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ABSTRACT
Motivation: Genomics and proteomics studies routinely
depend on homology searches based on the strategy of
finding short seed matches which are then extended. The
exploding genomic data growth presents a dilemma for
DNA homology search techniques: increasing seed size
decreases sensitivity whereas decreasing seed size slows
down computation.
Results: We present a new homology search algorithm
‘PatternHunter’ that uses a novel seed model for in-
creased sensitivity and new hit-processing techniques for
significantly increased speed. At Blast levels of sensitivity,
PatternHunter is able to find homologies between se-
quences as large as human chromosomes, in mere hours
on a desktop.
Availability: PatternHunter is available at http://www.
bioinformaticssolutions.com, as a commercial package. It
runs on all platforms that support Java. PatternHunter
technology is being patented; commercial use requires a
license from BSI, while non-commercial use will be free.
Contact: mli@cs.ucsb.edu

INTRODUCTION
We are interested in faster and more sensitive methods
for finding all approximate repeats or homologies in one
DNA sequence or between two DNA sequences, as per-
formed by the popular Blastn (Altschul et al., 1990) pro-
gram. One particular application of this task is in com-
parative genomics where large genomes or chromosomes
such as the human one (International Human Genome Se-
quencing Consortium, 2001; Venter et al., 2001) need to
be compared.

Many programs have been developed for the task. These
include FASTA (Lipman and Pearson, 1985), SIM (Huang
and Miller, 1991), the Blast family (Altschul et al., 1990;
Gish, 2001; Altschul et al., 1997; Zhang et al., 2000;
Tatusova and Madden, 1999), SENSEI (States, 2000),

MUMmer (Delcher et al., 1999), QUASAR (Burkhardt et
al., 1999), and REPuter (Kurtz and Schleiermacher, 1999).

Smith–Waterman alignment which compares all bases
against all bases is clearly too slow. Two lines of approach
lead to improvements. The first is exemplified by Blast,
which is used routinely by thousands of scientists. This
approach finds short exact ‘seed’ matches (hits), which
are then extended into longer alignments. However, when
comparing two very long sequences, FASTA, SIM, Blastn
(BL2SEQ), WU-Blast, and Psi-Blast run very slow and
need large amounts of memory. SENSEI is somewhat
faster and uses much less memory than the above pro-
grams, but is currently limited to ungapped alignments.
MegaBlast runs quite efficiently with its default gap scores
and large seed length of 28 but turns out to have worse
output quality and doesn’t scale as well to huge sequences.

Another line of approach, exemplified by MUMmer,
QUASAR and REPuter, uses suffix trees. Suffix trees
suffer from two problems: they are meant to deal with
precise matches and are limited to comparison of highly
similar sequences (Delcher et al., 1999; Burkhardt et al.,
1999; Kurtz and Schleiermacher, 1999). They are very
awkward in handling mismatches. The second problem
with suffix trees is that they have an intrinsic large space
requirement.

We introduce novel seeding schemes and hit-processing
methods, which are implemented in our program Pattern-
Hunter. On a modern desktop, its running time ranges
from seconds for prokaryotic genomes to minutes for
Arabidopsis chromosomes to hours for human chromo-
somes, with very modest memory use, and at provably
higher sensitivity than the default Blastn.

SELECTING GOOD SEEDS: EXPECT LESS TO
GET MORE
A dilemma for a Blast type of search is that large seeds
lose distant homologies while small ones creates too many
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random hits which slow down the computation. We use a
new idea that allows us to have a higher probability of a
hit in a homologous region, even while having somewhat
lower expected number of random hits.

Blast looks for matches of k (default k = 11 in Blastn
and k = 28 in MegaBlast) consecutive letters as seeds.
Instead we propose to use nonconsecutive k letters as
seeds. We call the relative positions of the k letters a
model, and k its weight.

This seemingly simple change has a surprisingly large
effect on sensitivity. An appropriately chosen model can
have a significantly higher probability of having at least
one hit in a homologous region, compared to Blast’s
consecutive seed model, even while having a lower
expected number of hits†. For example, in a region of
length 64 with 70% identity, Blast’s consecutive weight 11
model has a 0.30 probability of having at least one
hit in the range, while a nonconsecutive model of the
same weight has a 0.466 probability of getting a hit,
see Figure 1. On the other hand, the expected number
of hits in that region by the Blast consecutive model
is 1.07, while the nonconsecutive model expects 0.93
hits. This is because the length 11 model can shift over
54 places within the length 64 window, while the length
18 model has only 47 places to fit. The reason for the
increased sensitivity is that the events, of having a match at
different positions, become more independent for spaced
models. If a model and a shifted copy share many 1s in
the same position, then a base mismatch in any of these
shared positions will make both matches fail, hence the
corresponding matching events are far from independent.
Independent events are better at pooling their success
probabilities together. Generally, the fewer bases shared
by a model and any of its shifted copies, the higher its
sensitivity is. Clearly, by this measure, consecutive models
are the worst, since shift of 1 shares all but one bases.

