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mRNA control hinges on the specificity and affinity of proteins for

their RNAbinding sites. Regulatory proteinsmust bind their own sites

and reject even closely related noncognate sites. In the PUF [Pumilio

and fem-3 binding factor (FBF)] family of RNA binding proteins, in-

dividual proteins discriminate differences in the length and sequence

of binding sites, allowing each PUF to bind a distinct battery of

mRNAs. Here, we show that despite these differences, the pattern

of RNA interactions is conserved among PUF proteins: the two ends

of the PUFproteinmake critical contactswith the twoendsof the RNA

sites. Despite this conserved “two-handed” pattern of recognition,

the RNA sequence is flexible. Among the binding sites of yeast Puf4p,

RNA sequence dictates the pattern in which RNA bases are flipped

away from the binding surface of the protein. Small differences in

RNA sequence allow new modes of control, recruiting Puf5p in addi-

tion to Puf4p to a single site. This embedded information adds a new

layer of biological meaning to the connections between RNA targets

and PUF proteins.
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Proteins bind specific mRNAs to regulate their stability,
translation, and localization. Individual proteins bind and

control batteries of functionally related mRNAs. Each regulatory
protein must interact tightly with cognate sites and reject even
closely related sequences. This specificity underlies coordinate
control and regulatory networks.
The PUF [Pumilio and fem-3 binding factor (FBF)] family of

proteins is exemplary. These proteins bind elements in 3′ un-
translated regions (3′UTRs), termed PUF binding elements
(PBEs) (1, 2). PUFs commonly repress translation or enhance
mRNA decay (3–8) but also can activate and localize mRNAs (7,
9–14). The six PUF proteins of Saccharomyces cerevisiae control
distinct sets of RNAs that comprise distinct functional groups
and bind ∼850 mRNAs, or 10–15% of the mRNA species in that
organism (15, 16). Caenorhabditis elegans, Drosophila, and hu-
man PUF proteins interact with a similarly large number of
mRNAs (17–21). PUFs are important in stem cell control,
learning, pattern formation, cell fate determination, and cell
cycle control (22, 23). Understanding how PUFs acquire their
specificity for groups of mRNAs is a critical step in discerning
their roles in these events.
The RNA binding domain (RBD) of PUF proteins comprises

eight ∼40-aa PUF repeats that form a crescent (24–26). RNA
binds to the inner concave surface, with the N terminus of the
protein bound to the 3′ end of the RNA (27). PBEs of biological
targets of PUF proteins contain a 5′ UGU sequence (2, 8, 15–18,
26, 28). Each PUF repeat consists of three α-helices and contains
three critical amino acid side chains that can contact RNA. Two
so-called “edge-on” residues make hydrogen bonds and Van der
Waals contacts with RNA bases; another, called a “stacking” res-
idue, forms planar stacking interactions. The edge-on and stacking
contacts determine the base specificity of a PUF repeat (27).
Human Pumilio exemplifies the simplest condition in which

each of the eight PUF repeats contacts a single base (27). Other
PUFs require “extra” bases relative to human Pumilio; these are

accommodated by “base flipping” (29–31). These bases do not
contact the edge-on or stacking side chain but flip away from the
protein instead.
We sought to probe several PUF/RNA complexes to identify

those features of the interaction that were general, as well as those
that were idiosyncratic. We examined three PUF proteins, altering
edge-on and stacking residues. Our results support a “two-
handed” model in which interactions at the ends of the complex
are critical. They reveal unexpected plasticity in the PUF-RNA
interactions achieved via alternative base flipping patterns and
add a previously undescribed layer of biological meaning in the
signals that govern mRNA regulatory control.

Results

Systematic Mutagenesis Reveals a Common Pattern of Recognition.
To probe the basis of PUF specificity, we systematically mutated
residues in C. elegans FBF-2 and S. cerevisiae Puf4p and Puf3p.
In each PUF repeat, we converted stacking or edge-on residues
to alanine. We reasoned that this strategy would reveal if these
residues contributed to RNA binding and test the accuracy of the
known crystal structures in a cellular context.
We assessed binding in the yeast three-hybrid system (32, 33)

