (33), we have px( k) = [ Cj 
A(Y’)pi(k)]/A(X)fork z O.Then,duetotheconvex- 
ity of the entropy function 

H(X/B) 1 $q * ;+, A(Y’) W”/Bh (41) 

In the estimation of the average roughness we can in- 
corporate the negative-size portion of the pattern spec- 
trum by extrapolating h and defining it on each point z E 
6:\Xashx(z) = -niffz~X*nB\X.(n - l)B; 
then, in (40) we must also replace px (n) with PSx (n, 
B)/A (C) and the lower summation limit n = 0 with n 
= -K. This new definition of roughness will also take 
into account the complexity of the local background, 
6: \ X, of X inside CH(X). 

We define the average size and roughness of a graytone 
imagefbased on its pattern spectrum exactly as for binary 
images. Thus, the average roughness off relative to a 
graytone pattern g is 

(42) 

where q(n) = PS,(n. g)/A( f). This number H( f/g) 
quantifies the shape-size complexity offby measuring its 
surface roughness (due to its peak distribution) averaged 
over all depths that g reaches. We can also normalize 
H( f/g) by dividing it with its maximum value, i.e., log 
(N + 1). For example, Fig. 13 shows two texture gray- 
tone images f, (texture 1) and f2 (texture 2). Relative to 
the octagon of Fig. 4, the normalized average rough- 
nesses offi,f2 are, respectively, 0.54 and 0.63; similarly, 
relative to a paraboloid graytone pattern g of the same 
support as the octagon (g(x, y) = 5 - x2 - y2, 0 I x2 
+ y’ I 5), the H( i/g)/log (N, + I) were 0.80 and 
0.66 for i = 1, 2. If we wish H( f/g) to reflect the com- 
plexity off due to both its peaks and valleys, then we 
could replace in (42) n = 0 with n = -K and set q(n) 
= PS, (n, g)/A ( f l Kg ); in this case, normalizing the 
new H( f/g) requires dividing it with log (N + K + 1 ). 
Finally, the complexity measure H( f/g) can be extended 
to continuous-space images by replacing discrete pattern 
spectra with their continuous versions and summation over 
n with integration over the continuous size r. 

VII. SKELETON TRANSFORMS FOR BINARY IMAGES 

A. Morphological Skeleton Transform 

Let X 5 Z2 represent a finite-extent discrete binary im- 
age and let B C Z* be a fixed (finite) binary pattern with 
(0, 0) E B. It was shown in [26], [38], [33], [7], [34] that 
successive erosions and openings yield the skeleton com- 
ponents 

S,, = (X 0 nB)\[(X 0 nB) 0 B], 

n=O, 1, ... ,N, (43) 

of X with respect to B where N = max {n 2 0: X 0 nB 
# @ >. Each S, is a subset of X indexed by the discrete 
size parameter n and depends both on X and B. The union 
of all S,, is the morphological skeleton SK(X) of X. The 
information in all the S, can be represented compactly by 
the skeleton function whose support is equal to SK(X) 
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texture 1 texture 2 

Fig. 13. Two graytone 64 x 64.pixel images of textures. 

and whose value at the skeleton pixel z is n if z E S,,. 
Alternatively. the same information is conveyed by the 
morphological skeleton transform of X which we define 
as the finite set-valued sequence 

ST(X) = (So, S,, S2, - * * , Sv). 

From ST(X) we can reconstruct X, i.e., 

(44) 

X0 kB = U S,, 0 nB, 0 I k I N. (45) 
I, 5 II 5 .A’ 

Thus, if k = 0 (i.e., if we use all the skeleton subsets), 
X 3 kB = X and we have exact reconstruction. If 1 I k 
I N, we obtain a partial reconstruction, i.e., the opening 
(smoothed version) of X by kB [34]. The larger the k, the 
larger the degree of smoothing. 

