

Patterns for process-aware information systems : an approach
based on colored Petri nets
Citation for published version (APA):
Mulyar, N. A. (2009). Patterns for process-aware information systems : an approach based on colored Petri nets.
[Phd Thesis 1 (Research TU/e / Graduation TU/e), Industrial Engineering and Innovation Sciences]. Technische
Universiteit Eindhoven. https://doi.org/10.6100/IR639997

DOI:
10.6100/IR639997

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 24. Aug. 2022

https://doi.org/10.6100/IR639997
https://doi.org/10.6100/IR639997
https://research.tue.nl/en/publications/19db080f-1011-49b1-af41-563d60b81826

Patterns for

Process-Aware Information Systems:

An Approach Based on Colored Petri Nets

Copyright c© 2009 by Nataliya A. Mulyar. All Rights Reserved.

A catalogue record is available from the Eindhoven University of Technology
Library

Mulyar, Nataliya Alexandrovna

Patterns for Process-Aware Information Systems: An Approach Based on Col-
ored Petri Nets / by Nataliya A. Mulyar.
- Eindhoven: Technische Universiteit Eindhoven, 2009. - Proefschrift. -

ISBN: 978-90-386-1504-2

NUR 982

Keywords: Process-Aware Information Systems /
Patterns / Business Process Management /
Colored Petri Nets / Workflow patterns / Service Oriented Architecture /
Flexibility

The work in this thesis has been carried out under the auspices of
Beta Research School for Operations Management and Logistics.

This research was supported by the Dutch Organization for Scientific
Research (NWO) under project number 612.066.407

Beta Dissertation Series D111

Patterns for

Process-Aware Information Systems:

An Approach Based on Colored Petri Nets

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van de

Rector Magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen

op dinsdag 16 juni 2009 om 16.00 uur

door

Nataliya Alexandrovna Mulyar

geboren te Bratsk, Rusland

Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. W.M.P. van der Aalst

Copromotor:
dr. N.C. Russell

Contents

1 Introduction 1

1.1 Process-Aware Information Systems 1
1.2 Historic developments and related trends 5
1.3 Research . 8

1.3.1 Problem definition 8

1.3.2 Workflow Pattern Initiative 11
1.3.3 Research approach 13

1.4 Thesis outline 14

I Conceptual Foundations 17

2 Patterns 21
2.1 Types of patterns 21
2.2 Pattern format 23

2.3 Pattern identification 25
2.4 Related work 27
2.5 Summary . 28

3 Colored Petri Nets Patterns 29
3.1 Main concepts of CPN 30
3.2 Catalog of CPN patterns 35
3.3 Classification of CPN patterns 102

3.3.1 Relationships between CPN patterns 102
3.3.2 Clustering of CPN patterns 105

3.4 Analysis of CPN patterns usability in practice 106
3.5 Related work 111

3.6 Summary . 112

II Patterns for Process-Aware Information Systems 113

4 Workflow Control-Flow Patterns 117

4.1 Revisiting the control-flow patterns 117
4.1.1 Context assumptions 118
4.1.2 Classification of control-flow patterns 120
4.1.3 Catalog of control-flow patterns 122

4.1.4 Relationships between control-flow patterns 190
4.2 Patterns operationalization 191

4.2.1 Core Process Constructs Modeling Language 194

vi Contents

4.3 Tool evaluations 214
4.3.1 Background 215
4.3.2 Evaluation of Oracle BPEL PM 220
4.3.3 Evaluation of CIG modeling languages 221

4.4 Related work 223
4.5 Summary . 225

5 Service Interaction Patterns 227
5.1 Introduction 227
5.2 Configurable framework for service interaction patterns 231

5.2.1 Pattern family: Multi-party Multi-message Request-Reply Conversation 233
5.2.2 Pattern family: Renewable Subscription 245
5.2.3 Pattern family: Message Correlation 256
5.2.4 Pattern family: Message Mediation 264
5.2.5 Pattern family: Bipartite Conversation Correlation 281
5.2.6 Pattern-based service interaction design method 289

5.3 Tool evaluations 294
5.3.1 Evaluation of Oracle BPEL PM 294

5.4 Related work 317
5.5 Summary . 319

6 Process Flexibility Patterns 323
6.1 Taxonomy of process flexibility 323

6.1.1 Flexibility by design 325
6.1.2 Flexibility by deviation 326
6.1.3 Flexibility by underspecification 326
6.1.4 Flexibility by momentary change 327
6.1.5 Flexibility by permanent change 328

6.2 Catalog of process flexibility patterns 329
6.2.1 Context assumptions 331
6.2.2 Flexible initiation 334
6.2.3 Flexible termination 348
6.2.4 Flexible selection 358
6.2.5 Flexible reordering 369
6.2.6 Flexible elimination 377
6.2.7 Flexible extension 383
6.2.8 Flexible concurrency 392
6.2.9 Flexible repetition 399
6.2.10 Discussion 406

6.3 Tool evaluations 408
6.4 Related work 413
6.5 Summary . 417

7 Epilogue 419
7.1 Contributions, limitations, and future work 419

7.1.1 Colored Petri Nets 419
7.1.2 Workflow control-flow 420
7.1.3 Service interaction 422
7.1.4 Process flexibility 423

7.2 Reflection . 424
7.3 Summary . 428

Appendices 429

vii

A Workflow Reference Model 429

B Web-services stack 431

C Glossary 433

Bibliography 437

Summary 453

Samenvatting 455

Acknowledgements 457

Curriculum Vitae 459

viii Contents

Chapter 1

Introduction

Process-Aware Information Systems (PAISs) have become increasingly popular as a tech-
nology for facilitating the specification and enactment of business processes. Contemporary
organizations tend to focus on the precise definitions of relevant business processes and their
automation using some form of process technology as there exists a common understanding
that in order to improve operational effectiveness, business processes need to be managed
in the same way as other more tangible corporate assets. The selection of a PAIS from a
broad range of contemporary offerings is experienced by organizations as a complex and
non-trivial task. Due to a lack of understanding of process technologies, the large diver-
sity between functionalities offered by distinct offerings, and lack of common standards
which could be used for comparing PAISs, the process of selecting a PAIS is quite chaotic
and not well-defined. This thesis offers a solution to this problem by providing a rigorous
foundation for PAISs in the form of a knowledge base that enhances the conceptual under-
standing of the various perspectives of PAISs. In doing so, it provides a reference point for
the evaluation and improvement of contemporary offerings, and delivers insights into the
definition of new languages and standards in the domain.

In this chapter, we introduce the research presented in this thesis. We start by introduc-
ing various kinds of PAISs in Section 1.1 in order to illustrate the plethora of different
approaches to business process automation. In Section 1.2, we present an historical view
on developments in the domain and relevant trends which determine the focus of investi-
gations presented in this thesis. In Section 1.3, we define the problem addressed in this
research and describe the approach selected for solving the research problem. Finally, in
Section 1.4 we give an outline of the contents of this thesis.

1.1 Process-Aware Information Systems

In this section, we will focus on PAISs as these are the main topic of research in this thesis.
In a generic sense, we will consider the class of information systems whose main goal is to
support business processes within an organization. First, we need to understand what a
business process and an information system are, and how these can be combined in order
to help organizations function more effectively.

A business process is a special type of process, that can be defined as a set of tasks that
need to be executed in a specific order by dedicated employees or other kinds of resources,

2 Chapter 1 Introduction

processing supplied input data and producing output data, with the aim of realizing one or
more business goals. Typically, a business process describes an internal behavior within an
organization, however it may interact with other organizations, for example, by using the
resources of other organizations for accomplishing particular tasks or by providing infor-
mation/products/services to them based on their requests. Business processes limited to
one organization are called intra-organizational, whilst processes interacting with business
processes in other organizations are called inter-organizational (the latter are also known
as business processes forming process choreographies [223]).

In order to automate business processes, organizations require the support of some kind
of information system. In [29], Alter defines an information system as “a particular type
of a work system ... that processes information by performing various combinations of six
types of operations: capturing, transmitting, storing, retrieving, manipulating, and dis-
playing information”. In this definition, a work system is defined to be “a system in which
human participants and/or machines perform a business process using information, tech-
nology, and other resources to produce products (and/or services) for internal or external
customers.”

In this thesis, we consider information systems that link information technology to
business processes, and which are termed as Process-Aware Information Systems. In [80],
Dumas et al. define a PAIS as “a software system that manages and executes operational
processes involving people, applications, and/or information sources on the basis of process
models”. The term process model is used in this definition to represent a business process
using some kind of (graphical) notation, which can be seen as “a blueprint for a set of
process instances with a similar structure” [223]. In a process model, process entities
and the relationships between them are explicitly defined. Various kinds of notations and
languages can be used to describe business processes, e.g., Petri nets [102], EPCs [4], UML
activity diagrams [44], BPMN (Business Process Modeling Notation) [165], or dedicated
notations employed by specific information systems.

Unlike data-driven applications such as an e-mail client, which offers functionality for
sending emails but which is unaware of the process to which email is sent, or a calculator
program, which performs mathematical calculations for particular tasks in a process but
which is unaware of the process to which these calculations relate, PAISs shift the focus
from task to process-driven execution. The process-driven approach helps managers to
keep a clear overview of the whole process in an organization, enabling them to monitor
execution progress at the level of the process, rather than as a series of individual task
executions, to track dependencies between execution statuses of different tasks, and to
facilitate process-awareness within the organization by using process models as a means of
communication and illustration.

PAISs allow processes to be enacted according to an underlying process definition. Au-
tomated enactment is a way to improve organizational efficiency by means of automatic
task scheduling, information routing and time/resource optimization. The fact that PAISs
are driven by underlying process models, allows the execution of a particular process in-
stance to be adjusted as well as the original model to be optimized or even redesigned,
without requiring the functionality of the application supporting process enactment to be
modified [80].

The broad range of PAISs is illustrated in Figure 1. In this figure, PAISs are classified
using two dimensions: the degree of adherence by a given process to an underlying pro-
cess definition and nature of participants (i.e. humans or software applications) involved in
interactions associated with PAISs [80]. The dimension characterizing the nature of par-

Section 1.1 Process-Aware Information Systems 3

tracking systems

groupware

process-aware

collaboration

tools

project

management

workflow

case handling/

flexible workflow

ad hoc workflow
scientific

workflow

process-unaware

application integration

A2A & B2B

integration

processes/

service

composition

 P2P P2A A2A

tightly

framed

loosely

framed

ad hoc

framed

unframed

Figure 1: Types of PAISs (from [80])

ticipants can be used to classify a PAIS as human or system-oriented. The abbreviations
P2P, P2A and A2A denote Person-to-Person, Person-to-Application, and Application-to-
Application processes respectively. Typical examples of P2P processes are tracking systems
where a registered letter is being delivered by a postman to a person directly, project man-
agement systems where a manager evaluates the progress made by an employee using a
project-tracking chart, and groupware tools which are used to enable real time collabora-
tion between several people such as collective writing, shared database access or electronic
meetings. P2P processes consist of tasks which involve humans, i.e. they are not fully
automated tasks.

The second group of PAISs are characterized by P2A processes, which involve both
people and applications. The support for people in such processes is necessary in order to
help a system to make a decision. A typical example of PAIS supporting a P2A process is a
workflow system (i.e. a system which enacts a process based on a process model specifying
who has to perform which activities and in what order). Work distribution mechanisms
employed by a workflow system ensure that tasks requiring human intervention are assigned
to the right people. Note that because the execution of tasks in a workflow system can be
performed automatically, it may also serve as a platform for supporting A2A processes.

The third group, A2A processes, are characterized by coordinated inter-system in-
teractions. Tasks in such processes are accomplished automatically, which is typical for
transaction processing systems and enterprise application integration platforms. Although
the majority of tasks in A2A processes are performed automatically, there may be some
degree of human intervention required. This indicates that there is not a strict separation
between P2P, P2A and A2A processes, and they may need to coexist in the context of a
larger and more complex process. Note that in the end a business process always aims to
serve customers (i.e. humans), however parts of the process may be fully automated.

We now move on to the classification of PAISs from the perspective of adherence to an
underlying process definition. In Figure 1, the degree of adherence to an underlying process
definition has four values: tightly-framed, loosely-framed, ad-hoc framed and unframed.
A process is classified as unframed if there is no process model to which the execution of
the process must conform. Systems where process models do not play any role (implicit
or explicit) are not process-centric and thus are not considered. A tightly-framed system
executes a process strictly based on a predefined process model. A typical example of this

4 Chapter 1 Introduction

is a workflow system such as Staffware, or service-oriented process management system
such as Oracle BPEL PM. Loosely-framed systems execute processes based on a defined
process model, however they allow for deviations from the prescribed flow of activities
by ignoring or repeating specific tasks. Loosely-framed processes are often supported by
case-handling systems such as FLOWer. Finally, ad-hoc framed processes are supported
by systems which allow the execution prescribed by the process model to be changed for
each specific case by adjusting or refining the process model. Such processes are often
supported by ad-hoc workflow systems such as TIBCO InConcert or scientific workflows
where depending on the results of tests certain steps may need to be performed less or
more frequently.

The degree of adherence to an existing process definition is directly related to the
degree of process flexibility supported by a particular offering. A process, whose behavior
is hard to predict, may require more flexibility in adapting to changes in the operating
environment than a process of the static nature. Processes of an unpredictable nature
can often be observed in the medical domain. For instance, it is difficult to predefine
processes of an emergency-care department as patients conditions may differ significantly
and a common treatment strategy cannot be applied. Tightly-framed systems are not
suitable for supporting such processes because they force the execution to strictly adhere
to a process model, whereas in an emergency situation decisions often have to be made
on-the-fly. In the medical domain, loosely-framed systems rely on a guidance approach,
where based on encoded best practices, a guideline to prescribe one or another type of the
treatment can be given to a medical assistant. A medical assistant, who uses the guidance
system, has the flexibility to select one, several or even none of the treatments suggested.

Unlike loosely-framed systems, ad-hoc framed systems provide flexibility in modifying a
process model during its execution. These systems are effective in supporting legislative or
other rule-based processes where as a consequence of changes in laws or policies a transition
from an old set of rules to a new set is required. Workflow systems and groupware are
completely opposite to each other from the perspective of process flexibility. Workflow
systems dictate which task needs to be executed and which resource must be assigned to
execute the given task. In these systems, the decision-making related to the assignment of
resources is performed centrally, resulting in very rigid and inflexible behavior. Whereas
in groupware systems the decision-making is made locally, which allows resources to be
assigned in a more flexible manner.

Based on the PAIS life cycle, which is visualized in Figure 2, we will characterize
PAISs in terms of their design and implementation-orientation [80]. A typical PAIS life
cycle consists of four phases: process design, process implementation, process enactment
and diagnosis. During the process design phase, based on earlier requirements analysis, the
business processes are identified, reviewed, validated and presented as process models [223].
This phase is entered initially at design-time in order to define a blueprint for future
process instances. The design of process models is usually supported by business process
modeling tools. These could be stand-alone process-designers or designers incorporated
into a Workflow Management System (WFMS).

In the process implementation phase, a process is refined into an operational process
that can be supported by a software system [80]. In this phase, the correctness of the
process is verified and the process is deployed. Once the process has been deployed, it can
be enacted. In the process enactment phase, a process is executed in the way prescribed
by the process model. These two steps are usually supported by WFMSs and service-
oriented process management systems. In WFMSs, processes are enacted by means of a

Section 1.2 Historic developments and related trends 5

diagnosis

process

design

process

enactment

process
implementation

Figure 2: The PAIS life cycle

workflow engine, while in service-oriented process management systems, deployed processes
are placed in a repository from where they can be initiated using a web-based interface.

Once the execution of a process has completed, execution-relevant information can be
gathered and analyzed. In the diagnosis phase, any problems in the process are identified
and decisions regarding possible solutions are made. For analysis purposes, the information
logged by a WFMS or an audit trail produced by the web-process administrator can be
used. Alternatively, dedicated project management tools can be used for this purpose. The
results of analysis can be used to redesign a business process, and this step is characterized
by entering the process design phase again.

In this section, we have shown the wide range of PAISs, which differ in terms of their
functionality, goals, degree of rigidity/flexibility, and human/system involvement. In the
next section, we take an historical view on the development of PAISs in order to show
relevant trends and how these have impacted the evolution of PAISs.

1.2 Historic developments and related trends

An increasing understanding of the importance of managing business processes within
and across organizational boundaries, can be characterized by changes in the enabling
technologies used for information system development [80]. In this section, we will discuss
the trends relevant to the development of PAISs [80].

Figure 3 shows that contemporary information systems have evolved from small oper-
ating systems with very limited functionality and tailor-made applications built on top of
the operating systems, to multi-layered structures. The center of this structure is formed
by the system infrastructure which makes the underlying hardware platform operational
(e.g., operating systems). The second layer is formed by generic applications: these are
applications that are used throughout the whole organization for general purpose applica-
tions (e.g., processing textual documentation, data management, calculations, etc.). The
third layer is formed by domain specific applications: these are applications handling prob-
lems of a particular nature and usually their usage is limited to a particular department
in an organization (e.g., human resource management, accounting, etc.). The fourth layer
is formed by tailor-made applications developed for specific purposes.

The four outbound arrows in this figure illustrate the trend of each of these layers to
increase in size by absorbing functionality from higher layers. This is a consequence of the
expanding functionality provided by applications residing at each of these levels. Nowadays
not only operating systems offer more functionality, but contemporary domain-specific ap-
plications also include functionality previously only found in tailor-made applications. This
means that an information system with specific functionality does not need to be created

6 Chapter 1 Introduction

tailor-made
applications

domain-specific
applications

generic
applications

system
infrastructure

Figure 3: Trends related to PAISs [80]

from scratch, but can be obtained simply by configuring currently available software sys-
tems. The ongoing trend of making various pieces of functionality available as stand-alone
applications that can easily be reused, allows an application with required functionality to
be obtained by assembling already existing components into a single system and orches-
trating their behavior as required.

Figure 4 illustrates historical developments of PAISs. The development of first infor-
mation systems, which appeared in the late 1960s, was driven by the need to store and
retrieve data [80]. In the 1970s, office automation systems appeared in order to support
everyday data processing tasks such as data calculations and document creation. These
systems were mainly intended to simplify tasks related to the processing of information,
e.g., text and image processing systems, spreadsheet programs for performing calculations,
presentation packages, and personal database systems such as a calendar and a note-pad.
Although office automation systems simplified execution of information processing tasks,
they often neglected the modeling of business processes [80, 239].

With appearance of the Internet in the late 1960s and 1970s, the development of in-
formation systems focused on improving communication between people by interacting via
E-mail, tele and video-conferencing and sharing information in many different forms (e.g.,
instant messaging or chat rooms). The scope of communication has evolved and extended
since then in many ways. Groupware systems that appeared in the late 1980s help teams
work together by sharing information [30]. Groupware does not dictate or guide the group
work, it is aimed only at supporting the functioning of a team by facilitating messaging,
E-mail, document sharing and access [90].

As the use of automation technology proved to be helpful in task planning, organization
of data storage and access, processing of email and documents, organizations slowly started
shifting the focus from data to processes. This shift impacted the functionality of evolving
and new information systems, and triggered the development of a new discipline known
as Business Process Management (BPM). BPM attempts to continuously improve pro-
cesses by defining, measuring and improving various process performance indicators [95].
In order to support process definition and enactment, by mid 1980s commercial and aca-
demic workflow systems were designed. Workflow allowed tasks, process participants, and
the assignment of resources to be described in a very precise way. Moreover, it offered
functionality for monitoring relevant process indicators during and after execution.

The process of gathering information for monitoring purposes has evolved from record-
ing events occurring during process execution using paper log sheets [30], after which the
information gathered is sent for analysis of performance-related ratings, to the immediate

Section 1.2 Historic developments and related trends 7

Office Automation Systems Scientific Workflow Systems

 Commercial Workflow Systems

1970 1975 1980 1985 1990 1995 2000 2005

shift f
rom

data to

processes
data orientation

process orientation

service orientation

adaptability/ flexibility

Figure 4: History of PAISs and relevant trends (inspired by [239])

monitoring during process execution provided by workflow systems. Workflow systems of-
fered the possibility to automatically gather data at each execution step and make the data
gathered immediately available at other sources. One of the techniques related to analysis
of data gathered during the process execution is process mining [174]. It allows a process
model to be discovered based on the actual order of events recorded in a data log. The
process model obtained can be used to check the conformance of an original process model
with the actual process execution. Furthermore, on the basis of the data logged, various
metrics could be analyzed and used as a source for business process redesign.

Originally, WFMSs were designed for ‘heavy imaging production applications’ [90].
Although initially the use of these systems was very restricted, by 1997 there were over
200 research and commercial systems developed [239] with a typical lifespan of 5 to 10
years. Some offerings were developed as pure workflow systems, whilst others evolved from
image management systems, document management systems, relational or object database
systems [62]. Each of these systems was developed independently, resulting in very diverse
sets of functionality and features. In order to support the execution of specialized tasks,
workflow systems offered a link to document management applications (originated from
office automation systems) and other IT applications via external interfaces.

Due to the large disparity between the functionality offered by distinct workflow sys-
tems and the manner in which process modeling entities and constructs were interpreted,
in 1995 the Workflow Management Coalition (WfMC) attempted to standardize the termi-
nology in the domain and defined the Workflow Reference Model (cf. Appendix A). This
model provides a functional description of necessary software components in a WFMS and
the interfaces between them. The definition of interfaces between various software compo-
nents aims at standardizing information exchange, thus enabling interoperability between
different products [126]. The reference model introduced interfaces for interacting with ex-
ternal systems, however it did not provide a notation for describing the interaction between
distributed processes. These gaps have been filled in by other standards (e.g., Business
Process Execution Language (BPEL) [164] and Web-Services Choreography Description
Language (WS-CDL) [217]). Although often criticized as ineffectual, the standardization
efforts of the WfMC have had an impact on the development of workflow systems by in-
creasing the awareness of the basic requirements workflow offerings have to satisfy and
facilitating business process improvement [126].

8 Chapter 1 Introduction

In the early 1990s, e-commerce emerged as a way to provide and obtain services (e.g.,
selling or fulfilling orders) through electronic links of the World Wide Web. Any business
application that has been defined using standard Web interfaces and deployed in order to
communicate with other applications over a network represents a web-service [127]. Web-
services are heavily based on information systems, as they require the extensive use of
computers, data, and communication technologies to make a particular process available
as a service and to acquire other kinds of services offered by external providers. With the
appearance of web-services it has become possible to execute a business in a distributed
manner. As it is possible for services to be sold or obtained from elsewhere, it has be-
come unnecessary to physically locate a business partner, i.e. the required service could
automatically be accessed via a network.

In the last five years, service-orientation started playing an important role in manag-
ing business processes. In addition to offering a basic support for process modeling and
enactment, many workflow vendors nowadays promote service-orientation as a means of
supporting distributed processes. Service Oriented Architecture (SOA) describes an in-
formation technology architecture that enables distributed computing environments with
many different types of computing platforms and applications. It separates the function-
ality associated with particular processes into distinct units, and allows these processes
to be accessed via network [97]. This enables reusability of processes, provides the abil-
ity to combine web-services in order to form a more complex process and support their
orchestration.

Aiming at support of business processes operating in the dynamic and quickly changing
environment, in the last decade, numerous academic and commercial vendors focused on the
adaptability of business processes. As the majority of workflow offerings support processes
in a very rigid manner, the ability to deal with unpredicted behavior remains a challenge.

In this historical view of the development of PAISs, we showed the large diversity of
PAISs that have been evolving under the influence of various trends. Although PAISs
provide a means of supporting business process automation, they are distinct in terms of
functionality they offer for business process modeling and enactment. Because PAISs are
inherently complex in nature, and different viewpoints on how they work can be taken, the
interpretation of the functionality offered by distinct PAISs is not uniform. This merits
further research into fundamentals of PAISs. We elaborate on the research topic in detail
in the next section.

1.3 Research

We start describing the research presented in this thesis by outlining the problem definition
(cf. Sub-section 1.3.1). Sub-section 1.3.2 describes the context in which the given problem
is addressed. Finally, Sub-section 1.3.3 describes the research approach selected to tackling
this research problem.

1.3.1 Problem definition

One of the fundamental objectives of any organization is to increase the effectiveness of
their operations. In order to do so, companies need to manage their resources, control
information flow, coordinate the execution of tasks and orchestrate relevant processes.
Production time, use of resources and generated waste have to be minimized, while the
flexibility to select suitable partners and adapt to changes in the operating environment

Section 1.3 Research 9

have to be maximized. Products supplied have to be of a high standard, moreover they
need to be delivered to customers within an agreed timeframe. In many cases, these
problems can be addressed by identifying relevant business processes and streamlining
their operation by using appropriate Information Technology (IT). Given the wide range
of commercial and non-commercial offerings that support business process enactment, the
selection of a suitable information system is difficult and the process for doing so is not
well-understood. Although some attempts to standardize the development of PAISs have
been made (see the earlier discussion in Section 1.2), contemporary PAISs differ in terms
of the functionality they provide for modeling business processes, interacting with external
services and applications, and their ability to react to (unforeseen) events.

In order to reduce the complexity of PAISs analyzed, a separation of views is necessary
for the analysis of relevant requirements. The separation of views has earlier been made in
ARIS (Architecture of Integrated Information Systems) [199], CIMOSA (Computer Inte-
grated Manufacturing Open Systems Architecture) [213], Zachmann framework [234], and
MOBILE framework [128], which aim at providing an integrated infrastructure for execu-
tion of process models. In these frameworks, multiple perspectives have been distinguished.
Although named differently, each of the frameworks identifies three common perspectives
which are inherent in any business process: control-flow (function/operation/behavior),
data (information), and resource (organization/network) perspectives. The control-flow
perspective describes the structure of a process in terms of process modeling entities, their
implementation, and interconnections between them in terms of the flow of control. The
data perspective describes the kinds of data elements used in a process and the manner in
which they are utilized. The resource perspective describes the manner in which tasks are
assigned to resources, and the overall organizational structure.

In addition to the three fundamental perspectives, i.e. control-flow, data, and resource
perspectives, in this thesis we also consider service interaction and process flexibility per-
spectives. The importance of the service interaction perspective can be illustrated in light
of the current trend in the development of PAISs to offer a means of supporting distributed
processes via service interaction (cf. Section 1.2). The availability of business processes in
the form of web-services, which can be accessed via uniform interfaces, allows the func-
tionality of these services to be easily reused by many other applications. Moreover, the
ability of web-services to dynamically determine credentials of business partners allows
service providers to be easily interchanged with another party at any suitable moment,
if required. Whereas the control-flow, data and resource perspectives concentrate on the
internal aspects of a business process, the service interaction perspective concentrates on
the external behavior associated with business processes. Thus by focusing on the service
interaction perspective, we aim to gain a better understanding of the requirements for
PAISs in supporting inter-process communication.

In this thesis, we also focus on the process flexibility perspective as it addresses one
of the biggest challenges that contemporary PAISs have to deal with, i.e. the ability to
modify existing processes in order to adapt to changes in the operating environment. In
order to do so, it is important not only to understand why contemporary offerings are so
rigid, but also what is required in order to make them more flexible. The analysis of the
process flexibility perspective has been insufficiently addressed to date [184], and we aim
to develop a better understanding of the requirements relevant to PAISs for supporting
processes of a highly volatile nature.

According to [239], Jablonski and Bussler identified several other perspectives (e.g.,
causality, integrity and failure recovery, quality, history, security and autonomy) which

10 Chapter 1 Introduction

could also be used for analysis. The causality perspective contains elements specifying
under which conditions a process can be executed. The integrity and failure recovery
perspective contains elements specifying the correct execution of a process instance and
how exceptional situations need to be handled. The quality perspective is related to the
establishment of a control mechanism to determine whether a process instance has been
executed in an efficient manner or not. The history perspective contains elements used
for monitoring the execution of a process instance on the basis of a history of executed
events (recorded in the form of an audit trail or a process log). The security perspective
is associated with application-based control aspects through the specification of privileges
and authorizations associated with users and roles. The autonomy perspective specifies
elements of remote access of work items by users and issues of continuous synchronization
of a user with a worklist. These perspectives are not considered in this thesis for several
reasons.

First of all, these perspectives are defined by Jablonski and Bussler as being an ‘op-
tional enhancement’ of the mandatory perspectives addressing fundamental issues related
to the control-flow, data and resources. Secondly, the majority of issues addressed by these
optional perspectives are encompassed in the five perspectives considered in this thesis.
As such, the context conditions associated with process execution, related to the causality
perspective, can be specified by control-flow relations and data conditions associated with
the control-flow and data perspectives. Issues relating to correct execution and the abil-
ity to handle unforeseen events, inherent to the integrity and failure recovery perspective,
are encompassed into the process flexibility perspective which specifies various approaches
to handing an unpredicted behavior. The quality perspective, which relates to determin-
ing whether a process instance is executed in an efficient manner, requires a particular
corrective action to be taken when given criteria are not met. The ability to deal with
unexpected events by adjusting the execution of a business process is encompassed in the
process flexibility perspective. We do not consider the history perspective as it is only rel-
evant after the process execution has completed. Any modifications that may need to be
made after information gathered during process execution has been analyzed, can be seen
as potential adjustments which can be encompassed by the process flexibility perspective.
Issues relating to regulating task access, relevant to both the security and the autonomy
perspectives, can be specified via users and roles, which are encompassed in the resource
perspective. Thus, the scope of this thesis (cf. Figure 5) comprises five perspectives: the
control-flow, data, resource, service interaction and process flexibility, an understanding of
which is essential in order to utilize PAISs to support business process operation.

The upper part of Figure 5 represents the perspectives relevant to PAISs, whereas the
bottom part of the figure represents a conceptual foundation for formalizing requirements
for each of these perspectives. As Figure 5 shows, each process encompasses elements
related to the control-flow, data and resource perspectives. These perspectives characterize
the internal behavior of a process. The control-flow perspective specifies the structure of
a process in terms of process entities, and the relationships between them describing the
flow of control. The control-flow perspective essentially specifies the order of tasks in a
process and can be seen as a backbone on which other perspectives reside. The data
perspective augments the control-flow perspective with information that is necessary for
execution of tasks. Furthermore, it provides input for data-based control-flow routing. The
resource perspective describes the organizational aspects of a process, i.e. the assignment
of resources to specific tasks in a process as well as their roles and responsibilities.

Although Figure 5 illustrates only two processes which interact with each other, the

Section 1.3 Research 11

scope of this thesis is not limited to bilateral interactions. The service interaction perspec-
tive encompasses multiple processes which may interact with each other by exchanging
process-related information. This perspective describes the nature of interactions between
processes in terms of the number of parties are involved, how many messages are ex-
changed, how the messages received are correlated with messages sent earlier, and other
factors related to message processing.

Finally, the process flexibility perspective describes the ability of a given process to
adapt to foreseen and unforeseen events in the external environment. It describes how
flexibility in selecting a suitable execution sequence can be incorporated in a process model
at process design-time, and how the execution of a process can be adjusted if a desired
execution path cannot be found during process execution.

Service

interaction

Flexibility

pat
te

rn
s

process process

C
o

n
tr

o
l-

fl
o

w

R
e
s
o

u
rc

e
s

D
a
ta

p
at

te
rn

s

patterns

Colored Petri Nets (CPNs)

patterns

Figure 5: Scope of research: (1) the upper layer represents interacting processes, where each of
the processes is characterized by control-flow, data, resources and flexibility perspectives; (2) the
lower layer represents the formal foundation for describing requirements for PAISs

The main goal of this thesis is to provide a rigorous foundation for PAISs that facilitates
the conceptual understanding of the various perspectives of PAISs, provides a reference
point for the evaluation and improvement of contemporary offerings, and bring new insights
to the definition of languages and standards in the domain. This work should be considered
in the context of Workflow Pattern Initiative, which is described in the next section.

1.3.2 Workflow Pattern Initiative

The Workflow Patterns Initiative, which commenced in 1999, aims at establishing a con-
ceptual foundation for process technology that can be used for assessing the strengths and
weaknesses of various approaches to process specification [230]. It has taken an empirical
approach to identifying requirements for PAISs and documenting them in form of patterns.

12 Chapter 1 Introduction

The concept of pattern was introduced by Christopher Alexander who identified a series
of reusable structures in an architectural context [25]. According to Alexander, a pat-
tern is a relationship between a problem and a solution applicable in a specific context.
Patterns have proven to be very successful for sharing proven and sound solutions for fre-
quently recurring problems in various domains. Therefore the patterns approach has also
been chosen by the Workflow Patterns Initiative to describe requirements for PAISs from
different perspectives.

The investigation started from the control-flow perspective, which forms the basis of a
process. As shown in Figure 6, in 2000 the first proposal summarizing requirements for
PAISs from the control-flow perspective was published. Van der Aalst et al. empirically
analyzed a selection of workflow systems available at that time and identified 20 common
control-flow structures termed “workflow control-flow patterns” [9, 12]. Soon thereafter,
Russell et al. investigated the data and resource perspectives. In 2005, they published 40
data patterns and 43 resource patterns, describing the various ways in which data and
resources are represented and utilized in workflows respectively [191, 192]. This work was
followed by the definition of a general graphical exception language with 16 primitives [190].

Control-flow

patterns

Resource

patterns

Data

patterns

time1999 2000 2003 Sep 2004 Jun 2005 Oct 2005 Jun 2006

Exception
patterns

Workflow Pattern Initiative

P4PAIS project

Figure 6: Workflow Pattern Initiative

The patterns identified have been used to evaluate the capabilities of various workflow
management systems and web-services standards. Several workflow offerings have been
evaluated using the patterns identified, however at the time vendors did not show much
interest in these results. In 2001, the patterns became more visible and accessible when the
www.workflowpatterns.com web-site was released (this web-site is currently being visited
by at least 350 people a day). Since then the patterns have been applied in product de-
velopment and product evaluations. They have inspired the development of several new
systems, e.g., Yet Another Workflow Language (YAWL)1, Ivolutia Orchestration, Open-
WFE, Zebra, and Alphaflow. The patterns also triggered improvements and redesign of
existing systems, e.g., FLOWer 3.0, Bizagi, Staffware Process Suite, etc. Furthermore,
the patterns have been extensively used in teaching and facilitating the sharing of best
practice in the domain. The paper on workflow patterns [12], although less than ten years
old, is already the third most cited workflow paper according to Google Scholar. The total
number of references to this paper exceeds 900, which is a sign that patterns also have an
impact in the academic world.

The ‘Patterns for Process-Aware Information Systems’ (P4PAIS) research project pre-
sented in this thesis started in 2004 as a continuation of the work done in the context of
the Workflow Patterns Initiative with the goal of refining the control-flow patterns and

1YAWL is a spin-off of the Workflow Patterns Initiative, whose original goal was to show how the
workflow patterns can be supported in practice.

Section 1.3 Research 13

investigating requirements for perspectives which have not yet been addressed. Whilst the
analysis of the data and resources perspectives was already underway, the need to revise
the control-flow patterns was identified. Extensive use of the control-flow patterns for as-
sessing workflow offerings revealed that some of the pattern definitions were ambiguous
(e.g., they could be potentially interpreted and implemented in several distinct ways) and
some patterns were missing. In addition to addressing these issues, the requirements for
PAISs from other perspectives also merited further analysis.

The control-flow, data and resource perspectives can be used to describe business pro-
cesses with a focus on the internal aspects of an organization. However this knowledge is
not sufficient for supporting organizations planning to extend their boundaries by interact-
ing with other organizations or by merging several businesses and thus requiring business
process integration. In light of current trends in BPM, service-orientation is becoming
increasingly important, therefore we analyze the requirements for PAISs from the perspec-
tive of service-interaction. Another very important dimension we will address in this thesis
is process flexibility. Understanding what constitutes process flexibility and how it can
be achieved is crucial for selecting a PAIS capable of coping with unpredicted events in a
continually changing environment.

This thesis complements the earlier work on control-flow, data, resource, and exception
patterns. In particular, the following patterns are provided:

• revised control-flow patterns;
• service interaction patterns;
• process flexibility patterns.

Together with the thesis of Russell [194], these patterns provide a comprehensive cov-
erage of PAIS functionality. Note that Figure 5 shows the combined sets of patterns while
highlighting the patterns presented in this thesis.

1.3.3 Research approach

The selection of the research approach to the problems identified above is driven by the
question: “How should the requirements for PAISs be described from various perspectives
(i.e. control-flow, service-interaction and process flexibility) in a systematic and precise
way?”. There are several decisions that have to be taken in order to answer this question.
First of all, a suitable presentation format needs to be selected that allows for describing
requirements for PAISs in a structured and unified manner. Secondly, a formalism capable
of describing the semantics of the requirements identified in a precise and an unambiguous
way needs to be chosen:

1) In order to describe requirements for PAISs systematically, we have chosen the
patterns approach previously used by the Workflow Pattern Initiative. This approach has
proven to be very appealing to workflow vendors, process designers, system developers,
and BPM researchers, as it facilitates the sharing of best practices within a domain in
a language-independent manner. Traditionally, patterns are described in a form which
motivates their usage, by providing typical examples of the pattern in practice, discussing
how the pattern may be implemented, and (potential) issues that may arise as a result of
their usage. We will elaborate on the topic of patterns in more detail in Chapter 2.

2) In order to describe requirements in a precise way, we specify their semantics using
the Colored Petri Nets (CPNs) formalism. CPNs provide a graphical formally-defined
language that has been extensively used for design, specification and simulation of dynamic
systems with elements of concurrency [66]. Its application domain includes (but is not

14 Chapter 1 Introduction

limited to) automated production systems, workflow systems, distributed and embedded
systems. CPNs are an extension of classical Petri nets with time, hierarchy and color. The
extension with time enables the modeling of temporal aspects and the evaluation of system
performance. The extension with hierarchy allows a model to be compactly structured by
decomposing it into a series of smaller models (or pages) with well-defined interfaces. The
extension with color allows data to be modeled explicitly, thus overcoming the drawback of
the classical Petri nets where all data manipulations must be included directly in the net
structure by means of places and transitions. Another important aspect is the tool support.
CPN Tools [66] offers a good modeling and simulation environment, where CPN models
can be designed, executed, and analyzed. The ability of CPN diagrams to capture dynamic
behavior is a significant advantage over other formalisms as this aspect is important for
describing the flow of control within a process, interaction between processes and the
adaptability of processes to changes. Thus the choice of CPNs is driven by the power of
the language (which allows both control-flow and data associated with it to be expressed)
and very good tool support that allows models to be operationalized.

Figure 5 illustrates that for each of the three perspectives: control-flow, service-
interaction and process flexibility, the requirements are described by means of patterns,
and their semantics are specified using CPNs.