(Fig. 1). A PUF protein fused to the GAL4 activation domain
was expressed in cells carrying a hybrid RNA with the PBE of
interest. Binding of the PUF and RNA triggers LacZ expression,
which correlates with the affinity of the interaction (34). Analysis
of the three PUF/RNA complexes follows.
FBF-2/gld-1 FBEa complex. Most stacking and edge-on residues in
FBF-2 were required for binding the gld-1 FBEa sequence (FBE),
because alanine substitutions reduced β-galactosidase (β-gal)
activity to background levels (Fig. 2A). However, alanine sub-
stitutions in the stacking residues of repeats 1 and 5, as well as in
the edge-on residues of repeats 1, 4, 5 and 8, allowed 10% ormore
β-gal activity. These data are consistent with interactions in the
crystal structures of FBF-2/RNA complexes (30).
In the FBF-2 crystal structures, the edge-on residues in repeat 8

contact the U1RNA base, yet their replacement with alanines did
not disrupt binding. However, a lysine (K557) in a downstream
helix also appears to contact U1. Mutation of this lysine (K557A),
combined with repeat 8 edge-on alanine mutations, reduced ac-
tivity to 3% of WT; K557A alone had no effect (Fig. S1).
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To quantify the effects of key mutations, we purified bacterially
expressed, GST–FBF-2 proteins, including WT and the four
mutants in repeats 4 and 5. RNA binding was assessed using gel
shift assays (Fig. S2). The observed affinities correlated with the
data obtained in the three-hybrid system, in that substitution of
the stacking residue in repeat 4 was severely deleterious (Fig. 2B).

Puf4p/HO Puf4 binding site complex. Puf4p differs from FBF-2 in
specificity and base flipping pattern (29). Our Puf4p mutagenesis
showed that the majority of stacking and edge-on residues were
required for Puf4p to bind to theHO Puf4 binding site (4BE) (Fig.
2D). Mutations in the stacking residues of repeats 5 and 7 and the
edge-on residues of repeat 4 allowed >10% reporter activity; these
residues do not contact the RNA in the determined structure (29).
We next prepared mutations in the 4BE in which bases were

individually altered to each of the other three identities. Bases 5
and 7, which allowed >10% β-gal activity to two or more alter-
nate bases, were less constrained than bases 3 and 4; bases 6 and
8 were intermediate (Fig. 2E). U3 and A4 are part of the core 5′

UGUR sequence conserved in PUF protein target RNAs, and
they, along with U8, lie across from stacking and edge-on resi-
dues necessary for binding. In contrast, U5 and U7 are flipped
away from the protein consistent with the toleration of sub-
stitutions at these positions (Fig. 2F). The flexibility of base 6 is
more enigmatic, because the amino acid residues opposite were
important for tight binding. We suspect this reflects plasticity in
the pattern of flipping, as we later discuss.

LexAop LacZ

AD

LexA

MS2

PBE

PUF

Fig. 1. Diagram of the yeast three-hybrid assay. Light gray circles represent

LexA/MS2 fusion protein to tether RNA to promoter via a LexA binding site;

dark gray circles represent PUF/AD fusion to activate transcription of the

LacZ reporter gene. PBE (black box) indicates the PBE in the MS2 loop con-

taining RNA. AD, GAL4 activation domain.
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Fig. 2. Systematic mutagenesis reveals a common pattern of recognition. Yeast three-hybrid binding of FBF-2 (A), Puf4p (D), and Puf3p (G) stacking and

edge-on alanine mutant proteins to cognate sequences. The β-gal levels were normalized to that of WT proteins bound to their cognate PUF sites (FBE:

UGUGCCAUA, 4BE: UGUAUAUUA, and 3BE: UGUAAAUA). (B) Quantitation of three independent EMSA experiments (Fig. S2) for FBF-2 WT and repeat 4 and 5

alanine mutants. Yeast three-hybrid binding of single nucleotide substitutions in the 4BE (E) and the 3BE (H). The β-gal levels were normalized to binding of

the WT 4BE or 3BE sequence. The identity of the base present in each mutant is indicated immediately below the bars; the identity in WT is indicated below

that. Amino acid side chains and bases in the FBF-2/FBE (C), Puf4p/4BE (F), and Puf3p/3BE (I) complexes are derived from the crystal structures (29, 30, 35).