Among similar approaches to shape smoothing via the 
skeleton, Miller [38] called the S,, a “shrink-expand se- 
ries representation” and observed that elimination of some 
low-index S,, provides some boundary smoothing. Duda 
and Hart [39] noticed that suppressing the small-ampli- 
tude pixels in the skeleton function provides some shape 
smoothing. Ho and Dyer [40] improved this procedure by 
first normalizing the skeleton function according to the 
relative prominence of each skeleton point and then by 
eliminating the minor branches of the modified skeleton 
function. Dill et al. [41] investigated the skeletonization 
of binary images whose boundary curvature functions 
were filtered by linear low-pass filters of varying spatial 
resolution. Similarly, Pizer et al. [42] explore skeletoni- 
zation of binary images at multiple scales provided either 
by B spline smoothing of the boundary or by Gaussian 
smoothing of the binary image function. Note that in [41], 
[42] the image is skeletonized at each scale, whereas in 
our approach and in [38]-[40] it is skeletonized only once. 
Moreover in [38]-[42] the relationships between shape 
smoothing and skeleton information were only qualita- 
tive. By contrast, in our approach, the shape smoothing 
can be quantified precisely via openings. 

If B is a symmetric (i.e., B = B) disk-like pattern like 
the square or rhombus of Fig. 4, then SK( X ) is the well- 
known (discrete) medial axis of X. If B is an asymmetric 
or a 1D set, then SK(X) does not look any more like a 
symmetry axis, but it highlights various other features of 
the shape X [34]. 

Both the skeleton decomposition (for all n) algorithm 
(43) and the reconstruction (for one k) algorithm (45) re- 
quire O(N’) erosions/dilations by B. Faster algorithms, 

requiring 0 (N ) erosions/dilations, can be found in [34]. 
Such a faster reconstruction algorithm can be written an- 
alytically as 

X0 kB = [((& 0 B) U S,-,) 0 B . . . U Sk] @ kB 

(46) 

for 0 I k I N. 

B. Reduced Skeleton Transform (RST) 

Independently of B, all ST( X ) can reconstruct exactly 
X, and SK(X) looks like an “axis.” At the expense of 
producing a skeleton that may not look like a skeletal axis, 
we define the minimal skeleton transform to be a sequence 
of indexed skeleton components that are subsets of the 
origina S, but without redundancy, i.e., capable for exact 
reconstruction but such that removal of just one point 
would violate the exact (or partial) reconstruction con- 
trolled by (45). Fast searching algorithms were developed 
in [34] to find a minimal skeleton. In this paper, we pro- 
vide an analytic formula for a “reduced” skeleton trans- 
form (RST). The RST may not always be able to subtract 
all the redundancy in the skeleton (as the minimal skele- 
ton does). It may, however, eliminate some redundancy, 
since it never contains more points than the original skel- 
eton. Our reason for introducing the RST is that it is fully 
compatible with the pattern spectrum as explained later. 
The nth reduced skeleton component of X (with respect 
to B) is defined as the set 

R,, = (X 0 nB)\[[(X 0 nB) 0 B] l nB], 

O(n<N. (47) 

Since,foranysetSandG,(SOG).G=SOG[7], 
we have (X @ nB) 0 B G [(X 0 nB) 0 B] l nB G (X 

0 nB) l nB = X 0 nB. Thus, 

R,, C S,, C X 0 nB, O<n<N, 

and hence, R, eliminates some redundancy from S,. Note 

also that R, = Sa and RN = S, = X 0 NB. The algorithm 
(47) can be implemented efficiently by recursively obtain- 
ing the successive erosions as X 0 nB = [X 0 (n - 
l)B] 0 B, n = 1, * * * , N; then (47) requires N2 + N 
+ 1 erosions/dilations by B of an image array initially 
holding X. 