For convenience, we denote a model by a 0–1 string,
where the 1-positions represent required matches, while
the 0s are ‘don’t cares’. For example, if we use a weight
six model 1110111, then actgact versus acttact is a
seed match, as well as actgact versus actgact. So Blast
uses models of the form 1k . Blast actually matches two
or three bytes, each containing four bases, simultaneously,
and extends these hits to the left and right. This is fine
for the default of k = 11 because any length 11 match
necessarily contains a match of two bytes, but for k smaller
than 11, it will miss some seeds.

Suppose a substring s from the query sequence is similar
to a same-length substring t from the target sequence. Let
v = v(s, t) be a 0–1 string indicating the matches between
s and t , i.e. v[i] = 1 if and only if s[i] = t[i]. Say that

† For statistical purposes, we count overlapping hits separately, while the
Blast program ignores hits overlapping the last recorded one.
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Fig. 1. 1-hit performance of weight 11 spaced model versus
weight 11 and 10 consecutive models, coordinates in logarithmic
scale.

a model m covers a binary string u of the same length if
m[i] � u[i], i.e. u has a 1 wherever m has a 1. Then a
hit between s and t occurs wherever the model covers a
substring of v(s, t).

To evaluate a model, we compute its probability of
generating a hit in a fixed length region of given similar-
ity, by dynamic programming (which works fine up to
model size 20 and quickly becomes prohibitive in both
time and space beyond that). We somewhat arbitrarily
chose a region length of 64 because in practice ungapped
homologies are typically of size 20–200 bases. Note that
the shorter the region length, the more a (longer) spaced
model suffers by having fewer places to fit. For weight 11,
the most sensitive model is 111010010100110111 with
sensitivity 0.467 122 for 70% similarity. Figures 1 and 2
compare the nonconsecutive model 110100110010101111
with Blast’s consecutive models. This model, found
heuristically before we discovered the dynamic program-
ming algorithm, is slightly suboptimal, with a sensitivity
of 0.465 485, and was used in all experiments in this
paper for weight 11. The new PatternHunter uses the
optimal model 111010010100110111 and will support
user-defined, randomly generated, and neighbourhood
models in future. Using different models allows Pattern-
Hunter to have different outputs in different runs, thus
increasing the sensitivity. Neighbourhood models use
multiple similar models simultaneously to further increase
sensitivity. For each similarity percentage shown on the
x-axis, the percentage of regions acquiring at least one hit
is plotted on the y-axis as the sensitivity at that similarity
level in Figure 1. Recalling our earlier discussion of
independence, the (near) optimality of these two models
is witnessed by the fact that any shift shares no more than
five bases.
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Fig. 2. 2-hit performance of weight 11 spaced model versus single
hit weight 11 and 12 consecutive models.
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Fig. 3. 1-hit performance of weight 8 consecutive model versus
weight 9 nonconsecutive model.

The current 1.4 version of Blast triggers an extension if
two disjoint hits are found on the same diagonal within
a certain distance (Altschul et al., 1997). The increased
selectivity more than offsets the loss in sensitivity, so that
it can use a smaller weight model and still generate fewer
extensions than an equally sensitive 1 hit model of larger
weight. The same can be done with spaced models, with
the advantage that hits are no longer required to be disjoint
in order to gain a lot of sensitivity. Figure 2 compares the
sensitivity of a double hit spaced weight 11 model against
single hit weight 11 and 12 consecutive models.

SENSEI uses a default seed size of eight; Figure 3
compares its sensitivity with that of a spaced weight nine
model.

The expected number of hits in a region can be easily
calculated as in the following Lemma.

LEMMA 1. The expected number of hits of a weight W ,
length M model within a length L region of similarity
0 � p � 1, is (L − M + 1)pW .

PROOF. The expected number of hits is the sum, over
the (L − M + 1) possible positions of fitting the model
within the region, of the probability of W specific matches,
the latter being pW . �

Observations
• Figures 1–3 show that the steeper curve of the spaced

seed model has smaller hit probability in low similarity
regions, with respect to the closest consecutive model
in terms of sensitivity. In fact, Figures 1 and 3 show
that we can use a spaced model of weight 9 to replace
a consecutive weight 8 model, gaining sensitivity
above 64% similarity, or use a weight 11 spaced
model to replace a weight 10 consecutive model
gaining sensitivity above 60%. Note that increasing
the weight by 1 reduces the number of random hits by
approximately a factor of 4.

• It has been brought to our attention, that a related
but conceptually different approach, has been applied
to ungapped homology search in Buhler (2001), and
Califano and Rigoutsos (1995).