Green amino acid chains allowed ≥10% β-gal when mutated to alanine, and red side chains allowed <10% when mutated to alanine. Green RNA nucleotides

allowed ≥10% to two or more alternate bases, red nucleotides allowed <10% to two or more identities, and black RNA nucleotides were not tested. FBE

nucleotide substitution data are from a study by Bernstein et al. (49). The 10% cutoff is arbitrary and corresponds to a four- to fivefold effect on the Kd (34).
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Puf3p/Cox17 site B complex. The core binding site of Puf3p consists
of eight bases, which bind without flipping. Most Puf3p amino
acid substitutions diminished β-gal levels to less than 10% that of
WT Puf3p bound to the Cox17 site B sequence (3BE). However,
substitutions of the stacking residues in repeats 1, 5, and 7, as
well as of the edge-on residues in repeats 4 and 5, still allowed
>10% activity (Fig. 2G). Most of these results are consistent with
the two structures of Puf3p bound to different RNAs (35): Re-
peat 7 does not make a stacking interaction with the RNA, and
repeat 4 can bind different bases. The plasticity of repeat 5 was
surprising, because this repeat in most PUF proteins recognizes
a purine.
To test whether repeat 5 binding was relatively less important

for Puf3p specificity, we analyzed RNA base substitutions at
central positions in the 3BE. As expected, G2 and U3 in the
conserved UGU sequence were the most constrained. At posi-
tions 4–6, at least two bases allowed >10% of WT levels (Fig.
2H). A4 and A5 lie across from noncritical stacking and edge-on
residues (Fig. 2I). A6 of 3BE is located across from critical res-
idues yet shows little constraint.
Summary. Each PUF protein yielded a similar binding pattern in
which the central PUF repeats were less stringently required
than those at the ends of the structure. Bases opposite amino
acid residues that were less critical and all flipped bases generally
were flexible in identity (Fig. 2 C, F, and I). The data suggest
a “two-handed” mode of recognition, in which interactions at the
two ends of the complex are the most critical.

Alternate Binding Pattern Is Dictated by the RNA Sequence. FBF-2
and Puf4p bind nine base RNA sequences using different flip-
ping patterns (Fig. 3A). In the canonical Puf4p/4BE complex, the
base at position 7 is flipped away from the protein and an
adenosine at position 6 binds repeat 3. This pattern, which we
call “seven-flipped,” is the only one described for Puf4p. In the
FBF-2/FBE complex, the base at position 6 flips and bases 4–6
stack. We call this pattern “six-flipped.” In both cases, base 5 also
flips and stacks with base 4.
We reasoned that the preference of Puf4p repeat 3 for an

adenosine may dictate the flipping pattern of Puf4p targets.
Thus, for the seven-flipped pattern, an adenosine at the sixth
RNA position is bound by repeat 3 and base 7 is excluded from
binding and flipped. However, if an adenosine is at the seventh
position and absent from the sixth, as in a canonical FBE, A7
might bind repeat 3 and base 6 would flip, yielding a pattern like
FBF-2/FBE (Fig. 3B). This model predicts that the flipping
pattern could be altered experimentally by manipulating the
RNA sequence.
To test this hypothesis, we designed mutations in the canonical

4BE. We compared binding of Puf4p to single A6 mutants with
that of the same mutations in combination with U7A. All single

mutations of A6 weakened binding (Fig. 3C). In each position 6
background, an adenosine (U7A) restored binding to nearly WT
levels. The effect was most striking with A6C U7A, because the
A6C single mutation reduced binding the most. These data
support the view that Puf4p can bind in either a six-flipped or
seven-flipped mode, as dictated by the RNA.

Structure of Puf4p Bound in a Six-Flipped Conformation. To test our
model directly, we determined the structure of Puf4p in complex
with the A6C U7A mutant 4BE RNA (UGUAUCAUA) by X-
ray crystallography (Fig. 4A and Table S1; PDB ID code 4DZS).
The Puf4p protein structure showed little change vs. that bound
to WT 4BE RNA (29) (PDB ID code 3BX2) (rmsd of 0.62 Å
over 328 Cα atoms). RNA bases 1–3 and base 5 in these two
structures superimposed well with small shifts in bases 4, 8, and 9.
As predicted, bases 6 and 7 adopted different positions. A
composite omit map of the A6C U7A complex revealed that
bases 5 and 6 (U5 and C6) were stacked directly and flipped away
from the RNA binding surface of the protein; base 7 directly
contacted repeat 3 and stacked between R651 and H688 (Fig.
4B). This is similar to the FBF-2/FBE structure (Fig. 4C) but
different from that of Puf4p and the canonical 4BE, where U7 is
flipped and A6 stacks between R651 and H688 (Fig. 4D). Thus,
Puf4p can bind RNA in the six-flipped conformation, supporting
the hypothesis that the RNA sequence dictates the pattern of
binding and emphasizing plasticity in the Puf4p complexes.

