
Patterned non-determinism in communication
complexity
Dmytro Gavinsky (gavinsky@math.cas.cz)

Institute of Mathematics of the Czech Academy of Sciences

Research Article

Keywords:

Posted Date: March 20th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2691951/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2691951/v1
mailto:gavinsky@math.cas.cz
https://doi.org/10.21203/rs.3.rs-2691951/v1
https://creativecommons.org/licenses/by/4.0/

Patterned non-determinism in communication complexity*

Dmytro Gavinsky†‡

March 14, 2023

Abstract

We define and study the model of patterned non-determinism in bipartite communication

complexity, denoted by PNPX↔Y . It generalises the known modelsUPX↔Y and FewPX↔Y through

relaxing the constraints on the witnessing structure of the underlying NPX↔Y -protocol.

It is shown that for the case of total functions PNPX↔Y equals PX↔Y (similarly to UPX↔Y and

FewPX↔Y). Moreover, the corresponding exhaustive witness-searching problem – determining

the full set of witnesses that lead to the acceptance of a given input pair – also has an efficient

deterministic protocol.

Structurally, the possibility of efficient exhaustive PNPX↔Y -search summarises the above

results and can be stated like this: if f1; : : : ; fm are bipartite total Boolean functions with efficient

deterministic protocols, then for every input (x; y) the set
˘
i
˛̨
fi (x; y) = ⊤

¯
can be found by a

deterministic protocol of cost poly-logarithmic in n and the total number of such sets for these fi ’s.
Finally, the possibility of efficient exhaustive PNPX↔Y -search is used to analyse certain three-

party communication regime (under the “number in hand” input partition): The corresponding

three-party model is shown to be as strong qualitatively as the weakest among its two-party

amplifications obtained by allowing free communication between a pair of players.

1 Introduction

Let f (x; y) : {0; 1}n×{0; 1}n → {⊤;⊥} be a total bipartite communication problem with an efficient

NPX↔Y -protocol Π, that is, the total number of bits sent by Π(x; y) is in poly-log(n). It was shown by
Yannakakis [Yan91] that if for every (x; y) ∈ f −1(⊤) there is exactly one Π-witness, then f ∈ PX↔Y .

Later Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened the result by drawing the

same conclusion from the weaker assumption that the number of Π-witnesses per input pair was at

most poly-log(n). The corresponding communication complexity classes – that is, the families of

functions for which there are efficient protocols – are denoted by UPX↔Y and FewPX↔Y and the above

results can be stated as UPX↔Y = FewPX↔Y = PX↔Y .1

Consider the following generalisation. Let W be the family of all possible Π’s witnesses and call

‚ ⊆ W a pattern (for the protocol Π) if for some (x; y) ∈ f −1(⊤) the set of witnesses that cause Π’s

*This is a preliminary version...
†In 2022 the author has changed the English spelling of his first name from the previous russian-odoured form “Dmitry”

to the Ukrainian “Dmytro”.
‡Institute of Mathematics of the Czech Academy of Sciences, Žitna 25, Praha 1, Czech Republic.

Partially funded by the grant 19-27871X of GA ČR and by RVO: 67985840. Part of this work was done while visiting the

Centre for Quantum Technologies at the National University of Singapore.
1 To denote communication complexity classes, as well as the corresponding models, we will usually add the superscript

“X↔Y ” to the common notation for the corresponding computational complexity class.

acceptance of (x; y) equals ‚. If the total number of Π’s patterns is at most 2k(n) for k(n) ∈ poly-log(n),
then we say that Π is an efficient protocol in the model of patterned non-determinism, and the Boolean

function f that Π computes belongs to the corresponding communication complexity class PNPX↔Y

(obviously, UPX↔Y ⊆ FewPX↔Y ⊆ PNPX↔Y). We will see that PNPX↔Y = PX↔Y .

Next we consider the communication complexity of the exhaustive witness-search problem

corresponding to PNPX↔Y -protocols (or simply exhaustive PNPX↔Y -search): by this we will mean

determining the full set of witnesses that lead to the acceptance of a given input pair by the given

PNPX↔Y -protocol (which is, in particular, an NPX↔Y -protocol).

On the one hand, we will see that from the equality of a certain subclass C ⊆ NPX↔Y to PX↔Y

even the possibility of efficiently finding any protocol-compatible witness doesn’t follow in general

(leave alone determining the complete set of valid witnesses).2 Nevertheless, efficient deterministic

witness-searching for PNPX↔Y -protocols will be presented. That is, for an efficient NPX↔Y -protocol

Π with at most 2poly-log(n) patterns there exists a PX↔Y -protocol Πsearch of cost at most poly-log(n)
that finds – for every input pair (x; y) that Π accepts – the exact set of witnesses that lead to Π’s

acceptance of (x; y).3

More formally, if f1(x; y); : : : ; fm(x; y) : {0; 1}n×{0; 1}n → {⊤;⊥} are such that every fi has an
efficient deterministic protocol and the set

˘˘
i
˛̨
fi (x; y) = ⊤

¯¯
x;y

is of size at most quasi-polynomial

in n, then the exhaustive-search function F (x; y)
def
=

˘
i
˛̨
fi (x; y) = ⊤

¯
is in PX↔Y (i.e., there is an

efficient deterministic protocol). Note that this statement generalises the equality PNPX↔Y = PX↔Y .

Finally, let g(x; y ; z) : {0; 1}n×{0; 1}n×{0; 1}n → {0; 1} be a tripartite total function. Consider
the following scenarios of deterministically computing g : 4

• Denote by [(X ↔ Y) → Z] the regime where Alice receives x , Bob receives y , Charlie receives
z , Alice and Bob interact in order to produce a message that is sent to Charlie, who must answer

upon receiving it (alternatively, this setting can be viewed as having “broadcasting” interaction

between Alice and Bob, that is, letting Charlie see its transcript).

• Denote by [(X ;Y) → Z] the regime where Alice receives (x; y), Charlie receives z , Alice sends
a message to Charlie, who must answer upon receiving it.

• Denote by [(X ;Z) ↔ (Y ;Z)] the regime where Alice receives (x; z), Bob receives (y; z), they
interact until Bob produces the answer.

For brevity we will say that g(x; y ; z) is efficiently computable in [(X ;Z) ↔ (Y ;Z)] ∩ [(X ;Y) → Z]
if it has efficient protocols in both [(X ;Z) ↔ (Y ;Z)] and [(X ;Y) → Z].

Note that computing a tripartite function in [(X ↔ Y) → Z] is at least as hard as computing it in

[(X ;Z) ↔ (Y ;Z)] ∩ [(X ;Y) → Z]: Assume the existence of an efficient three-player protocol Π in

the setting [(X ↔ Y) → Z], then the existence of an efficient protocol in [(X ;Y) → Z] follows by
“merging” Alice and Bob in Π (i.e., letting them communicate for free) and an efficient protocol in

[(X ;Z) ↔ (Y ;Z)] can be obtained by “merging” Bob and Charlie (the resulting protocol only uses

2 Even though C ⊆ P
X↔Y trivially implies the existence of some efficiently verifiable witness for every answer to a

problem f (x; y) ∈ C , it can be the case that witnessing in accordance with the same NPX↔Y -protocol that establishes the

membership of f in C is not feasible: We will see that there are subsets A;B ⊆ {0; 1}n such that the (total) instance of the

set intersection problem defined over A× B belongs to NP
X↔Y ∩ coNP

X↔Y – therefore to P
X↔Y [AUY83] – while at the

same time finding a presumably existing index i ∈ [n] such that xi = yi = 1 is not only infeasible deterministically, but also

hard for randomised protocols over the uniformly-random input from
˘

(x; y) ∈ A× B
˛

˛∃ i : xi = yi = 1
¯

.
3 Note that the set can, in general, be large, containing as many elements as there are different witnesses in Π.
4 The intuition behind the notation used next is clear: “[(X ;Y) → Z]” means that a holder of X and Y sends a 1-way

message to the holder of Z, “[(X ;Z) ↔ (Y ;Z)]” means that a holder of X and Z is allowed to interact in the 2-way regime

with the holder of Y and Z and so on.