Buhler (2001) applies a random hashing/projection
technique known as Locally-Sensitive Hashing (LSH;
Indyk et al., 1998), as follows. In each of hundreds
of iterations, a newly chosen random hash function is
applied to every region of a fixed size (of about 100),
and regions mapping to the same value are fully
compared. Similar overlapping regions on the same
diagonal are then merged into ungapped alignments.
Unlike Blast, a long ungapped alignment can only be
found if the regions found to be similar cover its whole
length. Earlier, a similar idea has been applied in Flash
(Califano and Rigoutsos, 1995), which used shorter
regions. Both papers focused on covering a homology
entirely with hits, instead of doing hit-extension in
Blast style. See also Buhler and Tompa (2002)

Retrospectively, our carefully chosen deterministic
spaced seed model maximizes the chance of any HSP
to contain at least one seed, while minimizing random
hits. Experiments show that SENSEI (States, 2000)
(which is also limited to ungapped alignment), at its
default size 8 seed, is faster than LSH.

PATTERNHUNTER: COMPARE WHOLE
GENOMES ON YOUR DESKTOP
We have implemented PatternHunter in Java using the
spaced seed model and various algorithmic improvements
using advanced data structures.
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Hit generation
PatternHunter uses a method of generating hits similar to
that of MegaBlast†. For each position in one sequence,
compute an index from fitting the model at that particular
position. This index is 2 × weight bits long (two bits
per base). Then do a lookup in a big table which gives
the first position in the other sequence where the model
matches. This gives the first hit. Subsequent hits are found
using another table, which for each position gives the next
position where the model matches. This table requires one
int (four bytes) per base. If the number of hits found for
one index is large then because of the relative cost of
computing the index becomes negligible.

For each hit, we look up its diagonal in another
hashtable, the hit table, to find the rightmost matched
position on that diagonal. If this position is to the right
of the hit then we ignore the hit as being part of an already
found match.

If the double hit option is chosen then in the absence of
a recent hit on the same diagonal, we merely record the
new one.

Hit extension
Next we extend this hit in a greedy fashion to the left
and right, stopping when the score drops by a certain
amount. If the resulting segment pair has a score below
a certain minimum, then we ignore it, else we have a
Highscoring Segment Pair (HSP). The position of the last
comparison, which reached the dropoff score, is stored in
the hit table, so that future equivalent hits within this HSP
can be recognized as redundant.

Gapping extension
To find the best way to extend an HSP to the left across
gaps, we try all candidates from a diagonal-sorted set of
recently found HSPs, after adding to this set some new
HSPs found by local hit generation. We use a variation of
a red–black tree to implement the set of HSPs sorted by
diagonal. HSPs are inserted in the tree once an optimal
gapped alignment to its left is found, and retired from the
tree once newly generated HSPs are too far beyond its
right endpoint to make use of it. Retired alignments are
put into a priority queue according to their scores.

The local hit generation finds triple hits of the small
model 1101 in a limited length region to the left of the HSP
and stores them in the tree if they have a certain minimum
length.

For each candidate HSP to gap a newly found HSP to,
we compute the gapping cost as the sum of the gap open
plus gap extension penalties plus the cost of adjusting
either HSP in size to make a perfect fit. From this data

† Note that (Mega)Blast computes its indices more efficiently by packing four
bases into one byte.
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Fig. 4. Input: H. influenza and E. coli. Run times are shown in
Figure 7. Score is plotted as a function of the rank of the alignment,
with both axes logarithmic. MegaBlast (MB28) misses over 700
alignments of score at least 100. MB11 is MegaBlast with seed
size 11 (50 times slower and 10 times more memory use than PH2),
indicating the missed alignments by MB28 are mainly due to seed
size.
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Fig. 5. Input: H. influenza and E. coli. Run times are shown in
Figure 7. PatternHunter produces better quality output than Blastn
while running 20 times faster.

the best HSP, if any, to link to, is chosen and used to
compute the optimal partial alignment score. Overlapping
alignments are not reported.

IMPLEMENTATION
PatternHunter is implemented in Java, hence platform-
independent. We have made great efforts to write simple,
clean, and short code. The executable size of Pattern-
Hunter is 40 kB, only 1% of the size of Blast, while
offering a large fraction of its functionality.
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Fig. 6. Input: A. thaliana chr 2 and 4. Run times are shown in
Figure 7. PatternHunter (PH2) outscores MegaBlast in one sixth
of the time and one quarter the memory. Both programs used
MegaBlast’s nonaffine gap costs (with gapopen 0, gapextend −7,
match 2, and mismatch −6) to avoid MegaBlast from running out
of memory. For comparison we also show the curve for MegaBlast
with its default low complexity filtering on, which decreases its
runtime more than 6-fold to 3305s.