Endogenous Puf4p Targets Contain Six-Flipped Sites. We tested
whether six-flipped sites were enriched among endogenous
mRNAs physically associated with Puf4p (15). The two types
of sites can be described as UGUANNAUA (6-flipped) and
UGUANANUA (7-flipped). The sequence UGUANAAUA falls
into both types; we scored such overlapping sequences separately.
The six-flipped sites were enriched in Puf4p target mRNAs vs.

all 3′UTRs throughout the transcriptome (11% vs. 3%; P = 7 ×

10−7 by Fisher’s exact test; Fig. 5A). Twenty-two target mRNAs
with six-flipped sites in their 3′UTRs were identified (Table S2).
The six-flipped site was even more enriched among those
mRNAs that did not possess a seven-flipped site (13.5% vs. 3%;
P = 9 × 10−8). The overlapping sequence also was enriched
among Puf4p targets. These findings support the conclusion that
Puf4p binds mRNAs in vivo through both six-flipped and seven-
flipped sites.

Plasticity Enables Dual Control. Re-examining the list of mRNAs
with putative six-flipped sites (15), we observed that many were
immunopurified with Puf5p as well as with Puf4p (Fig. 5B).
Eleven (50%) of 22 Puf4p targets with six-flipped sites were
enriched in both Puf4p and Puf5p immunopurifications. Of the
28 mRNAs that were bound by both proteins (15), 39% con-
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tained the six-flipped sequence, whereas 11% of mRNAs bound
only by Puf4p contained the six-flipped sequence (P = 1 × 10−5).
Similarly, six-flipped RNAs were enriched in Puf4p/Puf5p targets

compared with those bound only by Puf5p (39% vs. 17%; P =
0.002). In principle, dual enrichment could be attributable to the
presence of two PUF sites or to binding of both Puf4p and Puf5p
to a single PBE.
To test whether a single PBE could bind Puf4p and Puf5p, we

examined binding of Puf4p and Puf5p to mutant RNA sequen-
ces, using Puf3p as a control. The HO Puf5 binding site (5BE)
and 3BE were used as cognate sites to normalize the data to
maximum activity for Puf5p and Puf3p, respectively.
Puf4p bound to all possible six-flipped sequences at levels near

that of its canonical seven-flipped site, the 4BE (Figs. 3C and
5C). Strikingly, Puf5p also bound well to the six-flipped se-
quences, yielding β-gal levels at least two orders of magnitude
above background levels. A single nucleotide change in the 4BE
(U7A) increased activity ∼40-fold. Puf3p did not bind above
background, suggesting that binding to these elements was con-
fined to the Puf4p and Puf5p pair.
To test whether six-flipped sites were repressed by both Puf4p

and Puf5p in vivo, we examined repression of HIS3 reporter
mRNAs bearing 3′UTRs derived from SMX2 and RPB9 mRNAs
by individually expressing Puf4p or Puf5p in puf4Δ puf5Δ yeast
(Fig. 6A). SMX2 and RPB9 mRNAs were identified in our
computational analysis of putative Puf4p targets with six-flipped
sites (Table S2). Repression of the HIS3 reporter prevents
growth under selective conditions (4, 5, 36). As controls, we
analyzed mutant reporters (“mut” in Fig. 6A) in which the UGU
of each binding element was converted to ACA. Repression was
compared with that of a reporter carrying the 3′UTR of HO
mRNA, a well-characterized target with both Puf4 and Puf5
sites. Expression of Puf4p repressed both the SMX2 and RPB9
reporters under selective conditions to levels comparable to the
HO 3′UTR (Fig. 6B). Repression was dependent on the six-
flipped PBEs. Puf5p repressed the same reporter mRNAs,
yielding data very similar to Puf4p and, again, required the PBEs
(Fig. 6C). We conclude that six-flipped sites are bound and re-
pressed in vivo by both Puf4p and Puf5p.