2

even more restricted setting that can be denoted by [X ↔ (Y; Z)], where Alice doesn’t receive Z as

part of her input).

Wewill see that every total function g(x; y ; z) that is efficiently computable in [(X ;Z) ↔ (Y ;Z)]∩
[(X ;Y) → Z] has an efficient protocol in [(X ↔ Y) → Z] as well: this will follow from the possibility

of efficient exhaustive PNPX↔Y -search. In particular, the model of deterministic interactive Alice

and Bob with listening Charlie, [(X ↔ Y) → Z], is as strong qualitatively as the weakest among its

two-party amplifications obtained by allowing free communication between a pair of players.

Related work

For both non-deterministic and randomised setting in the unrestricted interactive three-party case,

Draisma, Kushilevitz and Weinreb [DKW11] have demonstrated an exponential gap between the

communication complexity of a tripartite total function and the largest of its three bipartite complexities

in the amplified models resulting from allowing free communication between a pair of players. The

new three-party result (Section 4) can be viewed as complementary to [DKW11]: it shows that the gap

is at most polynomial in the case of deterministic interactive Alice and Bob with listening Charlie. The

case of three deterministic players with unrestricted interaction remains open.

2 Preliminaries and definitions

We will write [n] to denote the set {1; : : : ; n} ⊂ N. Let (a; b), [a; b], [a; b) and (a; b] denote the
corresponding open, closed and half-open intervals in R. For a finite S ⊂ N we will write S(i) to
address the i’th element of S in natural ordering. For any set S we will denote by pow(S) the family

of its subsets and by
`
S
t

´
the family of size-t subsets. We will write x ⊂∼ S to say that x is a uniformly

random element of S. Towards readability, we will allow both
˘
·
˛̨
·
¯
and

˘
· : ·

¯
to denote sets with

conditions (preferring the former).

For x ∈ {0; 1}n and i ∈ [n], we will write xi or x(i) to address the i’th bit of x (preferring “xi”
unless it may cause ambiguity). Let |x | denote the Hamming weight of x . At times we will implicitly

assume (without causing ambiguity) the trivial isomorphism between the n-bit strings and the subsets

of [n]: in particular, the notation
`[n]
k

´
will stand for

˘
x ∈ {0; 1}n

˛̨
|x | = k

¯
, and x ∩ y will address the

set
˘
i ∈ [n]

˛̨
xi = yi = 1

¯
.

Let ⊥ and ⊤ denote, respectively, the false and the true values: sometimes we will use the Boolean

domain {⊥;⊤} (instead of {0; 1}) to emphasise the intuitive asymmetry between the two values (say,

when the non-deterministic computation is distinguished from the co-non-deterministic one, or if there

is a “clear logical flavour” inherent to the values).

By default the logarithms are base-2.
We will useffffff to denote the assignment operation (e.g., in algorithms).

2.1 Communication complexity

The study of communication complexity was initiated by Abelson [Abe78] in the regime of real-valued

messages and adapted by Yao [Yao79] to the discrete regime that we are interested in. We refer the

reader to [KN97] for a classical background on communication complexity in general, to [GPW18] for

a great survey of the more recent structural developments and to [DKW11] for some insight into the

multi-party communication complexity setting.

3

Unless stated otherwise, the communication problems considered in this work are total functions

(the only exception will be witness-search problems).

We will add the superscript “X↔Y ” to the common notation for a computational complexity

class to denote the corresponding communication complexity class (e.g., PX↔Y or NPX↔Y). The

resulting symbol will be used in three ways: to address the class itself; to address the corresponding

communication model; to denote the complexity of a communication problem in that model (e.g.,

PX↔Y (f) is the deterministic communication complexity of f).
As the standard models PX↔Y and NPX↔Y are of core importance for this work, their definitions

for the case of total functions are given next for the reader’s convenience.

Definition 1 (PX↔Y , deterministic two-party communication). For n ∈ N, let the sets |A|; |B| be such
that max{|A|; |B|} ∈ (2n−1; 2n] and let f : A× B → {0; 1}.

Let Π be a deterministic protocol where

• Alice receives x and Bob receives y ;
• Alice and Bob interact;

• Bob produces the answer.

If the transcript of Π(x; y) contains at most k(n) bits and the protocol computes f (x; y), then we say
that the PX↔Y -complexity of f , denoted by PX↔Y (f), is at most k(n).

We call a protocol efficient if its transcript contains at most poly-log(n) bits and we say that a

function is efficiently computable in PX↔Y if it has an efficient PX↔Y -protocol. We denote by PX↔Y

the class of total bipartite Boolean functions (or, alternatively, the languages of satisfying assignments

to such functions, viewed as predicates) that are efficiently computable in PX↔Y .

Definition 2 (NPX↔Y , non-deterministic two-party communication). LetR be a family of combinatorial

rectangles in A×B, |R| ∈ (2k(n)−1; 2k(n)]. Denote by ΠR the corresponding NPX↔Y -protocol: it has

complexity k(n) and computes the predicate

fR(x; y)
def
=

(
⊤ if (x; y) ∈ r for some r ∈ R;
⊥ otherwise.

For n ∈ N, let the sets |A|; |B| be such thatmax{|A|; |B|} ∈ (2n−1; 2n] and let f : A×B → {⊤;⊥}.
The NPX↔Y -complexity of f , denoted by NPX↔Y (f), equals the minimal complexity of an NPX↔Y -

protocol that computes f (x; y). We denote by NPX↔Y the class of total bipartite Boolean functions (or,

alternatively, the languages of satisfying assignments to such functions, viewed as predicates) whose

NPX↔Y -complexity is at most poly-log(n).

3 Patterned non-determinism

While some of the definitions given next could be naturally generalised to the case of partial bipartite

problems, we keep the notation simple by only considering the total case, which is of interest to us in

this work. That is, the input space will have the product structure A× B.
Definition 3 (Accepting patterns of NPX↔Y -protocols). Let Π be an NPX↔Y -protocol over input

space A× B and let RΠ be the set of its rectangles.

Call

ΓΠ
def
=

ȷn
r ∈ RΠ

˛̨
˛(x; y) ∈ r

o˛̨
˛̨(x; y) ∈ A× B

ff

the family of Π’s accepting patterns.

4

Definition 4 (PNPX↔Y
❁❂

, rectangle-patterned NPX↔Y). For n ∈ N, let the sets |A|; |B| be such that
max{|A|; |B|} ∈ (2n−1; 2n] and let f : A× B → {⊤;⊥}.

Let Π be an NPX↔Y -protocol (of any cost) that computes f such that the corresponding family of

accepting patterns ΓΠ contains at most 2k(n) elements, then we say that the PNPX↔Y
❁❂

-complexity of f ,
denoted by PNPX↔Y

❁❂
(f), is at most k(n).

We denote byPNPX↔Y
❁❂

the class of total bipartite Boolean functions (or, alternatively, the languages

of satisfying assignments to such functions, viewed as predicates) whose PNPX↔Y
❁❂

-complexity is at

most poly-log(n).

Note that the above definition does not require that the NPX↔Y -protocol Π used to witness the

PNPX↔Y
❁❂

-complexity of f is by itself efficient.5

The model PNPX↔Y
❁❂

is a variation of previously studied UPX↔Y , FewPX↔Y
t and FewPX↔Y :

they correspond to restricting Definition 4 by the condition that every ‚ ∈ ΓΠ is of size at most

1, t or poly-log(n), respectively. Trivially, PNPX↔Y
❁❂

is a strengthening of those models (as long

as t ≤ poly-log(n) in the case of FewPX↔Y
t). On the other hand, Yannakakis [Yan91] proved that

UPX↔Y = PX↔Y and later Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened it to

FewPX↔Y = PX↔Y : 6

Fact 1 (FewPX↔Y vs. PX↔Y [KNSW94]). For every total Boolean f : A× B → {⊤;⊥} and t ∈ N,

P
X↔Y (f) ∈ O

“
t2 · FewPX↔Y

t (f)2
”
:

Accordingly, FewPX↔Y = PX↔Y .