To design CPN models efficiently, we were hoping to gain access to the accumulated
knowledge in the domain. As CPNs are heavily used in practice, similar problems can be
experienced by different designers and same solutions can be used by them to solve the
problems they have identified. To help developers to model efficiently without reinventing
solutions, a source of knowledge describing sound and proven solutions is needed. To the
best of our knowledge, a shared knowledge base satisfying the above described requirements
does not exist. Due to the absence of such a knowledge base and also as a consequence of
the prominent role CPNs play in our research, we decided to gather solutions commonly
used for solving problems frequently occurring in CPN modeling and document them in
the form of patterns.

1.4 Thesis outline

The roadmap for the research presented in this thesis is visualized in Figure 7. Part I
presents conceptual foundations for the thesis:

• Chapter 2 describes the fundamentals of the pattern-based approach to describing
generic concepts in a given problem domain. The concepts of a pattern, a pattern
format and a pattern language are introduced, and different types of patterns are
described. Furthermore, the methods that we have used for pattern identification are
summarized in this chapter.

• Chapter 3 presents CPN patterns. The relationships between the patterns are
analyzed and the patterns are divided into clusters in order to help users in selecting
an appropriate pattern from the pattern catalog. Furthermore, the frequency of
pattern use in practice is examined through an empirical analysis of a selection of
CPN models.

The research presented in Part II of this thesis builds on the conceptual foundations
presented in Part I, and addresses three perspectives of PAISs:

Section 1.4 Thesis outline 15

Service

interaction

Flexibility

pat
te

rn
s

process process

C
o

n
tr

o
l-

fl
o

w

R
e

s
o
u

rc
e
s

D
a
ta

p
at

te
rn

s

patterns

Colored Petri Nets (CPNs)

patterns

Part I

Ch.3

Part II

Ch.4

Ch.5

Ch.6

Figure 7: Scope of research

• Chapter 4 presents workflow control-flow patterns. The definitions of the origi-
nal patterns are revised, new patterns are added, and the semantics of all of the
patterns are precisely defined in terms of CPN diagrams. In order to differentiate
between different approaches to operationalizing these patterns, the formal Core Pro-
cess Construct Modeling Language is presented. The use of the patterns is examined
in a series of PAISs as a means of assessing the specific control-flow capabilities of
individual offerings.

• Chapter 5 presents service interaction patterns. The patterns identified address the
issues of request-reply interactions involving multiple parties and multiple messages in
the context of short and long-running conversations. In order to distinguish pattern
variants an intuitive graphical notation is defined. Furthermore, the semantics of
each of the service interaction patterns identified is described using CPN diagrams.
In order to illustrate the extent of patterns support experienced in practice a selection
of PAISs is analyzed.

• Chapter 6 presents a taxonomy of process flexibility which classifies different ap-
proaches to facilitating process flexibility. The operationalization of the different
process flexibility approached identified is defined by means of process flexibility pat-
terns. The function of these patterns is illustrated by means of a process engine
expressed in terms of CPN diagrams.

Finally, this thesis concludes with Chapter 7, which describes limitations and proposes
future work.

Part I

Conceptual Foundations

The scope of the research presented in this part of the thesis is presented in Figure 8. In
particular, we concentrate on the bottom part of the figure, i.e. the conceptual foundation
for PAISs. There are two main topics addressed in this part: patterns (e.g., the generic
meaning of patterns, their different uses, relations, application domains, etc.) and CPNs
(e.g., the formal foundation used to present the requirements for PAISs in part II of this
thesis).

Service

interaction

Flexibility

pat
te

rn
s

process process

C
o

n
tr

o
l-

fl
o

w

R
e

s
o
u

rc
e

s

D
a
ta

p
at

te
rn

s

patterns

Colored Petri Nets (CPNs)

patterns

Part I

Ch.3

Part II

Ch.4

Ch.5

Ch.6

Figure 8: Scope of the research: Part I

Due to the prominent role CPNs play in our research, we decided to gather solutions
commonly used for solving frequently occurring problems in CPN modeling and document
them in the form of patterns. Before we proceed to CPN patterns, we first discuss the
various characteristics and types of patterns, and their use as a means of capturing and
sharing knowledge within a given domain. In Chapter 2, we concentrate on the notion
of a pattern, a pattern language, a pattern format, and give a generic overview of other
pattern-related work. Then in Chapter 3 we present the CPN patterns identified.

.

Chapter 2

Patterns

In this chapter, we describe the fundamentals of the pattern-based approach to describing
generic concepts in a given problem domain. First, in Section 2.1 we introduce the concept
of a pattern, a pattern language, and discuss different types of patterns. In Section 2.2,
we elaborate on the pattern format used to describe different kinds of patterns. Then,
in Section 2.3 we summarize the methods that we have used for pattern identification.
Finally, in Section 2.4 we discuss related work.

2.1 Types of patterns

The concept of a pattern was introduced by the architect Christopher Alexander in his book
“The Timeless Way of Building” [26] in 1977. Alexander defined a pattern as “a three-
part rule, which expresses a relation between a certain context, a problem, and a solution”.
Patterns characterize constructs, methods or techniques that have been encountered in
practice repeatedly. Each pattern is intended to address an individual problem. In order
for more complex problems to be solved, a number of patterns may need to be combined. By
classifying different kinds of patterns and the types of relations between them, patterns can
easily can be combined together. Moreover, with knowledge of the specific characteristics
of individual patterns, one may choose the pattern most appropriate for a given situation.
A pattern language is “a structured method of describing design practices within a field of
expertise by explicitly describing the key characteristics of effective solutions for meeting
some stated goal” [96]. A pattern language helps a user to move from problem to solution
in a logical way, thus allowing for many alternative paths through the design process.

A pattern language is not fixed, it is built up on collected experience in a field, and as
the techniques used in practice change, the pattern language may also evolve. According
to Alexander, patterns which are often used in practice are “alive”, while the ones used
rarely or not used any more are “dead”. In order for the pattern language to be alive,
it has to consist of patterns that are actively used in practice. In order to know whether
a pattern is alive, one has to observe different situations and confirm that this pattern is
being repeatedly used.

Patterns are encountered by everyone in their everyday lives. Preparing meals accord-
ing to their grandmother’s recipes, using proven materials for fixing electricity and water
pipes, resolving common problems with electronic appliances using the manual - these are
examples of the typical patterns encountered in domestic life. Patterns exist in various

22 Chapter 2 Patterns

fields. One can think of the health care domain where examinations and medicines are
used to treat patients’ problems; the social sciences where patterns are related with select-
ing a leader, collaborating in order to develop solutions, approaches for resolving conflicts,
etc.; the chemical industry where compositions containing various elements are used for
cleaning, deodorizing or painting purposes.

Patterns represent a piece of knowledge about how to solve a particular task. While
problems originate from the requirements which need to be satisfied, the actual pattern is
about solutions that can be used to solve the specified problem in a given context. Figure 9
illustrates different phases of the pattern identification process.

requirements

Set of
problems

P

ANALYSIS SYNTHESIS VERIFICATION

Solution

domain

s1...sn

s1+s2+...+sn

p1

p2

...

pn

s1

s2

...

sn

Figure 9: Different phases of pattern identification process

In the analysis phase, the requirements are examined, based on which a set of problems
are identified. Complex problems are decomposed into smaller parts. For each of the
sub-problems in the pattern synthesis phase possible solutions are identified, which are
grouped together in order to solve the original problem. In the pattern verification phase,
the combined solutions are checked and tested.

Apart from the fact that patterns address different problems, depending on the nature
of the domain in which the problem has been encountered, patterns differ in terms of the
degree of abstraction that they demonstrate. Figure 10 illustrates the problem decomposi-
tion process, where based on the given set of requirements, a set of problems are identified.
The solution for each of these problems represents a pattern. When looking for solutions
to each of the problems identified, it may be necessary to decompose the problem into a
series of problems at a lower level of abstraction and to solve them first. The solution to
a more specific problem also represents a pattern.

Pattern
abstraction

level

high

high

low

low

Requirements

Problems

P1...Pn Patterns

Patterns

Extract
solutionsS1 S2 ... Sn

p1 p2 ... pn

Different levels of

abstraction
s1 s2 ... sn

Figure 10: Pattern abstraction levels

Section 2.2 Pattern format 23

A typical example of a problem that can be decomposed into smaller parts, is the
integration of two applications. First, an architecture needs to be defined. For this, the
architecture patterns and enterprise integration patterns can be used. The components
defined in the architecture need to be worked out in further detail, which requires knowledge
and use of the design patterns. Finally, when a particular object needs to be implemented,
typical implementation solutions are used. Problems solved at each of these levels are
characterized by different degrees of problem granularity and belong to different levels of
abstractions.

The pattern initiative of Alexander [26] was widely supported and triggered a set of
parallel initiatives, i.e. pattern languages, in other application fields and domains. In sub-
sequent years, the idea of patterns became popular in the object-oriented community. As
an evidence of this, we refer to the 23 design patterns by Gamma et al. [99], and numerous
successors such as the analysis patterns by Fowler [92], and the framework patterns by
Pree [176], etc. (a more extensive overview of related patterns work follows in Section 2.4).

Patterns at different levels of abstraction describe generic or detailed solutions. The
type of information specified in different solutions may be less or more specific, which
needs to be reflected in the manner the patterns are described. In order to uniformly
document patterns, one needs to select an appropriate pattern format. In Section 2.2, we
describe different pattern formats commonly applied to systematically document patterns.
Furthermore, we indicate which pattern formats are utilized in this thesis.

2.2 Pattern format

In order to communicate proven solutions for frequently recurring problems, patterns need
to be documented using a systematic approach. The precise description of patterns is
one of the prerequisites for these patterns to be organized in a pattern language. In [26],
Alexander introduced a pattern format, which included (1) a picture graphically illustrating
a problem, (2) explanation of the context in which the pattern is to be used and relation
to other patterns, (3) a statement of the problem and discussion of different variants of the
problem, (4) a solution to a problem described in the form of instructions, often supported
by a graphical illustration, and (5) a list of patterns that are used in the solution, or
patterns that need to be used in combination with the given pattern in order to solve a
more complex problem.

From the moment the concept of a pattern was introduced, the pattern-based approach
gained popularity and patterns have been documented in various domains. Because the
nature of the problems addressed, the context conditions and methods used in different
domains vary significantly, the original pattern format has been modified in order to meet
the needs of specific domains, thus resulting in a variety of pattern formats. One of the
most representative examples is the format introduced by Gamma et al. [99] for describing
design patterns in object-oriented software development. “Each pattern is divided into
sections according to the following template...

• Pattern name and classification: The pattern’s conveys the essence of the pat-
tern succinctly. A good name is vital, because it will become part of your design
vocabulary...

• Intent: A short statement that answers the following questions: What does the
design pattern do? What is its rationale and intent? What particular design issue or
problem does it address?

• Also known as: Other well-known names for the pattern, if any;

24 Chapter 2 Patterns

• Motivation: A scenario that illustrates a design problem and how the class and
object structures in the pattern solve the problem. The scenario will help you un-
derstand the the more abstract description of the pattern that follows.

• Applicability: What are the situations in which the pattern can be applied? What
are examples of poor designs that the pattern can address? How can you recognize
these situations?

• Structure: A graphical representation of the classes in the pattern using a notation
based on the Object Modeling Technique (OMT)...

• Participants: The classes and/or objects participating in the design and their re-
sponsibilities.

• Collaborations: How the participants collaborate to carry out their responsibilities.
• Consequences: How does the pattern support its objective? What are the trade-

offs and results of using the pattern? What aspect of system structure does it let you
vary independently?

• Implementation: What pitfalls, hints, or techniques should you be aware of when
implementing the pattern? Are these language-specific issues?

• Sample code: Code fragments that illustrate how you might implement the pattern
in C++ or Smalltalk.

• Known uses: Examples of the pattern found in real systems.
• Related patterns: What design patterns are closely related to this one? What are

the important differences? With which other patterns should this one be used?” [99].

By comparing the pattern format of Alexander and that of Gamma, one can identify
numerous disparities. One can argue that the extended pattern format is needed in dif-
ferent domains due to the different nature of problems being addressed and higher/lower
degrees of pattern granularity. While the format of Alexander is rather generic, it lacks
precise semantics. The usage of this pattern format in other domains may lead to ambigu-
ities in pattern interpretation, which is not desirable. This drawback has been addressed
in Gamma’s format by using a standardized method for describing solutions and giving
(programming) language-specific examples.

The approach selected for describing a pattern defines the range of readers to which the
pattern will be accessible. Patterns described in a generic and language-independent way
can be used in various domains, while language-specific problems need to be expressed in
terms of the considered language and thus are mainly aimed at the audience acquainted
with this language.

Despite numerous discussions regarding the optimal pattern format that could be used
for describing patterns, no consensus has been achieved. Nevertheless, in order to be
generally useful a pattern format must contain at least the pattern name, the problem
description, the solution, and the consequences of applying the pattern as illustrated in
Figure 11.

Such a pattern format may be sufficient for describing patterns at a more abstract level,
while language-specific patterns addressing more detailed problems may require additional
fields related to the pattern implementation to be added. Note that one of the ways to
describe pattern variants is by describing a generic pattern problem and providing context-
specific solutions for it. An example of a pattern having such a structure is a “Message
Filter” defined by Hohpe en Woolf [125]:

Pattern Name: Message Filter.

Problem: How can a component avoid receiving uninteresting messages?

Solution: Use a special kind of Message Router, a Message Filter, to eliminate undesired

Section 2.3 Pattern identification 25

Pattern Name: short description of the

problem, its solution, and consequences.

Problem: when to apply the pattern

(problem, and context).

Solution: generalized (not-specific!)

solution to the problem

Consequences: results and trade-offs of

applying the pattern.

Problem

Solution

Main elements of a pattern

Figure 11: Generic pattern format

messages from a channel based on a set of criteria.
Consequences: The Message Filter has only a single output channel. If the message
content matches the criteria specified by the Message Filter, the message is routed to
the output channel. If the message content does not match the criteria, the message is
discarded.

Besides differences in pattern formats utilized to document patterns at distinct levels of
abstraction, there is the distinction between approaches used for pattern identification. In
Section 2.3, we describe two approaches to pattern identification utilized in this research
project.

2.3 Pattern identification

The process of pattern identification consists of several steps. A pattern cannot be invented,
it can only be empirically identified. Identifying a new solution does not result in a new
pattern being created. In order for the solution to become a pattern, it first needs to
be tested (i.e. observed) in practice. Only sound solutions, which have been proven to
solve particular problems effectively, can be considered. Sound solutions can be derived
from expert knowledge, tutorials where common solutions are communicated to users, or
empirical evaluation of products where particular features, characteristics or functionalities
are frequently observed and used.

For instance, if we analyze information systems or programming tools, they offer a
large set of functionality for supporting users in achieving particular results. Not only
may particular features offered by the tools represent patterns, but also combinations of
the steps performed by a user in order to achieve a particular goal can be considered as
patterns. In order to identify patterns in a particular domain, one has to define the scope
of problems to be analyzed and determine the degree of problem granularity in order to
decide at which level of abstraction the patterns will operate. When the scope of the
analysis domain has been clearly defined, solutions can be gathered using a bottom-up
empirical approach or derived using a top-down systematic analysis method.

Using the empirical approach various products can be observed and solutions addressing
a particular aspect of the problems analyzed can be identified. Figure 12 illustrates this
process of pattern identification. For frequently used solutions, a corresponding problem
is identified, and they both are recorded using the selected pattern format.

This approach does not guarantee the completeness of the patterns identified, because it
is based on observation rather than on systematic derivation. Nevertheless, the collection

26 Chapter 2 Patterns

Figure 12: Pattern identification: bottom-up approach

of patterns obtained using this approach may be particularly useful for communicating
solutions most commonly used in practice. The pattern collection can be extended when
missing or new solutions have been identified.

An alternative to the empirical approach, is the top-down pattern derivative approach
where, based on the problem domain to be analyzed, a set of dimensions central to all of
the problems are identified.

Figure 13: Pattern identification: top-down approach

As illustrated in Figure 13, for each of the dimensions identified a possible set of values is
defined. Then possible combinations of different values associated with distinct dimensions
are analyzed, and meaningful combinations are filtered out for further analysis based on
the application of domain knowledge. The set of useful combinations achieved is analyzed
in terms of similarity and combinations addressing similar kinds of problems are grouped
together. The groups of related patterns identified correspond to pattern groups, while the
combinations within these groups represent individual patterns. To test the use of patterns
derived using this method in practice, one has to analyze support for the dimensions earlier
identified. Supported values for each of these dimensions define possible combinations and
thus the supported patterns. Although some in the pattern community may not consider
these to be patterns, it is important to underline that the main goal of this approach is to
structure the knowledge in the field, set the scope and identify relevant dimensions, rather
than simply to identify recurring solutions.

In this thesis, we apply both approaches to pattern identification. The CPN patterns,
presented in Chapter 3, are based on the empirical approach. The goal of this chapter is to
share commonly used solutions, rather than arriving at a complete collection of patterns. In

Section 2.4 Related work 27

Chapter 4, patterns related to the control-flow perspective of PAISs are identified using the
empirical approach, however for a selection of patterns the systematic derivative approach is
applied. The patterns related to the service interaction perspective of PAISs also described
in Chapter 5 using the systematic approach. Finally, in Chapter 6 patterns related to
the process flexibility perspective are also systematically derived. Due to the different
approaches used and the disparity in the degree of abstraction characterizing the patterns
identified, we will adopt different pattern formats for each of the pattern groups.

2.4 Related work

It is impossible to give a complete overview of the different types of patterns described
in the literature. As indicated before, the ideas of a “pattern” and a “pattern language”
were introduced by the architect Christopher Alexander in [26] to assist people in designing
own homes and communities. Since Alexander described his pattern language [25], pat-
terns have become a popular means of capturing and sharing the co-existing knowledge in
various domains. The pattern approach has heavily influenced the software development
community.

The 23 design patterns by Gamma et al. [99] triggered the development of many more
patterns initiatives in the object-oriented software community. Some of its successors in-
clude: the patterns for knowledge and software reuse by Sutcliffe [208], the design patterns
in communication software by Rising [188], and the framework patterns by Pree [176]
describing how to reuse the source code and architectural design to build software applica-
tions. Aside from generic patterns, sets of language-specific pattern languages (UML [88],
Smalltalk [28], XML [229], Python [198], etc.) have also been discovered and documented
(cf. www.hillside.net).

In [148], MacDonald et al. explain that design patterns are not used as generative
constructs that support code re-use because design patterns describe solutions to a family
of related problems and it is difficult to generate code for solving a particular problem.
The authors present a parameterized approach helping users to adapt generic patterns to
their specific code requirements.

Furthermore, some work has been done on formalizing organizational, process, analysis,
and business-related patterns. Among them are the analysis patterns by Fowler [92] which
show examples of domain models, and the framework process patterns by Carey [53] which
concentrate on the resource perspective and identify means of effective communication
during different phases of the framework development process. In addition, the patterns
for e-business [18] which focus on business patterns, integration patterns, and application
patterns; the business patterns at work [87] which use UML to model a business system;
Coplien’s organizational patterns [65] which describe successful approaches for organizing
and managing people involved with the software process, and Ambler’s process patterns [31]
describing various stages and phases in the development process.

Other interesting patterns collections are the enterprise integration patterns by Hohpe
and Woolf [125] and the service interaction patterns by Barros et al. [37]. In their book
[125], Hohpe and Woolf propose a visual notation framework to describe large-scale in-
tegration solutions involving many technologies. It concentrates on the advantages and
limitations of asynchronous messaging architectures with a particular focus on messag-
ing systems used for message routing. The service interaction patterns presented in [37]
document common problems and approaches to the design and implementation of web ser-
vices. The special emphasis of these patterns is on situations where services are engaged

28 Chapter 2 Patterns

in concurrent and interrelated interactions (both of a bilateral and multilateral nature).
Strategies for integrating applications using Microsoft technology, and patterns for data
replication and synchronization are documented in [154].

Weber et al. [219] describe 18 change patterns and seven change support features that
can be used for analysis of PAISs from the perspective of process change. The authors define
the change patterns in terms of operations that can be applied during process execution
in order to adapt a process model to new requirements. Furthermore, they address issues
of version control and process instance migration, which are important means for keeping
the consistency across existing process models and instances.

In addition to the large set of pattern collections, the issue of documenting patterns in
a way that makes them understandable to their intended audience has been addressed by
multiple authors. In [153], Meszaros and Doble present meta-patterns, i.e. best practices
about pattern writing, which give insights into pattern-writing techniques. Furthermore,
Jonson describes how software frameworks can be documented using patterns. In [132],
Jonson considers a framework as a reusable design for a program expressed as a set of
classes. To illustrate that patterns can be used not only as ways of communicating design
information, in [41] Beck shows that they can also be used to derive an architecture from
a problem statement (“an architecture is the way the parts work together to make the
whole” [41]).

In contrast to patterns, which document solutions that have been repeatedly used in
practice for solving particular problems, the concept of “anti-pattern” exists. Anti-patterns
describe solutions that have been used in multiple projects which have been unsuccessful,
thus providing knowledge of what does not work in practice [32]. Anti-patterns typically
describe how to transform refactored solutions into a more efficient ones. Although anti-
patterns are less widely studied, some of them are utilized by the software community.
Moreover, to come up with a proper, sound solution, one requires both knowledge of sound
solutions and typical counterexamples. This thesis mainly concentrates on patterns and
does not consider anti-patterns.

The starting point for this work is the Workflow Patterns Initiative already mentioned
in Section 1.3.2. To capture the functionality of PAISs in term of patterns, control-flow
patterns [12], data patterns [191], resource patterns [192] and exception patterns [190] have
been documented. This thesis contributes to the Workflow Pattern Initiative by redefining
the control-flow patterns, defining patterns in service interaction and process flexibility, as
well as CPN patterns in order to bring further understanding to problems where the control-
flow and data perspectives interplay. This complements the work done by Russell [194]
which focussed on the control-flow, data, resource, and exception patterns. This thesis and
Russell’s thesis are intended to cover the broader domain of workflow patterns.

2.5 Summary

In this chapter, we introduced the concepts of a pattern and a pattern language, described
differences in pattern formats used for documenting patterns, and explained two methods
applied in this thesis for patterns identification. Patterns presented in the next chapter
describe solutions frequently reoccurring when designing CPN models. Together with this
chapter, the CPN patterns form a conceptual foundation for describing requirements for
PAISs, which are presented in Part II of this thesis.

Chapter 3

Colored Petri Nets Patterns

In this chapter, we present a pattern language for CPNs. Although the main features of
classical Petri nets are incorporated in CPN patterns, we concentrate on their extension
with color. By means of color, tokens in the Petri nets can have data values associated with
them, thus enabling data associated with control-flow in processes to be specified. First, in
Section 3.1 we introduce the main concepts of CPNs that are necessary for understanding
the patterns presented in this chapter. Then, we present our collection of 33 patterns in
the form of a pattern catalog (Section 3.2). This catalog describes common solutions to
modeling problems recurring during design of CPN diagrams. In order to support devel-
opers in selecting an appropriate pattern, we examine the clustering of CPN patterns into
different groups in Section 3.3. Furthermore, we identify the different types of relationships
between the patterns in order to facilitate easy navigation through the pattern catalog. To
illustrate the use of patterns in practice, we present an empirical evaluation of a set of CPN
models in Section 3.4. Finally, we discuss related work and draw conclusions in regard to
the use of CPN patterns in Section 3.5 and Section 3.6 respectively.

Patterns are usually described in a standard pattern format, which includes the pattern
intent, context conditions, problem description, possible solutions and relevant implemen-
tation strategies (see the discussion on this topic in Section 2.2). In order to illustrate
the implementation of solutions, a tool supporting modeling in CPNs had to be selected.
For this purpose, we chose CPN Tools [66] (a successor of Design/CPN [67]), a tool that
offers interactive and automatic simulation facilities, by means of which models designed in
CPNs can be executed. The ability to use a CPN model as a system’s description and the
ability to analyze its behavior are the motivations for the extensive use and application of
CPN Tools in practice. CPNs have been actively used by 700 organizations and individuals
in 70 countries as illustrated by [66].

Since there are multiple views on how to document patterns and no consensus on a
single pattern format has yet been achieved (as discussed in Section 2.2), we took the
pattern format of Gamma [99] as a starting point, and adjusted it to fit our purposes:

• Pattern name This section identifies the pattern, and captures the main idea of
what the pattern does.

• Intent This section describes in several sentences the main goal of a pattern, i.e.
identifying which problem(s) it offers a solution.

• Motivation This section describes the actual context of the problem addressed by
the pattern, and explains why the problem needs to be solved.

30 Chapter 3 Colored Petri Nets Patterns

• Problem description This section presents the problem addressed by the pattern.
For the sake of clarity, the problem is explained using a specific example. Examples
for the majority of patterns are also illustrated by means of CPN diagrams.

• Solution This section describes possible solutions to the problem. Note that a single
problem addressed by the pattern can be solved in several ways, depending on the
requirements and/or context conditions with which the pattern is to be applied. Since
multiple solutions are possible, we consider each solution separately and for each of
the solutions we include an implementation subsection.

• Implementation of Solution This section illustrates how the approach identified
in the Solution can be implemented in CPN Tools. The implementation not only
graphically represents the pattern with CPNs, but also describes how to integrate this
solution into the example considered in the Problem description section. A solution
may have several implementations. The presented implementations may not be the
only way to implement a solution correctly. An implementation alternative must be
selected based on the context conditions of the pattern. Note that the correctness
of an implementation is guaranteed only if CPN Tools is used for implementation
purposes. The implementation may deviate from the given one if a different tool to
CPN Tools is applied. However, most of the high-level Petri net tools provide similar
mechanisms and it is usually easy to adapt the implementation for other tools (e.g.,
CPN-AMI, ExSpect, VisualPetri, SEA, Tina, etc.).

• Consequences This section outlines what the possible advantages/disadvantages of
using the pattern are. For patterns with multiple solutions this section elaborates on
the differences between them.

• Examples This section lists several examples which demonstrate the use of the
pattern in practice.

• Related Patterns This section specifies the relationship of this pattern to other
patterns. Specific relationship types are explained in detail in Section 3.3.

We will use this format to describe the 33 CPN patterns that have been identified. However,
before presenting the pattern catalog, we first introduce main concepts required in order
to understand the patterns.

3.1 Main concepts of CPN

A basic CPN model consists of a set of places and transitions connected by means of di-
rected arcs. An example of a CPN model created in CPN Tools is shown in Figure 14.
Places, depicted by ovals, represent intermediary states of the modeled process. Tran-
sitions, depicted by rectangles in Figure 14, represent tasks or actions that have to be
executed. Directed arcs connect places and transitions, and denote the flow of control and
data in the model. Tokens represent information objects, either conceptual or physical,
that are stored in places. Places are typed, meaning that they may store tokens only of a
specific color (i.e. data type). In Figure 14 the o1 place stores pairs of integers, while the
rest of the places may store tokens of the integer (INT) type.

Transitions consume tokens from input places and produce tokens in output places.
Tokens can be consumed by a transition only if the transition is enabled. The transition
is enabled if sufficient tokens are present in every input place and conditions specified in
the transition guard are satisfied. Figure 14 contains an example of the transition guard
defined for the A transition. This guard specifies that variable i must be less than 10 in
order for the transition to be enabled.

Section 3.1 Main concepts of CPN 31

Annotations on arcs specify how many tokens can be consumed by a transition from
its input places and how many tokens have to be produced to each of the output places.
In Figure 14 transition A consumes a token from the i1 input place, and produces tokens
with the same value in both its output places p1 and p2. The D transition requires inputs
from both places p3 and p4 in order for it to be enabled. When it fires, a pair of integers
(i,j) is produced in the output place o1.

Annotations on arcs may include conditional statements and functions written using
the CPN-ML-language. Conditional annotations are used in Figure 14 on the outgoing arcs
from the C transition. Depending on the value of the variable i, one or the other outgoing
branch is taken (an empty value corresponds to no token being produced). An annotation
associated with one of the outgoing arcs contains the inc() function, which is declared
outside of the net body. If the condition specified in the arc inscription is satisfied, this
function is called, resulting in the value i being incremented.

D

C

A

p3

INT

p4

INT

p2

INT

p1

o1

INTxINT

i1

INT

B

subprocsubproc

i

i

i

i

i

if i<=3 then inc(i)
else empty

INT

j

j

i
if i>3 then 1`i
else empty

(i,j)

[i<10]

Figure 14: Example of a CPN model

Sub-processes defined separately from the main process can be mapped onto a particular
transition (known as a substitution transition). When such a transition becomes enabled,
it passes the flow of control to the sub-process associated with it. In this way, a hierarchical
net structure can be created. In Figure 14 the B transition represents a substitution
transition, whose behavior is unfolded to the net presented in Figure 15. The input and
output places connected to the main process are marked as input and output ports.

jjji
B2B1 p5

INT

p3

Out
INT

p1

In
INT

In Out

[j=i+1]

Figure 15: Example of a sub-net

Although CPNs have the capability to represent time within a model, this feature has
been not extensively used in this research and therefore is not discussed here. Having
introduced the relevant concepts we now move on to the description of the CPN patterns
that have been identified.

32 Chapter 3 Colored Petri Nets Patterns

Overview of CPN patterns presented in Section 3.2

Type of problem addressed Pattern group

Data-based control-flow routing 1 Deterministic XOR-Split (p.36)
2 Non-Deterministic XOR-Split (p.38)
3 OR-Split (p.40)

Filtering of data elements being 4 BSI Filter (p.42)
transferred based on data properties 5 BSD Filter (p.43)

6 NBSI Filter (p.45)
7 NBSD Filter (p.47)

Identity management 8 ID Matching (p.49)
9 ID Manager (p.51)

Data exchange during 10 Asynchronous Transfer (p.54)
bilatery interactions 11 Synchronous Transfer (p.56)

12 Rendezvous (p.58)

Data exchange during 13 Asynchronous Router (p.60)
one-to-many and many-to-one 14 Broadcasting (p.63)
interactions 15 Distributed Data Processing (p.65)

Referral to single and mulitple 16 Aggregate Objects (p.67)
data elements and restrictions 17 Deaggregate Objects (p.69)
associated with their storage 18 Capacity Bounding (p.71)

19 Containment Testing (p.73)

Coordinating the 20 Queue (p.75)
order in which data elements 21 FIFO Queue (p.78)
aggregated into a collection 22 LIFO Queue (p.79)
are being utilized 23 Random Queue (p.80)

24 Priority Queue (p.81)
25 Prioritized Execution (p.85)

Content management within 26 Region Flush (p.86)
the specified region 27 Content Settting (p.89)

Referral to single and mulitple 28 Shared Database (p.90)
data elements and restrictions 29 Database Management (p.92)
associated with their storage 30 Concurrent Access (p.95)

31 Copy Manager (p.96)
32 Lock Manager (p.98)
33 Bi-Lock Manager (p.100)

This table gives only a brief overview of the CPN patterns presented in Section 3.2.
For classification purposes, patterns addressing the same kind of problem have been
combined in a single pattern group. Pattern groups are presented in the pattern
catalog in the same order as they are listed in this table. The description of prob-
lems addressed by a particular pattern group as well as the main differences between
the patterns are provided in the form of a summary, preceding the actual pattern
descriptions.

Section 3.1 Main concepts of CPN 33

CPN pattlets

ID Pattern name Intent

1 Deterministic XOR-Split p.36

To allow at most one transition out
of several possible transitions to exe-
cute, based on the fulfillment of con-
ditions which mutually exclude each
other.

2 Non-Deterministic XOR-Split p.38

To allow the execution of precisely
one transition out of several possi-
ble transitions that satisfy the same
conditional expression.

3 OR-Split p.40

To allow any number of transitions
to be selected for execution, based
on the fulfillment of a specific con-
ditional expression.

4 BSI Filter p.42
To prevent data, which does not
conform to a specified property,
from being processed.

5 BSD Filter p.43

To prevent data being passed which
does not conform to a property re-
lated to the state of an external data
structure.

6 NBSI Filter p.45

To prevent data that does not con-
form to a specified property from be-
ing passed, while avoiding the accu-
mulation of non-conforming data at
the filter’s input place.

7 NBSD Filter p.47

To filter-out data that does not con-
form to a property involving the
state of an external data-structure,
while avoiding accumulation of non-
conforming data at the filter’s input
place.

8 ID Matching p.49
To make information objects distin-
guishable.

9 ID Manager p.51
To ensure the uniqueness of identi-
fiers used for distinguishing of iden-
tical objects.

10 Asynchronous Transfer p.54
To allow the transfer of data from
one location to another, while avoid-
ing blocking of the sender.

In order to provide an overview of the CPN patterns presented in the catalog, this
table describes a set of patlets consisting of the name and the intent associated with
a pattern.

34 Chapter 3 Colored Petri Nets Patterns

CPN pattlets (cont.)

ID Pattern name Intent

11 Synchronous Transfer p.56

To allow the transfer of data from
one location to another, ensuring
that a party that posted a request
is blocked until the requested infor-
mation becomes available.

12 Rendezvous p.58
To allow multiple processes to syn-
chronously exchange data in both
directions.

13 Asynchronous Router p.60

To enable asynchronous transfer of
data from a single source to a dedi-
cated target, ensuring that old tar-
gets can be easily removed and new
targets can be added without affect-
ing the source.

14 Broadcasting p.63

To broadcast data from a single
source to multiple targets, while
avoiding creating a direct depen-
dency between them.

15 Distributed Data Processing p.65

To decompose a data element in
smaller parts in order for them to be
processed in parallel, subsequently
merging the processed data later on.

16 Aggregate Objects p.67
To allow a set of information objects
to be manipulated as a single entity.

17 Deaggregate Objects p.69

To allow the manipulation of an ob-
ject aggregated into a collection as
an independent entity.

18 Capacity Bounding p.71
To prevent over-accumulation of ob-
jects in a certain place.

19 Containment Testing p.73
To allow the (non)-availability of ob-
jects with particular properties in a
given location to be tested.

20 Queue p.75
To allow the manipulation of queued
objects in a strictly specified order.

21 FIFO Queue p.78

To allow manipulation of queued ob-
jects in a strictly specified order,
such that an object, which arrives
first, is consumed first.

22 LIFO Queue p.79

To allow manipulation of queued ob-
jects in a strictly specified order,
such that the most recently added
object is retrieved first.

23 Random Queue p.80

To allow manipulation of queued ob-
jects such that an object is added to
the collection in some specified order
and an arbitrary object is consumed
from it.

Section 3.2 Catalog of CPN patterns 35

CPN pattlets (cont.)

ID Pattern name Intent

24 Priority Queue p.81
To allow the selection of queued ob-
jects in the order of object priority.

25 Prioritized Execution p.85

To coordinate the execution order
of two tasks, such that in situations
when both of them are simultane-
ously enabled, one of them always
executes before the other.

26 Region Flush p.86
To clear the content of all places in
a particular region.

27 Content Settting p.89
To reset the content of a particular
region to another state.

28 Shared Database p.90

To enable the centralized storage
of data shared by multiple tasks
with support for different levels of
data visibility (i.e. local, group, or
global).

29 Database Management p.92

To specify an interface for accessing
data, stored in a shared database,
for read-only and modification pur-
poses.

30 Concurrent Access p.95

To provide concurrent access to
common data elements by a series
of individual tasks without implying
any changes to these data elements.

31 Copy Manager p.96

To make data, stored in a shared
database, available at other loca-
tions for local use, whilst maintain-
ing the consistency of data in all
places.

32 Lock Manager p.98
To synchronize access to shared data
by means of exclusive locks.

33 Bi-Lock Manager p.100
To synchronize access to shared data
for reading and writing purposes by
means of shared and exclusive locks.

3.2 Catalog of CPN patterns

In this section, we describe 33 CPN patterns using the selected pattern format. The
patterns presented have been gathered empirically. The majority of patterns originate
from the knowledge of experts in the field (e.g., Kurt Jensen, Wil van der Aalst, Kees van
Hee, Wolgang Reisig). Some of the patterns have been fragmantelly documented by them
in literature [7,8,119,130,185], whereas others have been modeled based on the analysis of
models presented in the 1999-2004 CPN Workshop papers [66].

36 Chapter 3 Colored Petri Nets Patterns

The first pattern group consists of three patterns (Deterministic XOR-Split, Non-
deterministic XOR-split and OR-split), which address issues related to data-based
control-flow routing. Where specific properties of data elements supplied need to be
analyzed in order to decide which of the available tasks has to be executed, the nature
of the decision associated with the evaluation of the data elements is either deter-
ministic, non-deterministic or a combination thereof. The Deterministic XOR-Split
pattern describes a situation where exactly one of several tasks is selected based on the
explicitly defined mutually excluding conditions. The Non-Deterministic XOR-Split
pattern allows either of tasks satisfying the same set of data conditions to be selected
non-deterministically. Whereas the OR-split pattern considers situations where data
conditions associated with each of the available tasks may overlap. The evaluation of
these conditions may potentially result in one or more tasks being selected for execu-
tion.

Pattern 1 DETERMINISTIC XOR-SPLIT

Intent To allow at most one transition out of several possible transitions to execute,
based on the fulfillment of conditions which mutually exclude each other.

Motivation In many systems, there are data structures which can be accessed by
several tasks concurrently. However, it is not allowed that several tasks execute at the
same time, i.e. only one task out of several possible needs to be selected. In terms of safety
requirements for event-driven systems, it is allowed that after a certain event only one of
two possible events happen, but not both. Similar, in some situations there is the need to
ensure that at most one process can be engaged in a specified activity at a time.

Problem Description Consider the model in Figure 16 with a place Data and two
transitions Activity1 and Activity2, which have access to data elements stored in this
place. Depending on the value of data element d supplied by the Data place it is necessary
to ensure that only one of the transitions Activity1 and Activity2 executes. In the net in
Figure 16 both transitions are enabled, so the choice of an activity is not explicitly defined.

d

d

Activity1

Activity2

Data

Data

1`5

Figure 16: The problem of a non-deterministic choice

Solution 1 In order to define explicitly which transition out of several possible op-
tions is selected for execution, all transitions have to be associated with guards containing
conditional expressions which mutually exclude each other. The evaluation of mutually
excluding expressions results in the selection of at most one transition.

Implementation of Solution 1 The list of instructions below describes how to
implement Solution 1 for the Deterministic XOR-Split pattern (cf. Figure 17):

• Place Data, where data for the execution of activities is stored, is connected to
transitions Activity1 and Activity2. The flow of data element d occurs in the
direction of the arcs connecting the place and the transitions.

Section 3.2 Catalog of CPN patterns 37

d

d

Activity1

[d<=N]

Activity2

[d>N]

Data

Data

Figure 17: Implementation of Solution 1 for the Deterministic XOR-split pattern

• Mutually excluding conditional expressions, which cover all possible values of data
elements that can be stored in the Data place, are added to the transition guards.
In Figure 17, the guard for the Activity2 transition evaluates to True and enables
the execution of this transition if the data element d is bigger than N. The guard
associated with the Activity1 transition evaluates to True in all other cases, i.e. if
the value of data element d is less or equal to N. Note, that since the data element
included in the expression of the guard can be of composite form, several conditional
statements may be specified in each guard respectively.