Discussion

The binding patterns of PUF proteins to their RNA targets are
similar, despite divergence in their RNA specificity. However,
recognition is unexpectedly flexible: The precise RNA sequence
dictates whether one or two PUFs can bind, and so defines
patterns of regulation in vivo.
Mutagenesis of the interface of FBF-2, Puf4p, and Puf3p com-

plexes suggests a two-handed model for PUF-RNA interactions. In
this model, the two ends of the protein’s RBD “grasp” the two ends
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blue represents nitrogen, red represents oxygen, and orange represents

phosphorus). The red arrow indicates base 7 bound by Puf4p repeat 3. (B)

Ribbon diagram of Puf4p with superposition of WT (7-flipped, white) and

A6C U7A mutant (6-flipped, yellow) RNAs. A composite simulated annealing

omit map of the Puf4p/mutant RNA structure contoured at 1.0 σ is shown

superimposed with the RNA. (C) Six-flipped conformation of FBF-2 com-

plexes. The crystal structure of FBF-2 is bound to gld-1 FBEa RNA (6-flipped).

FBF-2 repeats are colored alternately blue and red, and the RNA is shown as

a stick model colored as in A but with green carbon atoms. The red arrow

indicates base 7 bound by FBF-2 repeat 3. (D) Seven-flipped conformation of

Puf4p bound to a canonical 4BE. The 4BE RNA is white. The red arrow

indicates base 7 that is flipped away from the binding surface of Puf4p.
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from a study by Gerber et al. (15). (B) Enrichment of the six-flipped site among Puf5p targets and Puf4p/Puf5p common targets (15).The percentage of 3′UTRs
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associations in the RNA-binding protein immunopurification-microarray (RIP-chip) were indirect. (C) Puf4p and Puf5p both bind six-flipped sequences. Binding
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of the RNA binding site. One “hand” relies on repeats 6, 7, and 8,
and it contacts the 5′ UGU; the other relies in repeats 1, 2, and 3,
and it contacts all or part of the 3′ AUA. The atomic interactions
involved are nearly invariant, although the spacing of the elements
and the requirement for extra bases vary with the protein.
The two-handed model bears comparison to certain tran-

scription factors. For example, the Zn2Cys6 DNA-binding pro-
teins Gal4p and Ppr1p bind as homodimers to two sites
separated by a spacer, with each monomer reading one-half of
the site (37). The architecture of PUF complexes is similar, al-
though the two regions reside in a single polypeptide. In both
cases, two separate sets of interactions must both occur and be
separated by spacer nucleotides of appropriate length.
PUF proteins can be engineered to bind new RNA sequences

(38). By linking a modified PUF to an effector domain, regulation

can be targeted to specific mRNAs (39–41). The plasticity of
interactions reported here raises considerations for such studies:
Flexibility may cause off-target effects. Thus, specificity must be
examined broadly, as in the design of zinc-finger proteins (42, 43).
Our data establish that Puf4p accommodates both “six-flip-

ping” and “seven-flipping” patterns. These two flipping patterns
embed biological information: Six-flipping specifies that either
Puf4p or Puf5p can bind, whereas seven-flipping specifies that
only Puf4p can do so (Figs. 5C and 6 B and C).
Alternate binding modes have implications for patterns of

control. Simple alterations in binding sites can expand control of
particular mRNAs, as did the U7A mutation in the 4BE that
allowed Puf5p binding. More dramatically, changes in a protein’s
preferences among alternative sites would alter regulation
globally, gaining or losing sets of targets. After PUF gene dupli-
cation, evolution may lead to changes in RNA specificity. Extant
yeast PUFs may capture proteins at two points in this evolu-
tionary path. Puf1p and Puf2p are closely related and likely arose
through duplication; 90% of the 40 mRNAs bound to Puf1p are
also bound to Puf2p (15). Puf4p and Puf5p are more distantly
related, and a much smaller fraction of their mRNA targets
overlaps, likely attributable to diversification of the proteins’
binding preferences.
The structures and sequences in the RNA and protein that

dictate alternative sites are only partially understood. Base-flipping
often requires that theRNAnucleotides stack on adjacent bases or
that amino acid side chains interact with the phosphate backbone.
As a result, sequence context can influence binding (31). Puf4p
binds to RNAs in six-flipped and seven-flipped modes with little
apparent conformational change in the protein. Future de-
termination of Puf5p structures and further work on its sequence
specificity are needed to understand how it binds multiple sites.
We suggest that the information embedded in Puf4p binding