In Section 3.1 we will address the question whether PNPX↔Y
❁❂

= PX↔Y .

But there is a noteworthy intuitive difference between PNPX↔Y
❁❂

and the classesUPX↔Y , FewPX↔Y
t

and FewPX↔Y , namely the robustness with respect to interactive verification of the corresponding

definitions. In Definitions 3 and 4 we treat individual rectangles of Π as the NPX↔Y -witnesses, and it

is natural to ask what would happen to the defined models if, instead, we let the deterministic “verifier”

be interactive? That is, let Π′ be an efficient deterministic protocol where Alice receives both x ∈ A
and a witness w ∈ {0; 1}poly-log(n), Bob receives y ∈ B, then they interact and either accept or reject;

say that such Π′ computes the predicate fΠ′(x0; y0) that gets the true value if and only if there exists w0

such that Π′((x0; w0); y0) accepts.
Obviously, fΠ′ ∈ NPX↔Y . If it is additionally guaranteed that ∀ (x; y)

˛̨˘
i
˛̨
fi (x; y) = ⊤

¯˛̨
≤ 1,

≤ t or ≤ poly-log(n), then, respectively, f ∈ UPX↔Y , f ∈ FewPX↔Y
t or f ∈ FewPX↔Y – trivially, as

follows from the respective definitions. The case of PNPX↔Y
❁❂

is probably more interesting, as we see

next.

For every f ∈ NPX↔Y we will assume a disjunctive decomposition f (x; y) = ∨m
i=1fi (x; y), where

every fi represents the computation of the NPX↔Y -protocol for the fixed witness value w = i – that is,

∀ i : fi ∈ PX↔Y .

Definition 5 (Accepting patterns of disjunctions). Let f (x; y) = ∨m
i=1fi (x; y) be defined over

(x; y) ∈ A× B.
5 There are at most |ΓΠ| rectangles that are not covered by other rectangles, so by dropping “meaningless” rectangles

recursively, any Π can be transformed into an equivalent protocol of cost at most log(|ΓΠ|).
6 Remember that all communication problems considered in this paper are total functions (for promise problems the

equalities do not hold in general).

5

Call

Γf
def
=

ȷn
i
˛̨
˛fi (x; y) = ⊤

o˛̨
˛̨(x; y) ∈ A× B

ff

the family of f ’s accepting patterns with respect to the decomposition ∨i fi (x; y) (often implicitly

assumed).

Definition 6 (PNPX↔Y , patterned NPX↔Y). For n ∈ N, let the sets |A|; |B| be such that

max{|A|; |B|} ∈ (2n−1; 2n] and let f : A× B → {⊤;⊥}.
If f has a decomposition

f (x; y) ≡
m_

i=1

fi (x; y);

such that the corresponding family of accepting patterns Γf ⊆ pow([m]) contains at most 2k(n)

elements and ∀ i : PX↔Y (fi) ≤ k(n), then we say that the PNPX↔Y -complexity of f , denoted by

PNPX↔Y (f), is at most k(n). 7

We denote byPNPX↔Y the class of total bipartite Boolean functions (or, alternatively, the languages

of satisfying assignments to such functions, viewed as predicates) whose PNPX↔Y -complexity is at

most poly-log(n).

Obviously, PNPX↔Y
❁❂

⊆ PNPX↔Y . The question whether the two complexity classes are equal

will require our further attention: In particular, the assumption [|Γf | ≤ 2k(n)] doesn’t have immediate

implications regarding the number of possible accepting sets of rectangles in the (assumed) PX↔Y -

protocols for fi-s; what is more, there doesn’t have to exist an efficient witness that [
˘
i
˛̨
fi (x; y) = ⊤

¯
=

s] as long as |s| is large (say, nΩ(1)) – in contrast to the case of PNPX↔Y
❁❂

, where the corresponding

witness would be the intersection of |s| rectangles, thus itself a rectangle. See Section 3.2 (Lemma 2 in

particular).

3.1 Rectangle-patterned non-determinism (PNPX↔Y
❁❂

) vs. determinism (PX↔Y)

Are the complexity classes PNPX↔Y
❁❂

and PX↔Y equal?

Lemma 1. For every total Boolean f : A× B → {⊤;⊥},
P
X↔Y (f) ∈ O

“
PNP

X↔Y
❁❂

(f)2
”
:

Accordingly, PNPX↔Y
❁❂

= PX↔Y .

Proof. LetΠf be anNP
X↔Y -protocol that computes f andwitnesses (cf.Definition 4) thatPNPX↔Y

❁❂
(f) ≤

k(n). Let RΠ be the set of Πf ’s rectangles and ΓΠ ⊆ pow(RΠ) be the corresponding family of

accepting patterns (|ΓΠ| ≤ 2k(n)).
Consider the following PX↔Y -protocol Φ for input (x; y) ∈ A× B:

7 It is not required by the definition, but can be assumed without loss of generality that m ≤ |Γf |: the set
˘

i0 ∈ [m]
˛

˛∃ (x; y) ∈ A× B : fi0(x; y) = ⊤; ∨j ̸=i0 fj(x; y) = ⊥
¯

contains at most |Γf | elements and all other fi-s are

“meaningless” and can be recursively dropped from the decomposition f (x; y) = ∨i fi (x; y) without affecting f (x; y)
(cf. Footnote 5).

6

1. j ffffff 0; A1 ffffff A; B1 ffffff B.
2. • j ffffff j + 1;

• Γj ffffff
n˘

r ∈ RΠ

˛̨
(x ′; y ′) ∈ r

¯˛̨
˛(x ′; y ′) ∈ Aj × Bj

o
:

3. If there exists rA × rB = r ∈ RΠ such that˛̨
˛̨
n
‚ ∈ Γj

˛̨
˛r ∈ ‚

o˛̨
˛̨ ≥ 1

3
·
˛̨
Γj
˛̨
> 0;

then do:

• if (x; y) ∈ r , then output “⊤” and halt;

• if x ̸∈ rA, then let Aj+1 ffffff Aj \ rA, else Aj+1 ffffff Aj ;

• if y ̸∈ rB , then let Bj+1 ffffff Bj \ rB , else Bj+1 ffffff Bj ;

• go to Step 2.

4. If there exists rA × rB = r ∈ RΠ such that x ∈ rA and˛̨
˛̨
n
‚ ∈ Γj

˛̨
˛∀ x ′ ∈ Aj ∩ rA : ∃ r ′A × r ′B ∈ ‚ : x ′ ̸∈ r ′A

o˛̨
˛̨ ≥ 1

3
·
˛̨
Γj
˛̨
> 0;

then do:

• if y ∈ rB , then output “⊤” and halt;

• Aj+1 ffffff Aj ∩ rA;
• Bj+1 ffffff Bj ;

• go to Step 2.

5. If there exists rA × rB = r ∈ RΠ such that y ∈ rB and˛̨
˛̨
n
‚ ∈ Γj

˛̨
˛∀ y ′ ∈ Bj ∩ rB : ∃ r ′A × r ′B ∈ ‚ : y ′ ̸∈ r ′B

o˛̨
˛̨ ≥ 1

3
·
˛̨
Γj
˛̨
> 0;

then do:

• if x ∈ rA, then output “⊤” and halt;

• Aj+1 ffffff Aj ;

• Bj+1 ffffff Bj ∩ rB;
• go to Step 2.

6. Output “⊥” and halt.

We claim that Φ(x; y) has complexity O
`
k(n)2

´
and computes f (x; y).