The union of all R,, is the reduced skeleton, RS (X ), of 
X. The reduced skeleton transform (RST) of X with re- 
spect to B is the finite set-valued sequence 

RST (X) = (R,, R,, R2, . . . , RN). (48) 

From RST (X ) we can reconstruct X. That is, for 0 I 

k I N, let Tk = (X 0 kB) 0 B. Then, 

(T, l kB) @ kB = ( Tk 0 kB) 0 kB = T, 0 kB 

= (((X @ kB) 0 B) 0 B) 0 kB 

= X0 (k + l)B. 
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This result together with the fact that X 0 kB = Rk U Thus, for 0 I II I N - 1. 
( Tk l kB) imply 

X0 kB = (Rk 0 kB) U [X0 (k + l)B], 
R, = @ cs D,, = 0 H PS(n) = 0, (54) 

which provides the major link between pattern spectrum, 
Ork<N. (49) RST, and multiscale openings. Note that RN = DN + 0. 

Since also R, = X 0 NB, it follows that From (50), (54), and (30) it also follows that for 1 I 
k I N. 

X0 kB = U R, 0 nB, 0 I k I N. (50) 
ksn<N X = X 0 kB * PS(n) = 0 O<n<k 

The reconstruction (50) requires (for each k) 0( N’) di- * R,, = 0 0 I n < k. (55) 
lations by B. Since dilation commutes with union, (50) is 
equivalent to the faster algorithm below Thus, X is smooth to a degree k relative to B (i.e., X = 

X 0 kB 
X 0 kB) if and only if its first k pattern spectrum samples 
are zero, or equivalently, if and only if its first k reduced 

= [((Rn @ B) U RN-,) @ B . * * U Rk] @ kB. skeleton components are empty. Hence, the sets R, be- 

(51) 

have as shape-size components of X. 
To relate RST with the pattern spectrum at negative 

The algorithm (51) requires N dilations by B. sizes, we extrapolate the RST by skeletonization of the 

The original and reduced skeletons (with respect to the background X’ of X. Thus, we define as the extended re- 

octagon of Fig. 4) of the binary leaf image of Fig. 10(a) duced skeleton transform (ERST) the finite set sequence 

are identical and both contain 303 pixels. However, this 
is not always the case because we have found cases where ERST (X) 

the RST has fewer points than the original skeleton. For = (R-k, R-k+,, . . . , Rp,, R,, R,, . . * , RN) 
example, the original skeleton of Fig. 10(a) with respect 
to the square of Fig. 4 has 194 pixels, whereas the re- (56 

duced skeleton has 182 pixels. In our experiments, we where for 0 5 n I K - 1 the sets 
found that the RST could eliminate about O-6 percent of 
the original skeleton points. (The minimal skeleton has 
achieved in some cases elimination of about 50 percent of 
original skeleton points [34].) We also observed that the 
ability of RST to subtract redundancy from the original 
skeleton increases with the size of the image. 

C. Relations Between RST and Pattern Spectrum 

Let PS( n) be the pattern spectrum of X relative to B. 
Observe from (45) that S,, = 0 implies X 0 nB = X 0 (n 
+ l)B, and hence, 

S,, = 0 * PS(n) = 0, n 2 0. (52) 

The converse of (52) is not generally true. However, a 
closer relationship exists between pattern spectrum and 
RST. That is, consider the sets 

Dk = (X0 kB)\[Xo (k + l)B], O<k<N. 

(53) 
Then, for 0 I n I N - 1, 

R, = 0 => X 0 nB = [(X 0 nB) 0 B] l nB 

*XonB=Xo(n+ 1)B 

* D,, = 0. 

Conversely, for 0 I n I N - 1, 

D,,=@-XonB=Xo(n+l)B 

* (X 0 nB) 0 nB = [(X 0 nB) 0 B] 0 nB 

* X 0 nB = [(X 0 nB) 0 B] l nB 

*R,=@. 