sites is important in vivo. Repression by Puf4p is dependent on
deadenylation, whereas repression by Puf5p is not (3–5). Thus,
the information embedded in the binding element specifies
which form of repression occurs. Similarly, because PUF pro-
teins appear to vary in abundance with growth conditions (15,
44), the precise sequence in the 3′UTRs of their targets may
dictate how the target mRNA responds in different conditions. A
six-flipped site, which binds Puf5p, will continue to be controlled
even under conditions in which Puf4p is down-regulated. Inter-
actions between Puf5p and components of signaling pathways
suggest it may respond to signals that Puf4p does not (45, 46).
PUF protein networks hinge on the specificity of PUF-RNA

interactions. Our results reveal conserved features of the PUF-
RNA interface, and demonstrate that more information is em-
bedded in the RNA element than has been appreciated. This
adds previously undescribed biological meaning to the nature of
the RNA binding sites.

Materials and Methods
Yeast Strains. All yeast three-hybrid assays were performed using the YBZ-1

strain (34). Repression assays (Fig. 6) were done using strain W303 (MAT-α)

mpt5::KanR puf4::TRP1 as described (4).

Yeast Three-Hybrid Plasmids and Assays. pACT2 FBF-2 was as described (47).

Puf4p (amino acids 536–888), Puf3p (amino acids 511–879), and Puf5p

(amino acids 28–860) were cloned into pGADT7. Amino acids mutated to

alanine by site-directed mutagenesis are indicated in Table S3. Mutant RNA

sequences were expressed using the p3HR2 vector as in the study by Stumpf

et al. (48) and their binding assayed as described (32, 34). Within an ex-

periment, the relative β-gal levels for each protein were normalized to that

of the protein binding to its canonical WT site (Puf3p to 3BE, Puf4p to 4BE,

Puf5p to 5BE, and FBF-2 to FBE), which was set to 100%. Values represent an

average of three biological replicates, and error bars display the SD.

Protein Purifications, EMSA, and Filter Binding. WT and mutant FBF-2 puri-

fications, EMSA, and filter binding experiments were performed essen-

tially as described (47, 49). Minor changes are described in SI Materials

and Methods.
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Fig. 6. Both Puf4p and Puf5p repress endogenous 3′UTRs with six-flipped

sequences in vivo. (A) Reporter RNAs were used in the assays. Each mRNA

was generated from a plasmid expressed in yeast. The HIS3 ORF is followed

by the 3′UTR sequences of SMX2 and RPB9 mRNAs, as indicated. Both WT

and mutant (mut) forms of the binding elements were analyzed (their

sequences are provided). The UGU trinucleotide was mutated to ACA to test

PUF specificity (bold with gray highlight). (B) Repression by Puf4p. Full-

length Puf4p was expressed in a W303 puf4Δ puf5Δ strain. Yeast were se-

rially diluted (to ∼104, 103, 102, and 10 cells) and spotted onto media with

histidine (control) or without histidine plus 3-amino-1,2,4-triazole (3-AT) as

indicated. Repression of reporter RNAs was measured by suppression of

growth on selective media. The HO 3′UTR, used as a control, contained both

Puf4 and Puf5 WT binding sites, whereas the HO mut had both sites

destroyed. (C) Repression by Puf5p as in B but with Puf5p instead of Puf4p.
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X-Ray Crystallography. The RBD of Puf4p was expressed and purified using a

protocol similar to that described previously (29). Details are provided in SI

Materials and Methods.

Motif Enrichment. S. cerevisiae 3′UTR lengths were taken from Naga-

lakshmi et al. (50); when no experimental 3′ end was given, 3′UTRs were

defined as 200 nucleotides past the stop codon. The 3′UTR sequences were

extracted from release 64 of the S288C reference genome (Saccharomyces

Genome Database project; http://downloads.yeastgenome.org/). The 224

Puf5p target mRNAs include duplicate 3′UTRs, which we only counted

once, resulting in 208 unique targets. Gene duplicates were not treated

differently genome-wide.

Repression Assays. HIS3-HO 3′UTR reporter plasmids were modified based on

the work of Hook et al. (34) (SI Materials and Methods). The p415-glyceralde-

hyde-3-phosphate dehydrogenase (GPD) Puf4p is as described (3). Full-length

Puf5was cloned into the p415-GPDvector. Repression assayswereperformed in

the W303 puf4Δ puf5Δ yeast strain but were as described otherwise (3).
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