§1. At the end of Step 2

(x; y) ∈ Aj × Bj

always. In the beginning this is trivially true, and the updates (shrinkages) of A and B in Steps 3, 4

and 5 occur under conditions that guarantee that (x; y) stays inside Aj+1 × Bj+1.

§2. At the end of Step 2

Γj =

ȷn
r ∈ RΠ

˛̨
˛(x ′; y ′) ∈ r

o˛̨
˛̨(x ′; y ′) ∈ Aj × Bj

ff

always.

7

§3. Answer “⊤” is always correct. Indeed, producing such an answer necessarily represents having

found r ∈ RΠ such that (x; y) ∈ r , therefore f (x; y) = ⊤.

§4. Answer “⊥” is always correct. Let j0 be the value of the index j when “⊥” has been produced at

Step 6 and assume towards contradiction that f (x; y) = ⊤ and therefore (x; y) ∈ rA × rB ∈ RΠ. If

|Γj0 | = 0, then the desired contradiction follows readily from §§ 1 and 2, so assume that |Γj0 | > 0.
As the entry condition of Step 3 was unsatisfied, it must be the case that˛̨

˛̨
n
‚ ∈ Γj0

˛̨
˛rA × rB ∈ ‚

o˛̨
˛̨ < 1

3
·
˛̨
Γj0

˛̨
;

and therefore |fΓj0 | > 2=3 · |Γj0 | for
fΓj0

def
=

n
‚ ∈ Γj0

˛̨
˛rA × rB ̸∈ ‚

o
:

Due to §2, ∀ ‚0 ∈ fΓj0 , ∀ (x ′; y ′) ∈ Aj0 × Bj0 :`
∀ r ′ ∈ ‚0 : (x ′; y ′) ∈ r ′

´
=⇒ (x ′; y ′) ̸∈ rA × rB;

that is,

(x ′; y ′) ∈ rA × rB =⇒ ∃ r ′A × r ′B ∈ ‚0 : x ′ ̸∈ r ′A ∨ y ′ ̸∈ r ′B:

As (x ′; y ′) can be any pair from the product set Aj0 × Bj0 , the above readily decomposes into

∀ x ′ ∈ Aj0 ∩ rA : ∃ r ′A × r ′B ∈ ‚0 : x ′ ̸∈ r ′A
_

∀ y ′ ∈ Bj0 ∩ rB : ∃ r ′A × r ′B ∈ ‚0 : y ′ ̸∈ r ′B:

In other words, fΓj0 = fΓAj0 ∪
fΓBj0 (not necessarily disjointly), where

fΓAj0
def
=

n
‚ ∈ Γj0

˛̨
˛∀ x ′ ∈ Aj0 ∩ rA : ∃ r ′A × r ′B ∈ ‚ : x ′ ̸∈ r ′A

o

and

fΓBj0
def
=

n
‚ ∈ Γj0

˛̨
˛∀ y ′ ∈ Bj0 ∩ rB : ∃ r ′A × r ′B ∈ ‚ : y ′ ̸∈ r ′B

o
:

As |fΓj0 | > 2=3 · |Γj0 |, it necessarily holds that |fΓAj0 | > 1=3 · |Γj0 | or |fΓBj0 | > 1=3 · |Γj0 |, and therefore the

entry condition of Step 4 or 5 must have been satisfied, contradicting our assumption that “⊥” was

produced at Step 6.

§5. The protocol makes O(k(n)) iterations. Due to §1, it is guaranteed by the entry conditions and

the actions of Steps 3, 4 and 5 that
˛̨
Γj
˛̨
≤

˛̨
Γj−1

˛̨
· 2=3

at every protocol round j > 1. And we have assumed that |ΓΠ| ≤ 2k(n).

§6. The PX↔Y -complexity of one iteration of the protocol is in O(k(n)). As the protocol proceeds,

both players locally keep track of j , Γj , Aj and Bj . Non-trivial are only Steps 3, 4 and 5, and

it is easy to see that their entry conditions can be checked locally by at least one of the players,

and the actions (basically, checking whether (x; y) ∈ r = rA × rB) require O(log(|RΠ|)) bits of
communication (the cost of sending a “pointer” to r ∈ RΠ), which can be assumed to be in O(k(n))
(cf. Footnote 5). ¨Lemma 1

8

3.2 Patterned non-determinism (PNPX↔Y) vs. determinism (PX↔Y)

As mentioned earlier, the communication model PNPX↔Y is an interesting object of study because, in

particular, the transition from its “rectangular” version PNPX↔Y
❁❂

to the general case looks challenging.8

Lemma 2. For every total Boolean f : A× B → {⊤;⊥},
P
X↔Y (f) ∈ O

“
PNP

X↔Y (f)6
”
:

Accordingly, PNPX↔Y = PNPX↔Y
❁❂

= PX↔Y .

To prove it we will use the following simple “hitting set” statement.

Claim 1. Let Γ ⊆ pow([m]) and t ∈ N be such that

∀ ‚ ∈ Γ : |‚| ≤ 2t:

Then there exists ff ⊆ [m] such that

max
‚∈Γ

˘
|‚ ∩ ff|

¯
≤ 8e + log|Γ|

and ˛̨
˛̨
n
‚ ∈ Γ

˛̨
˛|‚| ≥ t; ‚ ∩ ff ̸= ∅

o˛̨
˛̨ ≥ 1

2
·
˛̨
˛̨
n
‚ ∈ Γ : |‚| ≥ t

o˛̨
˛̨:

Proof. Let ff0 ⊂∼
` [m]
2m=t

´
, then

∀ ‚ ∈ Γ; |‚| ≥ t : P rP rP r
ff0

ˆ
‚ ∩ ff0 = ∅

˜
≤

„
m − t

m

«2m=t

=

„
1− t

m

«2m=t

<
1

4

and

EEE
ff0

"˛̨
˛̨
n
‚ ∈ Γ : |‚| ≥ t; ‚ ∩ ff0 = ∅

o˛̨
˛̨
#
<

1

4
·
˛̨
˛̨
n
‚ ∈ Γ : |‚| ≥ t

o˛̨
˛̨;

so

P rP rP r
ff0

"˛̨
˛̨
n
‚ ∈ Γ : |‚| ≥ t; ‚ ∩ ff0 ̸= ∅

o˛̨
˛̨ ≥ 1

2
·
˛̨
˛̨
n
‚ ∈ Γ : |‚| ≥ t

o˛̨
˛̨
#
>

1

2
: (1)

Denote s
def
= 8e + log|Γ|. As ∀ ‚ ∈ Γ : |‚| ≤ 2t,

∀ ‚ ∈ Γ : P rP rP r
ff0

ˆ
|‚ ∩ ff0| ≥ s

˜
≤

„
2t

s

«
·
„

2m=t

m

«s

≤
„
2et

s
· 2
t

«s

=

„
4e

s

«s

≤ 2−8e

|Γ| ;

that is

P rP rP r
ff0

ˆ
∃ ‚ ∈ Γ : |‚ ∩ ff0| ≥ s

˜
≤ 2−8e :

Together with (1) this implies the result. ¨Claim 1

8 E.g., if we look at the protocol Φ(x; y) from Section 3.1, then, first of all, it is not clear how to efficiently generalise

for the case of PNPX↔Y the entry conditions of Steps 4 and 5; what is more, the logic underlying those conditions (as

represented by the analysis of Φ) doesn’t seem to generalise readily.