R-,-l = [[(X 0 nB) l B] 0 nB]\(X 0 nB) (57) 

are reduced skeleton components of Xc, and K = min { k 
~0:X~nB=X*kBVn>k}.Thus,R-,=0Vn> 

K. If we define 

D_, = (X0 nB)\[X* (n - l)B], l<n<K 

(58) 

by working as for (54) it can be shown that, for 1 I n I 
K 

R_, = 0 * D-, = ,@ e PS( -n) = 0. (59) 

Therefore, for 1 I k I K, 

X = X l kB H R-, = @ l<n<k 

e PS( -n) = 0 1 I n 5 k. (60) 

VIII. SKELETON TRANSFORMS FOR GRAYTONE IMAGES 

Letf (x, y), (x, y) E Z2, represent a finite-support dis- 
crete graytone image and let g(x, y) be a fixed discrete 
graytone pattern with g(0, 0) 2 0. The skeleton com- 
ponents off with respect to g are the functions 

~,~=(fOng)-[(fOng)og], OlnlN 

(61) 

where N = max {n: f 0 ng # -a}. (The pointwise 
sum of all s,, could serve as a morphological skeleton of 
f. ) We call as morphological skeleton transform off with 
respect to g the finite function-valued sequence 

ST(f) = (So> $13 Sz, . ' . , SN). (62) 
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From ST( f ) we can reconstruct f: 

fo kg = [((So 0 g) + sN-,) 0 g . * * + sI] 0 kg 

(63) 

for0 I k d N. Thus, if k = O,fo kg =fand we have 
exact reconstruction. If 1 I k 5 N, we obtain a partial 
reconstruction, i . e., the opening (smoothed version) off 
by kg. The larger the k, the larger the degree of smooth- 
ing. 

To implement (61) and (63) when g is not binary, f 

should have sufficient dc-bias so that f 0 ng I 0 Vn I 

N. In addition, pixels outside the support of any added or 
resulting function are set equal to - 00, and p A ( - 00) 
is set equal to p for any p 2 - 00. For example, Fig. 14 
shows an 8 x g-pixel graytone image h to be skeletonized 
by a graytone pattern g, defined on Z2 as g(x, y) = 2 - 
(x2 + y2) for 0 5 x2 + y2 5 2 and g(x, y) = --03 
elsewhere. Assuming that h is nonnegative, we add to all 
the pixels in the support of h (i.e., pixels (x, y) with h (x, 
y) # 0) a dc-bias = 3 and thus create another image f, 
such that f 0 ng 2 0 Vn I N = 3; the four skeleton 
components offare shown in Fig. 14. To avoid the above 
implementation issues one could alternatively use a bi- 
nary g. In this latter case, if B represents the support of 

g, thenf O g andf O g become, respectively, the moving 
local minimum and maximum off inside the window B; 
further, pixels not belonging to the support offor its skel- 
eton components can be assigned the value “0” because 
0 acts as a neutral element for the local min/max opera- 
tions. Then the skeleton transform off with respect to B 
is identical to the gray medial axis transform developed 
in [28]. It is generally possible to find patterns g and B 
such that the skeleton transform of an image with respect 
to g has fewer points or a more desired shape than the 
skeleton with respect to B, and vice-versa. However, a 
systematic or optimum (according to some criterion) 
choice of g or B still remains an open issue. 

The nth reduced skeleton component off (with respect 
to g) is the function 

rn = (fQ ns> - [[(fQ ng) 0 g] l ng], 

O<n<N. (64) 

Since [lo], for any functions h and a, (h 0 a) l a = h 

Ga.wehave(fOng)og I [(fOng)og].ng I 
(f@ ng)*ng =fO ng. Thus, 

r,, I s, 5 f 0 ng, O<nlN, 

and hence, r,, eliminates some redundancy from s,,. Note 

also that r. = so and rN = sN = f 0 Ng. The reduced 
skeleton transform (RST) off is the finite function se- 
quence 

RST (f) = (ro, rl, r2, * * * , I;y). (65) 

From RST ( f ) we can reconstructf, i.e., for 0 I k I 

N, 

f” kg = [[[(r,v @ s> l (N - l)g] + r,+I] * * * 

0 g l kg + rk] 0 kg. (66) 

h 

SO 

$3 

Fig. 14. Skeleton transform for graytone images via FP filtering. 