Solution 2 In order to define explicitly which transition out of several possible options
is selected for execution, each transition must be associated with conditional expressions
which mutually exclude each other. Evaluation of these expressions must be performed in
advance and must result in the selection of at most one transition.

Implementation of Solution 2 The list of instructions below describes how to
implement Solution 2 for the Deterministic XOR-Split pattern (cf. Figure 18):

d

d

if d<=N then 1`d
else empty

if d>N then 1`d
 else empty

d
Define
 branch

Activity1

Activity2

Data
Act 1

Data

Data
Act 2

Data

Data

Data

Figure 18: Implementation of Solution 2 for the Deterministic XOR-split pattern

• The Data place, which provides data inputs to transitions Activity1 and Activity2,
is decoupled from the transitions by introducing two intermediate places Data Act1

and Data Act2. Places Data Act1 and Data Act2 store only data elements that sat-
isfy the enabling criteria for the Activity1 and Activity2 transitions respectively.

• The Define branch transition is introduced in order to move the responsibility for
evaluation of conditional expressions and selection of an activity away from the ac-
tivities Activity1 and Activity2.

• The Data place is connected to the Define branch transition in order to supply the
input data element d. This transition is connected to places Data Act1 and Data

Act 2. The inscriptions of arcs connecting the transition with these places include
conditional expressions for selecting the corresponding branch.

• In Figure 18, conditional expressions if d>N then 1’d else empty and if d<=N

38 Chapter 3 Colored Petri Nets Patterns

then 1’d else empty are used1. Note that considered expressions mutually exclude
each other. Based on the evaluation of these expressions, data element d is placed
into the Data Act2 place if the value of data d is bigger than N or to the Data Act1

place otherwise.

Consequences This pattern can be applied to make an explicit selection of at most
one activity, event or a task, that is modeled by means of a transition, based on the
characteristics of data provided as an input.

The Deterministic XOR-split pattern provides two solutions. The moment at which
mutually excluding conditional expressions are being evaluated in order for exactly one
out of several possible transitions to be selected (i.e. as late as possible or in advance)
is the main distinction between Solution 1 and Solution 2 of the Deterministic XOR-Split
pattern. In Solution 1, this decision is made at the latest possible moment, while in Solution
2 as early as possible. Solution 2 can be applied when the selection of a transition has to
be performed based on conditional statements which are evaluated before the transition
actually becomes enabled. This solution allows the transitions to abstract from the boolean
expressions involved in the selection procedure, thus making these expressions transparent
to them.

This pattern addresses the problem of data based control-flow routing, which is similar
to the ones addressed in the Non-Deterministic XOR-Split pattern (cf. page 38) and the
OR-Split pattern (cf. page 40).

Examples
• Depending on the type of a file provided by a user (e.g., a text document or a picture),

either the Word editor or the Paint editor is launched.
• In financial institutions, requests from private individuals and corporate representa-

tives follow different paths in a process.

Related Patterns This pattern is similar to the Non-Deterministic XOR-Split pattern
(cf. page 38) and the OR-Split pattern (cf. page 40).

Pattern 2 NON-DETERMINISTIC XOR-SPLIT

Intent To allow the execution of precisely one transition out of several possible transitions
that satisfy the same conditional expression.

Motivation Mutually excluding data conditions associated with a set of transitions
guarantee that only one of these transitions is selected based on the analysis of data el-
ements supplied. In some situations, there is the need to make such mutually exclud-
ing conditions less strict, thus allowing the choice of a transition to be performed non-
deterministically. For example, two types of resources need to handle three types of tasks.
Each group of resources specializes in carrying out only one specific task. However, tasks
of a more generic type can be executed by any resource. The ability to relax mutually
exclusive data conditions can result in more flexible work distribution.

Problem Description Figure 19 presents two transitions, only one of which can be
enabled at a time. The Activity1 transition may execute if the value of data d provided
by the Data place is bigger than a certain value N, and the Activity2 transition may
execute if the data value does not exceed N. Now assume that we want to specify that
data element, whose value is bigger than 5 but less than 10, can be handled by any of

1Note that in CPN Tools an expression “if b then 1’d else empty” can be replaced by a shortcut “b%d”.

Section 3.2 Catalog of CPN patterns 39

these activities, whilst still ensuring that only one activity may execute at a time. In this
net, such a behavior cannot be obtained as there is a strict separation of the conditional
expressions on the basis of mutual exclusion.

d

d

if d<=N then 1`d
else empty

if d>N then 1`d
 else empty

d
Define
 branch

Activity1

Activity2

Data
Act 1

Data

Data
Act 2

Data

Data

Data

Figure 19: Implementation of Solution 2 of the Deterministic XOR-split pattern

Solution In order to allow the non-deterministic selection of precisely one transition out
of several possible ones, every transition has to be associated with overlapping conditional
expressions.

Implementation of Solution The list of instructions below describes how to
implement the Non-Deterministic XOR-Split pattern (cf. Figure 20):

• The Data place, where data elements determining the execution of activities is stored,
is connected to transitions Activity1 and Activity2.

• Conditional expressions in transition guards are specified as being overlapping for
values where both transitions could be enabled. Figure 20(a) illustrates that data
values between N1 and N2 (N2>N1) can be processed by either of the activities, while
all other values outside of the specified range can be handled by only one activity.
Note that the choice of activities, when the common condition is satisfied, is non-
deterministic. It is not possible to predict which of the activities will handle values
in this range.

• If only one of the two transitions should be selected non-deterministically for all pos-
sible data values, the transition guards can be omitted as visualized in Figure 20(b).

d

d

Activity1

[d<=N2]

Activity2

[d>N1]

Data

Data

(a)

d

d

Activity1

Activity2

Data

Data

(b)

Figure 20: Implementation of the Non-deterministic XOR-split pattern

Consequences This pattern can be applied to realize the non-deterministic selection
of a task from a set of possible tasks, while ensuring that only one task may execute at a
time. It addresses the problem of data based control-flow routing, in a similar way to the
Deterministic XOR-Split pattern (cf. page 36) and the OR-split pattern (cf. page 40).

In comparison to the mutually excluding conditional expressions, the overlapping con-
ditions in some way extend the options available for handling data. Note that in general,

40 Chapter 3 Colored Petri Nets Patterns

overlapping and mutually excluding conditions can be combined. In contrast to the over-
lapping conditions, one can specify conditions that are too restrictive, i.e. where some data
elements do not result in any of the transitions being enabled. For instance, if one task
handles data with a value smaller than 5, and another task handles data with a value bigger
than 10, then data in the range from 5 to 10 will not be handled at all. This may cause
undesirable blocking or even deadlock. Conditions that are too strict can be applied if one
can ensure that only data in the specified range is likely to occur. However, the usage of
insufficient conditional expressions is not desirable.

Examples
• Any application suitable for processing of a textual documents (e.g., Wordpad,

Notepad, or Word) can be launched for processing of a text-file supplied by a user.
• Two receptionists process requests of visitors to the city hall. When both receptionists

are free, either of them may be approached by a new visitor.

Related Patterns This pattern is similar to the Deterministic XOR-Split pattern
(cf. page 36) and the OR-Split pattern (cf. page 40).

Pattern 3 OR-SPLIT

Intent To allow any number of transitions to be selected for execution, based on the
fulfillment of a specific conditional expression.

Motivation The usage of mutually exclusive conditional expressions associated with a
group of transitions ensures that only one of these transitions is selected for execution. In
some situations, there is no need to pose strict restrictions on the number of transitions
which may execute simultaneously. Thus, the number of transitions that may execute
concurrently may vary depending on the fulfillment of a specified condition. For instance,
when distributing work items, an employee may receive a work item if she specializes in
the specific type of work being distributed, however some types of work may be executed
by all employees.

Problem Description Figure 21 presents two transitions Activity 1 and Activity

2, at most one of which may execute when a condition common to both of them is satisfied.
Although this diagram allows either of the tasks to be selected when N1<N2, it does not
allow all of the tasks to execute concurrently.

d

d

Activity1

[d<=N2]

Activity2

[d>N1]

Data

Data

Figure 21: Implementation of Solution 1 of the Non-Deterministic XOR-split pattern

Solution In order to enable the execution of all, some or only one transition out of several
available options based on the fulfillment of common or mutually exclusive conditional
expression, extend Solution 2 of the Deterministic XOR-Split pattern with overlapping
data conditions.

Section 3.2 Catalog of CPN patterns 41

Implementation of Solution The list of instructions below describes how to
implement the OR-Split pattern (cf. Figure 22):

• Solution 2 of the Deterministic XOR-Split pattern (cf. page 36) is extended by intro-
ducing overlapping conditional expressions in inscriptions of the arcs from the Define
branch transition to places Data Act1 and Data Act2, which provide input data to
transitions Activity1 and Activity2 respectively.

• When the Define branch transition fires, the specified data is added to the outgoing
place if a condition in the expression associated with the arc to the outgoing place is
satisfied. As such, if the value of data element supplied by the Data place is in the
range between N1 and N2 (N1 < N2), then this data element will be provided as
an input to both transitions Activity1 and Activity2. However, if the data value
is less than N1, then only transition Activity1 will execute; and if the data value is
bigger than N2, then it will only be provided as an input to transition Activity2.

d

d

if d<N2 then 1`d
else empty

if d>N1 then 1`d
 else empty

d
Define
 branch

Activity1

Activity2

Data
Act. 1

Data

Data
Act. 2

Data

Data

Data

Figure 22: Implementation of the OR-split pattern

Consequences This pattern can be applied to allow one or more tasks to execute
concurrently depending on the fulfillment of the conditional expressions associated with
the each of these tasks. Similar to Solution 2 of the Deterministic XOR-Split pattern, in
this pattern, tasks processing data are not aware of conditions based on which they have
been enabled. This allows tasks to concentrate on the actual processing of data, without
being involved in the evaluation of the related conditions.

Note that this pattern is able to support the functionality of the Asynchronous Router
pattern (cf. page 60) for distributing data elements to a number of targets on the condi-
tional basis. After having distributing data amongst the targets, the data may need to
be merged later on into a single data entity. In order to ensure the correct branching and
synchronization of the data elements, the Distributed Data Processing pattern may need
to be applied (cf. page 65). To realize such a behavior, it may be necessary to keep track
of the selected branches by means of the Boolean variables.

Example

• Specialized data files can be processed only by a dedicated program, whereas for
reading of a text file any of available programs can be launched.

• Doctors working at a hospital specialize in a particular kind of treatment, however a
patient may count on one or more specialists able to offer the first-aid help.

Related Patterns This pattern extends Solution 2 of the Deterministic XOR-Split
pattern (cf. page 36).

42 Chapter 3 Colored Petri Nets Patterns

The second group of CPN patterns addresses problems related to filtering of non-
complying data elements being transfered from one place to another based on the
analysis of data properties. Depending on whether the state of an external data struc-
ture is involved in the evaluation of the data properties and whether the non-compliant
objects are being blocked in the filter’s input place, we distinguish the Blocking State-
Independent Filter, Blocking State-Dependent Filter, Non-Blocking State-Independent
Filer, and Non-Blocking State-Dependent Filter patterns.

Pattern 4 BLOCKING STATE-INDEPENDENT (BSI) FILTER

Intent To prevent data, which does not conform to a specified property, from being
processed.

Motivation In many different application examples, data being transferred from one
source to another may be scrambled, modified or flawed. Because of this, a target data
recipient instead of receiving data in an expected format, can be faced with incorrect,
invalid or unknown data. To avoid this problem, there is a need to filter incoming data
based on data-specific qualities or characteristics.

Problem Description Consider a process where a number of requests (such as
product enquiries, subscription offers or insurance applications) are provided to a particular
resource for processing. Accepting all requests may either be not allowed or undesirable as
only requests satisfying a specific set of properties may be handled. For instance, in many
insurance companies processing of claims may be performed only by authorized employees
(thus it is necessary to check whether the request was delivered to the right person). The
handling of requests in such situations has to be performed only if all conditions specified
have been fulfilled.

Solution In order to prevent data, non-conforming to a certain property, from passing,
use a blocking state-independent (BSI) filter. The BSI filter consumes input data and
compares it against the set of specified conditions. The filter passes the data through only
if it satisfies the specified set of properties, otherwise the data is blocked.

Implementation of Solution The list of instructions below describes how to
implement the BSI Filter pattern (cf. Figure 23):

• The In place, where non-filtered data is located, is connected to the Filter transition.
• The guard of the Filter transition contains the f(x) function that specifies condi-

tions for data filtering. Note that incoming data may be of any format, e.g., lists,
composite data structures, etc.

• In this implementation alternative, the Filter transition has knowledge of data
bounds within which the incoming data should fit. It passes data elements, whose
value is within the boundaries indicated, from the input place to the output place
Out, while blocking the rest of the data in the input place.

xx
Filter

[f(x)]

Out

T

In

T

Figure 23: Implementation of the Blocking State-Independent Filter pattern

Figure 24 illustrates an example of filtering out data exceeding a certain value (x>5), i.e.
only data with values bigger than five may be passed to the output place Out. The Filter

Section 3.2 Catalog of CPN patterns 43

transition is enabled for the binding x=7, as this is the only value satisfying the filtering
condition.

xx
Filter

[x>5]

out

INT

In

1`1++
1`5++
1`7

INT

3

x = 7

Figure 24: Example of applying the Blocking State-Independent Filter pattern (place In holds
three tokens: one with value 1, one with value 5, and one with value 7)

Consequences This pattern should be applied in situations, where data properties are
used as a means for filtering data. One of the characteristics of this pattern is its “blocking”
property: the filter ensures that all non-complaint data is blocked and cannot pass through
the filter. The drawback of this pattern is that it does not prevent the accumulation of non-
complaining objects at the input place of the filter. To address this problem an extension of
this pattern, i.e. Non-Blocking State-Independent Filter (cf. page 45), can be used instead.

In some situations, the filtering properties need to be based not only on the value of
incoming data but also on some context information, e.g., the state of some external data
structure. To handle such situations, an extension of this pattern, i.e. Blocking State-
Dependent Filter (cf. page 43), can be applied.

Examples
• Only trigger the credit-application task for incoming application objects where age

is greater or equal to 18.
• For subsequent review and participation in the conference, only accept Emails whose

subject contains the ‘paper submission’ field.

Related Patterns This pattern is extended by the Blocking State-Dependent Filter
pattern (cf. page 43) and the Non-Blocking State-Independent Filter pattern (cf. page 45).

Pattern 5 BLOCKING STATE-DEPENDENT (BSD) FILTER

Intent To prevent data being passed which does not conform to a property related to
the state of an external data structure.

Motivation The Blocking State-Independent Filter pattern (cf. page 42) provides a
means of filtering out data satisfying a specific data property and blocking non-compliant
data from being passed. In some situations, the analysis of data properties should be based
not only on the data value but also on the state of an external data structure. For instance,
only passengers who are registered in the central database are allowed to board a flight, or
only passengers whose names do not appear in the ‘black list’ are able to complete passport
control. The state of such an external data structure may be static or may vary over time.

Problem Description Figure 25 illustrates the solution of the BSD Filter pattern,
where before processing data element x supplied by the In place first the properties of the
data element are analyzed by means of the function f(). Although this solution helps in
filtering out data based on the data properties, it does not allow the information stored in
some external place to be used during the analysis.

Solution In order to prevent data, which does not conform to a property based on
the state of an externally located data structure (i.e. list or multi-set), from being passed,

44 Chapter 3 Colored Petri Nets Patterns

[f(x)]

?

Out

Figure 25: Problem of the state-dependent filtering

use a blocking state-dependent (BSD) filter. The BSD filter consumes data from an input
place, checks the state of the external data collection, and where the filtering conditions
are fulfilled passes the data to the output place.

Implementation of Solution The list of instructions below describes how to
implement the BSD Filter pattern (cf. Figure 26).

• The implementation of the Blocking State-Independent Filter (cf. page 42) is extended
by connecting the Filter transition to an external data collection stored in the
External place place. The state of this external place needs to be used in the
conditions for data filtering. Note that the collection is always populated, i.e. there
is always one token of the collection type residing in it. Such a place may, for instance,
represent a shared database.

• In Figure 26(a), a guard of the Filter transition contains the check(l,x) function
which examines an input data element x and an external collection l to identify
whether a specific data property is fulfilled. For instance, the filtering condition may
be used to check if no duplicates have been sent.

• In Figure 26(b), the External place stored a collection of all data values passed to
the Out place, and the check(l,x) function examines whether the input data element
x is contained in the list l. Similar filtering conditions may test non-containment of
elements in the collection or non-compliance with a certain criteria.

• Note that the state of the data collection can be static as in Figure 26(a), i.e. do not
change during the whole process execution, or be dynamic as in Figure 26(b) and
vary during execution.

y y

xx

Filter

[check(x,y)]

External
place

INT

Out

INT

In

INT

1`5

(a) Static variant

l x::l

xx
Filter

[check(l,x)]

External
place

list_int

Out

INT

In

INT

1`[5,7]

(b) Dynamic variant

Figure 26: Implementation of the Blocking State-Dependent Filter pattern

Consequences This pattern can be applied to test incoming data for fulfillment of a
set of properties involving the state of an external data structure. As this pattern extends
the Blocking State-Independent Filter pattern (cf. page 42), it also blocks data which does
not satisfy a given set of properties in the filter’s input place. However, the problem of

Section 3.2 Catalog of CPN patterns 45

accumulating non-complying data in the input place of the filter is not resolved by this
pattern. In order to address this issue, an extension of this pattern, i.e. the Non-Blocking
State-Dependent Filter pattern (cf. page 47), needs to be used instead.

Objects stored in an external collection can be represented as stand-alone tokens or as
elements aggregated into a single collection (obtained by applying the Aggregate Objects
pattern (cf. page 67)).

Examples
• To avoid unintended messages, only accept Emails from the senders whose addresses

are recorded in the contact list.
• Before a candidate is invited to a job interview at a financial organization, the candi-

date’s credentials are checked against the historical database of employees who were
involved in illegal activities.

Related Patterns This pattern is an extension of the Blocking State-Independent
Filter pattern (cf. page 42). It is extended by the Non-Blocking State-Dependent Filter
pattern (cf. page 47). Furthermore, it can be combined with the Aggregate Objects pattern
(cf. page 67).

Pattern 6 NON-BLOCKING STATE-INDEPENDENT (NBSI) FILTER

Intent To prevent data that does not conform to a specified property from being passed,
while avoiding the accumulation of non-conforming data at the filter’s input place.

Motivation The Blocking State-Independent Filter pattern (cf. page 42) offers a so-
lution for preventing the data that does not meet a certain property from being passed.
However, it does not resolve the problem of non-conforming data accumulating in the fil-
ter’s input place. In some situations, instead of blocking or ignoring the non-conforming
data, it is necessary to reroute this data or to store it elsewhere.

Problem Description Figure 27 illustrates the solution of the Blocking State-
Independent Filter. In this solution, any data elements which do not fulfill a specific
property (as specified by the guard of the Filter transition) cannot be passed through,
i.e. they accumulate in the In place. Assume that non-complying data elements need to
be used for processing elsewhere in the process. In this solution it is not possible due to
blocking of the non-complying data in the filter’s input place.

[f(x)]

Passed

Not

passed
?

Figure 27: Problem of data accumulation associated with the BSI filter

Solution In order to prevent data, that does not conform to a certain property, from
being passed, while avoiding the accumulation of non-conforming data in the filter’s input
place, use a non-blocking state-independent (NBSI) filter. The NBSI filter consumes all
data from the input place, analyzes it against a set of the specified conditions, and passes
it to a specific output depending on whether it conforms or not with the filter property.

Implementation of Solution The list of instructions below describes how to
implement the NBSI Filter (cf. Figure 28):

46 Chapter 3 Colored Petri Nets Patterns

• The In place, where non-filtered data is located, is connected to the Filter transition
which tests incoming data.

• The Filter transition is connected to two output places Passed and Not passed,
where data conforming and not conforming to the filter property is placed respec-
tively. Note that the Not passed place is optional (cf. Figure 28(b)), i.e. it is required
only if data elements non complying with a certain property need to be accumulated
in order to be used elsewhere.

• Arcs connecting the Filter transition with output places are associated with mutu-
ally exclusive filtering conditions: a filtering condition cond which must be fulfilled
by data in order to pass through the filter and the negation of this condition which
filters non-conforming data.

if not(cond(x))
then 1`x
else empty

if cond(x)
then 1`x
else emptyx

Filter

Not
passed

T

Passed

T

In

INT

(a)

x
Filter

TINT

In Passed

if cond(x)
then 1`x
else empty

(b)

Figure 28: Implementation of the Non-Blocking State-Independent Filter pattern

Figure 29 illustrates an example of filtering out data of Integer type, whose value is
below the specified range (i.e. x<=5).

if x<=5 then 1`x
else empty

if x>5 then 1`x
else emptyx

Filter

Not
 passed

INT

Passed

INT

In

INT

Figure 29: Example of applying the Non-Blocking State-Independent Filter pattern

Consequences This pattern can be used to analyze a stream of incoming data elements
according to a set of specified rules. It is essential for this pattern to avoid blocking of
non-conforming data at the filter’s input place, since all data elements need subsequently
to be used somewhere else in the process.

In contrast to the Blocking State-Independent Filter pattern (cf. page 42), this pattern
handles all incoming data routing data satisfying a filter property to one place, and non-
conforming data to another place. This filter works deterministically, i.e. it has sufficient
knowledge about all possible data values and in order to filter the data it uses mutually
exclusive data conditions as suggested by Solution 2 of the Deterministic XOR-Split pattern
(cf. page 36).

Example
• Patients arriving at the emergency department of a hospital are examined against

a list of life-threatening symptoms. Patients that require emergency treatment are

Section 3.2 Catalog of CPN patterns 47

immediately directed to the emergency care unit, while the other patients are sent
to appropriate specialists.

• For security reasons, before entering the museum, visitors and their belongings need
to be checked. Women and children are separated from men, and both two groups
are analyzed concurrently.

Related Patterns This pattern is an extension of the Blocking State-Independent
Filter pattern (cf. page 42). It uses Solution 2 of the Deterministic XOR-Split pattern
(cf. page 36).

Pattern 7 NON-BLOCKING STATE-DEPENDENT (NBSD) FILTER

Intent To filter-out data that does not conform to a property involving the state of an
external data-structure, while avoiding accumulation of non-conforming data at the filter’s
input place.

Motivation The Blocking State-Dependent Filter pattern (cf. page 43) prevents data
elements that do not fulfill a property involving the state of external data structure from be-
ing passed. However, it does not handle the problem of the accumulation of non-conforming
data elements at the filter’s input place. In some situations, data which does not satisfy the
filter property needs to be rerouted to another place instead of being blocked and ignored
by the filter.

Problem Description Figure 30 illustrates the solution of the Blocking State-
Dependent Filter. In this solution, any data elements which do not fulfill a specific property
(potentially involving the state of an external data structure) cannot be passed, i.e. they ac-
cumulate in the In place. This solution does not allow to use non-complying data elsewhere
in the process by blocking it in the filter’s input place.

[f(x)]

Passed

Not

passed

T

?

Figure 30: Problem of data accumulation associated with the BSD filter

Solution In order to filter-out data elements that do not conform to a property that
involves the state of an externally located data structure (i.e. list or multi-set), while
avoiding the accumulation of non-conforming data elements in the filter’s input place, use
a non-blocking state-dependent (NBSD) filter. The NBSD filter consumes data from the
input place, checks the state of the external data collection, and passes on data elements
that fulfill the filtering condition to one output and non-compliant data to another output.

Implementation of Solution The list below describes how to implement a Non-
Blocking State-Dependent Filter pattern (cf. Figure 31):

• The solution of the Blocking State-Independent Filter pattern is extended in the
following way. The Filter transition is connected to two output places: one place
Passed will serve as the destination for the data elements conforming to the filter

48 Chapter 3 Colored Petri Nets Patterns

property and the other place Not passed will be the destination for non-conforming
data elements respectively. Note that the Not passed place is optional, i.e. it is
required only when non-complying data elements need to be accumulated in order to
be used elsewhere.

• Arcs connecting the Filter transition with its outgoing places have to be associated
with filtering conditions, i.e. a condition which must be fulfilled for data elements
passing through the filter, and the negation of this condition for filtering out non-
conforming data elements.

if cond(l,x)
then 1`x
else empty

l l

if not(cond(l,x))
then 1`x
else empty

x
Filter Passed

T

State

1`[]

listT

Not
passed

T

In

T

(a)

l l

x
Filter

T

State

1`[]

listT

T

Passed

if cond(l,x)
then 1`x
else empty

In

(b)

Figure 31: Implementation of the Non-Blocking State-Dependent Filter pattern

The net in Figure 32 illustrates that data elements supplied to the filter are passed through
only if they are not contained in the external data collection, while redundant data, i.e. the
data which is already present in the external store, is filtered out. Note that other filtering
conditions can be also used.

if not(contains(l,x)) then 1`x
else empty

l l

if (contains(l,x)) then 1`x
else empty

x
Filter Passed

INT

State

1`[5]

list_int

Not
passed

INT

In

1`1++
2`5++
1`7

INT

Figure 32: Example of applying the Non-Blocking State-Dependent Filter pattern

Consequences This pattern can be applied in order to examine data against a spec-
ified property based on the state of an external data structure in order to filter out non-
conforming data elements. This pattern ensures that all incoming data is handled, thus
avoiding the accumulation of non-conforming data at the filter’s input place.

This pattern can be considered as an extension of the Blocking State-Dependent Filter
pattern (cf. page 43) with Solution 2 of the Deterministic XOR-Split pattern (cf. page 36).

Examples
• Handling of insurance claims, where all incoming claims should be analyzed and

either reviewed in detail or rejected.

Section 3.2 Catalog of CPN patterns 49

• A family doctor, based on the records available about a patient, decides whether to
prescribe a medicine or to direct the patient to hospital for further tests.

Related Patterns This pattern extends the Blocking State-Dependent Filter pattern
(cf. page 43) by using Solution 2 of the Deterministic XOR-Split pattern (cf. page 36).

The third pattern group offers solutios to issues related to identity management. This
group consists of two patterns: ID Matching and ID Manager. The ID Matching
pattern addresses the problem of matching data objects of the same data type after
their original value has been modified. In order to distinguish objects of the same type,
this pattern proposes a solution based on associating an identifier with each data object.
The ID Manager pattern addresses the problem of uniqueness of object identifiers by
introducing an id generator. Object identifiers are often used in this pattern catalog for
referencing a specific object in a database or another collection, as well as for referring
to specific parties engaged in the message exchange.

Pattern 8 ID MATCHING

Intent To make information objects distinguishable.

Motivation In CPNs, a token can serve as a representation of an information object
(e.g., a process instance, a case, an item, etc). A place may contain multiple objects of the
same type. In some cases, it is necessary to compare the original value of an object with
the value of the same object after it has been modified. As a consequence of modification,
the value of the object changes, and the object may loose its identity. Consequently, it
becomes impossible to distinguish which of the modified values corresponds to which of
the original values of the objects.

Problem Description Figure 33 illustrates the problem of object matching. Initially,
two objects obj of the same type T are present in the Start place. These objects serve
as an input for two functions f1 and f2, which replace the values of the processed objects
with a randomly generated integer number. After applying the functions, values produced
by them need to be matched by the Match pair transition for each specific object.

y2

f2(x)x

y1

x

(y1,y2)

x

f1(x)
x

x

Apply
 f2

Match
pair

Apply
 f1

t1

Return f2(x)

FT

End

Result

T

Return f1(x)

FTT

Start

2`obj

T

p1

p2 2
1`24++
1`65

2
1`17++
1`95

y2 = ?

y1 = ?

Figure 33: Problem of losing identity by multiple identical objects

Tokens accumulate in the Return f1(x) and Return f2(x) places after the f1 and f2

functions are applied respectively. At the moment of modification, objects lost their iden-
tity, i.e. it becomes impossible to distinguish which of the values present in place Return

f1(x) correspond to which of the values in place Return f2(x).

50 Chapter 3 Colored Petri Nets Patterns

Since tokens are consumed from places in a non-deterministic order, the value produced
by the function f1 for one object can be matched with a value produced by the function
f2 for another object. Such behavior is undesirable and may lead to inconsistent results
and incorrect matching operations.

Solution In order to solve the problem of distinguishing individual objects, couple each
object with an identifier. The availability of identifiers makes it possible to distinguish
objects of the same type even when they have the same values.

Implementation of Solution The following list of instructions describes how to
implement the ID Matching pattern (cf. Figure 34).

• Type T, associated with the type of objects to be distinguished, is replaced by a multi-
set type TxID. Type ID is an arbitrary type selected to serve as an identification for an
object (for example, INT, STRING, etc.). For instance, in case of integers, identifiers
can be represented as 1, 2, 3, etc. One could also use a more complex/composite
data type to encode id’s.

• Each identical object is coupled with a unique identifier (the problem of the ID
uniqueness is addressed in the ID Manager pattern on page 51). For this, inscrip-
tions on the arcs, which contain a variable representing an object, are replaced with
a corresponding pair (variable of object type, variable of ID type). For in-
stance, a variable x of type T can be replaced by a pair (x,id), where id is of type
ID.

• To refer to an object, the object identifier id is coupled with the value of the object. In
order to match values corresponding to the same object, the Match pair transition
is introduced. This transition is enabled only for objects whose identifiers match.
Different variables representing identifiers, for instance id1 and id2, can be matched
using the guard of the transition performing the matching, i.e. [id1=id2].

(y2,id2)

(f2(x),id)(x,id)

(y1,id1)

(x,id)

(y1,y2)

(x,id)

(f1(x),id)
(x,id)

(x,id)

Apply
 f2

Match
pair

[id1=id2]

Apply
 f1

t1

Return f2(x)

FTxID

End

Result

TxID

Return f1(x)

FTxIDTxID

Start

1`(obj,1) ++1`(obj,2)

TxID

p2

p1

Figure 34: Implementation of the ID Matching pattern

Figure 34 illustrates how to incorporate identifiers into the example presented in the Prob-
lem description section. Note that in the initial marking, place Start contains two identical
objects obj that are coupled with integer identifiers 1 and 2. When combined with iden-
tifiers, objects form distinct pairs. Even if the value of an object now changes, it will be
possible to refer to the object by means of the identifier associated with it.

Consequences This pattern can be applied when it is necessary to refer explicitly to
a specific object from a group of objects of the same type, distinguish between identical
objects, or organize objects by referring to identifiers rather than actual values of the
objects.

The ID Matching pattern helps to solve the problem of referring to in-distinguishable
objects by means of object identifiers. However, this pattern does not guarantee that

Section 3.2 Catalog of CPN patterns 51

the identifiers used are unique. In order to ensure that identifiers used for referencing
to specific objects are unique, the ID Matching pattern must be combined with the ID
Manager pattern (cf. page 51).

Examples
• Every year the level of sugar in the blood of patients with high risk of diabetes is

analyzed. The results obtained are compared with those earlier stored under the
patient’s name in a database in order to estimate the effectiveness of the treatment.

• Prior to sending the evaluation result to the review-assessment task, it is assigned a
unique identifier to ensure it is still identifiable should its original value be changed
during the review activity.

Related Patterns This pattern can be combined with the ID Manager pattern
(cf. page 51) to ensure uniqueness of identifiers used for distinguishing identical objects.

Pattern 9 ID MANAGER

Intent To ensure the uniqueness of identifiers used for distinguishing of identical objects.

Motivation The ID Matching pattern (cf. page 49) solves the problem of distinguishing
between identical objects by assigning an identifier to each of these objects. However, it
does not guarantee that the identifiers used are unique. Since CPNs allow the use of multi-
sets, where the same object can be created multiple times, identical objects may also have
the same identifier, and thus become in-distinguishable. This may lead to confusion and
diminish the value of the notion of object identity.

Problem Description Figure 35 illustrates the problem of ID uniqueness. The Start
place contains two objects a and b of the same type T, each coupled with an identifier. In
terms of the correctness of the specified net, no problems can be detected. However, in
the current marking both objects are associated with the same identifier. These objects
cannot be distinguished due to the non-uniqueness of their identifiers.

(y2,id)

(f2(x),id)(x,id)

(y1,id)

(x,id)

(y1,y2)

(x,id)

(f1(x),id)
(x,id)

t3

t1

FTxID

End

Result

p2

TxID

Return f1(x)

FTxID

p1

TxID

Start

1`("a",1)++1`("b",1)

TxID

Apply
f2

Apply
 f1

Return f2(x)

(x,id)

Figure 35: Problem of non-unique identifiers

Solution In order to guarantee the uniqueness of identifiers, used for distinguishing
identical objects, use an ID manager. The ID manager ensures that only unique identifiers
are generated. Optionally, the ID manager may contain the functionality for verifying and
controlling the consistency of allocated identifiers.

In general, it is sufficient to have the mechanism of ID generation implemented. The ID
generation operation is responsible for generation of new id’s. The uniqueness of identifiers
used for object identification in this case is guaranteed by the fact that once assigned to

52 Chapter 3 Colored Petri Nets Patterns

an object, the identifier will not be reassigned to another object in the future under any
circumstances. In some situations, the number of identifiers that can be coupled to objects
may be limited. When old objects are outdated, they need to be replaced with new ones.
For this, old objects have to be decoupled from their identifiers in order for these identifiers
to be reassigned again. The ID deletion operation is responsible for removing unused ID’s.
Finally, the ID approval operation is responsible for examining whether the returned ID
or the ID supplied by the ID generator, is not in use.

Implementation of Solution The list of instructions below describes how to
implement the ID Manager pattern.

• ID generation Figure 36(a) illustrates a mechanism for generating ID’s. Unique
identifiers, produced by the Generate ID transition, are stored in the Fresh ID

place. The Last ID place keeps track of generated identifiers, by storing the last
produced one. Alternatively, a list of all allocated ID’s can be maintained. The Last
ID place stores a token with an arbitrary integer value, that is incremented each time
the Generate ID transition fires. The incrementing operation applied to the most
recently generated identifier ensures the uniqueness of identifiers used. Note that in
Figure 36(a) identifiers of INT type are used, however any data type having a total
order can be used instead.

id

Generate
ID

ID

ID

Last ID

id
id+1

Fresh ID

1`0

(a) ID
generation

id

lid

del(id, lid)

id

id

id::lid

lid

Destroy
ID

Approve
ID

[not(elt(id,lid))]
Returned
 ID's

ID

Approved
 ID's

ID

Exisiting
 ID's

[]

ListID

ID

Fresh ID's

(b) ID deletion/verification

Figure 36: Implementation of the ID Manager pattern

• ID deletion To maintain the consistency of identifiers it might be necessary to
remove id’s returned, for instance, due to object destruction, from the list of allocated
identifiers. After the returned identifier has been deleted, it may be reallocated again.
Figure 36(b) illustrates the operation of deleting the returned identifier from the list
of allocated identifiers. The Destroy ID Transition removes returned identifier id

from the list of allocated identifiers lid using the del() function2:

fun del(x,y::z) = if x=y then z else y::(del(x,z))|

del(x,[]) = [];

The consistency manager can be obtained by combining the operations of inserting,
deleting, and verifying identifiers.

2Note that in CPN Tools there is a built-in function rm that can be used for this purpose.

Section 3.2 Catalog of CPN patterns 53

• ID verification Figure 36(b) illustrates the mechanism of verifying the uniqueness of
identifiers before they are coupled to objects. Identifiers which are not yet allocated
are identified using Solution 2 of the Filter pattern and added to the Approved ID’s

place. Transition Approve ID takes as input a new id supplied for checking and a list
of the allocated identifiers lid stored in place Existing ID’s, and applies the elt()
function to check whether the id is an element of the list of the existing identifiers.

fun elt(x,y::z) = if x=y then true else elt(x,z)|

elt(x,[])=false;

Unique id’s are also added to the list of allocated identifiers lid in order to keep the
list up-to-date. Note that allocated identifiers are aggregated into a list, for which
the Aggregate Objects pattern (cf. page 67) is used. In addition, one can apply the
Queue pattern (cf. page 75) to keep identifiers in the list in a strictly specified order.

Figure 37 shows how to incorporate the ID Manager pattern into the example described
in the Problem description section. Note that only functionality of the ID Generation is
used, because (re-)allocation of identifiers is not required in this example.

id

(y1,y2)

(y2,id)

(y1,id)

(f2(x),id)

(f1(x),id)

(x,id)

(x,id)

(x,id)

(x,id)

x

id

id

id+1

t3

Apply
f2

Apply
 f1

t1

Generate
ID

End

Result

FTxID

FTxID

p2

TxID

p1

TxID

Start

1`"a"++1`"b"

T

Fresh ID

ID

Last ID

1`0

ID

Return f2(x)

Return f1(x)

Figure 37: Example of applying the ID generator

Consequences This pattern can be combined with the ID Matching pattern in order
to guarantee the uniqueness of identifiers used for distinguishing identical objects, to keep
track of allocated identifiers and to ensure the consistency of allocated identifiers. In
addition, this pattern can be used to solve the problem of the data inconsistency occurring
when identifiers of the outdated objects have to be reassigned. Note that in its solution,
this pattern uses Blocking State-Dependent Filter pattern (cf. page 43) in combination with
the Aggregate Objects pattern (cf. page 67).

Examples

• The tax office handles requests from visitors. When visitors arrive at the tax office,
they receive a ticket with a number which specifies their place in the queue. The
ticket number must be unique in order to avoid several visitors approaching the same
tax officer at the same time.

• Employees with identical names are issued different email aliases so that they can be
distinguished.

Related Patterns This pattern uses the Blocking State-Dependent Filter pattern
(cf. page 43) and the Aggregate Objects pattern (cf. page 67) in its solution. It can be
combined with the Queue pattern (cf. page 75).

54 Chapter 3 Colored Petri Nets Patterns

The fourth group consists of three CPN patterns (Asynchronous Transfer, Synchronous
Transfer and Rendezvous patterns), which address problems related to data exchange
between two processes. The Asynchronous Transfer pattern describes situations where
during data exchange, the sending process may continue executing without waiting for
a response to be received for a message sent by it. The Synchronous Transfer pattern
describes the situation where the sending process becomes blocked whilst it waits for a
response to message that it has sent. Finally, the situation where the exchange of data
between the processes may happen synchrounously in both directions is described by
the Rendezvous pattern.

When considering request-reply interactions, it is important to be aware that the
delivery of messages is not always guaranteed. In Chapter 5 of this thesis, we examine
various aspects of interactions involving two or more parties. Don’t miss the discussion
of request-reply interactions on page 233.