9

Proof of Lemma 2. Let

f (x; y) ≡
m_

i=1

fi (x; y)

be a decomposition that witnesses (cf. Definition 6) that PNPX↔Y (f) ≤ k(n). Let Γf ⊆ pow([m]) be
the corresponding family of accepting patterns (|Γf | ≤ 2k(n)). Assume without loss of generality that

m ≤ |Γf | (cf. Footnote 7). For every i ∈ [m], let Πi be a P
X↔Y -protocol of complexity at most k(n)

that computes fi (x; y) and let Ri be the set of Πi ’s accepting rectangles (|Ri | ≤ 2k(n)). Denote for any
non-empty s ⊆ [m]:

Rs
def
=

n
r1 ∩ · · · ∩ r|s|

˛̨
˛rl ∈ Rs(l) for 1 ≤ l ≤ |s|

o
;

that is, Rs is the family of rectangle intersections – therefore rectangles themselves – that witness

[
V

i∈s fi (x; y)] for (x; y) ∈ A× B. Clearly, |Rs | ≤ 2|s|·k(n).
Consider the following PX↔Y -protocol Ψ for input (x; y) ∈ A× B:

1. j ffffff 0; A1 ffffff A; B1 ffffff B; s0 ffffff max‚∈Γf {|‚|}; ff0 ffffff ∅.
2. • j ffffff j + 1;

• Γj ffffff
n˘

i
˛̨
fi (x

′; y ′) = ⊤
¯˛̨
˛(x ′; y ′) ∈ Aj × Bj

o
:

3. If Γj = {∅}, then output “⊥” and halt.

4. If
˘
‚ ∩ ffj−1

˛̨
‚ ∈ Γj

¯
= {∅}, then do:

• if Γj ∩ [sj−1=2; sj−1] = ∅, then let sj ffffff max‚∈Γj{|‚|}, else sj ffffff sj−1;

• let ffj ⊆ [m] be (as guaranteed by Claim 1) such that˛̨
˛̨
n
‚ ∈ Γj ∩ [sj=2; sj]

˛̨
˛‚ ∩ ffj ̸= ∅

o˛̨
˛̨ ≥ 1

2
·
˛̨
Γj ∩ [sj=2; sj]

˛̨

and

max
‚∈Γj

n˛̨
‚ ∩ ffj

˛̨o
≤ 8e + log

˛̨
Γj
˛̨
;

else:

• sj ffffff sj−1;

• ffj ffffff ffj−1.

5. • tj ffffff max‚∈Γj{|‚ ∩ ffj |};
• ∆j ffffff

˘
‚ ∩ ffj : ‚ ∈ Γj ; |‚ ∩ ffj | = tj

¯
;

• Πj ffffff
˘
Aj × Bj ∩ r

˛̨
r ∈ R‹ for ‹ ∈ ∆j

¯
\
˘
∅
¯
;

• Π
A
j ffffff

ȷ
rA × rB ∈ Πj :

˛̨
˛
˘
r ′A × r ′B ∈ Πj : rA ∩ r ′A = ∅

¯˛̨
˛ ≥ |Πj |−1

2

ff
;

• Π
B
j ffffff

ȷ
rA × rB ∈ Πj :

˛̨
˛
˘
r ′A × r ′B ∈ Πj : rB ∩ r ′B = ∅

¯˛̨
˛ ≥ |Πj |−1

2

ff
:

6. If there exists rA × rB ∈ Π
A
j such that x ∈ rA, then do:

• if y ∈ rB , then output “⊤” and halt;

• Aj+1 ffffff Aj ∩ rA;
• Bj+1 ffffff Bj \ rB;
• go to Step 2.

7. If there exists rA × rB ∈ Π
B
j such that y ∈ rB , then do:

10

• if x ∈ rA, then output “⊤” and halt;

• Aj+1 ffffff Aj \ rA;
• Bj+1 ffffff Bj ∩ rB;
• go to Step 2.

8. • Aj+1 ffffff Aj \
S

rA×rB∈Π
A
j
rA;

• Bj+1 ffffff Bj \
S

rA×rB∈Π
B
j
rB;

• go to Step 2.

We claim that Ψ(x; y) has complexity O
`
k(n)6

´
and computes f (x; y).

In the following analysis we call a j-indexed value (e.g., sj or ffj) unchanged as long as the next

round’s value is the same as the last round’s (e.g., due to assignments like sj ffffff sj−1 or ffj ffffff ffj−1).

Otherwise we will say that the corresponding value changes at round j .

§1. At the end of Step 2

(x; y) ∈ Aj × Bj

always. In the beginning this is trivially true. The updates (shrinkages) of A and B in Steps 6 and 7

occur under conditions that guarantee that (x; y) stays inside Aj+1 × Bj+1. The updates in Step 8

occur only if the entry conditions of both Steps 6 and 7 were unsatisfied, which also guarantees that

(x; y) stays inside.

§2. At the end of Step 2

Γj =

ȷn
i
˛̨
˛fi (x ′; y ′) = ⊤

o˛̨
˛̨(x ′; y ′) ∈ Aj × Bj

ff

always.

§3. Answer “⊤” is always correct. Indeed, producing such an answer necessarily represents having

found r ∈ Rs for some non-empty s ⊆ [m] such that (x; y) ∈ r – that is, the input pair is inside a

non-empty intersection of Πi ’s accepting rectangles, so f (x; y) = fi (x; y) = ⊤.

§4. Answer “⊥” is always correct. Answering “⊥” in Step 3 is conditioned upon [Γj = {∅}], due to
§§ 1 and 2 this implies that f (x; y) = ⊥.

§5. The value of sj changes at most log|Γf | times. This can only happen in Step 4 if the condition

[Γj ∩ [sj−1=2; sj−1] = ∅] is satisfied. We have s0 = max‚∈Γf {|‚|} ≤ m ≤ |Γf | and every time sj
changes, it is necessarily the case both that sj < sj−1=2 and sj > 0 (the latter is due to the check in

Step 3).

§6. While sj remains unchanged, ffj changes at most log|Γf |+ 1 times. The change can happen

only in Step 4 if the condition
ˆ˘
‚ ∩ ffj−1

˛̨
‚ ∈ Γj

¯
= {∅}

˜
is satisfied. As long as the value of sj

remains unchanged, every redefinition of ffj results in
˘
‚ ∩ ffj

˛̨
‚ ∈ Γj

¯
containing at least half of

Γj ∩ [sj−1=2; sj−1], and if Γj changes, then its content necessarily shrinks – accordingly, there can be at

most log|Γj |+ 1 ≤ log|Γf |+ 1 redefinitions of ffj for the same value of sj .

11

§7. While ffj and sj remain unchanged, the value of tj either remains unchanged or decreases

(Step 5); tj ≤ 8e + log|Γf | always.

§8. While ffj , sj and tj remain unchanged, the protocol makes O
`
k(n)2

´
iterations. Intuitively, in

this situation our protocol solves with respect to (x; y) ∈ Aj × Bj the problem

accept if

˛̨
˛̨
n
i ∈ ffj

˛̨
˛fi (x; y) = ⊤

o˛̨
˛̨ = tj ;

while it is guaranteed by definition that

∀ (x ′; y ′) ∈ Aj × Bj :

˛̨
˛̨
n
i ∈ ffj

˛̨
˛fi (x ′; y ′) = ⊤

o˛̨
˛̨ ≤ tj : (2)

Then ∆j is the set of accepting patterns (in the sense analogous to Definition 5, but with “
W
” replaced

by tj -threshold) and Πj is the corresponding family of witnessing rectangle intersections, therefore

rectangles themselves. As the updates only can shrink the sets Aj and Bj , also the family Πj only

shrinks while ffj , sj and tj remain unchanged.