In Fig. 14 the original skeleton transform contains the 
same points as the RST. However, in images of larger 
size we observed some elimination of original skeleton 
points by using the RST. For example, Table I shows the 
number of points in the supports of the original and re- 
duced skeleton components of the graytone image “tex- 
ture 2” of Fig. 13 with respect to the square of Fig. 4. 
The total number of points in the original skeleton trans- 
form was 5047, whereas the RST had 4983 points. 

From (61) it follows that 

s, = -03 * P$(n, g) = 0 (67) 

where, for a function a(x), a = - M means that a (x) = 
- 03 VX, or equivalently that the number of points in its 
support is zero. For example, in Table I observe that 
PS( 7) = 0 and s, = - 03. The converse of (67) is gen- 
erally true only if we use the RST ( f ). Thus, let the ex- 
tended reduced skeleton transform off be the finite func- 
tion sequence 

ERST (f) = (r-K, r-K+l, * * . , r-I, ro, rI, * * * , TV), 

(68) 



713 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE IK‘ELLIGENCE. Vol. II. NO. 7. JIJ1.Y l9XY 

TABLE1 
PATTERN SPECTRUM, SKELETON TRANSFORM, AND RST OF THE “TEXTURE 

2“ IMAGE OF FIG. 13" 

size n PS(n) #(S") #CT") 

" pattern B = square of Fig. 4; N = 8; #(f) denotes the number of pixels 

in Spt(f). 

where, for 0 I n I K - 1, the functions 

r-,,-l = [[(f @ ng) l g] o ng] - (f @ ng) (69) 

are reduced skeleton components of ( -f ) (x, y) = -f (x, 
y), and K = min {k: f l ng = f l kg Vn > k}. Now 
consider the functions 

4 = (f o ng) - [f o (n + l)g], O<n<N. 

L = (f l ng) - [f l (n - l)g], lln<K. 

(70) 

Then, if PS( n) is the pattern spectrum off relative to g, 
it can be shown that, for -K I n I N, 

r,, = -w H d, = -CXJ e F’S(n) = 0. (71) 

From (66), (71), and (35) it also follows that, for 1 I k 
% N, 

f=fokgoPS(n)=O O<n<k 

Or,= -co Orn<k. (72) 

Thus, f is smooth with respect to (i.e., does not contain) 
peaks of size k relative to g if and only if its first k pattern 
spectrum samples are zero, or equivalently, if and only if 
its first k reduced skeleton components vanish. Likewise 
for the relationships among the valleys off, its pattern 
spectrum values at negative sizes, and the skeleton com- 
ponents of -f. Hence, the functions r, behave as multi- 
scale shape-size components off. 

IX. CONCLUSIONS 

This paper focused on the developments of 1) discrete 
and continuous multiscale nonlinear smoothing filters 
based on morphological openings or closings, 2) a shape- 
size descriptor, the pattern spectrum, based on the area 
functions of openings or closings at successive scales, 3) 
an oriented version of pattern spectrum, 4) a shape-size 
complexity measure as the entropy of a size random vari- 

able whose probability function is the pattern spectrum, 
5) a reduced skeleton transform for multiscale represen- 
tation of discrete images based on morphological filter- 
ing, and 6) interrelationships among the multiscale filters, 
the pattern spectrum, and the skeleton transform. 