Pattern 10 ASYNCHRONOUS TRANSFER

Intent To allow the transfer of data from one location to another, while avoiding blocking
of the sender.

Motivation In a distributed environment, several processes may operate independently
of each other until one process needs to interrupt another process in order to transfer data
to it. Although the processes interact with each other through a data channel, they must
remain independent.

Problem Description Assume that there are two processes running independently
as Figure 38 illustrates. One process produces data for transfer to another process. After
sending the data element with identifier id1 and value val1, a new data element is gen-
erated using the f() function. The other process analyzes the data received from the first
process. Waiting for the notification of the data acceptance by the second process may
cause the first process to block, thus postponing the preparation of data for subsequent
data transfers.

Process 1

Process 2

?

Figure 38: Problem of tight coupling between processes

Solution In order to send data from one place to another, while avoiding blocking of the
sender, use an asynchronous transfer. The asynchronous transfer is established through a
placeholder which stores data arriving from the sender until the receiver picks it up.

Section 3.2 Catalog of CPN patterns 55

Implementation of Solution The list of instructions below describes how to
implement the Asynchronous Transfer pattern (cf. Figure 39):

id

(id,vl)

vlid

(id, vl)

(id,vl)
Send Out1

Value

Value
ID

IDxVAL

IDxVAL

Request

ReceiveIn2 Out2

In1

Figure 39: Implementation of the Asynchronous Transfer pattern

• To achieve the asynchronous transfer of data from one process to another, place
Request is introduced between the Send and Receive transitions of the corresponding
processes. The format of data in this place must incorporate data identifiers known
both to the sender and to the receiver. The receiver will use the data identifier as a
reference when consuming the data from the place.

• The Send transition puts data in the placeholder Request in the form of a tuple
(id,vl). The Receive transition uses the ID Matching pattern (cf. page 49) to
extract the value of the data element from the placeholder.

Figure 40 demonstrates how to incorporate the Asynchronous Transfer pattern into
the net presented in the problem description section. The first process sends data element
to the second process via the Request place. After sending the data, the first process
continues preparation of data for the next transfer, and the second process analyzes the
data received.

vl

(id,vl)

(id,vl)(id,vl)id

(id,vl)(id,vl)(id,vl)

Receive
data

Process
data

Analyze
data

Send
data

Request

IDxVAL

o2

Value

o1

IDxVAL

p2

IDxVAL

in2

1`(1)++
1`(2)

ID

p1

IDxVAL

in1

1`(1,5)++
1`(2,4)

IDxVAL

(id,vl)

(id,vl)

Figure 40: Example of applying the Asynchronous Transfer pattern

Consequences This pattern can be applied to establish a communication channel
between multiple parties, when the sender of data does not require an instant acknowl-
edgement of the data being received. This promotes the independence of communicating
parties and avoids blocking by the sender.

The advantage of this pattern is that it allows the sender to function independently
from the receiver. This pattern is similar to the Synchronous Transfer pattern (cf. page 56)
and the Rendezvous pattern (cf. page 58), because they address similar kind of problems
in the context of the data transport in distributed environments.

56 Chapter 3 Colored Petri Nets Patterns

Examples
• An employee, who needs to send a letter, does not wait until a mail carrier arrives

to pick it up, and puts the letter in a mailbox. The mail carrier will pick the letter
up at a later time of their own choosing.

• Participants, who are online at different times, use Web message boards, newsgroups,
or e-mail, to interact asynchronously.

Related Patterns This pattern uses the ID Matching pattern (cf. page 49). This
pattern is similar to the Synchronous Transfer pattern (cf. page 56) and the Rendezvous
pattern (cf. page 58).

Pattern 11 SYNCHRONOUS TRANSFER

Intent To allow the transfer of data from one location to another, ensuring that a party
that posted a request is blocked until the requested information becomes available.

Motivation In a distributed environment, several processes may proceed independently
of each other until one of them is interrupted during the transfer of data to another process.
The data sender needs to get a rapid response on the data request sent, and may not proceed
until this response is obtained. Such a request/respond communication strategy is used,
for example, by people gathering at the same time for chatting or instant messaging.

Problem Description Assume that there are two processes running independently
(Figure 41). Process 1 produces data for transferring to the process 2. Process 2 requires
data produced by process 1 in its calculations. Process 1 will provide data only if the
request for data transmission has been received from the other process.

Process 1

Process 2

?

Figure 41: Problem of synchronous transfer

Solution In order to transfer data from one location to another, ensuring that the sender
remains blocked until the response from the receiver arrives, use a synchronous transfer.
A synchronous transfer is established through two placeholders which temporarily store
requests posted by one process and replies provided by another process as a response to
the posted requests.

Implementation of Solution The list of instructions below describes how to
implement the Synchronous Transfer pattern (cf. Figure 42):

• Two processes, one playing a role of an initiator of the synchronous transfer and
another playing the role of the responder, are defined. In the initiating process,
transitions Send and Receive are responsible for sending data to and receiving data
from the responder process respectively.

Section 3.2 Catalog of CPN patterns 57

val2id1

(id1,val2)

(id1,F(val1))(id1,val1)

val1id1

(id1, val1)

id1(id1,val1)
Receive

Ackn.

Send

Value

Response

IDxVAL

Out2

Value

In2

ID

IDxVAL

Wait

ID
IDxVAL

In1 Out1

Request

Figure 42: Implementation of the Synchronous Transfer pattern

• The Send transition has to be connected to the Receive transition through a waiting
place Wait, in which the initiator of the data exchange will pause until the requested
data becomes available.

• Between the initiator and the responder processes two places Request and Response

are introduced. The former place stores requests posted by the initiator process until
the request is consumed by the responder process. The latter place stores data sent
by the responder process to the initiator process once the response to the request is
received.

• The Ackn transition of the responder process is connected to the Send and Receive

transitions of the initiator process via the placeholders Request and Response, indi-
cating the direction of flow of data (requests) by direction of the arrows. The same
behavior could also be obtained by fusing three transitions Send data, Send, and
Receive into a single transition.

Note that since the initiating process may post multiple requests, the replies received
have to be correlated with the requests sent. In order to identify which response corresponds
to which of the requests sent, the requests have to be coupled to unique identifiers. These
identifiers will be used by the initiator process to correlate requests stored in the Wait

place and responses in the Response place using the ID Matching pattern (cf. page 49).

Figure 43 demonstrates how to incorporate the synchronous data transfer into the net
presented in the problem description section. Note that in order to realize the desired
behavior, Process 1 is extended with place Wait and transition Receive.

(id,vl)

vl

(id,vl2)

(id,vl)(id,vl)id

(id,vl)

Receive
data

Process
data

IDxVAL

o2

Value

IDxVAL

p2

IDxVAL

in2

ID

1`(1,5)++
1`(2,4)

IDxVAL

in1
Send
data

1`(1)++
1`(2)

(id,vl)

IDxVAL

(id, F(vl))

IDxVAL

wait
(id,vl)

IDxVAL

(id,vl2)Receive
resp.

(id,vl)
p1

Analyze
data

(id,vl2)

Request Response

(id,vl2)
o1

Figure 43: Example of applying the Synchronous Transfer pattern

Consequences This pattern can be used to provide data produced by one process to
another process, ensuring that the initiator of the data exchange is blocked until it receives
a response from the other process.

58 Chapter 3 Colored Petri Nets Patterns

This pattern is similar to the Asynchronous Transfer pattern (cf. page 54) and the Ren-
dezvous pattern (cf. page 58), because they address similar kind of problems in the context
of data transportation in a distributed environment. In comparison to the Asynchronous
Transfer pattern (cf. page 54), the disadvantage of the Synchronous Transfer pattern is
that the sender is blocked until the receiver finishes processing of the request received. In
the same way as the Rendezvous pattern (cf. page 58), the Synchronous Transfer pattern
needs to synchronize the sender and the receiver. However, in this pattern the synchro-
nization is done sequentially, while in the Rendezvous pattern it is done concurrently.

Examples
• Any kinds of interactions, where an instant response from participants is expected.
• Subroutine calls from a program on one machine to the library routines on another

machine.

Related Patterns This pattern is similar to the Asynchronous Transfer pattern
(cf. page 54) and the Rendezvous pattern (cf. page 58). It can be combined with the ID
Matching pattern (cf. page 49).

Pattern 12 RENDEZVOUS

Intent To allow multiple processes to synchronously exchange data in both directions.

Motivation In some situations, it is necessary to model a channel, which only transfers
data messages but does not store them, allowing sending and receiving of the messages at
the same time and in both directions.

Problem Description Assume that there are two processes running independently
as shown in Figure 44. Process 1 produces data for transferring to process 2 based on the
data it has provided. Process 2 correspondingly processes data received from process 1 and
sends the results of the processing back to it. In order to avoid unnecessary waiting, both
processes need to be able to exchange, i.e. send and receive, data concurrently.

?

Figure 44: Problem of concurrent data exchange

Solution In order to allow for synchronous data exchange between multiple processes
in both directions, use a rendezvous. A rendezvous enables concurrent exchange of data
between multiple processes by connecting senders and receivers to a single transition, which
reveals data available for sending and broadcasts it to the corresponding recipient(s).

Implementation of Solution The list of instructions below describes how to
implement the Rendezvous pattern (cf. Figure 45):

• For each of the processes, participating in a concurrent data exchange, an input place
and an output place are defined. The input places In1 and In2 provide data that
needs to be transferred. The output places Out1 and Out2 store the data received.

Section 3.2 Catalog of CPN patterns 59

(id1,val1)
(id2,val2)

(id2,val2)(id1,val1)

Exchange

IDxVAL

Out2

IDxVAL
IDxVAL

IDxVAL

In1 Out1

In2

Figure 45: Implementation of the Rendezvous pattern

• The input and output places have to be connected to the Exchange transition, which
will consume data from the input places and put data in the output places simulta-
neously. Note that amount of data swapped between the processes could vary.

Unlike the Synchronous Transfer pattern where the exchange of information can be
performed as a series of requests and replies, this pattern concentrates on the concurrent
exchange of information at a particular place and time.

Figure 46 illustrates how to implement concurrent data exchange in the example de-
scribed earlier. Note that transitions Send data and Process data are fused into one
transition Exchange, which synchronizes concurrent communication between process 1 and
process 2.

vl

vl

(id,vl)

(id,vl)

Process
from P1

Process
from P2

o2

Value

o1

Value

p2

IDxVAL

in2

IDxVAL

p1

IDxVAL

in1

IDxVAL

Exchange

(id,vl)

(id,vl)

(id2,vl2)

(id2,vl2)

1`(1,3)++
1`(2,4)

1`(1,5)++
1`(2,4)

Figure 46: Example of applying the Rendezvous pattern

Consequences The Rendezvous pattern facilitates synchronous exchange of data be-
tween two or more actors in both directions. This pattern is similar to the Synchronous
Transfer pattern (cf. page 56) and the Asynchronous Transfer pattern (cf. page 54), be-
cause they address similar kinds of problems in the context of data transportation in a
distributed environment. In contrast to the Synchronous Transfer pattern, in this pattern
the data producers and consumers are tightly coupled and must execute simultaneously
for data delivery to occur.

The Rendezvous pattern can be applied for broadcasting data to multiple recipients.
The disadvantage of this pattern is in the tight coupling it requires between senders and
receivers. If the tight dependency between senders and receivers is not desirable during
data exchange, then the Broadcasting pattern (cf. page 63) can be applied instead. The
drawback of using the Broadcasting pattern is that it is based on the Asynchronous Transfer
pattern, which does not ensure that target recipients will obtain data simultaneously.

60 Chapter 3 Colored Petri Nets Patterns

Example
• Two insurance companies agree to exchange data about the claims received from

clients involved in the other company on a daily basis.
• A business event where various organizations meet to exchange their details for the

purpose of future collaboration.

Related Patterns This pattern is similar to the Synchronous Transfer pattern
(cf. page 56), the Asynchronous Transfer pattern (cf. page 54) and the Broadcasting pat-
tern (cf. page 63).

The fifth pattern group consists of three patterns (Asynchronous Router, Broadcast-
ing, and Distributed Data Processing), which address problems related to data exchange
during one-to-many and many-to-one interactions. The Asynchronous Router pattern
describes situations where a source sends data to a number of targets on an asyn-
chronous basis. The data sent by a source is dedicated only to one target, and the
source is not blocked after performing the data transfer. The Broadcasting pattern
describes situations where the same data needs to be transferred to several targets si-
multaneously. The Distributed Data Processing pattern describes situations where after
decomposing a data element into smaller parts and distributing these amongst several
targets for concurrent processing, there is a need to gather the results of processing the
distributed data parts and aggregate them into a single entity for use elsewhere.

Identity management plays an important role in the patterns considered. The Asyn-
chronous Router pattern utilizes target identifiers in order to check whether a data
element sent is delivered to the correct recipient. For the Broadcasting pattern target
identifiers may need to be utilized to prevent the same data object being consumed by
a recipient multiple times. The Distributed Data Processing pattern may utilize data
identifiers in order to match up the results of processing objects which were distributed
earlier for concurrent processing.

The matching of object and target identifiers in these patterns is closely related to
the issue of message correlation discussed in a detail in Chapter 5 on page 256.

Pattern 13 ASYNCHRONOUS ROUTER

Intent To enable asynchronous transfer of data from a single source to a dedicated
target, ensuring that old targets can be easily removed and new targets can be added
without affecting the source.

Motivation In some situations, there is a need to transfer data from a source to
any of several available targets asynchronously. This can be achieved by applying the
Asynchronous Transfer pattern (cf. page 54), which allows a source and target to work
independently, however it requires the parties involved in the interaction to know each
other’s identities. To deliver data directly to a target, the source requires knowledge about
all of the target recipients. Due to the tight coupling between the source and target(s),
changes in any of the target(s) may directly affect the source, thus providing minimal
flexibility when manipulating any of the targets.

Section 3.2 Catalog of CPN patterns 61

Problem Description Figure 47 presents the problem of directly addressing data
messages between a data source and targets. A data element mes of type Message needs
to be sent by transition Source to a specific target, e.g., target1, target2 or target3.
In order to specify to which target a message is being sent, the source specifies a target
identifier (of type TargetID). However, the targets have no knowledge about how the source
selects a target and what information it uses for this purpose.

?

Figure 47: Problem of direct addressing

Changes on the target side such as the addition of a new target, no information about
the address of which is available, are not possible in this diagram. In addition, changes in
any of the targets directly affect the source, and may even influence the connection between
the source and the rest of the targets.

Solution 1 In order to decouple a data source from a set of targets, which communicate
asynchronously, while ensuring that data sent by the source is received by the target to
which it was directed, introduce an asynchronous router. An asynchronous router will
direct all data received from the source to a place, where it will be stored until the intended
target picks it up at a time of its choosing.

Implementation of Solution 1 The list of instructions below describes how to
implement Solution 1 of the Asynchronous Router pattern (cf. Figure 48(a)):

• The source place from which data is to be distributed to the targets must be of type
MesxTargetID, where Mes is a message to be sent and TargetID is an identifier of
the target.

• The Route transition takes data from the source place and puts it in the temp place
which serves as temporary storage for all data sent by the source.

• Targets represented by transitions target 1, target 2 and target 3 are connected
to the temp place, ensuring that only data whose identifier corresponds to the target
identifier is consumed by the target. For this, the ID Matching pattern (cf. page 49)
has to be applied (a guard comparing the target identifier with the identifier of the
data stored in place temp must be added for every target-transition).
Note that data from source to temp is sent asynchronously, as the Asynchronous
Transfer pattern (cf. page 54) describes. Since targets identifiers are all different, no
two targets can consume the same data (as the Deterministic XOR-Split pattern is
used (cf. page 36)) at once.
Note that data, which is routed from the source to temp, is consumed by a target
transition in a non-deterministic order. In order to ensure that targets consume data

62 Chapter 3 Colored Petri Nets Patterns

in the order of arrival, the data in place temp can be aggregated into a collection by
applying the Aggregate Objects pattern (cf. page 67), while data manipulation in some
other ordering sequence can be enforced by applying the Queue pattern (cf. page 75).

(mes,t)

source

source

target 1

target 1

[t=t1]

target 2

target 2

[t=t2]

target 3

target 3

[t = t3]

Route

a

temp MessagexTargetID

target 3 target 2 target 1

source

MessagexTargetID

(mes,t)

(mes,t)

(mes,t)(mes,t)

(a) Implementation of Solution 1

if t=t3 then
1`mes
else empty

if t=t1 then
1`mes
else empty

if t=t2 then
1`mes
else empty

target 1

target 1

target 2

target 2

target 3

target 3

source

source

Route

d

Message

b

Message

a

MessagexTargetID

c

Message

source

target 3 target 2 target 1

(mes,t)

(b) Implementation of Solution 2

Figure 48: Implementation of the Asynchronous Router pattern

Solution 2 In order to decouple a data source from a set of targets, with which it
communicates asynchronously, while ensuring that data sent by the source is received by
the target to which it was directed, introduce an asynchronous router. The asynchronous
router will direct data directly to a specific target.

Implementation of Solution 2 The list of instructions below describes how to
implement Solution 2 of the Asynchronous Router pattern (cf. Figure 48(b)).

• The Route transition is introduced, to which the source place is connected, providing
the composite data element (mes,t) which includes an information object to be sent
to the target and the identifier of the target.

• For each of the targets an input place into which the router will place a dedicated
data element is introduced. As such, for targets 1, 2 and 3 places b, c, and d are
introduced respectively.

• Every outgoing arc of the Route transition is associated with a filtering condition
that determines whether a data element should be routed down this arc. For this,
the ID Matching pattern (cf. page 49) is used. For instance, to examine whether a
data element supplied by the router is intended for the target1 transition, a filter-
ing condition if t=t1 then 1’mes else empty is added. The resulting construct
incorporates Solution 2 of the Deterministic XOR-Split pattern (cf. page 36).

Consequences This pattern can be applied to avoid a direct dependency between a
source and targets which are communicating asynchronously. By adding a new target or
removing an existing one, the source will not be affected.

This pattern allows decoupling of source and targets in two different ways. Solution 1

Section 3.2 Catalog of CPN patterns 63

places all data routed from the source in temporary data storage. From the target’s point of
view, if the delivery of data was organized and initiated by the source, then after applying
this solution, targets should become more active and take the initiative for obtaining the
data at a time of their choosing.

Solution 2 routes data from the source to an input place of a target, without involving
the target in the procedure of selecting a dedicated data. The drawback of this solution is
that the router is impacted each time a new target is added.

This pattern includes the Asynchronous Transfer pattern (cf. page 54) to ensure that
data is sent asynchronously, and the Deterministic XOR-Split pattern (cf. page 36), which
guarantees that every data element will be consumed by one-and-only-one intended target.

The major characteristic of this pattern is that a source, producing data for multiple
targets, sends it asynchronously to a single dedicated target. When it is necessary to
broadcast data from a source to a set of targets, so that every target receives the same
data, the Broadcasting pattern (cf. page 63) should be applied.

Since this pattern is based on asynchronous communication, the data source does not
know whether a target received the data element that was sent to it. If for example the
connection was broken, but the target did receive the data element, the source may try
to retransmit the same data element again. Thus this pattern does not guarantee that
duplicated data is not transferred from the source to a target. In order to address this
problem, this pattern can be combined with the BSD Filter pattern (cf. page 43).

Examples
• The secretary of a department is responsible for distribution of holiday cards. Instead

of delivering a card directly to every employee of the department, the secretary puts
the cards in the employee’s post-boxes. Employees pick up their cards at a time of
their choosing.

• The canteen provides organized meetings with coffee and tea assuming meeting par-
ticipants will serve themselves.

Related Patterns This pattern includes the Deterministic XOR-Split pattern
(cf. page 36), the Asynchronous Transfer pattern (cf. page 54) and the ID Matching
pattern (cf. page 49). This pattern is similar to the Broadcasting pattern (cf. page 63),
and can be combined with the Blocking State-Dependent Filter pattern (cf. page 43).

Pattern 14 BROADCASTING

Intent To broadcast data from a single source to multiple targets, while avoiding creating
a direct dependency between them.

Motivation In some situations, there is a need to transfer data from a single source
to a set of targets, so that all targets receive the same information. This can be done
using the Asynchronous Router pattern (cf. 60), however the data exchange achieved this
way requires tight coupling between the source and the targets. Such data transfer is
performed asynchronously, whereas the concurrent distribution would be more efficient.
Moreover, direct addressing from a source to targets can become cumbersome, when the
number of targets and other target-related information is not known in advance or may
change over time.

Problem Description Figure 49 presents the problem of direct addressing of data
messages between a source and multiple targets. In order to broadcast the same data mes

to several targets, the source transition needs to be connected to each of the targets, thus

64 Chapter 3 Colored Petri Nets Patterns

providing data directly to each of them. If the number of target recipients varies, the source
will be directly affected. In terms of programming, this necessitates recompilation of the
source each time a new component is added or removed. Thus, tight coupling between a
source and targets minimizes flexibility when broadcasting to a series of targets.

?

Figure 49: The problem of direct data addressing

Solution 1 In order to loosen the connection between a source and targets, ensuring that
the same data is received by each of the targets, decouple the source from the targets by
introducing an intermediate placeholder. The source will provide data to the placeholder,
and targets will take the data from this place at their own initiative.

Implementation of Solution 1 The list of instructions below describes how to
implement Solution 1 of the Broadcasting pattern (cf. Figure 50 (a)):

• Places directly connecting the source transition with targets are merged in one
place Router. In this place objects are stored as separate tokens, but it is possible
to aggregate all data into a collection by applying the Aggregate Objects pattern
(cf. page 67).

• The merged place Router is connected to the targets by means of bidirectional arcs.
An arc from the Router place to a target provides data mes to a target, while the
arc in the opposite direction returns the data back to the Router place in order to
allow other targets to utilize this information.

Solution 2 In order to loosen the connection between a source and targets, ensuring that
the same data is received by each of the targets, decouple the source from the targets by
means of broadcasting. The data provided by the source for broadcasting will be distributed
to all targets simultaneously.

Implementation of Solution 2 The list of instructions below describes how to
implement Solution 2 of the Broadcasting pattern (cf. Figure 50(b)):

• The output place a of the source transition, where the data which needs to be
broadcasted locates, and places b,c and d providing data to the targets are connected
to the Broadcast transition. The Broadcast transition consumes data from the a

place and distributes it simultaneously to all its outgoing places.
• In order for targets to receive the data from the source, the type of places a, b, c

and d should be the same (i.e. Message type).

Consequences This pattern can be used to broadcast data from a single source to
multiple targets, ensuring that every target receives the same data. The Broadcasting

Section 3.2 Catalog of CPN patterns 65

target 2

target 2

target 3

target 3

Router Message

target 3 target 2

target 1

target 1target 1

mes

mes

mes

mes

source

sourcesource

(a) Implementation of Solution 1

mes

mes

target 1

target 1

target 2

target 2

target 3

target 3

source

source

d

Message

b

Message

a

Message

c

Message

source

target 3 target 2 target 1

mes mes

Broadcast

(b) Implementation of Solution 2

Figure 50: Implementation of the Broadcasting pattern

pattern decouples a source from the targets, ensuring that every target receives the same
data. The advantage of this pattern is that the source does not need to consider the delivery
of data to targets, but only to the router. Targets themselves take care of consuming data
from the router.

In comparison to Solution 2, Solution 1 of this pattern shifts the responsibility for
obtaining the broadcasted data to targets. It is however not guaranteed that every target
will consume data elements only once because the broadcasted data accumulates in the
intermediate placeholder. In order to solve this problem, this pattern needs to be combines
with the Region Flush and Blocking State-Dependent Filter patterns. The Region Flush
(cf. page 86) will remove the content which has been broadcasted, and the BSD Filter
(cf. page 43) will ensure that the content is removed only after each of the targets has
consumed the data exactly once.

Examples
• Broadcasting of TV programs to all receivers connected to the network.
• After each update, a configuration manager puts a new version of the tool in the

shared directory, where it can be accessed by all employees.

Related Patterns This pattern can be combined with the Aggregate Objects pattern
(cf. page 67), the Region Flush pattern (cf. page 86), and the BSD Filter (cf. page 43).

Pattern 15 DISTRIBUTED DATA PROCESSING

Intent To decompose a data element in smaller parts in order for them to be processed
in parallel, subsequently merging the processed data later on.

Motivation In most business processes and information systems, where continuously
growing amounts of data require processing, there is a need to improve the processing
efficiency by introducing parallelism, in relation to both flow and structure of information.
Depending on the processing context, the nature and complexity of data, it might be

66 Chapter 3 Colored Petri Nets Patterns

necessary to involve several either identical or specialized entities that can process data
concurrently, rather then letting a single entity doing all of the work sequentially.

Problem Description Consider a complex data structure such as a compound re-
quest received from a client for registering a bank account and a set of insurance policies.
Processing of such a request can be done more efficiently if several employees, each respon-
sible for a constituent part of the request, are involved. To enable efficient processing of
the request, it needs to be decomposed into independent parts and passed for processing
to corresponding parties respectively. Figure 51 illustrates a problem of sequential data
processing. A composite data element (a,b,c) is processed in several stages, thus resulting
in longer waiting time than when processed concurrently.

(a1,b1,f3(c))(a1,b1,c)(a,b,c)

TTTT

(f1(a),b,c)Process
a

(a1,b,c) (a1,f2(b),c)
In p1

Process
 b

In1
Process

c
Out

Figure 51: Problem of sequential data processing

Solution In order to scale the throughout of data processing, use distributed data pro-
cessing. The compound data unit is divided in to smaller parts, which are distributed
between several concurrent processing streams, either specializing or performing the same
set of operations. After each of the streams completed the processing of the data elements,
the results of processing are merged back into a single entity.

Depending on the data structure, the complexity of data, and the context of data
processing, the data distributor either spreads the input data equally or divides it among
several different locations for independent processing.

Implementation of Solution The list of instructions below describes how to
implement the Distributed Data Processing pattern (cf. Figure 52):

. . .

. . .

. . .

inA

inB

inC

outA

outB

outC

partA(x)

partB(x)

partC(x)

p1

p2

p3

p4

p5

p6

Figure 52: Implementation of the Distributed Data Processing pattern

• A transition Distribute is introduced to distribute data received from the source
place In between a set of the output places p1, p2, and p3.

• The distribution rules, specifying what data element is to be provided to each of
the output places of the Distribute transition, have to be defined and encoded in
functions partA(), partB() and partC() respectively.

• The results of processing by each of the parallel streams are provided to the p4, p5,
and p6 places. The data elements from each of these places are merged by means of
the Merge transition in to a single entity. Note that the types of places p4, p5 and
p6 can be adjusted in order to allow multiple tokens to be consumed from each of
the places. One could also consider using the Aggregate Objects pattern (cf. page 67)
in order to address all data elements accumulated in each of these places as a single
entity.

Section 3.2 Catalog of CPN patterns 67

Consequences This pattern can be applied to support parallel processing of data.
It can be used to decompose a single compound request into several simpler requests.
Typically, after processing data, it is necessary to combine the results of processing back
into a single data unit. This pattern assumes that all threads processing the data elements
will also provide the results of processing for subsequent merge. Note that in order to
ensure that after distributing data the corresponding results of data processing are merged
correctly, each of the distributed parts may need to associated with an identifier (as the
ID Matching pattern suggests). The usage of a unique identifier may help to perform
matching and subsequent merging of data elements correctly.

The distribution of data has the same structure as the Asynchronous Router pattern
(cf. page 60) and the Broadcasting (cf. page 63) patterns. When distributed or broad-
casted data need to be merged, these patterns can be combined with the Distributed Data
Processing pattern.

Examples
• To distribute the load between several processors a complex process is divided into

several threads which are distributed over available processors.
• Distribution of the papers within a group of researchers in order to speed up the

reviewing process.

Related Patterns This pattern is similar to the Broadcasting pattern (cf. page 63)
and the Asynchronous Router pattern (cf. page 60). It can be combined with the ID
Matching pattern (cf. page 49).

The sixth pattern group consists of four patterns: Aggregate Objects, Deaggregate Ob-
jects, Capacity Bounding and Containment Testing. The Aggregate Objects and Deag-
gregate Objects patterns allow objects to be organized into a collection or for the
retrieval of a single object from a collection in order for it to be processed as a single
entity respectively. As a consequence of having multiple objects available at one place,
it may be necessary to limit the capacity of the object collection. This problem is
addressed by the Capacity Bounding pattern. The Containment Testing pattern ad-
dresses the problem of testing for the absence or presence of particular objects in the
collection.

Pattern 16 AGGREGATE OBJECTS

Intent To allow a set of information objects to be manipulated as a single entity.

Motivation In many cases, it is natural to represent an information object (e.g., an
order, a car, a message) as a single entity, i.e. there is a one-to-one correspondence between
objects in a “real system” and tokens in the model. Sometimes, it is necessary to aggregate
objects into one token to enable a collection of objects to be referenced as a single entity.

Problem Description Figure 53 illustrates the problem addressed by this pattern.
In the original model, the objects place is of type T and transitions put and get add and
remove tokens from this place. Note that each token corresponds to an object.

Suppose that it is necessary to perform an operation from the following list:
• Count the number of objects in the objects place;
• Select an object from the objects place with some property relative to the other

objects (e.g., the first, the last, the smallest, the largest, the cheapest, etc.);

68 Chapter 3 Colored Petri Nets Patterns

xxxx
getput out

T

objects

T

in

T

Figure 53: Problem of accessing multiple/specific objects

• Modify all objects in a single action (e.g., increase the price by 10 percent);
• (Re-) move all objects in one batch (e.g., remove a set of outdated files, items, etc.

at once, rather than one by one).
None of these operations can be directly applied in the diagram shown above. Note that
it is only possible to inspect one token at a time and this is a non-deterministic choice.
Moreover, this choice can be limited by transition guards and arc inscriptions, but it is
memory-less and not relative to the other tokens in the place. This makes it very difficult
or even impossible to realize operations mentioned above.

Solution In order to allow a set of information objects to be manipulated as a single
entity, aggregate objects into a single token of “collection type”.

Implementation of Solution The list of instructions below describes how to
implement the Aggregate Objects pattern (cf. Figure 54).

l

x
in

inp

T

[]

LT

objects
add(x,l)

put

Figure 54: Implementation of the Aggregate Objects pattern

• Type T of place objects, where multiple objects may reside, is replaced with the
collection type LT (e.g., list, set, bag). In this example, the collection type list is
chosen: color LT = list T.

• Arcs between transition put and place objects are replaced by a bi-directional arc
with the following inscriptions. An inscription of the arc supplying an object to the
collection contains a function add(x,l), which adds an object x of type T to the list l.
By referring to the list l, all objects contained in it can be addressed simultaneously.

Figure 55 illustrates application of the Aggregate Objects pattern to a model presented in
the problem description section. In this implementation, the add() function is represented
as x::l in order to achieve the last-in-first-out behavior (cf. also the LIFO Queue pattern
on page 79).

l
l

l

x
x::l

getput out

LT

in

T

objects

LT

[]
l

Figure 55: Model after applying the Aggregate Objects pattern

By introducing a collection type, it becomes possible to refer to the collection of objects
as a single entity and perform operations on multiple objects contained in the collection
at once. In order to check the number of objects in the collection or test the availability of
objects satisfying a particular property, an extension of this pattern, i.e. the Containment
Testing pattern (cf. page 73) can be used. An example in Figure 56 shows how to calculate
the number of objects in the collection. Note that there is always precisely one token
in place objects representing all objects. The count transition takes the current list of

Section 3.2 Catalog of CPN patterns 69

objects and sends the size of the list to the Number of objects place. Note that the
size(l) function for determining the size of the collection is predefined in CPN Tools.

l size(l)

l

x
count

INTT

objects

[]

LT

put
add(x,l)

in
Number of

objects

Figure 56: Example of defining the size of the collection

In a similar way, it is possible to modify all objects in a single action (for instance,
increase the price by ten percent) and to remove all tokens (simply by returning a token
with a value []).

Consequences This pattern can be applied to organize multiple objects into a collec-
tion and/or perform an operation on a group of objects or the whole collection at once.

In principle, this pattern is not concerned with the order in which tokens are taken
from the collection. The example used in the implementation section uses last-in-first-
out ordering (cf. the LIFO Queue pattern on page 79). Nevertheless, if the problem of
ordering is relevant, one should apply an extension of this pattern by adding the Queue
pattern (cf. page 75), or one of its specializations.

This pattern can be combined with the Deaggregate Object pattern (cf. page 69), whose
intent is to extract an object from the collection in order to use it elsewhere. Furthermore,
the Containment Testing pattern (cf. page 73), which extends this pattern, can be used to
test the absence/presence of tokens satisfying a certain property in a place.

Examples
• The salary administration of a university divides employees into different groups:

students, PhD students, and professors. All PhD students get a salary increase of
10%. The salary administration does not need to adjust the salary slips for every
PhD student individually, but does it in one step by increasing the salaries of the
whole group.

• The documents are collected and organized in one file. This allows the whole file to
be taken and sent for processing elsewhere.

Related Patterns This pattern is extended by the Queue pattern (cf. page 75) and
the Containment Testing pattern (cf. page 73). It can be combined with the Deaggregate
Object pattern (cf. page 69).

Pattern 17 DEAGGREGATE OBJECT

Intent To allow the manipulation of an object aggregated into a collection as an inde-
pendent entity.

Motivation The Aggregate Objects pattern (cf. 67) describes how to aggregate objects
into a collection in order to manipulate them as a single entity. In some situations, objects
stored in the collection need to be addressed separately. Such objects can be retrieved from
the collection in order to be updated, destroyed or used elsewhere in the process without
affecting other objects in the collection.

Problem Description After individual objects have been placed in a collection
objects (cf. Figure 57), they can not be referenced as a single entity. Suppose that it
is necessary to perform an operation on a single object from a given collection l stored
in place objects. Such an operation can not be performed without addressing the whole
collection.

70 Chapter 3 Colored Petri Nets Patterns

l
?

l
get out

T

objects

[t1,t2]

LT

Figure 57: Problem of addressing a single object aggregated into a collection

Solution In order to allow the manipulation of an object contained in a collection of
objects as a single entity, the object has to be deaggregated. After a required object has
been retrieved from the collection, it can be manipulated as a single entity.

Implementation of Solution The list of instructions below describes how to
implement the Deaggregate Objects pattern (cf. Figure 58).

• In order to deaggregate objects from the collection of objects stored in the objects

place, the unpack transition is introduced which consumes the list of objects, extracts
all objects from it and places them in the out place and returns an empty collection
to the objects place.
In order for a object specifying a specific property to be retrieved from the collec-
tion, this pattern can be combined with the Blocking State-Dependent Filter pattern
(cf. page 43).

[]
l

unpack out

T

objects

LT

l

Figure 58: Implementation of the Deaggregate Objects pattern

After the object has been deaggregated from the collection, it can be referenced as an
individual entity.

Consequences This pattern can be applied to retrieve specific objects from the col-
lection in order to use them elsewhere in the process as a separate entity. This pattern is
similar the Containment Testing pattern (cf. 73) where the collection of objects is exam-
ined in order to identify whether an object satisfying is (not) contained in the collection.
However, the main purpose of that pattern is to test for presence in the collection rather
than to deaggregate a single object from it. Finally, the Deaggregate Object and the Con-
tainment Testing pattern (cf. page 73) can be combined in order for an object with a
certain property to be extracted from the collection.

The Aggregate Objects pattern (cf. page 67) can be used in combination with the Deag-
gregate Objects pattern in order to model a temporary storage of objects in a collection
that is updated when old objects are retrieved and new objects are added. A collection
of objects achieved in this way is not ordered. To enforce objects in the collection retain
a strictly specified order, objects have to be sorted by applying one of the variants of the
Queue pattern (cf. page 75).

Examples
• A collective holiday is organized for all employees of an organization at the same time.

All reservations are made in the name of the organization. Because the duration of
stay for many employees varies, the return ticket needs to be booked for each of the
employees separately.

• For each member of an alumni club, once a year the statement about membership
payment status needs to be sent. The secretary of the club has to send the payment
details provided by the board to each of the members.

Section 3.2 Catalog of CPN patterns 71

Related Patterns This pattern can be used in combination with the Aggregate Objects
pattern (cf. page 67) and the Containment Testing pattern (cf. page 73).

Pattern 18 CAPACITY BOUNDING

Intent To prevent over-accumulation of objects in a certain place.

Motivation Places in CPNs are potentially unbounded and may accumulate an unlim-
ited number of tokens. In some situations, for instance for modeling of a network buffer,
it is necessary to limit the number of tokens which a certain place is allowed to contain.

Problem Description In the net presented in Figure 59 different resources stored
in the Objects place are accessed by transitions Put and Get. Assume that it is necessary
to prevent over-accumulation of the resources due to the limited size of the storage (let
the storage size be N). In such a net it is not possible to limit the capacity of the Objects

place since by definition places in CPNs are unbounded.

xxxx
GetPut Out

T

Objects

T

In

T

Figure 59: Problem of unbounded places

Solution 1 In order to prevent over-accumulation of information objects in a certain
place, use an anti-place. An anti-place is a place corresponding to the original place,
which in combination with the original place and its incoming/outgoing transitions forms
a feedback construct.

() ()

xx

GetPut

Anti-
place

Unit

Place

T

Figure 60: The feedback construct

We talk about the feedback between two transitions Put and Get if they depend on
each other in such a way that Get both consumes an output token from Put and produces
an input token for Put (cf. Figure 60). The Anti-place stores N tokens (), where the
number N defines the maximal capacity of the Place. Tokens stored in the Anti-place

are of type Unit, a colorset with only one element ().

Implementation of Solution 1 The list of instructions below describes how to
implement Solution 1 of the Capacity Bounding pattern (cf. Figure 61).

• A new place (Anti-place) of type Unit is added to the net. Note that a multi-set
type can be used instead, which allows for multiple instances of tokens of the same
type.

• The initial marking of the Anti-place is set to N‘(), where N is the capacity bound
of the original place Objects.

• Outgoing and incoming transitions of the Objects place are connected to Anti-place,
such that incoming transition of the Objects place corresponds to the outgoing tran-
sition of the Anti-place and vice versa.

72 Chapter 3 Colored Petri Nets Patterns

() ()

xxxx
GetPut

Anti
place

N`()

Unit

Out

T

Objects

T

In

T

Figure 61: Implementation of Solution 1 of the Capacity Bounding pattern

Solution 2 In order to prevent over-accumulation of objects in a given place, use a
counter-place, which will count the number of objects present in the place. The Blocking
State-Dependent Filter pattern can used to examine the state of the counter and prevent
new objects from being added if the counter has reached the maximal place capacity.

Implementation of Solution 2 The list of instructions below describes how to
implement Solution 2 of the Capacity Bounding pattern (cf. Figure 62).

nn+1

n n-1

xxxx
GetPut

[n<N]

Counter-
place

1`0

INT

Out

T

Objects

T

In

T

Figure 62: Implementation of Solution 2 of the Capacity Bounding pattern

• A new place Counter of the type INT is added to count how many objects are accu-
mulated in the Objects place.