We claim that Πj = Π
A
j ∪ Π

B
j (not necessarily disjointly). Towards contradiction, assume the

opposite and let rA× rB ∈ Πj \ΠA
j \ΠB

j , then there exists r
′
A× r ′B ∈ Πj such that r

′
A× r ′B ̸= rA× rB but

r ′A×r ′B∩rA×rB ̸= ∅. Let (x0; y0) ∈ r ′A×r ′B∩rA×rB , rA×rB = Aj×Bj∩r and r ′A×r ′B = Aj×Bj∩r ′
for r ∈ R‹ , r

′ ∈ R‹′ and ‹; ‹
′ ∈ ∆j . If ‹ = ‹′, then r and r ′ are distinct elements of

R‹ =
n
r1 ∩ · · · ∩ r|s|

˛̨
˛rl ∈ R‹(l) for 1 ≤ l ≤ |‹|

o
;

contradicting the assumption that each Ri is the set of accepting rectangles in a deterministic protocol

(whose rectangles are therefore disjoint). If, on the other hand, ‹ ̸= ‹′, then ‹ ∪ ‹′ is a subset ofn
i ∈ ffj

˛̨
˛fi (x0; y0) = ⊤

o
;

contradicting (2), as |‹ ∪ ‹′| > tj . So,

Πj = Π
A
j ∪ Π

B
j : (3)

Now assume that at round j + 1 the values of ffj+1, sj+1 and tj+1 remain unchanged. There are

cases to consider.

If the instruction “go to Step 2” has been performed at Step 6 of round j (the case of Step 7 is

similar), then x ∈ rA such that
˛̨
˛̨
n
r ′A × r ′B ∈ Πj : rA ∩ r ′A = ∅

o˛̨
˛̨ ≥

˛̨
Πj

˛̨
− 1

2
:

As Πj+1 =
˘
Aj+1 × Bj+1 ∩ r

˛̨
r ∈ R‹; ‹ ∈ ∆j+1

¯
\ {∅}, the assignment Aj+1 ffffff Aj ∩ rA at Step 6

of round j has “removed” at least (|Πj |−1)=2 elements fromΠj+1 in comparison toΠj , and the assignment

Bj+1 ffffff Bj \ rB has removed at least one more (as rA × rB ∈ Πj). Overall, |Πj+1| ≤ |Πj |=2.
If, on the other hand, “go to Step 2” has been performed at Step 8 of round j , then the preceding

assignments Aj+1 ffffff Aj \
S

rA×rB∈Π
A
j
rA and Bj+1 ffffff Bj \

S
rA×rB∈Π

B
j
rB guarantee – along with

(3) – that |Πj+1| = ∅ (which, in fact, contradicts our assumption that ffj , sj and tj remain unchanged at

round j + 1).
Accordingly, while ffj , sj and tj remain unchanged since round j0, the protocol can make only

O(log|Πj0 |) iterations. Since∆j0 ⊆
`
[m]
tj0

´
and |Πj0 | ≤

P
‹∈∆j0

|R‹| by definition, it holds – as required

12

– that
˛̨
Πj0

˛̨
≤ 2tj0 ·k(n) ·

˛̨
∆j0

˛̨
≤ 2O(k(n)

2);

as tj0 ≤ 8e + log|Γj0 | and |∆j0 | ≤ |Γj0 | ≤ |Γf | ≤ 2k(n).

§9. The protocol makes O
`
k(n)5

´
iterations. Follows readily from §§ 5, 6, 7 and 8.

§10. The PX↔Y -complexity of one iteration of the protocol is in O(k(n)). To agree upon the value

of ffj in Step 4, the players can, for instance, always pick the lexicographically first suitable candidate

(which can be done locally as long as Γj and sj are known to both players). The rest is very similar to

the case of Φ(x; y) in the proof of Lemma 1. ¨Lemma 2

3.3 Efficient exhaustive witness-searching in PNP
X↔Y

Assume that certain communication complexity subclass C ⊆ NPX↔Y is inside PX↔Y for the case of

total functions (but not, in general, for the partial-functions case): as discussed earlier, some examples of

such subclasses areNPX↔Y ∩coNPX↔Y ,UPX↔Y , FewPX↔Y andPNPX↔Y . Let f : A×B → {⊤;⊥}
belong to C , does it necessarily follow that NPX↔Y -witnesses for every (x; y) ∈ f −1(⊤) can be

efficiently found?

The answer depends on the precise notion of witness that we have in mind. In particular, as

f ∈ C ⊆ PX↔Y , there is an efficient deterministic protocol that computes f and the transcript of that

protocol on any input (x0; y0) “witnesses” the value of f (x0; y0).
On the other hand, we may consider a specific “canonical” NPX↔Y -protocol Π′ for f that witnesses

the membership f ∈ C (recall that C is a subclass of NPX↔Y) – is it necessarily the case that finding

a valid Π
′-witness for every (x; y) ∈ f −1(⊤) can be done efficiently?

It is so indeed for the cases of UPX↔Y and FewPX↔Y : if Π′ computes f with at most poly-log(n)
distinct witnesses, then a Π′-witness for every (x; y) ∈ f −1(⊤) can be found via essentially the same

PX↔Y -protocol that is used in the proof of “FewPX↔Y = PX↔Y ”.

It is very similar for PNPX↔Y :

Corollary 1. Let f : A× B → {⊤;⊥} be of PNPX↔Y -complexity at most k(n), as witnessed via
the decomposition f (x; y) = ∨m

i=1fi (x; y).
Then there exists a deterministic protocol of cost O

`
k(n)6

´
that receives an input pair (x0; y0) ∈

A× B such that f (x0; y0) = ⊤ and outputs some i0 such that fi0(x0; y0) = ⊤.

Proof. The protocol Ψ from the proof of Lemma 2 finds such i0 whenever it outputs “⊤” (cf. §3 of

that proof). ¨Corollary 1

The situation is different in the case of C = NPX↔Y ∩ coNPX↔Y (it was shown by Aho, Ullman

and Yannakakis [AUY83] that the class was equal to PX↔Y). In [Gav20] subsets A;B ⊆
` [n]

n3=5

´
were

presented such that ∀x ∈ A; y ∈ B : x ∩ y ̸= ∅, but finding an element from the intersection in a

uniformly-random pair (x; y) ∈ A× B required a randomised communication protocol of complexity

Ω
`

5
√
n
´
. If we define A′ def= A ∪ {∅}, this will result in a (somewhat) non-trivial instance of the set

intersection problem with respect to (x; y) ∈ A′ × B. We can apply the following reasoning:

• the problem is in NPX↔Y : denote by Π the NPX↔Y -protocol that accepts (x; y) if and only if it

receives some i ∈ x ∩ y as a witness;

13

• the problem is in coNPX↔Y , as x ∩ y = ∅ only happens when x = ∅ and this condition can be
easily checked even without a witness;

• due to [AUY83], the corresponding set intersection problem is inNPX↔Y ∩coNPX↔Y = PX↔Y ;

• nevertheless, given an input pair (x; y) such that x ∩ y ̸= ∅, finding a valid witness for Π(x; y)
cannot be done efficiently (even by a randomised protocol).

Can we strengthen Lemma 2 and Corollary 1 even further? Namely, if the membership f ∈
PNPX↔Y is established via considering the decomposition f (x; y) = ∨m

i=1fi (x; y), can we efficiently

find for every given input (x; y) ∈ f −1(⊤) the exhaustive list of the corresponding NPX↔Y -witnesses,

that is, the exact content of
˘
i
˛̨
fi (x; y) = ⊤

¯
?

Note that a positive answer wouldn’t follow trivially from the repeated application of the efficient

witness-finding protocol of Corollary 1: unlike FewPX↔Y , PNPX↔Y allows arbitrarily large sets

of witnesses for the same (x; y) ∈ f −1(⊤), and therefore such repeated application until all valid

witnesses are exhausted can be inefficient. On the other hand, efficiency considerations do not readily

lead to the negative answer either: Π is a PNPX↔Y -protocol and therefore it admits at most 2poly-log(n)

different patters (that is, possible exhaustive sets of valid witnesses) – accordingly, a deterministic

protocol of complexity poly-log(n) can have enough distinct “leaves” for returning every answer at

least once (each protocol leaf is marked by the corresponding answer and every possible pattern must

be the answer corresponding to at least one leaf).

As f itself is less relevant for the problem of exhaustive witness-searching, we are switching to the

functions fi as our primary objects of concern.