The multiscale openings and closings are useful 
smoothing filters because they preserve the shape and lo- 
cation of vertical abrupt signal discontinuities (e.g., 
edges); further, the definition of scale in the openings is 
identical to the spatial size of geometrical objects. Both 
of these properties are not shared by multiscale low-pass 
linear filters; hence, openings/closings could complement 
and enrich multiscale signal analysis (classically based on 
linear smoothing). It is also interesting to note that many 
linear (e.g., averager, Gaussian) and nonlinear (e.g., 
opening/closing, median) smoothing filters can be repre- 
sented exactly via erosions or dilations [ lo]-[ 121, [ 141, 
[36]. The pattern spectrum enriches the usefulness of 
multiscale openings because large impulses in the pattern 
spectrum indicate the existence of major (protruding or 
intruding), substructures in a signal at that scale, and 
hence provide the critical scales in a multiscale signal 
analysis. Further, the pattern spectrum quantifies many 
other aspects of the shape-size content of the signal, e.g., 
the complexity of the image boundary or surface (due to 
its peak/valley size distribution) can be measured from 
the pattern spectrum. The (original or reduced) skeleton 
transform can serve as a compact representation in mul- 
tiscale image analysis because 1) the skeleton components 
are sparse images and hence can encode the image effi- 
ciently, and 2) the partially reconstructed images from the 
inverse transform on subsequences of skeleton compo- 
nents are exactly the openings of the image at a scale de- 
termined by the number of eliminated skeleton compo- 
nents. In addition, due to the strong links between the 
morphological (original or reduced) skeleton transform, 
the multiscale openings, and the pattern spectrum, the lat- 
ter two appear to be powerful tools to study multiscale 
representations that are based on skeletonization. Finally, 
we outline how the ideas in this paper could be used for 
multiscale feature extraction. 

1) Edge/Line Enhancement: At a single scale, the dif- 

ferencef - ( f 0 W) where W is a small symmetric struc- 
turing set, enhances the edges of the signal or image f 
1291, [38], [7], [36]. In [43], this scheme was improved 
by first smoothing f with a linear blur, which made it a 
robust edge detector. This linear blur was replaced by an 
alpha-trimmed mean filter in [44]. For a multiple scale 
edge enhancement we propose the following simple pro- 
cess: 

(fo nd - [(f 0 ng) 0 WI (73) 

where the opening by ng performs a multiscale smoothing 
before the edges are enhanced. The shape of g controls 
the shape of smoothing, and the size n controls the scale. 
Preliminary experiments at the Harvard Robotics Lab in- 
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dicate that (73) is promising for multiscale edge/line en- [I21 P. Marago% “A unified theory of translation-invariant systems with 

hancement and very simple to implement. If the features applications to morphological analysis and coding of images,” Ph.D. 

to be enhanced are 1D line structures, then the opening 
dissertation, School of Elec. Eng.. Georgia Inst. Technol., Atlanta, 
GA, July 1985. 

by ng will eliminate them if g has a 2D support; to avoid [I31 -, “Pattern spectrum of images and morphological shape-size 

this,bne could use a max-of-openings (or-a min-of-clos- 
ings) by g with 1D support oriented at different angles. 

2) Edge Detection: In [ 11, the edges E ( f ) of an im- 
age f were defined as the zero-crossing points of the signal 
V’( G, *f ) where G, is a Gaussian of standard deviation 
u and * denotes linear convolution. In view of the advan- 
tages of the openings for preserving edges while smooth- 
ing, we propose the following edge detection process: 

E(f) = ((.GY): [V2(fong)](x,y) = 0). (74) 

A nice property of the V2( G, * f ) edge detector is that 
additional edges are not introduced at coarser scales. Chen 
and Yan [15] have shown that the zero-crossings of the 
1D boundary curvature function of the successive open- 
ings of a compact continuous binary image by disks of 
radii r do not increase at coarser scales (larger r). It re- 
mains to be seen whether this important result is also true 
for 2D continuous graytone images and/or for discrete 
graytone images whose edges are defined by (74) using a 
discrete approximation to V’. In both schemes (73) and 
(74), the pattern spectrum (or its oriented version) could 
also be used to find the critical scales for feature detec- 
tion. 
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