• The counter is connected to transitions Put and Get, which add and remove objects
from the Objects place. When a new object is added to the Objects place, the
counter is incremented. When an object is removed from the Objects place, the
counter is decremented.

• A value N is declared to represent the maximal capacity of the Objects place.
• A guard [n<N] is associated with a transition Put which compares the status of the

counter, i.e. how many objects are contained in place Objects, with the maximal
capacity of this place. If there is some free capacity available, then a new object can
be added. Otherwise, transition Put remains disabled until some of the objects have
been removed.

Note that this solution incorporates the Blocking State-Dependent Filter pattern (cf.
page 43), which examines the state of the counter, and based on the value of the counter,
determines whether it is possible to add a new object.

Solution 3 In order to prevent over-accumulation of information objects in a given place,
aggregate objects into a collection using the Aggregate Objects pattern. The current size of
the collection is examined using the Blocking State-Dependent Filter pattern (cf. page 43)
to prevent new objects from being added to the collection if the collection size has reached
the maximal place capacity.

Implementation of Solution 3 The list of instructions below describes how to
implement Solution 3 of the Capacity Bounding pattern (cf. Figure 63).

Section 3.2 Catalog of CPN patterns 73

ll

x
x::lx::l

x
GetPut

[size(l)<N]

Out

T

Objects

1`[]

LT

In

T

Figure 63: Implementation of Solution 3 of the Capacity-Bounding pattern

• Type T of place Objects is changed to the collection type LT=list T.
• One of the variants of the Queue pattern (cf. page 75) is applied to specify in which

order objects must be retrieved from the collection. In this example, the LIFO Queue
pattern (cf. page 79) is applied.

• A value N is declared to represent the maximal capacity bound of the Objects place.
In this particular example, N=2 which means that at most two tokens can be present
in the Objects place at once.

• Transition Put, which evaluates the size of the collection, i.e. how many objects it
contains, and compares it with the maximal capacity of this place, is associated with
a guard [size(l)<N]. If some free capacity is available, then a new object can be
added. Otherwise, transition Put remains disabled until some of the objects have
been removed.

Note that this solution incorporates the Blocking State-Dependent Filter pattern (cf.
page 43), which examines the state of the counter and prevents from new objects being
added if the capacity of the place has been reached. The Deaggregate Objects pattern (cf.
page 69) is used in this solution for retrieving objects from the queue.

Consequences This pattern provides a means for bounding the capacity of places.
However, it is not applicable for places where an upper bound cannot be defined or does
not exist.

All three solutions presented in this pattern require knowledge about the maximum
number of objects a place can hold. In contrast to solutions 1 and 2, where every object is
represented by a separate token, Solution 3 aggregates all objects into one collection and
provides extra flexibility by allowing operations to be performed on a group of objects at
once. Although the second solution has a more complex realization than other solutions,
it allows the exact value of the current place capacity to be monitored and used elsewhere
in the model.

Examples
• The number of applications that can be processed concurrently in the city hall is

limited by the number of officers available.
• Requests for residence permit extension are handled by a group of four immigration

officers. Whilst all officers are occupied no new requests can be registered.

Related Patterns This pattern uses the Blocking State-Dependent Filter pattern
(cf. page 43); Solution 3 also uses the Aggregate Objects and Deaggregate Object pattern
(cf. page 67 and page 69).

Pattern 19 CONTAINMENT TESTING

Intent To allow the (non)-availability of objects with particular properties in a given
location to be tested.

Motivation In CPNs it is easy to test the presence of a particular object in a place by
linking this place to a transition, which fires and consumes the object satisfying a certain

74 Chapter 3 Colored Petri Nets Patterns

property from the place. In some situations, it may be necessary to test the number of
tokens or the color of tokens present in a place. Potentially, it might also be necessary
to have a transition which is enabled if a place does not contain a token satisfying a
certain property. For instance, a corrective action has to be taken when incorrect data
is encountered in a database or when a bottleneck in a process is identified. However, in
CPN it is not possible to test for the absence of tokens in a certain place.

Problem Description Consider the situation presented in Figure 64. Objects of
type T are placed in and taken from the Object place. Now suppose that we want to check
whether the Object place does not hold a token with a specific value. In such a net this
is not possible, because CPNs only allows testing for the presence of a token in a place
by linking it to a transition and subsequently firing it consuming a token from this place
when doing so.

Figure 64: Example illustrating the problem of non-containment property of place

Solution In order to check whether objects satisfying a certain property are (not)
contained in a place with unbounded capacity, aggregate the objects into a collection as
the Aggregate Objects pattern suggests, and connect this place to an external transition
will test the status of the collection via the test arc. A test arc is a bidirectional arc that
consumes the contents of a place and returns the contents unmodified back to the place.

Implementation of Solution The list of instructions below describes how to
implement the Containment Testing pattern (cf. Figure 65).

l
l

x
lx::l

out

LT

in

T

[]

T T

objects

l

getput

test tofrom

l

y y

[not(elt(y,l))]

LT

Figure 65: Implementation of the Containment Testing pattern

• Objects of type T are aggregated into a list LT=list T.
• The current list of objects l has to be examined by the elt() function3 enclosed in

the guard of transition Test. This function identifies if y is an element of the list
l. Note that any other function, performing the analysis of elements stored on the
collection could be used instead.

fun elt(y,[]) = false |

elt(y,x::l) = if x=y then true else elt(y,l);

3Note that CPN Tools has a built-in function mem that can be used for selecting an element from a
list.

Section 3.2 Catalog of CPN patterns 75

Note that the capacity of the Objects place can be bounded if needed by applying the
Capacity Bounding pattern (cf. page 71).

Consequences This pattern can be applied to test the absence of objects satisfying
a certain property in a place. If objects that do not satisfy the conditions specified have
been identified in a place, it might be necessary to remove them. To do this, this pattern
can be combined with variants of the NBSI Filter or NBSD Filter patterns (cf. pages 45
and 47 respectively).

Examples
• A medical assistant makes appointments with patients over the telephone. As long as

emergency-patients are on the phone, the assistant continues handling their requests.
When no emergency-patients are left on the phone, the assistant switches to the
patient waiting in the queue at the reception counter.

• Families with children and disabled people are selected from the passenger’s queue
as the first ones to board the plane.

Related Patterns This pattern uses the Aggregate Objects pattern (cf. page 67). It
can be combined with the NBSI Filter or NBSD Filter patterns (cf. pages 45 and 47).

The seventh pattern group consists of six patterns. The Queue pattern, the FIFO
Queue pattern, the LIFO Queue pattern, the Random Queue pattern and the Priority
Queue pattern address the problems of coordinating the order in which data elements
aggregated into a collection are utilized. The Queue pattern describes a generic ap-
proach to enforcing that objects be added to a collection and removed from it in a
particular order. Different approaches to queue management, e.g., sorting based on
the order of arrival, priority associated with objects or random selection are discussed
in the FIFO Queue, LIFO Queue, Random Queue and Priority Queue patterns. The
situation where the availability of a particular data element defines the order in which
tasks are executed is described by the Prioritized Execution pattern.

Pattern 20 QUEUE

Intent To allow the manipulation of queued objects in a strictly specified order.

Motivation In many systems, there are buffers where a variable number of objects are
required to queue in between two steps in a process. This pattern assumes an unbounded
queue. The objects need to be placed in a queue and retrieved according to a specific
queuing policy. By exchanging one policy for another, it is possible to obtain the desired
ordering of the buffered objects.

Problem Description Assume that a collection of objects in the form of a queue
is given, and that it is necessary either to add an object to the collection, or to select an
object and remove it from the queue. The order in which objects are being added to or
removed from the collection may depend on the properties of an individual object (e.g.,
age, weight, etc.), the location in the queue (FIFO, LIFO), or a time-stamp (cf. Figure 53).

Solution 1 In order to enforce that elements of a queue move in a strictly specified
order, and enable that several queued elements to be moved in one go, use the Aggregate
Objects pattern in combination with the Deaggregate Objects pattern. The objects are
added to a list and removed from it based on a predefined ordering algorithm.

76 Chapter 3 Colored Petri Nets Patterns

Implementation of Solution 1 The list of instructions below describes how to
implement Solution 1 of the Queue pattern (cf. Figure 66).

rest(l)

x
getput

T

in

T

Queue

[]

LT

add(x,l) l

out
l

[l<>[]]

select(l)

Figure 66: Implementation of Solution 1 of the Queue pattern

• Objects of type T to be queued have to be aggregated in a collection of a list type LT,
such that color LT = list T. The add() function adds objects in a specified order.
The select() function retrieves a required element from the queue, and the rest

function puts an updated queue back in the Queue place. Objects can be added to
the queue and removed from it based on a first-in-first-out, last-in-first-out or object
priority basis as described in patterns FIFO Queue, LIFO Queue and Priority Queue
(cf. pages 78, 79, and 81) respectively.

Solution 2 In order to enforce that elements of a queue move in a strictly specified
order, such that each of the queued objects is distinguishable as a separate entity, objects
have to be augmented with a number indicating their position in the queue. Furthermore,
for each queue it is also necessary to keep track of the objects at the head and tail of the
queue in order to facilitate the addition and removal of objects.

Implementation of Solution 2 The list of instructions below describes how to
implement Solution 2 of the Queue pattern (cf. Figure 67).

(a+1,b)

(a,b)

(a,b+1)

(a,b)

x

x

(a,x)(b+1,x)

getput

bounds

(1,0)

INTxINT

out

T

in

T

FIFO
queue

NT

Figure 67: Implementation of Solution 2 of the Queue pattern

• Two variables identifying at the queue bounds (i.e. head and tail) are introduced.
These variables need to be updated when the first element is inserted to the queue
and the last element is retrieved from it respectively. The upper bound is incremented
when a new element is added to the queue. The lower bound is incremented when an
element is removed from the queue. By using a lower/upper bound one can directly
refer to the first/last element in the queue respectively.

• In Figure 67 every object x is coupled to a number. Variables a and b keep track of
elements in the queue, i.e. variable a stores the position of the first element in the
queue, while variable b points to the last added element. When a new element is
added to the queue, the value of b is increased by 1, thus the pointer is moved to the
last element. When an element needs to be removed from the queue, the element with

Section 3.2 Catalog of CPN patterns 77

position a (the first element of the queue) is supplied to transition get. After the
object is retrieved, variable a is incremented in order to point to the (new) beginning
of the queue. Note that although this applies to the FIFO queue (cf. page 78), for
the current pattern any ordering can be applied.

Solution 3 In order to enforce that elements of a queue move in a strictly specified order,
such that every queued element, (which consists of an object and an object identifier), is
distinguished separately, a sorted collection of object identifiers needs to be introduced.
The ID Matching pattern helps in defining the queue element to be retrieved next based
on the matching of object identifier with the identifiers stored in the introduced collection.

Implementation of Solution 3 The list of instructions below describes how to
implement Solution 3 of the Queue pattern (cf. Figure 68).

(x,id)(x,id)

ll

x

(x,id)

id::l
l^^[id]

getput

Queue
elements

TxID

out

T

in

TxID

Identifiers
queue

[]

Lid

Figure 68: Implementation of Solution 3 of the Queue pattern

• A place Identifiers queue is created in order to store the collection of object
identifiers. To maintain the ordering of objects by means of identifiers, the identifiers
have to be sorted according to a desired policy (i.e. FIFO, LIFO, random, etc.).

• When adding a new element to the queue Queued elements, the identifier of the
object is added to the list of identifiers. Note that in Figure 68, the identifiers are
added to the tail of the list in order to achieve a first-in-first-out behavior.

• To retrieve an element from the queue, the ID Matching pattern has to be applied.
An element from the queue, whose identifier matches the identifier extracted from
the head of the list of identifiers, will be retrieved.

Consequences The Queue pattern presents three solutions, each of which can be
applied for managing the order of objects as they are inserted in or removed from a certain
place. Although the first solution is more flexible, it hides the behavior inside each of the
functions. The second solution provides less flexibility and has a more complex realization.
However, it captures the required behavioral logic in the diagram structure itself and
does not encapsulate the ordering functionality in functions. The third solution offers
the flexibility of the first solution and exposes the behavioral logic in the same way as
the second solution. In contrast to the second solution, referencing the first and the last
elements of the queued objects, the third solution provides more flexibility in defining
the order of removal of elements from the queue, and similar to the first solution can
be realized according to first-in-first-out, last-in-last-out, or other desired ordering policy.
The selection of the solution depends on the context, within which the pattern needs to be
applied, and whether it is necessary to distinguish objects as separate entities (as in the
second and third solution) or perform operations on several objects simultaneously (first
solution).

78 Chapter 3 Colored Petri Nets Patterns

This pattern is a generic representation of queue management. The specializations of
this pattern addressing specific ordering policies are described in the patterns FIFO Queue,
LIFO Queue, and Random Queue (cf. pages 78, 79 and 80) respectively. In this pattern,
the ordering algorithm is fixed either by functions or by the net structure, so that all
elements of a queue are treated in a uniform way. In some situations, there is a need to
make the ordering of objects more flexible and responsive to certain object properties, e.g.,
age, weight, time-stamp, etc. This problem is addressed by the Priority Queue pattern
(cf. page 81), which is a special type of the Queue pattern.

To manage the order of elements queued in a buffer with a limited capacity, this pattern
should be combined with the Capacity Bounding pattern (cf. page 71) whose main intent
is to bound the capacity of unbounded places.

Examples
• The city hall handles requests from citizens. In order to minimize waiting time for

each citizen, visitors that arrive first are served first.
• In order to rent a house, people register at the housing agencies. Based on the date

of an application or urgency of the application an ordering is imposed on the waiting
queue. For allocation of apartments in new districts, a candidate is randomly selected
from the list of reactions received.

Related Patterns This pattern uses the Aggregate Objects pattern (cf. page 67) and
the Deaggregate Objects pattern (cf. page 69) in Solution 1, and uses the ID Matching
pattern (cf. page 49) in Solution 2. The Priority Queue, FIFO Queue, LIFO Queue, and
Random Queue patterns (cf. pages 81, 78, 79 and 80) are specializations of this pattern.
This pattern can be combined with the Capacity Bounding pattern (cf. page 71).

Pattern 21 FIFO QUEUE

Intent To allow manipulation of queued objects in a strictly specified order, such that
an object, which arrives first, is consumed first.

Motivation The Queue pattern (cf. 75) allows a variable number of objects to queue
in-between two steps in a process, providing a means for manipulating objects in a strictly
specified order. As was mentioned for the Queue pattern, there are many scheduling poli-
cies, according to which manipulation of queued objects can be done. In some situations,
there is the need to retrieve objects from the queue in the order of arrival.

Problem Description Assume that a collection of objects takes the form of a queue
and that it is necessary either to add an object to the collection or to select an object from
the collection and remove it from the queue, whilst ensuring that an object, which arrived
first, is retrieved first.

Solution In order to enforce that elements of a queue move in the order of arrival, use
a first-in-first-out queue. In the FIFO-queue new elements are added to the tail of the list,
where the queued elements are stored, and old elements are removed from the head of the
list.

Implementation of Solution The list of instructions below describes how to
implement a FIFO Queue (cf. Figure 69).

• Objects of type T to be queued are aggregated into a collection of a list type LT, such
that color LT = list T.

Section 3.2 Catalog of CPN patterns 79

ll x

x
x::ll^^[x]

getput out

T

in

T

FIFO
queue

[]

LT

Figure 69: Implementation of the FIFO Queue pattern

• Transition put adds an object x to the end of the list l with help of the concatenation
function l∧∧[x]. After the object x is added, the updated list is returned as an input
to transition put.

• Transition get removes the first element of the list x::l and puts an updated list
back in the queue place. In this way, objects that arrive first are retrieved first.

Note that other solutions presented for the Queue pattern (cf. page 75) are also possible,
e.g., figures 67 and 68 refer to a FIFO queue.

Consequences The FIFO Queue pattern is a specialization of Solution 1 of the Queue
pattern, which is applied in the situation where multiple objects are aggregated into a
collection with unbounded capacity that is sorted in the order of arrival.

Examples
• A butcher shop handles requests from clients. In order to keep the waiting time fair,

customers who arrived first are served first.
• In order to rent a house, people register at the housing agency. Based on the date of

application, the (FIFO) order in the waiting queue is defined.

Related Patterns This pattern is a specialization of the Queue pattern (cf. page 75).

Pattern 22 LIFO QUEUE

Intent To allow manipulation of queued objects in a strictly specified order, such that
the most recently added object is retrieved first.

Motivation The Queue pattern (cf. 75) allows a variable number of objects to queue
in-between two steps in a process, providing a means of manipulating objects in a strictly
specified order. As was mentioned in the Queue pattern, there are many scheduling poli-
cies, according to which the manipulation of queued objects can be undertaken. In some
situations, after placing objects in a queue there is a need to retrieve the most recently
added object first. Such queueing structure is known in the software community under
term “stack”.

Problem Description Assume that a collection of objects takes the form of a queue,
and that it is necessary either to add an object to the collection or to select an object from
the collection and remove it from the queue, ensuring that the last object added is the first
one to retrieved.

Solution In order to enforce that elements in a queue move in the order of arrival, use a
last-in-first-out queue. In the LIFO-queue a new object is added to the head of the objects
list, where the queued elements are stored, and an object is also removed from the head of
the list.

Implementation of Solution The list of instructions below describes how to
implement the LIFO Queue pattern (cf. Figure 70).

• Objects of type T that are to be queued are aggregated in a collection of the list type
LT, such that color LT = list T.

80 Chapter 3 Colored Petri Nets Patterns

ll x

x
x::lx::l

getput out

T

in

T

LIFO
queue

[]

LT

Figure 70: Implementation of the LIFO Queue pattern

• Transition put adds an object x to the head of the list l via function x::l. After
the object x is added, the updated list is returned as an input to the transition put.

• Transition put removes the first element of the list x::l and puts an updated list
back into the queue place. In this way, the most recently arrived object is retrieved
first.

Consequences This pattern can be applied to ensure strict ordering of objects which
are inserted in or removed from from a collection, such that the most recently added object
is retrieved first. In computer society, this pattern is known as stack, which represents a
container of nodes and two operations, e.g., pop and push. These operations add new
nodes to the top of the stack and removing the node from the top of the stack respec-
tively. The LIFO Queue pattern is a specialization of Solution 1 of the Queue pattern
(cf. page 75) which addresses the issue of manipulating objects aggregated into a collection
with unbounded capacity.

Examples
• Inventory accounting in which the most recently acquired items are assumed to be

the first sold.
• An example of a LIFO is a stack of plates in a cafeteria. In such a stack, only the top

plate is accessible to the user, whereas other plates remain hidden. As new plates
are added, each new plate becomes the top of the stack, pushing the stack of plates
down.

Related Patterns This pattern is a specialization of the Queue pattern (cf. page 75).

Pattern 23 RANDOM QUEUE

Intent To allow manipulation of queued objects such that an object is added to the
collection in some specified order and an arbitrary object is consumed from it.

Motivation The Queue pattern (cf. 75) allows a variable number of objects to queue
in-between two steps in a process, providing a means of manipulating objects in a strictly
specified order. In some situations, the order in which objects are inserted into the queue
is unimportant, since an arbitrary object from the queue needs to be consumed.

Problem Description Assume that a collection of objects takes the form of a queue,
and that it is necessary either to add an object to the collection or select an arbitrary object
from the collection and remove it from the queue.

Solution In order to enforce that elements of a queue move in an arbitrary order, objects
are added either to the tail or to the head of the list in which the queued elements are
stored, and randomly removed from it.

Implementation of Solution The list of instructions below describes how to
implement the Random Queue pattern (cf. Figure 71).

• Objects of type T to be queued are aggregated in the collection of list type LT, such
that color LT = list T.

Section 3.2 Catalog of CPN patterns 81

rest(x,l)l x

x

lx::l

get

[x = rand(l)]

put out

T

in

T

LIFO
queue

[]

LT

Figure 71: Implementation of the Random Queue pattern

• Objects can be placed in the list in any order, i.e. either at the head of the list x::l
or at the tail of the list l∧∧[x]. In Figure 71 objects are added to the head of the
list.

• Transition get picks a random element of the list using the function rand.

fun rand(l) = List.nth(l,discrete(0,size(l)-1));

• An updated list, i.e. the list without the withdrawn element, is supplied by the
function rest().

fun rest(x, h::l)= if x=h then l else h::rest(x,l);

Note that Figure 53 is a possible solution for this pattern, provided that the non-
deterministic selection of tokens is done in a “fair” way.

Consequences This pattern can be applied to add and remove elements from the
queue in any order. The Random Queue pattern is a specialization of Solution 1 of the
Queue pattern (cf. page 75) addressing the issue of manipulating objects aggregated into
a collection with unbounded capacity.

Examples
• In order to rent a house, a person must subscribe to a housing agency. After subscrib-

ing, registered members may react to the available houses. A notary of the housing
agency randomly selects a person who will get the house.

• The selection of a candidate who reacted on the same accommodation advertisement
and who have the same waiting time is performed by a notary on the random basis.

Related Patterns This pattern is a specialization of the Queue pattern (cf. page 75).

Pattern 24 PRIORITY QUEUE

Intent To allow the selection of queued objects in the order of object priority.

Motivation In many systems, as Solution 1 of the Queue pattern describes (cf. 75),
there are buffers where a variable number of objects, aggregated into a collection, are
queued in-between two steps in a process. The order in which objects are being added to
and removed from the collection may be based on the priority associated with an object.

Problem Description Assume that a collection of objects in form of a queue is
given, and that it is necessary either to add an object to the queue or select an object
and remove it from the queue. The Queue pattern solves this problem by capturing a
predefined ordering algorithm in the net structure and functions. Specializations of the
Queue pattern which queue objects in the order of their arrival treat all objects in uniform
way, i.e. no matter what the value of an object is, an object is retrieved only when its turn
comes (first-in-first-out, last-in-first-out, etc). However, this approach does not allow the
order of objects in a queue to vary depending on certain object properties, i.e. the value of
an object or the priority associated with it.

82 Chapter 3 Colored Petri Nets Patterns

Solution In order to allow for the manipulation of objects in an order whose priority
is defined by object-specific properties, use a Priority Queue. When accessing objects in a
queue, the object with the highest priority is removed first.

There are several alternatives for implementing this solution. The selection of an ap-
propriate implementation depends on one of the following context conditions:

• Sorting of a queue based on object priority is done at the moment of object insertion
(cf. corresponding implementation alternatives 1 and 2).

• Sorting of a queue based on object priority is done at the moment of object retrieval
(cf. corresponding implementation alternatives 3 and 4).

• Sorting of a queue based on object priority after object insertion but before the object
retrieval (cf. the implementation alternative 5).

Implementation 1 of Solution A collection of queued objects has to be sorted at
the object insertion in order of ascending priority (cf. Figure 72). The priority of an object
is based on the object’s value. The first element of the list, i.e. the object with the highest
priority, is retrieved first. The list of instructions below describes how to implement the
Priority Queue pattern (cf. Figure 72).

x

ll

pinsert(x, l)

x
GetPut Out

T

In

T

Objects

[]

LT

x::l

Figure 72: Implementation 1 of the Priority Queue pattern

Assumption: initially, the collection of objects stored in place Objects, is either empty
or sorted.

• Place Objects is of type LT. This is a list type which collects objects of type T,
i.e. "color LT = list T". In this model, objects are sorted in order of descending
priority, i.e. an object with the highest priority is withdrawn from the queue first. Of
two objects of INT type, the object with the highest priority is the one, whose value
is greatest (cf. the higherPriority() function).

fun higherPriority (p1, p2) =(p1>p2);

(* p1 has higher priority than p2 if p1 is greater than p2 *)

• Objects in the Objects place are stored in ascending order, i.e. the first element has
the largest value, while the last element has the smallest value. The Put transition
determines the priority of the new object and inserts it in the queue, ensuring that
the queue remains properly sorted (cf. the pinsert() function).

fun pinsert(elm,[]) = [elm]

| pinsert (elm, q::queue) =

if higherPriority (elm,q)

then elm::q::queue

else q::(pinsert(elm, queue));

• The Get transition removes the object with the highest priority (and correspondingly
the largest value from the queue) by taking the first element of the collection x::l.

Implementation 2 of Solution A collection of queued objects has to be sorted
at object insertion in order of ascending priority (as shown in Figure 73). In contrast to
implementation 1, the object’s priority is not based on the value associated with an object,
but is passed as a separate value coupled to the corresponding object. Since the collection of
queued elements is composed of pairs (obj value, priority value), the second element

Section 3.2 Catalog of CPN patterns 83

of a pair, i.e. priority, is a parameter for sorting. The first element that will be retrieved
from the queue is the element with the highest priority.

l l

x

(x,prio)::lsort((x,prio),l)

(x,prio)
GetPut Out

T

In

TxP

Objects

[]

PrQ

Figure 73: Implementation 2 of the Priority Queue pattern

Assumption: initially, the collection of objects stored in place Objects is either empty
or properly sorted.

• In Figure 73 transition Put takes a pair and sorts the queue using the sort() function:

fun sort((x,p), []) = [(x,p)] | sort((x,p), ((y,q)::queue)) =

if higherPriority(p,q) then (x,p)::(y,q)::queue

else (y,q)::(sort((x,p), queue));

• The collection of objects l is sorted. Transition Get takes the first pair from a list
(x,prio), which is the pair with the highest priority prio, and returns back the
updated list l.

Implementation 3 of Solution Objects are inserted in a queue in any order
(objects stored in the collection are not sorted). The collection needs to be sorted based
on priority of objects at the moment of object retrieval (cf. Figure 74). In Figure 74, a
merge-sort algorithm is used for sorting the list in descending order, however without loss
of generality any other sorting algorithm may be used.

x

templl

l
x::l

x
Get

[x::templ=sort(l)]

Put Out

T

In

T

Objects

[]

LT

Figure 74: Implementation 3 of the Priority Queue pattern: another alternative

• First, objects are inserted into the collection l in any order, i.e. either at the beginning
x::l or at the end of the list l∧∧[x].

• Then, a transition guard [x::templ=sort(l)] added to the Get transition, assigns
the sorted list l to a new list templ.

• The first element x of this list is passed to the Out place, while the rest of the list
templ is put back in the Objects place.

Implementation 4 of Solution Pairs of objects and priorities associated with the
objects are inserted in a queue in any order. The collection needs to be sorted based on
the value of object priority at the moment of object retrieval (cf. Figure 75).

• Pairs of objects and the priorities associated with them are stored in pairs in the list
l in any order. When an object needs to be retrieved from the collection, the list l
is sorted based on the value of the priority element. This implementation, similar to
implementation 2, uses pairs of elements, where the priority of an object is specified.
Similar to implementation 3, it uses sorting upon retrieval with help of the merge-sort
algorithm. Note that any other sorting algorithm can be used instead.

• A sorted list sl consists of pairs, from which only the first pair, i.e. hd(sl), is passed
to place Out.

84 Chapter 3 Colored Petri Nets Patterns

l

l
(x,prio)::l

(x,prio)
GetPut Out

TxPrio

In

TxPrio

Objects

[]

List_TxPrio tl(sl)

[sl=sort(l)]

hd(sl)

Figure 75: Implementation 4 of the Priority Queue pattern

Implementation 5 of Solution Objects are handled in a FIFO (first-in-first-
out) order. The sorting of objects is neither done at object insertion nor upon the object
retrieval. In contrast to all of the other implementations considered, sorting in this imple-
mentation alternative is done externally, i.e. with help of the Sort transition (cf. Figure 76).
This transition can fire when a new object is added to the collection.

sort(l) l

x

ll

x::ll^^[x]

x

Sort

[l <> sort(l)]

GetPut Out

T

In

T

Objects

[]

LT

Figure 76: Implementation 5 of the Priority Queue pattern

This implementation alternative is “non-safe”, given that there is not a strict ordering of
firing transitions Sort and Get. In an ideal case, transition Sort must fire before transition
Get in order to ensure that all elements in the collection are sorted and the element with
highest priority is taken first. However, this may not occur. If a new element is added
to the top of the list, and its priority is lower than the preceding element, it should be
placed by transition Sort in the correct location. Assume, that transition Get fires first,
before the list was sorted. In this case, a newly arrived element with a lower priority will
be consumed and the element with the highest priority will stay in the collection.

Consequences This pattern can be utilized to retrieve objects from a queue in the
order defined by priorities specified in terms of object properties like price, weight, age, etc.
To apply this pattern, one should determine how the object priority is defined and when
the sorting should be performed, i.e. upon object insertion or upon the object retrieval from
the queue respectively. The Priority Queue pattern allows for manipulation of objects in
the order defined by object-specific properties. To make this possible, this pattern uses
a sorting algorithm which is hidden inside one of the functions. Many sorting algorithms
have been developed, which differ in the efficiency and speed of sorting. We leave the
selection of the sorting algorithm out of the scope of this pattern, since this information
can be found elsewhere.

Implementations 1 to 4 are safe in the sense that they ensure that the retrieval of objects
in the order of specified priority. Implementation 5, in contrast to the other implementation
alternatives, also performs the sorting of objects, however it is not safe since it cannot
guarantee that sorting will be done at the right moment, i.e. preceding object retrieval. To
solve this problem, one could apply the Prioritized Execution pattern (cf. page 85).

Example

Section 3.2 Catalog of CPN patterns 85

• The service desk of a company distributing coffee-machines handles complaints of
clients. Every day there is a list of urgent complaints received, which must be resolved
within the same day. However, if too many complaints are received on the same day,
and the service desk is not able to handle them all in time, they are scheduled as
tasks with the highest priority for the next day.

• The human resources department schedules meetings based on the availability of
employees and the urgency of the subjects to be discussed.

Related Patterns This pattern is a specialization of the Queue pattern (cf. page 75).
It can be combined with the Prioritized Execution pattern (cf. page 85).

Pattern 25 PRIORITIZED EXECUTION

Intent To coordinate the execution order of two tasks, such that in situations when both
of them are simultaneously enabled, one of them always executes before the other.

Motivation In some situations, the execution order of two tasks has to be regulated
according to the priorities associated with these tasks. The high-priority task always needs
to be executed before the low-priority task.

Problem Description Figure 77 presents an example of the prioritized enabling of
two transitions A and B. Having both inputs in places p3 and p4 available, transition B may
fire before transition A has completed. In this situation, it is necessary to ensure that the
low-priority transition B fires only after transition A has completed.

?

Figure 77: Example of the prioritized execution problem

In such a net it is necessary to ensure that the B transition becomes enabled only after
all inputs have been consumed by transition A from the p1 and p2 places. In this diagram,
if the absence of tokens in the p1 and p2 has not been tested, the B transition can fire as
soon as the collection of objects in the p3 and p4 places becomes non-empty. In CPN, it
is possible to check the presence of tokens in a place by linking the place to a transition,
which fires and consumes tokens from the input place; however the absence of tokens in
the place cannot be checked.

Solution In order to coordinate the execution order of two tasks, where one task has
priority over the other, test the absence of tokens in the input place of the high-priority task
and only then execute the low-priority task. To do this, aggregate the tokens in the place
that needs to be tested into a collection as described by the Aggregate Objects pattern, and
connect an arc to this place for checking the number of objects in the collection.

Implementation of Solution
The list of instructions below describes how to implement the Prioritized Execution

pattern (cf. Figure 78).

86 Chapter 3 Colored Petri Nets Patterns

Figure 78: Implementation of Solution of the Prioritized Execution

• The type T of the p1 and p2 places are replaced with a collection of type LT according
to the Aggregate Objects pattern (cf. page 67). In this case a list type (color LT =

list T) is used. Note that the order of objects in the collection is unimportant.
• The initial marking of the p1 and p2 places has been set to the empty list [] if

originally this place contained no elements. Otherwise, the list has to be filled with
the corresponding elements.

• The enabled high-priority task consumes the required number of tokens from the in1
place, and returns the rest of the list to the place.

Consequences The Prioritized Execution pattern can be used for enforcing conditional
enablement of two tasks such that one of them always executes before the other. The
enabling of a low-priority task is based on testing for absence of objects in inputs of the
high-priority task. This pattern can be combined with the Containment Testing pattern
(cf. page 73) for testing of the “non-containment” property of places to check that an object
satisfying a certain property is not present in a place.

Examples
• A medical assistant makes appointments with patients via the telephone. As long as

patients continue to call, the assistant continues handling their requests. When no
patients remain to be answered, the assistant switches to serving the patient waiting
in the queue at the reception counter.

• Of two patients who simultaneously arrive at the first-aid unit of a hospital, the
patient with the most life-treating ailment is treated first.

Related Patterns This pattern uses the Aggregate Objects pattern (cf. page 67). It
can be combined with the Containment Testing pattern (cf. page 73).

So far, we have considered the management of objects residing in a particular place.
The eighth pattern group considers two situations where there is a need to manage
objects residing in a region that may contain multiple places. The Region Flush pattern
describes how the content of a particular region can be emptied immediately. The
Content Setting pattern describes how the content of a particular region can be reset
to another state.

Pattern 26 REGION FLUSH

Intent To clear the content of all places in a particular region.

Section 3.2 Catalog of CPN patterns 87

Motivation In some situations, where a particular region in a process needs to be
canceled, all content within this region needs to be instantly removed. When clearing up
such a region, all data is discarded and the process may be initiated again.

Problem Description Figure 79 illustrates a part of the journey booking process
where both a plane and a hotel need to be booked. Each of the bookings is performed
separately, and may consist of several steps, thus being characterized by different states.
The payment is performed only when both bookings have been successfully completed.
However if a hotel or a plane booking is unsuccessful (i.e. there is a token in the nok

place), the other booking needs to be canceled.

Figure 79: Problem of the region cancelation

To cancel a booking process, one needs know which places in the booking region are
populated and empty the content of these places. This could be done by connecting all
places to the Cancel transition via a “reset” arc, which consumes all of the contents of
the place (if any), however this construct is not available in CPNs. Therefore, in order to
empty each of the places in the region, one needs to add a separate transition consuming
both a token from this place and the token from the nok-place. If a region contains many
places, this solution results in a very large and complex model, thus a more elegant way of
emptying the contents of the region is required.

Solution In order to clear the contents of all places in a particular region, aggregate
objects in each of the places as the Aggregate Objects pattern suggests, and connect each
of these places to the Cancel transition in order to empty the content of all places at once.

Implementation of Solution The list of instructions below describes how to
implement the Region Flush pattern (cf. Figure 80).

3

Figure 80: Implementation of the Region Flush pattern

88 Chapter 3 Colored Petri Nets Patterns

• To clear the content of the p1, p2, ok1 and ok2 places, where all objects are accu-
mulated in a single collection, these places are connected to the Cancel transition
which consumes collections lt and lt1, and places an empty list [] back in them.

• Figure 81 illustrates how to clear the content of four places. If the region contains
more places, these steps have to be repeated for every place.

Implementation 2 of Solution Figure 81 demonstrates an alternative imple-
mentation for emptying the contents of a region. This implementation is based on the
assumption that objects cannot be aggregated in a collection and are stored as separate
entities in a place. To calculate the number of objects in the place, the counter-place is
introduced.

Figure 81: Implementation 2 of the Region Flush pattern

• For each of the places in the region whose contents needs to be emptied, a counter
place is added whose value is incremented when an object is added to the place and
decremented when an object is removed from it. This counter is necessary in order to
know how many objects have to be removed from the place whose contents is being
flushed. If the capacity of the place needs to be bounded, Solution 2 of the Capacity
Bounding pattern (cf. the next pattern) should be applied.

• Both the counter place and the place whose contents need to be emptied are connected
to the Cancel transition. The current value of the counter i indicates the number of
objects to be removed from the p2 place.

Note that although in this solution all tokens have the same value, it also applies to
situations where tokens are associated with different types and distinct values.

Consequences The Region Flush pattern can be combined with the Content Testing

pattern (cf. page 73) in order to enable objects satisfying a particular property to be
removed from a place (or all places in a region). In situations where after emptying a
region the process needs to be reset to its original state, one could use an extension of this
pattern, i.e. the Content Setting pattern (cf. next pattern for details).

In its solution, this pattern uses the Aggregate Objects pattern (cf. page 67) in order
to remove all objects available in a place at once. Note that by aggregating objects into

Section 3.2 Catalog of CPN patterns 89

a collection, an empty collection can be tested, which would not be possible if the place
stored objects as separate entities.

Examples
• After patient’s death the relevant records in the patient database are destroyed.
• For security reasons, upon transferral from one department to another an employee’s

data must be removed from the employee computer.

Related Patterns This pattern uses the Aggregate Objects pattern (cf. page 67) in its
implementation 1. It can be combined with Solution 2 of the Capacity Bounding pattern
(cf. page 71), and is extended by the Content Setting pattern (cf. page 89).

Pattern 27 CONTENT SETTING

Intent To reset the content of a particular region to another state.

Motivation The Region Flush pattern allows the content of places in a particular region
to be removed. In some situations, after the region has been emptied it may be necessary
to reset it to its original or another state. This may be necessary, for instance, when a
process that failed needs to be restarted or when requirements for process execution has
changed and the state of the process needs to be adjusted.

Problem Description Figure 82 illustrates the process of trip booking where both a
hotel and a plane need to be booked. In case, one of the bookings fails, the other booking
process needs to be stopped and the both procedures have to be restarted. This situation
is different from that described in the Region Flush pattern where a region is canceled and
all contents are inconsequentially removed from it.

Figure 82: Problem of region resetting

Solution In order to reset the content of a region, in each place within the region
aggregate objects into a collection as described by the Aggregate Objects pattern, and
connect the Reset transition to it such that it will remove all objects from the various
collections simultaneously and add new objects into them.

Implementation of Solution The list of instructions below describes how to
implement the Content Setting pattern (cf. Figure 83).

• Objects in places p1 and p2 are aggregated in to a collection as described by the
Aggregate Objects pattern (cf. page 67).

90 Chapter 3 Colored Petri Nets Patterns

Figure 83: Implementation of the Content Setting pattern

• The the Reset transition is added, whose incoming arcs remove all the content of the
places within the region by consuming lists lt and lt1, and put back a new value
into each of them.

Consequences This pattern allows all of the contents in a particular region to be reset
to another state. For this, the contents of all places in the region are emptied by applying
the Region Flush pattern (cf. page 86) and then the selected places are reset to another
value.

Examples
• After having modified the personal settings of their mobile phone, a user may choose

to delete all changes and reset them to default values.
• When during an operation a patient develops high pressure, the operation needs to

be halted, and all associated resources have to be prepared for the next operation.

Related Patterns This pattern extends the Region Flush pattern (cf. page 86).