Theorem 1 (Efficient exhaustive PNPX↔Y -search). Let f1(x; y); : : : ; fm(x; y) : A× B → {⊤;⊥}
be such that ∀ i : PX↔Y (fi) ≤ k(n) and˛̨

˛̨
˛

ȷn
i ∈ [m]

˛̨
˛fi (x; y) = ⊤

o
: (x; y) ∈ A× B

ff˛̨
˛̨
˛ ≤ 2‘(n): 9

Then there exists a deterministic protocol of cost O
`
k(n)6 · ‘(n)

´
that receives an input pair

(x0; y0) ∈ A× B and outputs the set
˘
i
˛̨
fi (x0; y0) = ⊤

¯
.

That is, the exhaustive-search function F (x; y)
def
=

˘
i
˛̨
fi (x; y) = ⊤

¯
is in PX↔Y if f (x; y) ≡

∨m
i=1fi (x; y) is a bipartite total function in PNPX↔Y . The statement is optimal from the structural

perspective: if fi-s were not in PX↔Y , then F would not be there either; on the other hand, any

deterministic protocol for F must have at least

˛̨
˛
˘˘

i
˛̨
fi (x; y) = ⊤

¯¯
x;y

˛̨
˛ leaves (as discussed above).

Proof. Consider the following PX↔Y -protocol Ξ for input (x; y) ∈ A× B:

1. j ffffff 0; Γ1 ffffff
˘˘

i ∈ [m]
˛̨
fi (x; y) = ⊤

¯
: (x; y) ∈ A× B

¯
.

2. • j ffffff j + 1;

• W
+
j ffffff

ȷ
i ∈ [m]

˛̨
˛̨
˛̨
˛
˘
‚ ∈ Γj

˛̨
i ∈ ‚

¯˛̨
˛ ≥ |Γj |=2

ff
;

• W
−
j ffffff [m] \ W

+
j .

3. If for some i0 ∈ W
−
j it holds that fi0(x; y) = ⊤, then do:

• Γj+1 ffffff
˘
‚ ∈ Γj

˛̨
i0 ∈ ‚

¯
;

• go to Step 2.

9 Here m can be any function of n, cf. Footnotes 5 and 7.

14

4. If for some i0 ∈ W
+
j it holds that fi0(x; y) = ⊥, then do:

• Γj+1 ffffff
˘
‚ ∈ Γj

˛̨
i0 ̸∈ ‚

¯
;

• go to Step 2.

5. OutputW+
j and halt.

We claim thatΞ(x; y) has complexityO
`
k(n)6 · ‘(n)

´
and outputs the setF (x; y) =

˘
i
˛̨
fi (x; y) = ⊤

¯
.

§1. At the end of Step 2 n
i
˛̨
˛fi (x; y) = ⊤

o
∈ Γj

always. In the beginning this is trivially true, and the updates (shrinkages) of Γ in Steps 3 and 4

occur under conditions that guarantee that
˘
i
˛̨
fi (x; y) = ⊤

¯
stays inside Γj+1.

§2. The answer is always correct. If the conditions of steps both 3 and 4 where unsatisfied, then it

must be the case that

W+
j =

n
i
˛̨
˛fi (x; y) = ⊤

o

in Step 5.

§3. The protocol makes O(‘(n)) iterations. It follows from the definitions ofW+
j and W−

j that
˛̨
Γj+1

˛̨
≤ |Γj |=2

if the condition of either Step 3 or Step 4 is satisfied, §1 guarantees that Γj ̸= ∅ and it is assumed by

the theorem statement that |Γ1| ≤ 2‘(n).

§4. The PX↔Y -complexity of one iteration of the protocol is in O
`
k(n)6

´
. To perform the check

of Step 3 we use the protocol guaranteed by Corollary 1 with respect to

f ′(x; y)
def
= ∨m

i∈W−
j
fi (x; y);

and for the check in Step 4 we use it with

f ′′(x; y)
def
= ∨m

i∈W+
j
¬fi (x; y);

where ¬fi (·; ·) stands for the negation of the predicate fi (·; ·). Clearly, the functions f ′; f ′′ : A× B →
{⊤;⊥} satisfy the requirements of Corollary 1 and the corresponding i0 meets the needs of Steps 3

and 4, respectively. ¨Theorem 1

4 Three-party communication with listening Charlie

Let g(x; y ; z) : A×B×C → {0; 1} be a tripartite total function.10 The three input values will always

be partitioned according to the “number in hand” input partition, that is, Alice receives x , Bob receives

10 We are now using {0; 1} as the default range in the definitions of the communication problems (as opposed to the

previously used {⊤;⊥}) as they no longer possess any “logical asymmetry”: in the constructions of Section 3 that resulted

from the asymmetry in the standard notion of computational non-determinism. Moreover, the results of this part would

remain valid if the considered problem were a tripartite total function with any range (the proof of Theorem 2 would be

based on the same idea but phrased somewhat differently if

˛

˛

˛
{g(x; y ; z)}x;y;z

˛

˛

˛
∈ !(1)).

15

y and Charlie receives z .
The only three-party communication regime that we will consider in this work is deterministic,

therefore we will drop “PX↔Y ” and only depict the “communication layout” of each model in the

corresponding notation. For that we will deliberately use a not-too-abbreviated, but hopefully, rather

intuitive layout representation (cf. Footnote 4).

Definition 7 ([(X ↔ Y) → Z], interacting Alice and Bob with listening Charlie). For n ∈ N, let the

sets |A|; |B|; |C| be such that max{|A|; |B|; |C|} ∈ (2n−1; 2n] and let g : A× B × C → {0; 1}.
Let Π be a deterministic protocol where

• Alice receives x , Bob receives y and Charlie receives z;
• Alice and Bob interact in the broadcasting regime, that is, Charlie receives the transcript of their

communication;

• Charlie produces the answer.

If the transcript of Π(x; y ; z) contains at most k(n) bits and the protocol computes g(x; y ; z), then we

say that the [(X ↔ Y) → Z]-complexity of g is at most k(n). We say that g is efficiently computable

in [(X ↔ Y) → Z] if its complexity in the model is at most poly-log(n).
Alternatively, the model [(X ↔ Y) → Z] can be described as letting Alice and Bob interact in

order to produce a message that is sent to Charlie, who must answer upon receiving it.

The following models could be pictured as “merging” a pair of players (or allowing free commu-

nication between them). In those cases we will address the merged player by the name of the first

individual (e.g., “Alice+Bob” – the player who receives input (x; y) – will be called Alice and so on).

Definition 8 ([(X ;Y) → Z]). An [(X ;Y) → Z]-protocol is a deterministic protocol where

• Alice receive (x; y); Charlie receives z;
• Alice send a message to Charlie;

• Charlie produces the answer.

If it computes g : A×B × C → {0; 1}, then we say that the [(X ;Y) → Z]-complexity of g is at most

the maximum number of bits sent by this protocol for the given input length. The notion of efficiency for

[(X ;Y) → Z] is similar to that for [(X ↔ Y) → Z] (cf. Definition 7).

Definition 9 ([(X ;Z) ↔ (Y ;Z)]). An [(X ;Z) ↔ (Y ;Z)]-protocol is a deterministic protocol where

• Alice receives (x; z) and Bob receives (y; z);
• they interact;

• Bob produces the answer.

If it computes g : A× B × C → {0; 1}, then we say that the [(X ;Z) ↔ (Y ;Z)]-complexity of g is

at most the maximum number of bits sent by this protocol for the given input length. The notion of

efficiency for [(X ;Z) ↔ (Y ;Z)] is similar to that for [(X ↔ Y) → Z] (cf. Definition 7).

Definition 10 ([(X ;Z) ↔ (Y ;Z)] ∩ [(X ;Y) → Z]). For n ∈ N, let the sets |A|; |B|; |C| be such that

max{|A|; |B|; |C|} ∈ (2n−1; 2n] and let g : A× B × C → {0; 1}.
The [(X ;Z) ↔ (Y ;Z)]∩ [(X ;Y) → Z]-complexity of g is the maximum of its [(X ;Z) ↔ (Y ;Z)]-

and [(X ;Y) → Z]-complexities; if that is at most poly-log(n), then we say that g is efficiently

computable in [(X ;Z) ↔ (Y ;Z)] ∩ [(X ;Y) → Z].