With two input sequences of length n and m, m > n,
and model weight 11, PatternHunter uses 16 Mbytes for
the hashtable entries and 4n bytes for the array of next-
occurrence indices. Together with n + m bytes to store
the inputs, and a variable amount for other data structures,
PatternHunter uses about (4W+1 + m + (5 + ε)n) bytes
of memory, in addition to the Java Virtual Machine’s
memory footprint (which can range from half a Mbyte
to a dozen Mbytes). Here, W is the model weight, and
ε > 0 is a small constant depending on the options
PatternHunter uses. For the default W = 11, 4W+1

amounts to 16 Mbytes. Typically ε is much smaller
than 1. We conclude that the reason this theoretical
estimation is not exactly reflected in Figure 7 is that
the Java virtual machine does not do garbage collec-
tions often when there is still enough free memory
in the heap to use. Our recent experiments on larger
human chromosomes demonstrated that our estimation
in memory is accurate. This allows PatternHunter to
work on complete chromosomes of the human genome
on a modern desktop computer with 2 Gbytes of mem-
ory.

RESULTS
Here, we report several test runs of PatternHunter with
comparison to other programs. Since the Blast family,
especially the newly improved Blastn, is the indus-
try standard, and widely recognized for its sensitivity
(Blastn, SENSEI) and speed (Blastn, MegaBlast), we

limit ourselves to comparison with these programs. All
experiments are performed on a 700 MHz Pentium III
PC with 1 Gbyte of memory. The table in Figure 7
compares PatternHunter with the latest versions of Blastn
and MegaBlast, downloaded from the NCBI website on
July 9, 2001. All programs were run without filtering
(bl2seq option -F F) to ensure identical input to the
actual matching engines. The table in Figure 8 compares
PatternHunter with SENSEI; note that SENSEI, as
currently available, does not do any gapped alignments.
One may suspect that PatternHunter sacrifices quality
for speed. Figures 4–6 show the opposite. In Figure 4,
MegaBlast using seed weight 28 (MB28) misses over
700 high scoring alignments. Using the same parameters,
PatternHunter outputs better results than Blastn, is 20
times faster and uses one tenth the memory, (Figure 5).
Notice the quick growth of Blastn/MegaBlast time/space
requirements, indicating poor scalability. Only MegaBlast
(MB28) at its default affine gap costs allowed us to
continue the comparison, without running out of mem-
ory, but with vastly inferior output quality compared
to PatternHunter (PH2), which uses only one fifth the
time and one quarter the space, (Figure 6). Finally,
PatternHunter has recently been used to compare the
human genome with 16 million reads of the unassembled
mouse genome, a total of nine billion base pairs. PH2,
weight 12, finishes in 20 (Pentium III) CPU-days. PH2,
weight 11, finishes in 80 CPU-days. The results are avail-
able at http://genome.cse.ucsc.edu/. While MegaBlast
is designed for high speed on highly similar sequences
and Blastn for sensitivity, PatternHunter simultaneously
exceeds Blastn in sensitivity, MegaBlast in speed (on long
sequences), and both in memory use. Written in Java, it
runs any genome anywhere.
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Seq1 Size Seq2 Size PH PH2 MB28 Blastn

M. pneumoniae 828 K M. genitalium 589 K 10 s/65 M 4 s/48 M 1 s/88 M 47 s/45 M
E. coli 4.7 M H. influenza 1.8 M 34 s/78 M 14 s/68 M 5 s/561 M 716 s/158 M
A. thaliana chr 2 19.6 M A. thaliana chr 4 17.5 M 5020 s/279 M 498 s/231 M 21 720 s/1087 M ∞
H. sapiens chr 22 35 M H. sapiens chr 21 26.2 M 14 512 s/419 M 5250 s/417 M ∞ ∞

Fig. 7. Performance comparison: if not specified, all with match 1, mismatch −1, gap open −5, gap extension −1. PH denotes PatternHunter
with seed weight 11, PH2 denotes same with double hit model (sensitivity similar to Blast’s single hit size 11 seed, Figure 2) MB28 denotes
MegaBlast with default seed size 28, and default affine gap penalties. Blastn (via BL2SEQ) uses default seed size 11. Table entries under PH,
PH2, MB28 and Blastn indicate time (s) and space (Mbytes) used; ∞ means out of memory or segmentation fault.

Seq1 Size Seq2 Size PH(9) PH(11) SENSEI

E. coli 4.7 M H. influenza 1.8 M 279 s/67 M 34 s/78 M 780 s/64 M
A. thaliana chr 2 19.6 M A. thaliana chr 4 17.5 M 677 m/282 M 84 m/279 M 781 m/415 M

Fig. 8. PatternHunter with seed weights 9, 11, 1-hit model versus SENSEI’s weight 8 seed. SENSEI only does ungapped alignments.
PatternHunter’s weight 9 spaced seed has higher single-hit sensitivity than SENSEI’s 8 as shown in Figure 3.
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