The last pattern group consists of seven patterns, which address problems of data or-
ganization and access. The Shared Database pattern describes how to provide different
levels of data visibility in a model and share access to data stored in one place be-
tween multiple transitions. The Database Management pattern describes an interface
for accessing a shared database. The Concurrent Access pattern addresses the problem
where multiple tasks need to use data stored in a particular place simultaneously. The
Copy Manager pattern describes how to maintain the consistency of data distributed
in multiple places. The Lock Manager and Bi-Lock Manager patterns describe differ-
ent variants of accessing data stored in a shared database on the basis of shared and
exclusive locks.

Pattern 28 SHARED DATABASE

Intent To enable the centralized storage of data shared by multiple tasks with support
for different levels of data visibility (i.e. local, group, or global).

Motivation In Petri nets, a transition is only aware of data directly supplied to its
input places. It has no knowledge of data related to other transitions. In other words, the
visibility of data relative to a transition is local. In some cases, it is necessary to make

Section 3.2 Catalog of CPN patterns 91

the local data visible to a group of transitions or to all transitions contained in a model,
providing for group and global visibility respectively.

Problem Description Assume that within a given chain of transitions (cf. Figure 84),
it is necessary to pass some data from the start of the chain A to the end D. Although
intermediate steps do not change the data at all or do so only infrequently, the data is
passed through the whole sequence of transitions rather than made being available upon
request, i.e. only at the moment when it is needed.

x(id,x)(id,x)(id,x)(id,f(x))
T3

T

C

IDxTIDxTIDxT

A
(id,x)

T1 B T2 D

Figure 84: Problem of data sharing

Data element x with an identifier id is sequentially passed from place A to place D via
transitions T1, T2 and T3. Although transition T2 does not use the data element x, it
knows that it is passed. In terms of network transfers, this leads to overloading of traffic,
increases the duration of the data transfer and slows down overall performance. From a
security point of view, it might be desirable to limit a set of transitions to that sub-set
which is authorized to access the data element, thus minimizing information outflow.

Solution In order to centralize the storage of data shared between multiple tasks, use a
shared database. A shared database is a place that provides access to data for transitions
connected to the database.

In order to enable global visibility of data in a model, all transitions in the net must
be connected to the shared database. In order to limit the visibility of data to a certain
group of transitions and thus establish group visibility, the shared database has to be
connected only to those transitions which are allowed to access the data. Local visibility
can be obtained by connecting only one transition to the database. Thus, the number of
transitions connected to the shared database determines the visibility of data in a model.

Implementation of Solution The list of instructions below describes how to
implement the Shared Database pattern (cf. Figure 85).

xidididid(id,x)
T3T2T1

INP

IDxT

D

T

C

ID

B

ID

A

IDxT

Shared
data

(id,f(x)) (id,x)

(id,x)(id,x2)

Figure 85: Implementation of the Shared Database pattern

• A place Shared data, where data shared between transitions will be stored, is intro-
duced. The format of data stored in the database must allow all data stored in the
database to be referenced by means of unique identifiers (as required by the Database
Management pattern which defines the interface for accessing the shared database
on page 92). Instead of passing data elements through a whole chain of transitions
which have no access to the shared database, it is sufficient to pass only identifiers
corresponding to the data elements. The desired level of data visibility is determined
by the number of transitions which are connected to the database.

92 Chapter 3 Colored Petri Nets Patterns

• The identified transitions are connected to the shared database by means of bidirec-
tional arcs. An arc directed to a transition supplies the transition with the current
value of the data element requested by transition. For details of accessing data in a
database see the Database Management pattern.

• Organize the data stored in the shared database into a data structure of the collection
type, so that the whole database corresponds to a single token, using the Aggregate
Objects pattern (cf. page 67).

Consequences This pattern can be used to share data between a group of transitions,
so that each transition can access the data in the database whenever it needs to. One of its
possible uses is to restrict access to data by unauthorized transitions by defining different
levels of data visibility.

The definition of the level of data visibility is one of the most important decisions the
developer of a model needs to take during the early stages of the development. Carefully
selecting the degree of data visibility may help in preventing unauthorized data access,
information outflow or making a model cumbersome by passing irrelevant or complex data.
In almost every model there is the need for at least one global database, which stores
persistent information (often non-variable or less-frequently variable), and several local
databases, the visibility in which is limited to a specific group of transitions.

The drawback of implementing this pattern is that it can make a model look “spaghetti-
alike” due to the multiple arcs connecting transitions and a shared place. Model complexity
may increase dramatically if multiple databases have to be introduced, thus creating for
each group an extra place with corresponding arcs. Therefore, one should make a trade-off
between increased model complexity, introduced by the shared places, and the importance
of (non)limited access to data.

As it was mentioned in the implementation section, for structuring the database, this
pattern can be combined with the Aggregate Objects pattern (cf. page 67). In some situa-
tions, it is necessary to make data, which is available in one shared database, also available
in other locations. To make this possible, this pattern should be combined with the Copy
Manager pattern (cf. page 96).

Examples
• A supervisory board is composed of ten people, three of whom are responsible for

the budget. Each of the three people has access to the bank account. The visibility
of the account data in this case is limited to these three people.

• Two companies, each of which has a number of internal projects, are involved in a
joined venture. The members of both companies have access to the joint venture
(global visibility). However, the members of one company do not have access to the
internal projects of the other company, since the visibility of those projects is limited
to the particular company’s staff members.

Related Patterns This pattern is extended by the Database Management pattern
(cf. page 92). It can be combined with the Aggregate Objects pattern (cf. page 67) and the
Copy Manager pattern (cf. page 96).

Pattern 29 DATABASE MANAGEMENT

Intent To specify an interface for accessing data, stored in a shared database, for read-
only and modification purposes.

Section 3.2 Catalog of CPN patterns 93

Motivation The Shared Database pattern (cf. 90) provides a solution for centralizing
data shared between several transitions, allowing support for different levels of data visi-
bility. Usually, a shared database is used either as a static data provider, which contains
data for read only purposes and prohibits modifications, or as dynamic storage, where data
is accessed for read/write purposes. To make the distinction between these two types of
databases, their access interfaces should be clearly differentiated.

Problem Description Assume that two independent threads need to retrieve data
from the Shared Database for read-only and modification purposes respectively (cf. Fig-
ure 86). According to the Shared Database pattern, it is necessary to connect transitions
Read-only and Modify to the Shared Database place, which makes the data stored in the
database visible and shared between these transitions. However, when connecting these
transitions to the database, it is not clear what interface must be used for retrieving data
for read-only and modification purposes respectively.

Modify

Read-
only

Out2

Value

In2

1`2

ID

Shared
Database

IDxValue

Out1

Value

In1

1`1++
1`3

ID

1`(1, 10)++
1`(2,10)++
1`(3,20)

Figure 86: Problem of accessing the shared database

Solution Assumption: all data stored in a shared database has a unique identifier for
referencing purposes.

In order to retrieve a data element from a shared database, use identifiers associated
with data elements stored in the database as a reference. For read-only purposes, the value
of the data element is retrieved and put back unmodified. For modification purposes, the
value of the data element is retrieved and the modified value is put back in the database.

Implementation of Solution The list of instructions below describes how to
implement read/write interfaces for shared database (cf. Figure 87). It is the generalization
of both read and modify operations, which allows a shared database of the dynamic type4

both to read and modify data stored in it. The specialization of this pattern, an interface
of accessing a shared database of the static type, can be derived from the interface of
accessing a dynamic database by removing features which allows for data modification.

• The Shared Database place is connected to the Modify transition, providing the
value of a data element with the requested identifier in the form (id1, value).
Note that the data identifier serves as a key for retrieving the value of a data element
from the database by using the ID Matching pattern (cf. page 49).

• A guard of transition Modify contains a function f() which defines the new (modified)
value of the data element.

• After the guard has been evaluated, the new value val1 m is placed back in the
Shared Database.

4We use the terms dynamic database to refer to a database whose content can be changed, and static
database to refer to a database whose content is fixed and used for only for reading purposes.

94 Chapter 3 Colored Petri Nets Patterns

(id1,value) (id1,val1_m)

val1_mid1
Modify

[val1_m=f(value)]

Out2

Value

In2

ID

Shared
Database

IDxValue

INP

Figure 87: Implementation of the read/write interface of the Shared Database

Figure 88 illustrates the interface for “read-only” access to the shared database.

val1id
Retrieve Out1

Value

Shared
Database

INP

IDxValue

In1

ID

(id,val1)

Figure 88: Implementation of read-only access to the shared database

The Retrieve transition provides an identifier id for accessing the value val1 of a data
element stored in the shared database for the read-only purposes (this value is subsequently
returned back unmodified).

Figure 89 illustrates the access interfaces implemented in the example presented in the
Problem Description section.

(id2,value)(id2,val1_m)

(id,val1)(id,val1)

val1_mid2

val1id

Modify

[val1_m=f(value)]

Read-
only

Out2

Value

In2

ID

Shared
Database

IDxValue

Out1

Value

In1

ID

INP

Figure 89: Example of access interfaces to the shared database

Consequences This pattern can be applied to realize an access interface to a static
shared database for read-only purposes and a dynamic database required for both reading
and modification of data stored in the database.

The Database Management pattern clarifies the interfaces required for accessing shared
databases on a read-only and read/write basis. However, this pattern does not deal with
problems which might appear during the simultaneous access of data for modification by
several transitions. In order to synchronize concurrent access to the shared data, the Shared
Database pattern should be combined with the Lock Manager pattern (cf. page 98) or with

Section 3.2 Catalog of CPN patterns 95

the Bi-Lock Manager pattern (cf. page 100). The Lock Manager pattern ensures exclusive
access to all data elements by means of exclusive locks. The Bi-Lock Manager pattern
provides shared access for reading and exclusive access for writing by means of shared and
exclusive locks respectively.

Examples
• Databases with bibliographical information relating to books, articles, and other

published materials accessed by users on-line.
• Centralized storage of the patient data in a hospital, which is available in all functional

departments of the hospital.

Related Patterns This pattern uses the ID Matching pattern (cf. page 49). It can
be combined with the Lock Manager pattern (cf. page 98) or the Bi-Lock Manager pattern
(cf. page 100).

Pattern 30 CONCURRENT ACCESS

Intent To provide concurrent access to common data elements by a series of individual
tasks without implying any changes to these data elements.

Motivation In situations, where the same object needs to be used by different entities,
the entities need to queue and wait until the object is released by preceding users before it
actually can be utilized. Having only one object available, the users may access it only on
an interleaved basis (as described in the Shared Database pattern on page 90), and cannot
utilize it concurrently. This may result in long waiting times and introduce undesired
dependencies between previously independent parties.

Problem Description Figure 90 represents a place realized according to the Shared
Database pattern. Transitions T1, T2 and TN read the value of the object stored in the
Object place. In this diagram, when one transition consumes a token from the Object

place, others may not access it and thus must wait until it is available.

Figure 90: Problem of concurrent testing

96 Chapter 3 Colored Petri Nets Patterns

Solution In order to enable concurrent access to a data element stored in a particular
place by a series of individual tasks, replicate the value of the data element as many times
as there are tasks that require access to it.

Implementation of Solution Figure 91 demonstrates implementation of the Con-
current Access pattern.

N`xN`x

tt

t

...

T1

T2

Object

T

TN
t

Set

Get

Update

N`y

N`x

Figure 91: Implementation of the Concurrent Access pattern

• Assuming that less than N transitions need to use the content of the Object place,
the value of this place is replicated by adding N’e tokens to it via the Set transition.
When necessary, all objects can be removed from the Object place via the Get

transition. Furthermore, the content of the Object place can be updated by means
of the Update transition. Having as many objects in the Object place available as
there are transitions testing it allows for concurrent access by all parties.

Consequences The Concurrent Access pattern allows the contents of a place to be
used by multiple transitions concurrently. Note that the access to the data element is read
only, thus no modifications resulting in data inconsistency can be made. This pattern is
similar to the Shared Database pattern (cf. page 90) where objects stored in the database
can be accessed for reading or writing purposes. However, in this pattern the objects stored
in the shared place may be accessed concurrently, while in the Shared Database the access
to the objects is performed on an interleaved basis. In case a particular property of objects
stored in the shared place needs to be analyzed, this pattern can be combined with the
Containment Testing pattern (cf. page 73).

Examples
• A library keeps several copies of each publication, to allow the same information

source to be accessed by several readers simultaneously.
• A department has requested several license keys for a software tool to allow multiple

students to work with the tool during instructions.

Related Patterns This pattern is similar to the Shared Database pattern (cf. page 90)
and can be combined with the Containment Testing pattern (cf. page 73).

Pattern 31 COPY MANAGER

Intent To make data, stored in a shared database, available at other locations for local
use, whilst maintaining the consistency of data in all places.

Motivation In many situations, data stored in a central database needs to be accessed
concurrently in different locations, which are often independent of each other. Such loca-
tions need to be able to work with data even when the connection to the central database

Section 3.2 Catalog of CPN patterns 97

is not available. The data stored in the central database must be kept up-to-date and
consistent with the various copies of it that are in use.

Problem Description Assume that there is a central database in which data related
to employees is stored. Different departments, e.g., finance department, housing service,
education center, etc. need to access this data concurrently. As a consequence of an
exclusive access restrictions to the database, one department can not access data until it
is released by another department. Such dependencies result in long waiting times and
inefficient work practices. In addition, there is the possibility that access to the data
stored in the database will be limited for all departments if the network connecting these
departments to the database is temporarily unavailable. Thus, there is the need to make
the data stored in the central database locally available.

Solution In order to make data stored in the shared database available at other locations,
use a copy manager. The copy manager replicates data from the central database to local
storage. The copy manager maintains data consistency by updating data in the main
database when the local copy has been modified and by synchronizing local copies with
the main databases when it has been modified.

Implementation of Solution The list of instructions below describes how to
implement the Copy Manager pattern (cf. Figure 92).

old_l

l

(id,y) (id,y)

(id,y)::l

(id,x)::l

l

l

l

[y=modify(x)]

Report
change

[ml= update(l,id,y)]

Replicate

Modified
value

IDxVal

Local copy

1`[]

List_IDxVal

Shared
Database

List_IDxVal

ml

Modify

Figure 92: Implementation of the Copy Manager pattern

• In order to replicate data stored in a shared database in one go, data in the shared
database is aggregated into a collection (as the Aggregate Objects pattern on page 67
describes). Copying elements one-by-one is inefficient and time-consuming, therefore
it is not considered as an implementation option.

• A new place Local copy is created, where a local copy of the data available in the
central database will be stored. Note that the types of places Shared Database and
Local copy are the same.

• The Shared Database place, where the central database is stored, is connected to
the newly created local database by the Replicate transition which copies all data
from one place to the other.

• After the data stored in the local database has been modified by the Modify tran-
sition, the old value stored in the central database is updated with a new value via
the Report change transition. In order to update the original database according to
changes performed in the local database, only elements that were modified have to
be reported. The Report Change transition takes the whole data collection from the
Shared Database and replaces the value of the data element with the specified id.

fun update((id,a)::queue,id2,y) = if (id=id2) then

(id,y)::queue else (id,a)::update(queue,id2,y);

98 Chapter 3 Colored Petri Nets Patterns

• The Local copy place must be regularly synchronized (with the Shared Database

place) by executing the Replicate transition. This ensures that data in the local
copy coincides with data stored in the shared database.

Consequences This pattern can be applied to manage the consistency between data
stored in one place and that stored at another place by means of data replication.

Since multiple local databases may modify data elements stored in their copies, these
changes should be communicated to the central database to ensure data consistency. Be-
cause multiple local databases may want to update the same data in the shared database
concurrently, there is the need to incorporate the Bi-Lock Manager pattern (cf. page 100),
which solves synchronization problems resulting from concurrent database access by means
of shared and exclusive locks.

Note that even if no data is changed in the local copy, it is still necessary to periodically
replicate the data in order to incorporate recent changes introduced either by the central
database itself or by other local databases for overall data consistency. When several parties
try to modify the same information at once, some updates may be lost. This problem can
be solved by enforcing the use of locks each time a data element needs to be modified. This
problem is addressed by the next pattern.

Examples
• Mobile employees require a reliable software solution that allows them to access their

company data locally on a mobile device, modify this data, and synchronize the
changes with a database on a remote server in a timely fashion.

• Synchronization of databases between different departments.

Related Patterns This pattern can be combined with the Bi-Lock Manager pattern
(cf. page 100).

Pattern 32 LOCK MANAGER

Intent To synchronize access to shared data by means of exclusive locks.

Motivation When several related processes execute concurrently, often they share some
resources or data stored in a shared database. The Shared Database pattern (cf. 90) allows
multiple entities to access data stored in the shared database concurrently, but it does not
protect them from overwriting each other’s changes accidentally or reading inconsistent
data due to changes that are in progress.

Problem Description Assume that two owners of the same (joint) bank account
withdraw money from different cash-dispensers simultaneously. If both cash-dispensers
access the account concurrently, it is not clear whether one or both amounts will be sub-
tracted from the account and what the final balance would be. Thus, unsynchronized
access to information stored in the shared database can lead to data inconsistency.

Figure 93 illustrates two processes that retrieve data with an identifier id from the
Database place, subsequently apply function f() to modify the value of the data element
retrieved and substitute the old data value with a newly calculated one. Such a net
potentially exhibits problems with the consistency of data in the database, when the value
of the data element utilized by one process gets updated by another process during the
time that the first process is using the data element.

Solution In order to synchronize access to a shared data, use a lock manager. The lock
manager allows only one user to use a shared data element at a time. In order to access

Section 3.2 Catalog of CPN patterns 99

(id,y)

(id,y)

(id,f(x))

(id,x)

(id,y)

(id,y)

(id,f(x))
(id,x)(id,x)

update 2

retrieve 2

update1

retrieve 1

p2

IdxVal

p1

IdxVal

shared
database

ID

in1
id

ID

in2
id

IdxVal

(id,x)

Figure 93: Problem of inconsistent data updates

a shared data, an actor must acquire a lock. A user that owns a lock must release a lock
before the shared data element can be used by another user.

Implementation of Solution The list of instructions below describe how to imple-
ment the Lock Manager pattern (cf. Figure 94). The lock manager consists of two parts:
lock acquisition and lock release.

• The Locks place contains a list of locks for objects that have already been acquired.
This place is connected both to transitions that acquire access to an element stored
in the database and transitions that release elements after they have been processed.
In particular, the Locks place is connected to the retrieve1, retrieve2, update1
and update2 transitions.

• When a request to retrieve an object with an identified id is supplied by the
in1 or in2 places, the enabling condition associated with transitions retrieve1

and retrieve2 is checked respectively. Guards associated with these transitions,
[not(mem lid id)] check if an object with identifier id is not contained in the list
of acquired locks lid.

• If an identifier for the object that needs to be retrieved from the database has not
been found in the list of locks lid, the permission to access the object with the
given identifier in the Database place is given. After processing this object, the
corresponding transition (update1 or update2) returns (potentially modified) object
to the Database place. Furthermore, the lock for the given is released by means of
the del(id,lid) function.

Note that Figure 94 illustrates two processes accessing elements of the database for
processing. Since the mechanism of lock acquisition/release is the same for each of the
parties, as emphasized in the diagram, it can be used to controlling access when other
processes are added.

Consequences This pattern can be applied to ensure the synchronization of concurrent
access to the data shared between multiple users by means of exclusive locks, i.e. allowing
only one user access the data at a time. This pattern can be applied in combination
with shared databases described by the Shared Database pattern (cf. page 90) in order to
maintain the consistency of data accessed by multiple users simultaneously.

Note that this pattern uses the ID Matching pattern (cf. page 49) in its solution for
analyzing requests for data access. In order to keep a track of locks, this pattern aggregates
them into a list using the Aggregate Objects pattern (cf. page 67).

In situations where exclusive access to shared data needs to be combined with shared
access, instead of this pattern its extension the Bi-Lock Manager pattern (cf. page 100)
can be used.

Examples

100 Chapter 3 Colored Petri Nets Patterns

(id,y)

(id,f(x))

(id,y)

(id,x)

(id,x)

(id,y)

id

update2

retrieve2

update1

retrieve1 in2

ID

p2

IDxValIDxVal

in1

ID

[]

Locks

id::lid

lid

[not(mem lid id)]

p1

id
id::lid

lid

[not(mem lid id)]

Database

(id,x)

(id,x) (id,x)

(id,x)

del(id,lid)

lid del(id,lid)

lid(id,f(x))

(id,y)

LID

IDxVal

Figure 94: Implementation of the Lock Manager pattern

• Account access by banks, credit card companies and insurance companies.
• Critical section of a program code, i.e. a section of code that should be executed by

only one processor at a time.

Related Patterns This pattern uses the Aggregate Objects pattern (cf. page 67) and
the ID Matching pattern (cf. page 49) in its solution. This pattern is extended by the
Bi-Lock Manager pattern (cf. page 100).

Pattern 33 BI-LOCK MANAGER

Intent To synchronize access to shared data for reading and writing purposes by means
of shared and exclusive locks.

Motivation When several related processes execute concurrently, they often share
resources or data. The Shared Database pattern (cf. 90) allows multiple users to access
data stored in a shared database concurrently, however it does not protect them from
overwriting each other’s changes accidentally or reading inconsistent data due to changes
that are in-progress. Often in practice, there is a need to provide shared and exclusive
access to data stored in a shared database so that multiple users can read data concurrently,
however only one user should be able to modify the corresponding data element at a time.

Problem Description The Lock Manager pattern (cf. 98) solves the problem of
synchronizing access to a shared resource by means of exclusive locks. No matter what
the purpose of the access is, i.e. reading or modification, this pattern allows only one user
to access the data element at a time. In some situations, it is necessary to differentiate
between two types of data access, i.e. access for reading and access for writing, so that
multiple users can access an object for reading purposes but for writing purposes only one
user can access it at a time.

Figure 95 illustrates a shared database that may need to be accessed by two processes
concurrently. In this net, processes may both read data from and write new data to the
database. Due to the absence of the access control, a data element that has been retrieved
by one process for reading purposes may be modified meanwhile by the other process,
without being noticed by the first process and thus resulting in data inconsistency.

Solution In order to synchronize access to a shared data element, allowing for both
shared and exclusive access, use a bi-lock manager. The bi-lock manager provides shared
and exclusive locks which must be acquired by users in order to read and modify data

Section 3.2 Catalog of CPN patterns 101

(id,y)

(id,x)

id

id

(id,y)

(id,y)

(id,f(x))

(id,x)

(id,x)

(id,x)(id,x)

(id,x)

(id,x)

update 2retrieve 2

Finish
reading

Read

Modified
result

IdxVal

Read
result

IdxVal

Modify
request

ID

Read
request

ID

modifying

IdxVal

reading

IdxVal

shared
database

IdxVal

Figure 95: Problem of shared data access

respectively. Shared locks allow multiple users access the data at the time for reading
purposes, while exclusive locks ensure exclusive access for data that needs to be modified.

Implementation of Solution The list of instructions below describes how to
implement the Bi-Lock Manager pattern (cf. Figure 96).

id

id

IDxVal

ID IDxVal

IDxVal

Read
request

ID

LID

[not(mem wlid id)]

id::wlid

[]

IDxVal

(id,x) (id,x) (id,x)

lid

reading
Read
result

IDxVal
(id,y) (id,y)

del(id,wlid)

(id,f(x))

Release
write
lock

Modified
result

Modify

(id,x)

Write
locks

modifying

Release
read
lock

Modify
request

id::lid

lid

Read

Database

Read
locks

wlid

[]

lid

LID

wlid

[not(mem wlid id),
not(mem lid id)]

(id,y)

wlid

del(id,lid)

(id,x)

Figure 96: Implementation of the Bi-Lock Manager pattern

• In order to differentiate between exclusive and shared locks, two places Read locks

and Write locks are introduced. These places store locks, acquired for reading or
modifying a data element in a database, in the form of a collection of data identifiers.
When a request for reading/writing has been granted by Read or Modify transitions,
an identifier of the data element that is being accessed is added to the list of locks.

• In order for an exclusive lock to be granted, the guard of the Modify transition needs
to be fulfilled. This guard specifies that the data element requested for modification
should not be locked for reading nor for writing:

[not(mem lid id), not(mem wlid id)]

• In order for transition Read to be enabled, an identifier id of the data element which
has been requested for reading, should not be contained in the list wlid. In other
words this data element should not be modified by any other process in order for is

102 Chapter 3 Colored Petri Nets Patterns

value to be retrieved from the database.
• After reading a data element, transition Release read lock releases the read lock

by removing the corresponding identifier from the list of the read locks lid via the
del() function.

• After modifying the value of a data element, the Release write lock transition
returns an updated value y to the Database place.

Consequences This pattern can be applied to ensure a synchronized access to data
shared between multiple users. The Bi-Lock Manager is an extension of the Lock Man-
ager pattern (cf. page 98). Similar to the Lock Manager pattern, this pattern should be
used in combination with a shared database as described in the Shared Database pattern
(cf. page 90)in order to manage access to data stored in the database.

This pattern can combined with the Copy Manager pattern (cf. page 96), whose intent
is to replicate data stored in a central database into local copies providing for overall
data consistency. To prevent overwriting the same data in the shared database during
synchronization with multiple local databases, the Copy Manager pattern requires exclusive
access to the shared database for modification purposes and shared access for reading
purposes.

Examples
• Account access by banks, credit card companies and insurance companies, which

provide shared access for reading but exclusive access for writing.

Related Patterns This pattern extends the Lock Manager pattern (cf. page 98). It
can be used in combination with the Shared Database pattern (cf. page 90) and the Copy
Manager pattern (cf. page 96).

When describing the CPN patterns we indicated the type of problems they address. In
order to support users in selecting a suitable pattern from the pattern catalog, in Section 3.3
we concentrate on the classification of CPN patterns. Furthermore, in order to simplify the
navigation through the pattern catalog we analyze the relationships between the patterns
and graphically depicit them in the form of a relationship diagram.

3.3 Classification of CPN patterns

This section focuses on the classification of the CPN patterns. In Sub-section 3.3.1, we
analyze relationships between patterns and visualize them in the form of a relationship
diagram. In order to support users in selecting a suitable pattern from the pattern catalog,
in Sub-section 3.3.2 we group the patterns into clusters and explain how such a classification
can be used in practice.

3.3.1 Relationships between CPN patterns

In this section, we analyze relationships between the CPN patterns, and organize them into
a relationship diagram, which allows navigation through the pattern catalog in order to
identify related patterns. The main purpose of this classification is to provide a holistic view
of the catalog of patterns, providing a means for a user to select a number of patterns and
to determine how individual patterns can help in solving a given problem. The selected
types of relationships can help to trace other patterns related to a chosen pattern, and

Section 3.3 Classification of CPN patterns 103

D
e
te

rm
in

is
ti
c

X
O

R
-s

p
lit

 (
s
1
,s

2
)

O
R

N
o
n

-d
e

te
rm

in
is

ti
c

X
O

R
-s

p
lit

B
lo

c
k
in

g
 S

ta
te

-

D
e
p

e
n

d
e
n

t
F

ilt
e

r

e
x
te

n
d

s
 s

2

ID
 M

a
n

a
g

e
r

u
s
e
s

ID
 M

a
tc

h
in

g

C
o
p

y
 M

a
n

a
g

e
r

S
h
a

re
d

 D
a
ta

b
a

s
e

A
g

g
re

g
a

te
 O

b
je

c
ts

D
a
ta

 M
a

n
a

g
e

m
e
n

t

e
x
te

n
d

s

L
o

c
k
 M

a
n

a
g

e
r

Q
u
e

u
e

(s
1
,s

2
,s

3
)

L
IF

O
 Q

u
e

u
e

C
a

p
a

c
it
y
 B

o
u

n
d

in
g

(s
1
,s

2
,s

3
)

A
s
y
n
c
h

ro
n

o
u

s

R
o
u

te
r

(s
1
,s

2
)

A
s
y
n
c
h
ro

n
o

u
s

T
ra

n
s
fe

r

S
y
n

c
h
ro

n
o

u
s

T
ra

n
s
fe

r

R
e

n
d

e
z
v
o

u
s
 B

ro
a

d
c
a
s
ti
n

g

e
x
te

n
d

s

D
is

tr
ib

u
te

d
 D

a
ta

P
ro

c
e
s
s
in

g

B
i-
L
o
c
k
 M

a
n
a

g
e

r
e
x
te

n
d

s

R
a
n

d
o
m

 Q
u

e
u
e

F
IF

O
 Q

u
e

u
e

is
 a

 s
p

e
c
ia

liz
a

ti
o

n

 o
f

s
1

P
ri
o

ri
ty

 Q
u
e

u
e

C
o
n
ta

in
m

e
n

t

T
e
s
ti
n
g

s
1
 e

x
te

n
d
s

e
x
te

n
d

s

u
s
e
s

B
lo

c
k
in

g
 S

ta
te

-

In
d
e

p
e
n

d
e

n
t
F

ilt
e

r

e
x
te

n
d

s

u
s
e
s

N
o
n

-b
lo

c
k
in

g
 S

ta
te

-
In

d
e

p
e
n

d
e

n
t
F

ilt
e

r

e
x
te

n
d

s

N
o
n

-b
lo

c
k
in

g
 S

ta
te

-

D
e
p

e
n

d
e
n

t
F

ilt
e

r
e
x
te

n
d
s

s
1

e
x
te

n
d
s

u
s
e
s
 s

2

u
s
e

s
 s

2

s
1

 u
s
e

s
 s

1
,

s
2

 u
s
e
s
 s

2

u
s
e

s

s
3
 u

s
e

s

s
1
,

s
2
,
s
3
 u

s
e

s
3

 u
s
e

s

P
ro

b
le

m
 s

im
ila

ri
ty

C
o

m
b

in
a

b
le

 s
o

lu
ti
o
n

s

A

u
s
e

s
 B

 A

 u
s
e

s
 B

 i
n

 i
ts

 s
o

lu
ti
o

n

P
ro

b
le

m
 s

p
e

c
ia

liz
a

ti
o

n

A

e
x
te

n
d

s
 B

 A

 s
y
n
ta

c
ti
c
a

lly
 e

x
te

n
d

s

im
p

le
m

e
n
ta

ti
o

n
 o

f
B

A

is
 a

 s
p
e

c
ia

liz
a
ti
o

n
 o

f
B

C
o
n
c
u
rr

e
n
t

A
c
c
e
s
s
 D

e
a

g
g

re
g

a
te

O
b
je

c
ts

s
1

 u
s
e

s

s
3

 u
s
e
s

R
e
g

io
n

 F
lu

s
h

 u
s
e

s

C
o
n

te
n

t
S

e
tt

in
g

e
x
te

n
d

s

u
s
e
s

P
ri
o
ri
ti
z
e
d

E

x
e

c
u
ti
o
n

u
s
e
s

u
s
e

s

u
s
e

s

A

B

A

B

A

B

u
s
e
s

u
s
e
s

Figure 97: The CPN patterns relationship diagram

104 Chapter 3 Colored Petri Nets Patterns

compare the chosen pattern with similar patterns in order to select an optimal solution for
a problem in the given context.

The 33 CPN patterns that have been identified, together with the relationships be-
tween them, form a pattern language. In order to classify the CPN patterns we have
examined the nature of the relationships between the patterns. We used three types of
primary relationships: problem-oriented, solution-oriented, and implementation-oriented ;
and two types of secondary relationships: problem similarity, and combinable solutions to
describe the relationships between patterns. Some of the relationship types are based on
Zimmer’s classification [238]. Figure 97 shows the relationships between various patterns.
The graphical representation and the text depict the type of a relationship. To understand
the diagram, we first need to explain the different types of relationships.

Primary relationships We consider three types of primary relations:

• Problem-oriented relationship: Pattern A is a specialization of a more general
pattern B. More specifically, pattern A deals with a specialization of the problem that
pattern B addresses, and has a similar but more specialized solution than pattern B.
Pattern A includes all the properties of pattern B, but adds further restrictions by
including some specialized characteristics. Note that a specialization often adds more
context to the problem thus making it less generic. An example of this relationship is
the FIFO Queue pattern (cf. page 78) which is a special variant of the Queue pattern
(cf. page 75).

• Solution-oriented relationship: Pattern A uses pattern B in its solution. When
searching for a solution to a problem addressed by pattern A, one of the sub-problems
is found to be similar to the problem addressed by pattern B. Thus, the solution
of pattern B is a composite part of the solution of pattern A. Whenever pattern
A is used, pattern B should also be considered, since it forms a part of A.5 All
instantiations of pattern A use pattern B. Some examples of this relationship are: the
Lock Manager pattern (cf. page 98) which uses the ID Matching pattern (cf. page 49),
and the Asynchronous Router pattern (cf. page 60) which uses the Asynchronous
Transfer pattern (cf. page 54).

• Implementation-oriented relationship: Pattern A syntactically extends the im-
plementation of pattern B. Pattern A addresses a set of requirements which have
additional or slightly different functionality to those in pattern B. However, it is the
implementation of B, which is syntactically extended by A, rather than the problem or
a solution. For example, the implementation of Content Setting pattern (cf. page 89)
extends the implementation of the Region Flush pattern (cf. page 86).

Secondary relations In addition to the three kinds of primary relationships which di-
rectly link patterns with each other, we also consider two types of secondary relationships:

• Problem similarity relationship: Pattern A is similar to pattern B. Pattern A
addresses a problem similar to the one addressed by pattern B. Patterns A and B
can be considered as alternatives of each other; therefore, one can compare them and
select the pattern which best fits. For example, the Deterministic XOR-Split pattern
(cf. page 36) is similar to the Non-Deterministic XOR-Split pattern (cf. page 38).

5Since a pattern may have multiple solutions, the relationship may need to refer to a specific solution.
For the sake of clarity we use the mnemonics “s1”, “s2” and “s3” as identifiers for referring to the first,
second, and third solution and to make relations between pattern solutions explicit.

Section 3.3 Classification of CPN patterns 105

• Combinable solutions relationship: Pattern A can be combined with pattern B.
Neither of the patterns is a part of the other. Combining the solution of pattern B
with the solution of pattern A can help to solve a more complex problem than a single
pattern solves in isolation. This relationship can help in finding other patterns which
can be used in addition to pattern A. For example, the Shared Database pattern
(cf. page 90) can be combined with the Copy Manager pattern (cf. page 96); the
Prioritized Execution pattern (cf. page 85) can be combined with the Priority Queue
pattern (cf. page 81).

Figure 97 shows the five types of relationships which exist between CPN patterns. Note
that the secondary relationships depicted only represent some typical examples. The solid
arrows represent primary relationships while the dashed lines represent secondary rela-
tionships. The problem-oriented relation is labeled “is specialization of”. The solution-
oriented relation is labeled “uses”. The implementation-oriented relation is labeled “ex-
tends”. Problem similarity is denoted by dashed lines (without dots) while combinable
solutions are denoted by dashed lines with dots. Note that details regarding the combi-
nation of one pattern with another one, or similarities between patterns are not indicated
in the relationship diagram, but can be found in the Consequences and Related patterns
sections of the individual patterns.

3.3.2 Clustering of CPN patterns

In this section, we classify the CPN patterns into categories in order to simplify the process
of selecting a pattern from the CPN pattern catalog. Although the CPN pattern relation-
ship diagram presented in Figure 97 allows for navigation through the catalog of the CPN
patterns, it is not sufficient to classify the patterns precisely and unambiguously.

Given the nature of CPNs, the CPN patterns aim to solve problems in the domain
where data and control-flow perspectives interplay. In this domain, three pattern groups
can be distinguished:

• patterns where the data perspective dominates, but which must be considered in the
context of the control-flow (for instance, the ID Matching pattern (cf. page 49) refers
to the property of objects rather than to the control-flow);

• patterns where the control-flow perspective dominates, but which are data-based (for
instance, the data-based control-flow routing patterns such as Deterministic XOR-
Split pattern (cf. page 36));

• patterns where both data perspectives and control-flow perspectives are equally im-
portant (for instance, the Priority Queue pattern (cf. page 81) where both aspects
of data-based analysis and control-flow routing are important).

In the main, this classification is helpful only for the purpose of CPN patterns discovery.
In this case, patterns where the control-flow perspective plays a prominent role can be
selected, and based on their formal specification the relevant control-flow structures can be
identified in the model being analyzed. However, when a user needs to choose a particular
pattern without having clearly defined the problem according to the role of the data and
control-flow perspectives, this classification appears to be less meaningful and somewhat
subjective.

In order to provide a more useful means for selecting an appropriate pattern, we adopt
the classification approach presented in [118] to categorize the CPN patterns. This classi-
fication is based on the intent of each pattern. The rationale for each pattern has been an-
alyzed according to a hierarchical three-level structure where common components contain

106 Chapter 3 Colored Petri Nets Patterns

diagnostic elements, and in turn diagnostic elements contain supplementary components.
This structure will be used in describing different pattern clusters in Table 3.1.

Common components define the set of related meanings, on the basis of which different
patterns can be grouped. For instance, patterns addressing the problem of creating new
elements or entities, belong to the same group with the common component create. This
indicates the intent of a pattern from the process (functionality) point of view. For example,
patterns, whose main intent is to manage or control something, will be combined into a
group with a common component control.

Diagnostic elements define the contrastive features which distinguish the patterns be-
longing to the same common component. For instance, patterns belonging to the same
common component control, i.e. control patterns, may involve different participants or
differ in terms of control parameters. Additionally, patterns, whose main purpose is to
control such features as order, throughput, and quantity, belong to the same group with
a common control component and can be distinguished by the diagnostic elements Order,
Throughput, Quantity respectively.

Supplementary components address additional features with extended definitions of
meanings. This component addresses special circumstances when applying a pattern. This
feature could be applied to distinguish one pattern from other patterns belonging to the
same common component with the same diagnostic elements; however, multiple patterns
may have the same supplementary component.

Using the nested format described above (i.e. common components, diagnostic elements,
supplementary components), we are able to classify the 33 CPN patterns as illustrated in
Table 3.1.

Let’s consider how the given classification can be used in the example of one pattern.
The Aggregate Objects pattern (cf. page 67) is classified under the common component
“Assemble”, the diagnostic component “Data objects”, and supplementary component “by
aggregating into a collection”. It is interesting to see how the Queue pattern (cf. page 75),
although it extends Aggregate Objects pattern, is classified completely differently. This can
be explained by the clear difference in the pattern’s intent.

Although the CPN patterns presented in this chapter originate from the practice, it is
interesting to see how frequently they are actually applied during modeling. In Section 3.4,
we analyze the selection of models in order to identify which CPN patterns they utilize
and how often. We illustrate the process of pattern identification using as an example one
of the models analyzed.

3.4 Analysis of CPN patterns usability in practice

In this section, we present the results of an analysis of the frequency of use of CPN patterns
in practice. To draw conclusions regarding the actual use and applicability of patterns in
practice we analyzed 20 models provided by the participants of CPN workshops that took
place in Aarhus, Denmark in 2005-2007. The models were created using CPN Tools and
were made by expert users from different organizations (cf. [155]).