Recall that the models both [(X ;Z) ↔ (Y ;Z)] and [(X ;Y) → Z] can be viewed as amplifications
of [(X ↔ Y) → Z] obtained via letting a pair of players communicate for free; accordingly, solving a

16

communication problem in [(X ↔ Y) → Z] is at least as hard as solving it in [(X ;Z) ↔ (Y ;Z)] ∩
[(X ;Y) → Z].

Theorem 2. Let g : A× B × C → {0; 1} be a tripartite total function whose [(X ;Z) ↔ (Y ;Z)]-
complexity is k(n) and [(X ;Y) → Z]-complexity is ‘(n), then the [(X ↔ Y) → Z]-complexity of g is

in O
`
k(n)6 · ‘(n)

´
. In particular, g(x; y ; z) has an efficient [(X ↔ Y) → Z]-protocol if and only if it

is efficiently computable in [(X ;Z) ↔ (Y ;Z)] ∩ [(X ;Y) → Z].

Proof. As both [(X ;Z) ↔ (Y ;Z)] and [(X ;Y) → Z] are amplifications of [(X ↔ Y) → Z], the
existence of an efficient protocol in the latter model trivially implies efficient computability in

[(X ;Z) ↔ (Y ;Z)] ∩ [(X ;Y) → Z].

Consider an [(X ;Y) → Z]-protocol Π1 and let ¸x;y ∈ {0; 1}‘(n) denote the message sent by Alice

to Charlie when her input is (x; y) ∈ A× B. 11 As receiving this message allows Charlie to compute

g(x; y ; z), every possible message ¸x;y corresponds to a function C → {0; 1}: this function is the

description of Charlie’s behaviour when he receives the corresponding message from Alice and z ∈ C
as input.

For every z0 ∈ C, let

fz0(x; y)
def
=

(
⊤ if g(x; y ; z0) = 1;
⊥ otherwise.

We will apply Theorem 1 to the family (fz)z∈C. On the one hand, the PX↔Y -complexity of fz0(x; y) is
the [(X ;Z) ↔ (Y ;Z)]-complexity of computing g(x; y ; z0) when (x; y) ∈ A× B, which is at most

k(n). On the other hand, for every (x0; y0) ∈ A× B it holds thatn
z ∈ C

˛̨
˛fz(x0; y0) = ⊤

o
=

n
z
˛̨
˛g(x0; y0; z) = 1

o
=

n
z
˛̨
˛¸x0;y0(z) = 1

o
;

where we let “¸x0;y0(·)” stand for the function in C → {0; 1} that the corresponding message represents,

as discussed above. Accordingly, every such set corresponds to some ¸x;y ∈ {0; 1}‘(n) and˛̨
˛̨
˛

ȷn
z ∈ C

˛̨
˛fz(x0; y0) = ⊤

o
: (x0; y0) ∈ A× B

ff˛̨
˛̨
˛ ≤ 2‘(n):

Theorem 1 guarantees the existence of a deterministic bipartite protocol of cost O
`
k(n)6 · ‘(n)

´

that receives (x; y) ∈ A× B and computes the set
˘
z0 ∈ C

˛̨
fz0(x; y) = ⊤

¯
. In our [(X ↔ Y) → Z]-

protocol Alice and Bob will use that procedure, then send to Charlie some ¸x ′;y ′ ∈ {0; 1}‘(n) that
corresponds to that set, that is,n

z0 ∈ C
˛̨
˛fz0(x; y) = ⊤

o
=

n
z0

˛̨
˛¸x ′;y ′(z0) = 1

o
:

Upon receiving it, Charlie, who knows z , will answer with ¸x ′;y ′(z) = g(x; y ; z). ¨Theorem 2

5 Conclusions

The study of communication complexity was initiated by Abelson [Abe78], it was aimed at “assessing

the complexity of computations carried out in distributed networks”. Since then our understanding of

the area has somewhat advanced, so it may be desirable to summarise the achievement and to identify

11 Recall that we are addressing “merged” players by the name of the first included individual.

17

new interesting directions. This work has been motivated both by the original question due to P. Hrubeš

and by the latter goal.

We saw a new structural result in the context of bipartite communication complexity of total

functions: on the one hand, it could be viewed as a rather natural generalisation of what was known

previously; on the other hand, it had somewhat non-trivial implications for the multi-party case.12 The

main theme of this work was looking for limitations that were imposed by the assumed total structure

of the communication problem upon the “structural diversity” of communication complexity classes:

• in the two-party case we’ve seen that the newly defined class PNPX↔Y – a generalisation

of previously studied UPX↔Y and FewPX↔Y – admits efficient deterministic protocols, i.e.,

PNPX↔Y ⊆ PX↔Y ;

• in the multi-party case we’ve seen that the class of tripartite total functions efficiently computable

by deterministic interacting Alice and Bob with listening Charlie (the model that we denoted by

[(X ↔ Y) → Z]) equals the weakest among its two-party amplifications obtained by allowing

free communication between a pair of players.

Previously known examples of such limitations areNPX↔Y ∩coNPX↔Y ⊆ PX↔Y [AUY83],UPX↔Y ⊆
PX↔Y [Yan91] and FewPX↔Y ⊆ PX↔Y [KNSW94]. None of these five inclusions (in fact, equalities)

among the classes would hold if the functions to be computed were not total.

From the combinatorial standpoint, the case of total functions is very natural in the context of

communication complexity. What other structural implications does it have? In particular, what are

the “strengths of determinism” that are exclusive for total functions?

Acknowledgements

I am grateful to Pavel Hrubeš both for the original motivating question and for numerous insightful

discussions. A number of very useful suggestions, both technical and editorial, have been received

from colleagues and anonymous reviewers.

References

[Abe78] H. Abelson. Lower Bounds on Information Transfer in Distributed Computations.

Proceedings of the 19th Annual Symposium on Foundations of Computer Science, pages

151–158, 1978.

[AUY83] A. Aho, J. Ullman, and M. Yannakakis. On Notions of Information Transfer in VLSI

Circuits. Proceedings of the 15th Symposium on Theory of Computing, pages 133–139,

1983.

[DKW11] J. Draisma, E. Kushilevitz, and E. Weinreb. Partition arguments in multiparty communi-

cation complexity. Theoretical Computer Science 412(24), pages 2611–2622, 2011.

[Gav20] D. Gavinsky. The Communication Complexity of the Inevitable Intersection Problem.

Chicago Journal of Theoretical Computer Science, article 3, 2020.

[GPW18] M. Göös, T. Pitassi, and T. Watson. The Landscape of Communication Complexity

Classes. Computational Complexity 27(2), pages 245–304, 2018.

12 The three-party construction from Section 4 can possibly be generalised for more participants.

18

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,

1997.

[KNSW94] M. Karchmer, I. Newman, M. Saks, and A. Wigderson. Non-deterministic Communication

Complexity with Few Witnesses. Journal of Computer and System Sciences 49(2), pages

247–257, 1994.

[Yan91] M. Yannakakis. Expressing Combinatorial Optimization Problems by Linear Programs.

Journal of Computer and System Sciences 43(3), pages 441–466, 1991.

[Yao79] A. C-C. Yao. Some Complexity Questions Related to Distributive Computing. Proceedings

of the 11th Symposium on Theory of Computing, pages 209–213, 1979.

19

	Introduction
	Preliminaries and definitions
	Communication complexity

	Patterned non-determinism
	Rectangle-patterned non-determinism vs. determinism
	Patterned non-determinism vs. determinism
	Efficient exhaustive witness-searching in PNP

	Three-party communication with listening Charlie
	Conclusions
	Acknowledgements
	References