To answer the following two research questions: “Which patterns are used in practice?”
and “How often are patterns used in practice?” we defined several metrics. Each of the
models has been analyzed with respect to the model complexity, by calculating the total
number of places and transitions in the model, the number of distinct patterns used in a
model, and the total number of patterns including the repeating ones used in these models.
These metrics are visualized in Figure 98.

Section 3.4 Analysis of CPN patterns usability in practice 107

Table 3.1: Classification of CPN patterns

Common Diagnostic component Supplementary component

component

Control Order of data objects (Queue) by predefined scheduling policy:
Queue (page 75), FIFO Queue (page 81),
LIFO Queue (page 79), Random Queue (page 80)
by objects’ priority:
Priority Queue (page 81)

Consistency of distributed data by regular data replication:
Copy Manager (page 96)

Concurrent access to shared data by means of exclusive locks:
Lock Manager (page 98)
by means of shared and exclusive locks:
Bi-Lock Manager (page 100)

Throughput of data by inspecting content:
BSI Filter (page 42), NBSI Filter (page 45)
by inspecting state:
BSD Filter (page 43), NBSD Filter (page 47)

Number of objects in place by bounding the place capacity:
Capacity Bounding (page 71)

Uniqueness of data objects by generating fresh identifiers:
ID manager (page 51)

Discern Identity of data objects by using object identifier:
ID Matching (page 49)

Visibility of data objects by sharing access to data objects:
Shared Database (page 90)

Choose Single branch/ task by exclusive data conditions:
Deterministic XOR-Split (page 36)
by non-exclusive conditions:
Non-Deterministic XOR-Split (page 38)

Several branches/tasks by overlapping data conditions:
OR-Split (page 40)

Transfer Data from one process to another by blocking the sender:
Synchronous Transfer (page 56)
by non-blocking the sender:
Asynchronous Transfer (page 54)
by simultaneous exchange:
Rendezvous (page 58)

Distribute Data to several places by decomposing/merging data objects:
for concurrent processing Distributed Data Processing (page 65)
Data to dedicated target indirectly by routing:

Asynchronous Router (page 60)
Data to multiple targets indirectly by decoupling source from targets:

Broadcasting (page 63)
Assemble Data objects by aggregating into a collection:

Aggregate Objects (page 67)
Extract Data object by deaggregation:

Deaggregate Objects (page 69)
Access Data objects in the shared database by read/write operations:

Database Management (page 92)
by accessing individual copy:
Concurrent Access (page 95)

Prioritize Execution of two tasks by testing comparative data availability:
Prioritized Execution (page 85)

Inspect Collection of data objects by (non)containment testing:
Containment Testing (page 73)

Clear Content of a region by emptying every place:
Region Flush (page 86)

Reset A region to a particular state by content setting:
Content Setting (page 89)

108 Chapter 3 Colored Petri Nets Patterns

Quantity of patterns in a model

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Model ID

M
o

d
e
l
c
o

m
p

le
x
it

y
/
p

a
tt

e
rn

 q
u

a
n

ti
ty

Number of places Number of transitions Total patterns used Number of distinct patterns

Figure 98: Number of places, transitions, unique patterns and total patterns used in each of the
analyzed models

The complexity of models analyzed varied in terms of places from 8 to 73, and in terms
of transitions from 7 to 40. Note that the number of distinct patterns used in the models is
not proportional to the parameters representing the model complexity, and varies between
2 and 12. Each of the models contained at least 2 patterns, and none of the models
contained all CPN patterns. In the majority of models, some of the patterns were used
multiple times, which is evident from the Number of distinct patterns and Total patterns
used metrics presented in Figure 98. The difference between these metrics is larger in the
hierarchical models containing multiple pages of similar design structure.

The frequency of pattern use for each of the patterns is a relative metric, calculated
as the number of times a given pattern has been used in all considered models divided by
the total number of patterns used in these models. The sum of relative frequencies for all
models equals 1. This metric is graphically depicted in Figure 99. In the considered set of
models, 19 out of the 33 CPN patterns were used. This is the consequence of the nature of
the modeled processes, which are characterized by different constraints and requirements.
Note that this analysis has been performed in order to get an idea about how often CPN
patterns are used in practice, and not to prove that each of the patterns is indeed used.
It is natural to expect that not all patterns would occur in the models analyzed as the
CPN patterns address different kinds of problems and the scope of the models selected
for investigation is restricted. Moreover, all of the CPN patterns have been discovered
based on existing solutions and experts knowledge, thus they do originate from practice.
Nevertheless their application is context-specific.

As Figure 99 illustrates, from 19 patterns used, most often used is the Non-Deterministic
XOR-Split pattern (ID2). The BSD Filter pattern (ID5) has often been used for data-
based control-flow routing (its relative frequency is 0, 104). In the same frequency range,
the Aggregate Objects pattern (ID16) was often applied in combination with the Shared
Database pattern (ID28). Note that the Database Management pattern (ID29) was used
for accessing each of the shared databases identified. Although the Shared Database pat-
tern can be used to provide local, group and global visibility, no shared databases which
would provide for global visibility have been identified in the models analyzed. Whereas

Section 3.4 Analysis of CPN patterns usability in practice 109

Pattern frequency

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Pattern ID

R
e
la

ti
v
e
 f

re
q

u
e
n

c
y

Figure 99: Relative frequency of use of patterns within the investigated study

the shared databases providing for local visibility were very often used. In multiple cases,
the data elements stored in a shared database were organized in the collection, however
storages of data elements where each element is represented as a separate entity have also
been identified.

Although the Aggregate Objects pattern was often used for organizing data stored in
shared databases, in several models this pattern was used for queuing purposes. Of all
Queue patterns (ID20) identified, several occurrences of FIFO ordering (ID21) have been
determined. In other cases, no particular queuing strategy was identified where the content
of a queue was replaced with new elements (the Content Setting pattern (ID27)) or where
the content of the whole collection was completely reset (the Region Flush pattern (ID26)).
The Containment Testing pattern (ID19) has been used in three of the analyzed models
to check the (non) containment of a specific element in the collection.

The ID Matching pattern (ID8) and the ID Manager pattern (ID9) were often used
in order to distinguish between the resources stored in a shared database. Furthermore,
identifiers were used in combination with the Distributed Data Processing pattern (ID15)
applied to distribute data for parallel processing and subsequent merging of the obtained
results. In a number of models, where the Broadcasting pattern (ID14) was used, also
the Distributed Data Processing pattern was applied for synchronization purposes. As no
diagrams modeling data transfer protocols were analyzed, no patterns related to inter-
process communication were identified.

To further explain why in Figure 99 such a scale is used, let’s consider how to calculate
the relative frequency for one of the patterns. The Aggregate Objects pattern (ID16) has
been used 26 times in all analyzed models. In total, 286 patterns were used in these models.
Thus, the relative frequency of the Aggregate Objects pattern is: 26/286 = 0.09.

In contrast to the Aggregate Objects pattern (ID16) which belongs to a group of pat-
terns where the data perspective dominates, the Distributed Data Processing pattern (ID15)
belongs to a group of patterns where the control-flow perspectives dominates. Patterns De-
terministic XOR-Split (ID1) and Non-Deterministic XOR-Split (ID2) belong to the same
group, i.e. where the control-flow perspective dominates. These two patterns were used at

110 Chapter 3 Colored Petri Nets Patterns

least as frequently as patterns Blocking State-Independent Filter (ID4) and Blocking State-
Dependent Filter (ID5) which belong to a group of patterns where data and control-flow
perspectives are equally important. Note that the pattern Blocking State-Dependent Filter
(ID5) was used more often than the Blocking State-Independent Filter pattern (ID4) since
it is included in the solution/implementation of several other patterns (e.g., ID Manager
(ID9) and Capacity-Bounding (ID18)).

Queue

wi

wi::wis

wis

wi

wis

wis

offer(wi,amaps,umaps)

amaps

umaps

offer(wi,amaps,umaps)

(u,wi)

amaps

(u,wi)

wi

umaps

wi

uwi

(u,wi)

completes

reject

selects

[elt(wi,wis)]

offers

assigned work items

WI

offered work items

WIs

WI

UWI

activity
map

iAMaps

AMaps

to be offered
Out

UWI

iWI

WI

selected
In

UWI

user map

iUMaps

UMaps

completed
In

UWI

approved
Out

UWI

UWI

Out

In

In

Out

Containment Testing
del(wi,wis)

completed
work items

Content Setting

[]

** Aggregate Objects**

[not(elt(wi,wis))]

rejected
OutOut

withdrawn
offerOutOut

(u,wi)

new work items

(a) Aggregate Objects, Queue,
Containment Testing and Content

Setting patterns

BSD Filter

wi

wi::wis

del(wi,wis)

wis

wi

wis

wis

offer(wi,amaps,umaps)

amaps

umaps

offer(wi,amaps,umaps)

(u,wi)

amaps

(u,wi)

wi

umaps

wi

(u,wi)

uwi

(u,wi)

completes

reject

selects

[elt(wi,wis)]

offers

assigned work items

WI

offered work items

[]

WIs

completed
work items

WI

UWI

activity
map

iAMaps

AMaps

to be offered
Out

UWI

iWI

WI

selected
In

UWI

user map

iUMaps

UMaps

completed
In

UWI

approved
Out

UWI

UWI

Out

In

In

Out

new work items

rejected
OutOut

[not(elt(wi,wis))]

withdrawn
offerOutOut

(b) BSD Filter pattern

BSD Filter

wi

wi::wis

del(wi,wis)

wis

wi

wis

wis

offer(wi,amaps,umaps)

amaps

umaps

offer(wi,amaps,umaps)

(u,wi)

(u,wi)

wi

umaps

wi

(u,wi)

uwi

(u,wi)

reject

selects

[elt(wi,wis)]

offers

WI

offered work items

[]

WIs

completed
work items

WI

UWI

AMaps

to be offered
Out

UWI

iWI

WI

selected
In

UWIUMaps

UWI

approved
Out

UWI

UWI

Out

In

Out

new work items

[not(elt(wi,wis))]
Containment Testing

rejected
OutOut

withdrawn
offerOutOut

user map

iUMaps

Shared
Database

activity
map

amaps

iAMaps

Shared
Database

assigned work items

completes completed
InIn

(c) Shared Database, Containment
Testing, BSD Filter and Data Merge

patterns

wi

wi::wis

wis

wi

wis

wis

offer(wi,amaps,umaps)

amaps

umaps

(u,wi)

amaps

(u,wi)

wi

umaps

wi

(u,wi)

uwi

(u,wi)

completes

reject

[not(elt(wi,wis))]

selects

[elt(wi,wis)]

offers

assigned work items

WI

offered work items

[]

WI

withdrawn offer
Out

UWI

activity
map

iAMaps

AMaps

to be offered
Out

UWI

iWI

WI

selected
In

UWI

user map

iUMaps

UMaps

completed
In

UWI

approved
Out

UWI

rejected
Out

UWI
Out

Out

In

In

Out

Out

**Data Merge/
Distribution**

WIs

del(wi,wis)

new work items

completed
work items

offer(wi,amaps,umaps)

(d) Data Distribution and Data Merge
patterns

Figure 100: Examples of CPN patterns identified in a model

Figure 100(a)-(d) illustrates patterns identified in one of sub-pages of the model supplied
for analysis by the authors of [169]. The pattern identifiers are added to the model next

Section 3.5 Related work 111

to the constructs distinguishing the corresponding patterns. Place offered work items

together with transitions offers and selects form the queue structure (pattern Queue),
where objects are aggregated into a list (pattern Aggregate Objects) (Figure 100(a)). When
a collection is retrieved from the offered work items place, it is updated and thus set
to another value (pattern Content Setting). The guard associated with transition selects

tests the presence of element wi in the collection wis (pattern Containment Testing).
Transitions selects and reject are associated with guards involving the state of the

offered queue, which corresponds to the Blocking State-Dependent Filter pattern (cf. fig-
ures 100(b) and (c)). In Figure 100(c), place selected and the two outgoing transitions
selects and reject, which are associated with two mutually-exclusive guard conditions,
correspond to the Deterministic XOR-Split pattern. Testing the non-containment property
of the offered work items place is realized by transition Reject, which corresponds to
the Containment Testing pattern. In this figure two shared databases are used, i.e. the
activity map and user map places. Transition completes merges the data supplied by
places assigned work items and completed (the Data Merge pattern).

Finally in Figure 100(d) the data merge and data distribution constructs associated
with the Distributed Data Processing pattern are visualized, which are associated with the
selects transition. The data elements provided to this transition are combined and used
for withdrawing an offer, and data element (u,wi) supplied to the transition is decomposed
and distributed over the assigned work item and approved places.

Although we did not encounter all 33 patterns in the analyzed models, we discovered
that more than a half of the patterns were applied in practice. Figure 100 shows that
not all patterns are used equally frequently. Patterns with a low frequency can be seen as
special-purpose patterns, while more frequently used ones can be seen as common patterns.

3.5 Related work

Nowadays, there is a broad understanding of what a pattern is, i.e. a relationship between
a problem, a solution and a certain context. Patterns have been identified and documented
in various fields and domains (as has been in detail discussed in Section 2.4).

In the context of Petri nets some initial attempts to capture patterns have been made.
Earlier work by Jensen [130,144], van der Aalst [7], van Hee [119], and Reisig [185] identify
some patterns in an implicit and/or fragmented manner. In [175], Petri nets are used to
represent workflow and communication patterns in the context of web-services. In [89],
Fabian et al. illustrate some elementary Petri net constructs for operation lists, however
these concentrate only on the control-flow aspect of manufacturing processes. In [123],
Heuser and Richter provide a set of constructs for modeling information systems with
Petri nets. They concentrate mostly on the problems related to the bounded capacity of
places, and identify several extensions to Petri nets by means of restoring and maintaining
arcs required for realization of state-based problems. Note however that such extensions
have no practical value since they are not supported by contemporary CPN development
tools.

In [129,159], Naedele and Janneck address the need for systematic description of Petri-
net modeling knowledge. They provide a starting point in demonstrating four patterns
from their experience and underline the need to define domain specific presentation styles.
To describe the patterns, a variant of the pattern format introduced by Gamma et al. [99]
is used. Furthermore, the authors indicate that the design of a pattern language, at least
for a restricted set of patterns, is one of the most important research areas.

112 Chapter 3 Colored Petri Nets Patterns

One of the few papers, linking CPNs to patterns is [172]. However, here CPNs are
merely used as an underlying representation of the dynamic object-oriented architecture
and the real focus is on patterns found in concurrent software designs. The paper that
is probably most closely related to our work is [109] by Griess et al. They define three
patterns in terms of classical Petri nets using a pattern language similar to ours. For a
given example they analyze the use of these patterns. Our work differs from these papers
in at least two ways. First of all, we use CPNs (rather than classical nets) and focus
on the interplay between control flow and data flow. Second, our set of patterns is more
comprehensive as is illustrated by the number of patterns, classification, and relationships.

3.6 Summary

In this chapter, we have presented a set of 33 CPN patterns. The patterns collected focus
on the interplay between control flow and data flow. Although expressed in a specific
language, the patterns can be applied to other languages suitable for modeling dynamic
systems dealing with data and concurrency.

The language and the patterns have been developed in an explorative manner. This
means that we applied empirical methods to gather information, based on observation,
content analysis, and simulation. In order to discover patterns we used application mod-
els, publications, tutorials, workshop materials, opinions from experts, and feedback from
model developers. We applied the content analysis technique for extracting the patterns
from the literature sources, and verified the correctness of models, which represent solutions
for certain problems by simulating them in CPN Tools.

We do not claim that the CPN patterns gathered are complete, since they are the
result of an explorative work and were not derived in a systematic manner. This means
that new patterns are likely to be added to the pattern language. The implementations of
CPN patterns have been made available to the CPN community in the form of a pattern
library [158]. We encourage members of the CPN community to extend the catalog of
patterns by including additional ones not covered here. Moreover, these patterns can serve
as a language enhancing interactions between developers, by allowing them to communicate
problems and solutions unambiguously.

Not only can the collection be extended, but it can also be used as a basis for automatic
recognition of patterns in models. The knowledge provided in this chapter can be used
for improvement of user interfaces in the CPN development tools. In particular, various
implementations can be embedded in the tool to allow user automatically select a suitable
pattern rather than designing it from scratch on the basis of the information provided in
the CPN catalog. In order to assist users in selecting patterns from the pattern catalog we
classified the patterns in several clusters and visualized relations between the patterns by
means of a relationship diagram.

As it has been mentioned earlier, we chose CPNs as a formal foundation for specify-
ing the semantics of patterns related to different perspectives of PAISs for its ability to
explicitly model concurrent behavior, state, data, strict formal semantics and an intuitive
graphical notation. Whenever applicable, in the subsequent chapters we will indicate which
CPN patterns have been used when designing CPN diagrams.

Part II

Patterns for Process-Aware

Information Systems

Part II of this thesis refines the conceptual foundation for PAISs. It does this by under-
taking a comprehensive revision of the patterns related to the control-flow perspective of a
business process, identifying requirements relevant to the interaction of a business process
with the external environment, and identifying requirements for improved process flexibility
that are necessary when dealing with changes imposed by the operational environment.

Service

interaction

Flexibility

pat
te

rn
s

process process

C
o

n
tr

o
l-

fl
o

w

R
e

s
o
u

rc
e

s

D
a
ta

p
at

te
rn

s

patterns

Colored Petri Nets (CPNs)

patterns

Part I

Ch.3

Part II

Ch.4

Ch.5

Ch.6

Figure 101: Scope of research: Part II

Figure 101 illustrates the scope of work presented in this part of the thesis. In particular,
we address the following perspectives:

• Control-Flow: the structure of the process definition describing the order of tasks
and relations between them;

• Service-Interaction: the order of message interactions between different processes,
relations between them, and the manner in which the messages exchanged are pro-
cessed and correlated;

• Process Flexibility: the ability to support foreseen and unforeseen changes in the
environment that may impact the operation of a process by adapting the structure
of the associated process definition.

In order to avoid the potential for misinterpretations we formally define the semantics
of the requirements identified for each of these perspectives in the form of CPNs. While
doing so, we indicate which of the CPN patterns presented in Chapter 3, have been used.

This part of the thesis is organized as follows: Chapters 4, 5, and 6 systematically de-
scribe requirements for the control-flow, service-interaction, and process flexibility perspec-
tives using the pattern-based approach. Note that although data and resource perspectives
are also relevant for understanding the requirements for PAISs, they are not addressed in
this thesis as they have been examined by Russell and presented in form of data patterns
and resource patterns in [194].

The perspectives considered complement each other in the following way. The workflow
control-flow patterns described in Chapter 4 concentrate on tasks and ordering relations
between them forming a set of recurring constructs. The control-flow patterns on their
own are incapable of describing the behavior of interactive business processes. The inter-
action of a process with an external environment, for consuming or providing a particular
service, has to be specified by means of the service interaction patterns described in Chap-
ter 5. The description of the control-flow of a business process by means of the workflow
control-flow patterns is based on the assumption that all future process instances will be
based on a predefined process definition. Such a definition is constructed assuming that
all possible execution paths are known in advance and that no changes in an external
environment will occur or impact on original process definition. This makes the process
definition relatively rigid and incapable of dealing with changing requirements imposed by
an external environment of a highly-volatile nature. Effective business processes must be
able to accommodate changes in the environment in which they operate. The ability to
encompass such changes, termed process flexibility, is presented in Chapter 6 using a set
of process flexibility patterns.

Chapter 4

Workflow Control-Flow

Patterns

In this chapter, we concentrate on the control-flow aspects of a business process, i.e. the
tasks constituting a process and the control-flow dependencies between them. In particular,
we present the fundamental constructs for describing the structure of a process model in the
form of workflow control-flow patterns (Section 4.1). For each of the patterns, we provide
a formal semantics using CPNs, and establish a set of evaluation criteria that provide an
objective basis for assessing the support of a control-flow pattern by a particular offering.
The control-flow patterns operate at a conceptual level, i.e. they specify recurring generic
constructs relevant to process structure and enactment in an abstract sense, consequently
they do not provide much guidance in regard to their actual realization.

Individual workflow offerings provide various sets of constructs which can be used to realize
particular patterns. However, in order to describe how these constructs work, we need to
define their operational semantics in a precise way. Additionally, it would be helpful if this
were done in the context of a common framework. In the absence of a suitable framework,
in Section 4.2 we concentrate on the core constructs used for modeling business processes
that are encountered in any PAIS, and propose a means for capturing and comparing the
functionality of these constructs in a language-independent way. In Section 4.3, we assess
the operational support of control-flow patterns across a series of selected PAISs. Finally,
we describe related work and conclusions in sections 4.4 and 4.5 respectively.

4.1 Revisiting the control-flow patterns

The work presented in this section was conducted as part of the Workflow Patterns Initia-
tive (cf. Section 1.3.2) that was established with the aim of providing a conceptual basis
for process technology. In line with this initiative, a comprehensive survey of selected
workflow offerings available at that time was undertaken, which resulted in 20 generic
constructs being identified and presented in the form of patterns. The patterns identified
provide a means of reasoning about the implementation of certain business requirements
in a particular PAIS, provide a tool for benchmarking distinct offerings, and offer a basis
for language and tool development [230].

Examination of the original 20 control-flow patterns in a variety of industrial offerings

118 Chapter 4 Workflow Control-Flow Patterns

has revealed that some of the pattern definitions were subject to ambiguous interpretation
and that some of the patterns were missing. In order to determine whether the original
20 control-flow patterns provide comprehensive coverage of the constructs encountered in
the control-flow perspective, we have revisited the original control-flow patterns in [193].
Consequently, 23 new patterns, including new patterns and specializations of already ex-
isting ones, were identified. To remove any potential ambiguities in pattern definitions, we
formalized the semantics of the patterns in the form of CPN models. The formalization
is based on a set of the context assumptions explicitly listed in Section 4.1.1. The iden-
tification of the new patterns and their formalization has been done in cooperation with
Russell et al. [194]. This thesis adds to this work by reclassifying the collection of patterns
obtained and by defining different approaches to their operationalization.

Aiming at consistent pattern classification, we examined the existing pattern groups in
order to identify how the new patterns could be positioned. The new patterns did not fit
well with the original classification, i.e. not all patterns were encompassed by the existing
groupings. This identified the need for a more intuitive approach to grouping patterns
based on their actual purpose rather than the manner in which they were realized. With
this aim in mind, we propose a new pattern classification in Section 4.1.2, and reorder the
patterns respectively in the pattern catalog in Section 4.1.3.

In Section 2.2, we discussed different pattern formats that can be used for documenting
patterns. In this chapter, we will describe each of the control-flow patterns in terms of the
following format:

- description: a summary of its functionality;
- examples : illustrative examples of its usage;
- motivation: the rationale for the use of the pattern;
- overview : an explanation of its operation including a detailed operational definition

where necessary;
- context : other conditions that must hold in order for the pattern to be used in a

process context;
- implementation: how the pattern is typically realized in practice;
- issues: problems potentially encountered when using the pattern;
- solutions : how these problems can be overcome; and
- evaluation criteria: the conditions that an offering must satisfy in order to be con-

sidered to support the pattern.

The operation of each pattern is described in terms of a CPN model, which represents
the actual semantics for the pattern rather than its exact realization. Thus the direct repli-
cation of the CPN model in a specific process language does not necessarily demonstrate
support for the pattern. In order for an offering to be considered to support a pattern,
specific evaluation criteria associated with the pattern have to be satisfied. Before we
proceed with reordering the control-flow patterns, first we describe the relevant context
assumptions.

4.1.1 Context assumptions

To describe the context in which the patterns can be used and operational semantics of
the revised pattern definitions, as far as possible, each pattern is illustrated using the
CPN formalism. This allows us to provide a precise description of each pattern that is
both deterministic and executable. Whenever applicable, we identify the CPN patterns
(described in Chapter 3) we used when describing the semantics of each of the control-flow

Section 4.1 Revisiting the control-flow patterns 119

patterns.

Throughout this thesis, a description of a process at the type level is termed a process
definition. A process definition is composed of a number of tasks together with constraints
on their execution order. To put a process to work, its process description needs to be
instantiated. An executing instance of process definition is called a process instance. Mul-
tiple process instances may run simultaneously. These process instances are independent of
each other and may exhibit differing execution paths. Depending on the context conditions
associated with each of the process instances, different decisions can be taken at various
decision points for individual process instances. The information about the execution of
different process instances, i.e. the tasks and the order in which they were executed, can
be compared using execution traces. Typically, the execution traces obtained for different
process instances created on the basis of a single process description differ.

The execution of a process instance begins with a start task and finishes with the end
task. A task corresponds to a single unit of work. We distinguish atomic, composite
and multiple-instance tasks. A task that cannot be decomposed into smaller parts and
described in terms of other tasks is called an atomic task. The execution of an atomic task
results in only a single task instance being initiated. A composite task is a task which has
an implementation defined in terms of a sub-process. A sub-process is a process within a
process that may be executed on its own right. As with any other process, a sub-process
also has a start task and an end task. When a composite task is started, the point of
control is passed to the start task in the corresponding sub-process, and at its completion,
the thread of control is passed back to the composite task. The use of sub-processes allows
for hierarchical decomposition and reuse of the process definitions. A multiple-instance task
is a task, whose execution results in the initiation of one or more distinct task instances
that run concurrently and independently of each other within the same process instance.
The multiple-instance task is considered to be complete when a nominated number of the
task instances have completed or the relevant completion condition is satisfied. We use the
generic term task to refer to an atomic task, and whenever a composite or multiple-instance
task needs to be used, we will refer to the task type explicitly. We use the term process
fragment to refer to a collection of tasks and corresponding routing elements in a process
definition.

All of the CPN models used in this chapter are based on a set of assumptions de-
scribed below. For each of the models, we adopt a notation in which input places are
labeled i1...in, output places are labeled o1...on, internal places are labeled p1...pn

and transitions are labeled A...Z. In the case where either places or transitions serve a
more significant role in the context of the pattern, they are given more meaningful names
(e.g., buffer or anti-place). In general, transitions are intended to represent tasks or activ-
ities in processes, and places are the preceding and subsequent states which describe when
the activity can be enabled and what the consequences of its completion are.

Unless stated otherwise, we assume that the tokens flowing through a CPN model
that signify control-flow are typed piID (short for “process instance ID”) and that each
executing process instance has a distinct identifer. For most patterns, the assumption is
also made that the model is safe, i.e. that each place in the model can only contain at most
one token (i.e. one thread of control for each case currently being executed). This provides
clarity in regard to the way in which each of the CPN models describing pattern operation
are intended to function.

Safe behavior is not a mandatory quality of workflow systems. Some of the systems
that we examine during the course of this chapter, do implement safe process models whilst

120 Chapter 4 Workflow Control-Flow Patterns

others do not. Where a system does provide a safe execution environment, this is typically
achieved in one of two ways: either (1) during execution, the state of a given case is never
allowed to transition into an unsafe state. This is the approach adopted by COSA, which
blocks an activity’s execution where it has a token in the place immediately after it and
allowing it to execute could potentially result in an unsafe state (i.e. the following place
having two tokens in it). The other alternative (2) is to detect any unsafe situations that
may arise and migrate them to safe states. An example of this is the strategy employed by
Staffware where any additional triggering received by an activity that is currently executing
are coalesced into the same thread of control resulting in a single thread of control being
delivered to outgoing branches when the activity completes.

These variations in the ways in which distinct offerings implement concurrency with a
process instance lead to differences in the ranges of patterns that they are able to support
and the means by which they realize them. In the following sections, we will provide
a precise description of each pattern and examine the differences in the approaches to
operationalization of constructs used by workflow offerings for the pattern realization.

4.1.2 Classification of control-flow patterns

In this section, we classify the control-flow patterns based on the similarity of problems that
they address. In total, the control-flow patterns can be divided into nine classes: branch-
ing patterns, synchronization and merging patterns, repetition patterns, multiple instances
patterns, concurrency control patterns, triggering patterns, cancelation and completion pat-
terns, and termination patterns. An overview of the control-flow patterns classification is
given in Table 4.1. We describe each of the classes identified and related patterns in detail
below.

The class of branching patterns describes situations where a single thread of control
diverges into one or more branches, on the basis of a preceding decision. In this context,
the thread of control is either split into multiple threads of control on the same branch or
into distinct threads of control distributed over one or more branches. Depending on the
requirements that have to be satisfied at the moment of branching, we can distinguish five
sub-classes No-Split, AND-Split, XOR-split, OR-split or Thread-split respectively. Each of
these split types may exhibit different variants. The situation where a task is linked to a
single outgoing branch without the thread of control being diverged into multiple threads,
is characterized by the absence of branching.

The class of synchronization and merging patterns describes situations where threads
of control obtained by diverging a single thread of control into one or more branches (cor-
responding to the branching patterns) need to be coalesced into a single thread of control.
Depending on the requirements that have to be satisfied at the moment of synchronization,
we distinguish five types of join construct: AND-join, Partial join, XOR-join, OR-join and
thread-join.

The class of repetition patterns describes situations where there is a need for repetitive
execution of a task or a process fragment. Three different approaches to the realization of
repetitive execution are described by the repetition patterns: a flexible loop with multiple
entry and exit-points, more restrictive forms of iteration such as while and repeat loops,
and repetitive task execution which is based on self-invocation.

The class of multiple instance patterns describes situations where one or more instances
of the same task need to be created and executed either sequentially or concurrently. De-
pending on whether there is a need to synchronize created task instances on completion,

Section 4.1 Revisiting the control-flow patterns 121

Table 4.1: Classification of control-flow patterns

Pattern class/subclass ID Pattern name

Branching No-Split WCF-1 Sequence (p.123)
AND-splits WCF-2 Parallel Split (p.124)
XOR-splits WCF-3 Exclusive Choice (p.125)

WCF-4 Deferred Choice (p.127)
OR-splits WCF-5 Multi-Choice (p.128)
Thread-splits WCF-6 Thread Split (p.130)

Synchronization AND-joins WCF-7 Synchronization (p.131)
and merging WCF-8 Generalized AND-join (p.133)

Partial joins WCF-9 Structured Discriminator (p.135)
WCF-10 Blocking Discriminator (p.137)
WCF-11 Canceling Discriminator (p.138)
WCF-12 Structured Partial Join (p.141)
WCF-13 Blocking Partial Join (p.143)
WCF-14 Canceling Partial Join (p.144)

XOR-joins WCF-15 Simple Merge (p.145)
WCF-16 Multi-Merge (p.146)

OR-joins WCF-17 Structured Synchr. Merge (p.148)
WCF-18 Local Synchronizing Merge (p.150)
WCF-19 General Synchronizing Merge (p.151)

Thread-joins WCF-20 Thread Merge (p.153)

Repetition WCF-21 Arbitrary Cycles (p.154)
WCF-22 Structured Loop (p.155)
WCF-23 Recursion (p.156)

Multiple WCF-24 MI without synchronization (p.158)
Instances (MI) WCF-25 MI with a priori DTK (p.160)

WCF-26 MI with a priori RTK (p.161)
WCF-27 MI without a priori RTK (p.163)
WCF-28 Static part. join for MI (p.164)
WCF-29 Canceling part. join for MI (p.166)
WCF-30 Dynamic part. join for MI (p.167)

Concurrency WCF-31 Interleaved Routing (p.169)
Control WCF-32 Interleaved Parallel Routing (p.170)

WCF-33 Critical Section (p.172)
WCF-34 Milestone (p.173)

Triggering WCF-35 Transient Trigger (p.174)
WCF-36 Persistent Trigger (p.176)

Cancelation and WCF-37 Cancel Task (p.178)
completion WCF-38 Cancel Region (p.179)

WCF-39 Cancel Case (p.181)
WCF-40 Cancel MI Task (p.182)
WCF-41 Complete MI Task (p.184)

Termination WCF-42 Implicit Termination (p.187)
WCF-43 Explicit Termination (p.188)

122 Chapter 4 Workflow Control-Flow Patterns

and the moment at which it is known how many instances need to be created, several sit-
uations are distinguished. The thread of control can potentially be passed to a subsequent
task immediately after multiple instances have been initiated, or after all existing instances
have completed. In some situations, the flow of control needs to be passed on, prior to
completion of all instances for a given task. A partial join between instances of a such a
task allows a subsequent task to be triggered once a threshold of concurrent task instances
have completed or a specified completion condition has been met.

The class of concurrency control patterns describe situations where the restrictions are
set on concurrent execution of branches, which otherwise would execute in parallel. In this
context, two types of restrictions may be considered: first, where none of the branches may
execute simultaneously, and second, where one branch may not proceed if the other branch
is not in a certain state.

The class of triggering patterns describe situations where the moment at which a work
item commences needs to be synchronized with a signal (or trigger) from external environ-
ment. In this context, triggers of both a persistent and a transient nature are considered.

The class of cancelation and completion patterns describe situations where an individual
task, an arbitrary group of tasks in a process, or a complete process instance needs to be
canceled during execution. Additionally, the multiple instances task is considered to be a
special case, for which both the ability to cancel and to force completion during execution
are recognized.

The class of termination patterns define two alternative approaches to recognizing pro-
cess completion. Both implicit and explicit process completion are covered by this class.

4.1.3 Catalog of control-flow patterns

In this section, we present a catalog of the control-flow patterns using the classification
described in the previous section as a guideline.

Class: Branching patterns

Branching patterns can be divided in five sub-classes. Patterns characterized by di-
verging a thread of control into multiple threads of control over the same branch belong
to the thread-split sub-class. Patterns where a thread of control is split over all, some
or only one of the outgoing branches correspond to AND-split, OR-split and XOR-split
sub-classes respectively. The absence of branching (corresponding to No-split sub-class)
represents the sequence of tasks, which is the basic control-flow construct that can be
encountered in any workflow offering (known as the Sequence pattern). This and other
branching patterns are described in detail below.

Sub-class: No-split The absence of split behavior is described by the Sequence pat-
tern (note that it is not really a branching pattern). The Sequence pattern describes
situations where two tasks are consecutively executed one after another in the specified
order. Although sequential execution (as described by the Sequence pattern) is sup-
ported by all offerings, actual realizations of this pattern may have differing semantics.
The manner in which a task reacts to triggers arriving during its execution determines
whether the input provided will be inconsequentially consumed or ignored until task
completion. In a similar vein, a task that provides input to a subsequent task may
block until the latter completes or it may remain unblocked and able to send inputs.

Section 4.1 Revisiting the control-flow patterns 123

In Section 4.2, we introduce a graphical notation which provides a means of visual-
izing the differences between various approaches to producing/consuming inputs during
a task execution. On page 208, we revisit the Sequence pattern to illustrate how the
proposed graphical notation can be used to depict the differences in its implementation
in two offerings (Oracle BPEL PM and Staffware).

Pattern WCF-1 (Sequence)

Description A task in a process is enabled after the completion of a preceding task in the
same process.

Examples

– The verify-account task executes after the credit card details have been captured.
– A receipt is printed after the train ticket is issued.

Motivation The Sequence pattern serves as the fundamental building block for processes.
It is used to construct a series of consecutive tasks which execute in turn one after the
other. Two tasks form part of a Sequence if there is a control-flow edge from one of them
to the next which has no guards or conditions associated with it.

Overview Figure 102 illustrates the Sequence pattern using CPN diagram.

i1

piID

p1

piID

o1

piID

A B

pi pi pi pi

Figure 102: Sequence pattern

Context There is one context condition associated with this pattern: an instance of the
Sequence pattern cannot be started again until it has completed execution of the preceding
thread of control (i.e. all places such as p1 in the Sequence must be safe).

Implementation The Sequence pattern is widely supported and all of the offerings ex-
amined1 directly implement it.

Issues Although all of the offerings examined implement the Sequence pattern, there are
however subtle variations in the manner in which it is supported. In the main, these dif-
ferences center on how individual offerings deal with concurrency within a given process
instance and also between distinct process instances. In essence these variations are char-
acterized by whether the offering implements a safe process model or not. In CPN terms,
this corresponds to whether each of the places in the process model such as that in Figure
102 are 1-bounded (i.e. can only contain at most one token for a process instance) or not.

Solutions This issue is handled in a variety of differing ways. BPMN, XPDL and UML
2.0 Activity Diagrams assume the use of a “token-based” approach to managing process
instances and distinguishing between them, although no details are given as to how this
actually occurs. Further, although individual tokens are assumed to be conserved during
execution of a process instance, it is possible for a task, split or join construct to actu-
ally add or remove tokens during execution beyond what would reasonably be expected.

1A detailed review of patterns support that has been conducted in fourteen distinct offerings including
workflow systems (Staffware, WebSphere MQ, COSA, iPlanet, SAP Workflow and FileNet), case handling
systems (FLOWer), business process modelling languages (BPMN, UML 2.0 Activity Diagrams and EPCs)
and business process execution languages and tools (BPEL4WS, WebSphere BPEL, Oracle BPEL and
XPDL) can be found in [193].

124 Chapter 4 Workflow Control-Flow Patterns

Staffware simply ignores the issue and where a step receives two threads (or more) of ex-
ecution at the same time, they are simply coalesced into a single firing of the step (thus
resulting in race conditions). COSA adopts a prevention strategy, both by implementing
a safe process model and also by disabling the task(s) preceding a currently enabled task
and not allowing the preceding task(s) to fire until the subsequent task has completed.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
supports an explicit representation of dependency (e.g., directed arc) between two tasks
which specifies the execution sequence.

Sub-class: AND-split The AND-split construct characterizes situations where a sin-
gle thread of control diverges into multiple independent branches. This branching is
unconditional, i.e. it results in the enablement of all subsequent branches concurrently
as described by the Parallel Split pattern.

Pattern WCF-2 (Parallel Split)

Description The divergence of a branch into two or more parallel branches each of which
execute concurrently.

Examples

– After completion of the capture enrolment task, run the create student profile and issue
enrolment confirmation tasks simultaneously.

– Once the customer has paid for the goods, pack them and issue a receipt.

Motivation The Parallel Split pattern allows a single thread of execution to be split into
two or more branches which can execute tasks concurrently. These branches may or may
not be re-synchronized at some future time.

Overview Figure 103 illustrates the implementation of the Parallel Split. After task
A has completed, two distinct threads of execution are initiated and tasks B and C can
proceed concurrently. The CPN model of this pattern resembles the implementation of
the Broadcasting CPN pattern (cf. page 63), where the main focus is on the concurrent
distribution of data between multiple targets. However, the purpose of this CPN diagram
is not to distribute data over multiple branches, but to split the thread of control and
enable them concurrently.

i1

piID

p1

piID

p2

piID

o1

piID

o2

piID

A

B

C

pi

pi

pi

pi

pi

pi

pi

Figure 103: Parallel Split pattern

Context There are no specific context conditions for this pattern.

Implementation The Parallel Split pattern is implemented by all of the offerings exam-
ined. It may be depicted either explicitly or implicitly in process models. Where it is

Section 4.1 Revisiting the control-flow patterns 125

represented explicitly, a specific construct exists for the Parallel Split with one incoming
edge and two or more outgoing edges. Where it is represented implicitly, this can be done
in one of two ways: either (1) the edge representing control-flow can split into two (or
more) distinct branches or (2) the task after which the Parallel Split occurs has multiple
outgoing edges which do not have any conditions associated with them or where it does
these conditions always evaluate to true.

Of the offerings examined, Staffware, WebSphere MQ, FLOWer, COSA and iPlanet
represent the pattern implicitly. SAP Workflow, EPCs and BPEL2 do so with explicit
branching constructs. UML 2.0 ADs, BPMN and XPDL allow it to be represented in both
ways.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by the provision of a
construct (either implicit or explicit) that allows the thread of control at a given point in
a process to be split into two or more concurrent branches.

Sub-class: XOR-Split The XOR-split construct characterizes situations where a sin-
gle thread of control is passed to exactly one branch out of several available ones. Two
patterns Exclusive Choice and Deferred Choice belong to this split type. The major
difference between them relates to the moment at which the selection of a branch oc-
curs. For the Exclusive Choice pattern, the selection of a branch is conditional and
the options associated with the choice are explicitly predefined, while the selection of a
branch in the Deferred Choice pattern is postponed until the latest possible time when
sufficient information from the operating environment becomes available and one of
the alternative branches is started.

Pattern WCF-3 (Exclusive Choice)

Description The divergence of a branch into two or more branches such that when the
incoming branch is enabled, the thread of control is immediately passed to precisely one of
the outgoing branches based on a mechanism that can select one of the outgoing branches.

Examples

– Depending on the volume of earth to be moved, either the dispatch-backhoe, despatch-
bobcat or despatch-D9-excavator task is initiated to complete the job.

– After the review election task is complete, either the declare results or the recount votes
task is undertaken.

Motivation The Exclusive Choice pattern allows the thread of control to be directed to
a specific (subsequent) task depending on the outcome of a preceding task, the values of
elements of specific data elements in the process, the results of an expression evaluation or
some other form of programmatic selection mechanism.

Overview The behavior of the Exclusive Choice pattern is illustrated by the CPN model
in Figure 104. Depending on the results of the cond expression, the thread of control is

2In general, the two BPEL implementations examined – WebSphere BPEL (which is part of WebSphere
Process Server) and Oracle BPEL – provide a relatively faithful implementation of the BPEL 1.1 specifi-
cation hence the evaluation results are identical for all three offerings. For this reason they are not listed
individually in this chapter unless there is a variation between them.

126 Chapter 4 Workflow Control-Flow Patterns

either routed to task B or C3. The realization of this CPN model is similar to Solution 2
of the Deterministic XOR-Split CPN pattern (cf. page 36) with the only difference being
that conditions used for branch selection are not based on the actual data passed to the A

transition, but rather represent abstractions of it.

i1

piID

p1

piID

p2

piID

o1

piID

o2

piID

A

B

C

pi

if cond then 1‘pi
else empty

pi

if cond then empty
else 1‘pi

pi

pi

pi

Figure 104: Exclusive Choice pattern

Context There is one context condition associated with this pattern: the mechanism
that evaluates the Exclusive Choice is able to access any required data elements or other
necessary resources when determining which of the outgoing branches the thread of control
should be routed to.

Implementation Similar to the Parallel Split pattern, the Exclusive Choice pattern can
either be represented explicitly via a specific construct or implicitly via disjoint conditions
on the outgoing control-flow edges of a task. Staffware, SAP Workflow, XPDL, EPCs and
BPMN provide explicit XOR-split constructs. In the case of Staffware, it is a binary con-
struct whereas other offerings support multiple outgoing arcs. BPMN and XPDL provide
for multiple outgoing edges as well as a default arc. Each edge (other than the default arc)
has a condition associated with it and there is also the potential for defining the evaluation
sequence but only one condition can evaluate to true at runtime. There is no provision for
managing the situation where no default is specified and none of the branch conditions eval-
uate to true nor where more than one branch condition evaluates to true (simultaneously)
and no evaluation sequence is specified. SAP Workflow provides three distinct means of
implementing this pattern: (1) based on the evaluation of a Boolean expression one of two
possible branches is chosen, (2) one of multiple possible branches is chosen based on the
value of a specific data element (each branch has a nominated set of values which allow
it to be selected and each possible value is assigned to exactly one branch) and (3) based
on the outcome of a preceding task, a specific branch is chosen (a unique branch is associ-
ated with each possible outcome). UML 2.0 ADs also provide a dedicated split construct
although it is left to the auspices of the designer to ensure that the conditions on outgoing
edges are disjoint (e.g., the same construct can be used for OR-splits as well). Likewise
EPCs support the pattern in a similar fashion. The other offerings examined – WebSphere
MQ, FLOWer, COSA, iPlanet and BPEL – represent the pattern implicitly, typically via
conditions on the outgoing control-flow edges from a task which must be specified in such
a way that they are disjoint.

Issues One of the difficulties associated with this pattern is ensuring that precisely one
outgoing branch is triggered when the Exclusive Choice is executed.

Solutions The inclusion of default outgoing arcs on XOR-split constructs is an increasingly
common means of ensuring that an outgoing branch is triggered (and hence the thread of

3As a general comment, the notation x’c on an input arc to a CPN transition means that x instances
of token c are required for the input arc to be enabled.

Section 4.1 Revisiting the control-flow patterns 127

control continues in the process instance) when the XOR-split is enabled and none of the
conditions on outgoing branches evaluate to true. An associated issue is ensuring that not
more than one branch is triggered. There are two possible approaches to dealing with this
issue where more than one of the arc conditions will potentially evaluate to true. The first
of these is to randomly select one of these arcs and allow it to proceed whilst ensuring
that none of the other outgoing arcs are enabled. The second option, which seems more
practical, is to assign an evaluation sequence to the outgoing arcs which defines the order
in which arc conditions will be evaluated. The means of determining which arc is triggered
then becomes one of evaluating the arc conditions in sequential order until one evaluates to
true. This arc is then triggered and the evaluation stops (i.e. no further arcs are triggered).
In the event that none evaluate to true, then the default arc is triggered.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption.

The Exclusive Choice pattern describes the situation where one out of several (explicitly-
predefined) options needs to be selected at the moment the choice construct is encountered.
In some situations, the routing decision may not be taken immediately, because it requires
some input from the operating environment. The deferral of the choice until the moment
when sufficient information becomes available is described by the Deferred Choice pattern.

Pattern WCF-4 (Deferred Choice)

Description A point in a process where one of several branches is chosen based on interac-
tion with the operating environment. Prior to the decision, all branches represent possible
future courses of execution. The decision is made by initiating the first task in one of the
branches, i.e. there is no explicit choice but rather a race between different branches. After
the decision is made, execution alternatives in branches other than the one selected are
withdrawn.

Examples

– At the commencement of the Resolve complaint process, there is a choice between the
Initial customer contact task and the Escalate to manager task. The Initial customer
contact is initiated when it is started by a customer services team member. The Escalate
to manager task commences 48 hours after the process instance commences. Once one
of these tasks is initiated, the other is withdrawn.

– Once a customer requests an airbag shipment, it is either picked up by the postman or a
courier driver depending on who can visit the customer site first.

Motivation The Deferred Choice pattern provides the ability to defer the moment of
choice in a process, i.e. the moment as to which one of several possible courses of action
should be chosen is delayed to the last possible time and is based on factors external to the
process instance (e.g., incoming messages, environment data, resource availability, timeouts
etc.). Up until the point at which the decision is made, any of the alternatives presented
represent viable courses of future action.

Overview The operation of this pattern is illustrated in Figure 105. The moment of
choice is signified by place p1. Either task B or C represent valid courses of action but only
one of them can be chosen. The realization of this CPN model is based on the unguarded
implementation variant of the Non-Deterministic XOR-Split CPN pattern (see page 38).
Note however that we abstract from the role of data in the selection of an appropriate
branch.

128 Chapter 4 Workflow Control-Flow Patterns

i1

piID

p1

piID

o1

piID

o2

piID

A

B

C

pi pi

pi

pi

pi

pi

Figure 105: Deferred Choice pattern

Context There is one context condition associated with this pattern: only one instance of
the Deferred Choice can operate at any time (i.e. place p1 is assumed to be safe).

Implementation This is a complex pattern and it is interesting to see that only those
offerings that can claim a token-based underpinning (or something analogous to it4) are able
to successfully support it. COSA is based on a Petri net foundation and can implement the
pattern in much the same way as it is presented in Figure 105. BPEL provides support for it
via the <pick> construct, BPMN through the event-based gateway construct, XPDL using
the XOREVENT-split construct and UML 2.0 ADs using a ForkNode followed by a set of
AcceptSignal actions, one preceding each action in the choice. In the case of the latter three
offerings, the actual choice is made based on message-based event interactions. FLOWer
does not directly provide a notion of state but it provides several ways of supporting this
pattern through the use of user and system decisions on plan types and also by using arc
guards that evaluate to NIL in conjunction with data elements to make the decision as to
which branch is selected. FileNet provides partial support for the pattern as it only allows
for withdrawal of timer-based branches not of all branches other than the one selected for
execution.

Issue None identified.

Solution N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption. If there are any restrictions on which branches can be selected or
withdrawn, then the offering is rated as having partial support.

Sub-class: OR-split The OR-split construct characterizes situations where a branch
diverges into multiple outgoing branches and the thread of control is passed to at least
one of the outgoing branches. The selection of branches is conditional, and potentially
results in subsequent enabling of one, several or all available branches as described by
the Multi-Choice pattern.

Pattern WCF-5 (Multi-Choice)

Description The divergence of a branch into two or more branches such that when the
incoming branch is enabled, the thread of control is immediately passed to one or more of
the outgoing branches based on a mechanism that selects one or more outgoing branches.

4The use of dead path elimination when evaluating link enablement in BPEL is analogous to the use of
true/false token as a means of propagating control-flow in a Petri net sense.

Section 4.1 Revisiting the control-flow patterns 129

Example

– Depending on the nature of the emergency call, one or more of the despatch-police,
despatch-fire-engine and despatch-ambulance tasks is immediately initiated.

– Depending on the knowledge of a candidate, either a theory exam, a vehicle-driving exam
or both have to be undertaken.

Motivation The Multi-Choice pattern provides the ability for the thread of execution to
be diverged into several concurrent threads in distinct branches on a selective basis. The
decision as to whether to pass the thread of execution to a specific branch is made at
runtime. It can be based on a variety of factors including the outcome of a preceding task,
the values of elements of specific data elements in the process, the results of evaluating an
expression associated with the outgoing branch or some other form of programmatic selec-
tion mechanism. This pattern is essentially an analogue of the Exclusive Choice pattern
(WCF-3) in which multiple outgoing branches can be enabled.

Overview The operation of the Multi-Choice pattern is illustrated in Figure 106. After
task A has been triggered, the thread of control can be passed to one or both of the following
branches depending on the evaluation of the conditions associated with each of them. The
realization of this CPN model is based on the OR-Split CPN pattern (cf. page 40) with
the only difference being that the conditions used for branch selection are not based on the
actual data passed to the A transition, but rather represent abstractions of it.

i1

piID

p1

piID

p2

piID

o1

piID

o2

piID

A

B

C

pi

if cond1
then 1‘pi
else empty

if cond2
then 1‘pi
else empty

pi

pi

pi

pi

Figure 106: Multi-Choice pattern

Context There is one context condition associated with this pattern: the mechanism
that evaluates the Multi-Choice is able to access any required data elements or necessary
resources when determining which of the outgoing branches the thread of control should
be routed.

Implementation As with other branching and merging constructs, the Multi-Choice pat-
tern can either be represented implicitly or explicitly. WebSphere MQ captures it implicitly
via (non-disjoint) conditions on outgoing arcs from a process or block construct, COSA and
iPlanet do much the same via overlapping conditions on outgoing arcs from tasks and out-
going routers respectively. Both COSA and iPlanet allow for relatively complex expressions
to be specified for these outgoing branches and iPlanet also allows for procedural elements
to form part of these conditions. The modelling and business process execution languages
examined tend to favor the use of explicit constructs for representing the pattern: BPEL
via conditional links within the <flow> construct, UML 2.0 ADs via the ForkNode with
guards conditions on the outgoing arcs and EPCs via textual notations to the OR-split
construct. BPMN and XPDL provide three alternative representations including the use
of an implicit split with conditions on the arcs, an OR-split or a complex gateway.

Issues Two issues have been identified with the use of this pattern. First, as with the
Exclusive Choice, an issue that also arises with the use of this pattern is ensuring that at

130 Chapter 4 Workflow Control-Flow Patterns

least one outgoing branch is selected from the various options available. If this is not the
case, then there is the potential for the process to stall. Second, where an offering does
not support the Multi-Choice construct directly, the question arises as to whether there
are any indirect means of achieving the same behavior.

Solutions With respect to the first issue, the general solution to this issue is to enforce
the use of a default outgoing arc from a Multi-Choice construct which is enabled if none of
the conditions on the other outgoing arcs evaluate to true at runtime. For the second issue,
a work-around that can be used to support the pattern in most offerings is based on the
use of an AND-split immediately followed by an (binary) XOR-split in each subsequent
branch. Another is the use of an XOR-split with an outgoing branch for each possible
task combination, e.g., a Multi-Choice construct with outgoing branches to tasks A and
B would be modeled using an XOR-split with three outgoing branches – one to task A,
another to task B and a third to an AND-split which then triggered both tasks A and B.
Further details on these transformations are presented by van der Aalst et al. [12].

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption. Note that the work-around based on XOR-splits and AND-splits is
not considered to constitute support for this pattern as the decision process associated
with evaluation of the Multi-Choice is divided across multiple split constructs.

Sub-class: Thread-split The thread-split construct characterizes situations where
a single thread of control is not split into several branches, but rather into multiple
threads of control in the same branch as described by the Thread Split pattern.

Pattern WCF-6 (Thread Split)

Description At a given point in a process, a nominated number of execution threads can
be initiated in a single branch of the same process instance.

Example

– At the completion of the confirm paper receival task, initiate three instances of the
subsequent independent peer review task.

– At the birth of a child, prepare 10 post-cards for notifying close relatives.

Motivation This pattern provides a means of triggering multiple execution threads along
a branch within a given process instance. It can be seen as a counterpart of the Thread
Merge pattern (WCF-20) which merges multiple execution threads along the same branch.
Unless used in conjunction with the Thread Merge pattern, the execution threads will run
independently to the end of the process.

Overview The operation of this pattern is illustrated in Figure 107. Note that numinsts
indicates the number of threads to be created.

numinsts`pipi
A o1

piID

i1

piID

Figure 107: Thread Split pattern

Context There is one context consideration for this pattern: the number of threads needing
to be created (i.e. numinsts) must be known in advance.

Section 4.1 Revisiting the control-flow patterns 131

Implementation As with the Thread Merge pattern, implementation of this pattern im-
plies that an offering is able to support the execution of processes in a non-safe context.
This rules out the majority of the offerings examined from providing any tractable forms of
implementation. BPMN and XPDL provide direct support for the pattern by allowing the
quantity of tokens flowing down the outgoing sequence flow from a task at its conclusion
to be specified. UML 2.0 ADs allow a similar behavior to be achieved through the use
of multiple outgoing edges from a task to a MergeNode which then directs the various
initiated threads of control down the same branch. BPEL indirectly allows the same effect
to be achieved via the <invoke> action in conjunction with suitably specified correlation
sets.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption. If any degree of programmatic extension is required to achieve the
same behavior, then the partial support rating applies.

Class: Synchronization and Merging patterns

Synchronization and merging patterns describe situations where threads of control
that have been earlier diverged over one or several branches (corresponding to the
branching patterns described on page 122) need to be coalesced into a single thread of
control. Patterns describing merging of several threads of control in the same branch
into a single thread of control correspond to the thread-join sub-class. The AND-
join, OR-join and XOR-join sub-classes describe patterns addressing synchronization
of threads of control previously diverged over all, some or one of several available
branches. The partial-join sub-class describes situations where a sub-set of previously
enabled branches need to be merged together. Each of these synchronization types,
including related patterns, are described in detail below.

Sub-class: AND-joins The AND-join construct characterizes situations where all ex-
isting threads of control associated with branches produced by a preceding AND-split
pattern, have to be coalesced into a single thread of control. Two patterns Synchro-
nization and Generalized AND-Join, correspond to this type of synchronization. The
difference between these two patterns is in the operating context, i.e. the Synchro-
nization pattern operates in a situation, where each of the incoming branches may be
enabled only once, while the Generalized AND-Join pattern operates in the context
where one or more branches may be triggered multiple times for the same process
instance.

Pattern WCF-7 (Synchronization)

Description The convergence of two or more branches into a single subsequent branch
such that the thread of control is passed to the subsequent branch when all input branches
have been enabled.
Examples

– The despatch-goods task runs immediately after both the check-invoice and produce-
invoice tasks are completed.

132 Chapter 4 Workflow Control-Flow Patterns

– Cash-drawer reconciliation can only occur when the store has been closed and the credit
card summary has been printed.

Motivation Synchronization provides a means of reconverging the execution threads in
two or more parallel branches. In general, these branches are created using the Parallel
Split (AND-split) construct earlier in the process model. The thread of control is passed
to the task immediately following the synchronizer once all of the incoming branches have
completed.

Overview The behavior of the Synchronization pattern is illustrated by the CPN model in
Figure 108. The pattern contains an implicit AND-join, known as the synchronizer, which
is considered to be activated once it receives input on one of the incoming branches (i.e. at
places p1 or p2). Similarly it is considered to be reset (and hence can be re-enabled) once
input has been received on each incoming branch and the synchronizer has fired, removing
these tokens. The realization of this CPN model corresponds to the synchronization part of
the Distributed Data Processing CPN pattern (cf. page 65) with the only difference being
that the focus is on merging of threads of control distributed across multiple branches,
rather than on merging of data elements.

i1

piID

i2

piID

p1

piID

p2

piID

o1

piID

A

B

C

pi pi

pi

pi pi

pi

pi

Figure 108: Synchronization pattern

Context This pattern has the following context condition: once the synchronizer has been
activated and has not yet been reset, it is not possible for another signal to be received
on the activated branch or for multiple signals to be received on any incoming branch. In
other words, all input places to the synchronizer (e.g., p1 and p2 are safe).

Implementation Similar to the Parallel Split pattern, the synchronizer can either be
represented explicitly or implicitly in a process model. Staffware has an explicit AND-join
construct as do SAP Workflow, EPCs, BPMN and XPDL. Other offerings – WebSphere
MQ, FLOWer, COSA, iPlanet and BPEL – represent this pattern implicitly through mul-
tiple incoming (and unconditional) control edges to a task. Only when each of these arcs
has received the thread of control can the task be enabled. UML 2.0 ADs allow it to be
represented in both ways.

Issues The use of the Synchronization pattern can potentially give rise to a deadlock in
the situation where one of the incoming branches fails to deliver a thread of control to the
join construct. This could be a consequence of a design error or that one of the tasks in
the branch failing to complete successfully (e.g., as a consequence of it experiencing some
form of exception) or because the thread of control is passed outside of the branch.

Solutions None of the offerings examined provide support for resolving this issue where
the problem is caused by task failure in one of the incoming branches. Where this pattern
is used in a structured context, the second possible cause of deadlock generally does not
arise.

Section 4.1 Revisiting the control-flow patterns 133

Evaluation Criteria Full support for this pattern is demonstrated by any offering pro-
viding a construct which satisfies the description when used in a context satisfying the
context assumption.

Pattern WCF-8 (Generalized AND-Join)

Description The convergence of two or more branches into a single subsequent branch
such that the thread of control is passed to the subsequent branch when all input branches
have been enabled. Additional triggers received on one or more branches between firings
of the join persist and are retained for future firings. Over time, each of the incoming
branches should deliver the same number of triggers to the AND-join construct (although
obviously, the timing of these triggers may vary).

Examples

– When all Get Directors Signature tasks have completed, run the Complete Contract task.
– Accumulate engine, chassis and body components from the various production lines.

When one of each has been received, use one of each component to assemble the basic
car.

Motivation The Generalized AND-Join corresponds to one of the generally accepted no-
tions of an AND-join implementation (the other situation is described by the Synchroniza-
tion pattern) in which several paths of execution are synchronized and merged together.
Unlike the Synchronization pattern, it supports the situation where one or more incoming
branches may receive multiple triggers for the same process instance (i.e. a non-safe con-
text) before the join resets. The classical Petri net uses semantics close to this pattern.
This shows that this semantics can be formulated easily. However, the intended semantics
in practice tends to be unclear in situations involving non-safe behavior.

Overview The operation of the Generalized AND-Join is illustrated in Figure 109. Before
transition C can be enabled, an input token (corresponding to the same process instances)
is required in each of the incoming places (i.e. p1 and p2). When there are corresponding
tokens in each place, transition C is enabled and consumes a token from each input place
and once it has completed, deposits a token in output place o1. If there is more than one
token at an input place, they are left intact.

The process analogy to this sequence of events is that the AND-join only fires when a
trigger has been received on each incoming branch for a given process instance however ad-
ditional triggers are retained for future firings. This approach to AND-join implementation
relaxes the context condition associated with the Synchronization pattern that only allows
it to receive one trigger on each incoming branch after activation but before firing and as
a result, it is able to be used in concurrent execution environments such as process models
which involve loops as well as offerings that do not assume a safe execution environment.
In light of this realization the same CPN pattern has been used as for the Synchronization
pattern, which indicates a specialization relations between them.

Context There are no specific context conditions associated with the pattern.

Implementation This need to provide persistence of triggerings (potentially between
distinct firings of the join) means that this construct is not widely supported by the offerings
examined and only FileNet provides a construct for it. Token-based process models such
as BPMN and XPDL have an advantage in this regard and both modeling notations are
able to support this pattern5. EPCs provide a degree of ambiguity in their support for this

5Although it is noted that these formalisms are modeling languages which do not need to implement a
given construct and may leave subtle semantical issues undefined.

134 Chapter 4 Workflow Control-Flow Patterns

i1

piID

i2

piID

p1

piID

p2

piID

o1

piID

A

B

C

pi pi

pi

pi pi

pi

pi

: Pointers to partial states of different process instances

Figure 109: Generalized AND-join pattern

pattern – whilst most documentation indicates that they do not support it, in the ARIS
Simulator, they exhibit the required behavior – hence they are awarded a partial support
rating on account of this variance.

Issues None identified.

Solutions N/A.

Evaluation Criteria An offering achieves full support if it provides a construct that
satisfies the description for the pattern. If there is any ambiguity associated with the
specification or use of the construct, an offering is considered to provide partial support
for the pattern.

Sub-class: partial join The partial join construct characterizes situations where
threads associated with a subset of branches, that were enabled by a preceding AND-
split construct, have to be synchronized in order for the thread of control to be passed
on. This sub-class contains six patterns which represent the revision of the original
Discriminator pattern. The Discriminator requires only one incoming branch to com-
plete in order for the thread of control to be passed to the subsequent task. The
original pattern did not differentiate between distinct implementation approaches and
the degree to which they were able to deal with concurrency within a process instance.
When defining the semantics of the pattern, the distinction has been made between
structured, canceling and blocking types of the Discriminator. Interesting to note that
the partial (or N-out-of-M) join was considered only as a sub-case of the Discriminator
pattern, whereas now it is considered to be a pattern in its own right with three distinct
forms: structured, canceling and blocking.

The structured partial join operates in the safe context, where each branch executes
precisely once before a reset takes place, and there is a single preceding AND-split.
The blocking partial join can be applied in non-safe situations, i.e. where multiple
triggers can be obtained on the same branch for the same process instance, but which
ensure that additional execution threads within the same branch are blocked until
the partial join construct has reset. The canceling partial join applies to situations
where remaining branches, that are still executing after the partial join has reset, are
canceled. Six patterns, i.e. the structured, blocking, and canceling discriminator and
the structured, blocking, and canceling partial join are described in detail below.

Section 4.1 Revisiting the control-flow patterns 135

Pattern WCF-9 (Structured Discriminator)

Description The convergence of two or more branches into a single subsequent branch
following a corresponding divergence earlier in the process model such that the thread
of control is passed to the subsequent branch when the first incoming branch has been
enabled. Subsequent enablements of incoming branches do not result in the thread of
control being passed on. The Structured Discriminator construct resets when all incoming
branches have been enabled. The Structured Discriminator occurs in a structured context,
i.e. there must be a single Parallel Split construct earlier in the process model with which
the Structured Discriminator is associated and it must merge all of the branches emanating
from the Structured Discriminator. These branches must either flow from the Parallel Split
to the Structured Discriminator without any splits or joins or they must be structured in
form (i.e. balanced splits and joins).

Example

– When handling a cardiac arrest, the check breathing and check pulse tasks run in parallel.
Once the first of these has completed, the triage task is commenced. Completion of the
other task is ignored and does not result in a second instance of the triage task.

Motivation The Structured Discriminator pattern provides a means of merging two or
more distinct branches in a process into a single subsequent branch such that the first
of them to complete results in the subsequent branch being triggered, but completions of
other incoming branches thereafter have no effect on (and do not trigger) the subsequent
branch. As such, the Structured Discriminator provides a mechanism for progressing the
execution of a process once the first of a series of concurrent tasks has completed.

Overview The operation of the Structured Discriminator pattern is illustrated in Figure
110. Note that this realization assumes that inputs received from branches A1 to Am corre-
spond to a single process instance, i.e. multiple process instances are not considered. An
untyped token (), residing in place p2, indicates that the Discriminator is ready to be
enabled. The first token received at any of the incoming places i1 to im results in the
Discriminator being enabled and an output token being produced in output place o1. An
untyped token is also produced in place p3 indicating that the Structured Discriminator has
fired but not yet reset. Subsequent tokens received at each of the other input places have
no effect on the Structured Discriminator (and do not result in any output tokens in place
o1). Once one token has been received by each input place, the Structured Discriminator
resets and can be re-enabled once again. This occurs when m-1 tokens have accumulated
at place p1 allowing the reset transition to be enabled. Once again, the combination of
the Structured Discriminator and the preceding Parallel Split can also be considered as
a structured component that is compositional in form and can be incorporated in other
structured processes whilst retaining the overall structural form. In this realization, a vari-
ant of the Region Flush CPN pattern (cf. page 86) is used for resetting the discriminator
construct by removing outputs from the remaining branches (m-1)’pi from the p1 place.
Although the Region Flush CPN pattern suggests aggregating objects in a place in order
for it to be reset, in this realization there is no need to use a collection type because the
capacity of the p1 is limited by the number of branches that can be enabled concurrently.

There are two possible variants of this pattern that can be utilized in non-structured
contexts. Both of which improve the applicability of the Structured Discriminator pat-
tern whilst retaining its overall behavior. First, the Blocking Discriminator (WCF-10)
removes the requirement that each incoming branch can only be enabled once between
Structured Discriminator resets. It allows each incoming branch to be triggered multiple

136 Chapter 4 Workflow Control-Flow Patterns

Figure 110: Structured Discriminator pattern

times although the construct only resets when one triggering has been received on each
input branch. It is discussed in further detail on page 137.

The second alternative, the Canceling Discriminator (WCF-11), improves the efficiency
of the pattern further by preventing any subsequent tasks in the remaining incoming
branches to the Canceling Discriminator from being enabled once the first branch has
completed. Instead the remaining branches are effectively put into a “bypass mode” where
any remaining tasks are “skipped” hence expediting the reset of the construct. It is dis-
cussed in further detail on page 138.

Context There are two context conditions associated with the use of this pattern: (1)
once the Structured Discriminator has been activated and has not yet been reset, it is not
possible for another signal to be received on the activated branch or for multiple signals
to be received on any incoming branch. In other words, all input places to the Structured
Discriminator (i.e. i1 to im) are safe and (2) there is a corresponding Parallel Split and
once this has been enabled none of the tasks in the branches leading to the Structured
Discriminator can be canceled before it has been triggered, i.e. an input is expected from
all m input tasks. The only exception to this is that it is possible for all of the tasks leading
up to the Structured Discriminator to be canceled. It is interesting to note that a corollary
of these context criteria is that correct behavior of the pattern is assured and relies only
on local information available to the Structured Discriminator at runtime.

Implementation The Structured Discriminator can be directly implemented in iPlanet by
specifying a custom trigger condition for a task with multiple incoming routers which only
fires when the first router is enabled. BPMN and XPDL potentially support the pattern
with a COMPLEX-Join construct however it is unclear how the IncomingCondition for
the join is specified. UML 2.0 ADs shares a similar problem with its JoinNode construct.
SAP Workflow provides partial support for this pattern via the fork construct although
any unfinished branches are canceled once the first completes.

Issues One issue that can arise with the Structured Discriminator is that failure to receive
input on each of the incoming branches may result in the process instance (and possibly
other process instances) stalling.

Solutions The alternate versions of this pattern provide potential solutions to the issue.
The Blocking Discriminator allows multiple execution threads in a given process instance
to be handled by a single Blocking Discriminator (although a subsequent thread can only
trigger the construct when inputs have been received on all incoming branches and the
Blocking Discriminator has reset). The Canceling Discriminator only requires the first

Section 4.1 Revisiting the control-flow patterns 137

thread of control to be received in an incoming branch. Once this has been received, the
remaining branches are effectively put into “bypass” mode and any remaining tasks in
those branches that have not already been commenced are skipped (or canceled) allowing
the discriminator to be reset as soon as possible.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumptions. It rates as partial support if the Structured Discriminator can reset
without all tasks in incoming branches having run to completion.

Pattern WCF-10 (Blocking Discriminator)

Description The convergence of two or more branches into a single subsequent branch
following one or more corresponding divergences earlier in the process model. The thread of
control is passed to the subsequent branch when the first active incoming branch has been
enabled. The Blocking Discriminator construct resets when all active incoming branches
have been enabled once for the same process instance. Subsequent enablements of incoming
branches are blocked until the Blocking Discriminator has reset.

Example

– The check credentials task can commence once the confirm delegation arrival or the secu-
rity check task has been completed. Although these two tasks can execute concurrently,
in practice, the confirm delegation arrival task always completes before security check
task. Another instance of the check credentials task cannot be initiated if a preceding
instance of the task has not yet completed. Similarly, subsequent instances of the con-
firm delegation arrival and the security check tasks cannot be initiated if a preceding
instance of the check credentials task has not yet completed.

Motivation The Blocking Discriminator pattern is a variant of the Structured Discrim-
inator pattern that is able to run in environments where there are potentially several
concurrent execution threads within the same process instance. This quality allows it to
be used in loops and other process structures where more than one execution thread may
be received in a given branch in the time between the first branch being enabled and the
Blocking Discriminator being reset.

Overview Figure 111 illustrates the operation of this pattern. It is more robust than the
Structured Discriminator as it is not subject to the constraint that each incoming branch
can only be triggered once prior to reset. The Blocking Discriminator functions by keeping
track of which inputs have been triggered (via the triggered input place) and preventing
them from being re-enabled until the construct has reset as a consequence of receiving a
trigger on each incoming branch. An important feature of this pattern is that it is able to
be utilized in environments that do not support a safe process model or those that may
receive multiple triggerings on the same input place, e.g., where the Blocking Discriminator
is used within a loop. In this realization, the Non-deterministic XOR-Split CPN pattern
(cf. page 38) is used to select an arbitrary branch by the D transition from the p3 place,
and Region Flush CPN pattern (cf. page 86) used for withdrawing non-consumed branch
outputs by the reset transition from the p3 and triggered input places. Additionally,
the BSD Filter CPN pattern (cf. page 43) is used to block other process instances by means
of guard conditions associated with the t1...tm transitions. Furthermore, the Aggregate
Objects CPN pattern (cf. page 67) is used to keep track of the activated branches by
recording the identifiers of the activated branches to the triggered input place of the
collection type (i.e. list cs is used in this case).

138 Chapter 4 Workflow Control-Flow Patterns

Figure 111: Blocking Discriminator pattern

Context There is one context condition associated with the pattern: all m inputs should
arrive.

Implementation In the event of concurrent process instances attempting to simultane-
ously initiate the same Blocking Discriminator, it is necessary to keep track of both the
process instance and the input branches that have triggered the Blocking Discriminator
and also the execution threads that are consequently blocked (including the number of
distinct triggerings on each branch) until it completes. The Blocking Discriminator is
partially supported by BPMN, XPDL and UML 2.0 ADs.

Issues None identified.

Solutions N/A.

Evaluation Criteria An offering achieves full support if it provides a construct that
satisfies the description for the pattern. If there is any ambiguity in how the join condition
is specified, an offering is considered to provide partial support for the pattern.

Pattern WCF-11 (Canceling Discriminator)

Description The convergence of two or more branches into a single subsequent branch
following one or more corresponding divergences earlier in the process model. The thread
of control is passed to the subsequent branch when the first active incoming branch has
been enabled. Triggering the Canceling Discriminator also cancels the execution of all of
the other incoming branches and resets the construct.

Example

– After the extract-sample task has completed, parts of the sample are sent to three dis-
tinct laboratories for examination. Once the first of these laboratories completes the
sample-analysis, the other two task instances are canceled and the review-drilling task
commences.

Motivation This pattern provides a means of expediting a process instance where a series
of incoming branches to a join need to be synchronized but it is not important that the
tasks associated with each of the branches (other than the first of them) be completed.

Overview The operation of this pattern is shown in Figure 112. Inputs i1 to im to the
Canceling Discriminator serve to identify the branches preceding the construct. Transi-
tions A1 to Am signify tasks in these preceding branches. Transitions C1 to Cm indicate
alternate “bypass” or “cancelation” tasks for each of these branches (these execution op-
tions are not initially available to incoming execution threads). The first control-flow token

Section 4.1 Revisiting the control-flow patterns 139

for a given case received at any input will cause B to fire and put a token in o1. As soon as
this occurs, subsequent execution threads on other branches are put into “bypass mode”
and instead of executing the normal tasks (A1..Am) on their specific branch, they can ex-
ecute the “cancel” transitions (C1..Cm). (Note that the bypass transitions do not require
any interaction. Hence they are executed directly by the PAIS and it can be assumed
that the skip transitions are executed once they are enabled and complete almost instan-
taneously hence expediting completion of the branch). Once all incoming branches for a
given case have been completed, the Canceling Discriminator construct can then reset and
be re-enabled again for the same case. In addition to the Non-deterministic XOR-Split
and Region Flush CPN patterns used in the Structured Discriminator pattern, this CPN
model also uses the Non-Deterministic XOR-Split CPN pattern to realize cancelation of
branches that have not yet completed (i.e. the choice between executing the A transition
and skipping/canceling it by executing the C transition is non-deterministic).

()

()

pi

pi

pi
pi

pi

pi

()

()
pi

(m-1)`pi

pi

pi1`pi

pi

pi

pi

pi

Cm

C1

reset

B

Am

A1

o1

piID

p2

()

Unit

p3

piID

p1

piID

im

piID

i1

piID

Figure 112: Canceling Discriminator pattern

Context There is one context condition associated with the use of this pattern: once the
Canceling Discriminator has been activated and has not yet been reset, it is not possible for
another signal to be received on the activated branch or for multiple signals to be received
on any incoming branch. In other words, all input places to the Canceling Discriminator
(i.e. i1 to im) are safe. Another assumption for this pattern is that all inputs associated
with branches i1 to im will arrive.

Implementation In order to implement this pattern, it is necessary for the offering to
support some means of denoting the extent of the incoming branches to be canceled. This
can be based on the Cancel Region pattern although support is only required for a restricted
form of the pattern as the region to be canceled will always be a connected subgraph of the
overall process model with the Canceling Discriminator construct being the connection
point for all of the incoming branches.

This pattern is supported by the fork construct in SAP Workflow with the number of
branches required for completion set to one. In BPMN, it is achieved by incorporating
the incoming branches and the Canceling Discriminator in a subprocess that has an error
event associated with it. The error event is triggered, canceling the remaining branches
in the subprocess, when the Canceling Discriminator is triggered by the first incoming

140 Chapter 4 Workflow Control-Flow Patterns

branch. This configuration is illustrated in Figure 113(a). A similar solution is available
in XPDL. UML 2.0 ADs support the pattern in a similar way by enclosing all of the
incoming branches in an InterruptibleActivityRegion which is canceled when the Canceling
Discriminator fires.

a) BPMN implementation

1st branch complete

1

n

A

A

B

1

n

A

A

B

b) UML 2.0 ADs implementation

1st branch complete

Figure 113: Canceling discriminator pattern in BPMN and UML 2.0 ADs

Issues The major difficulty with this pattern is in determining how much of the process
model preceding the Canceling Discriminator is to be included in the cancelation region.

Solutions This issue is easily addressed in structured processes as all of the branches back
to the preceding split construct which corresponds to the Canceling Discriminator should
be subject to cancelation. In Figure 114(a), it is easy to see that the area denoted by the
dotted box should be the cancelation region. It is a more complex matter when the process
is not structured, e.g., in Figure 114(b) a cancelation region can be conceived which reaches
back to the first AND-split and the pattern can be implemented based on this. A formal
approach to determining the scope of the cancelation region can be found elsewhere [6].

b)

DISCA

C

ED

F

B

G

HAND

H

C

ED

F

B

G

ANDA

AND

DISC

a)

Figure 114: Process structure considerations for canceling discriminator

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the

Section 4.1 Revisiting the control-flow patterns 141

context assumption. An offering is considered to provide partial support for the pattern if
there are side-effects associated with the execution of the pattern (e.g., tasks in incoming
branches which have not completed being recorded as complete).

Pattern WCF-12 (Structured Partial Join)

Description The convergence of two or more branches (say m) into a single subsequent
branch following a corresponding divergence earlier in the process model such that the
thread of control is passed to the subsequent branch when n of the incoming branches have
been enabled where n is less than m. Subsequent enablements of incoming branches do not
result in the thread of control being passed on. The join construct resets when all active
incoming branches have been enabled. The join occurs in a structured context, i.e. there
must be a single Parallel Split construct earlier in the process model with which the join is
associated and it must merge all of the branches emanating from the Parallel Split. These
branches must either flow from the Parallel Split to the join without any splits or joins or
be structured in form (i.e. balanced splits and joins).

Example

– Once two of the preceding three Expenditure Approval tasks have completed, start the
Issue Cheque task. Wait until the remaining task has completed before allowing the
Issue Cheque task to fire again.

Motivation The Structured Partial Join pattern provides a means of merging two or more
distinct branches resulting from a specific Parallel Split or AND-split construct earlier in
a process into a single branch. The join construct does not require triggers on all incoming
branches before it can fire. Instead a given threshold can be defined which describes the
circumstances under which the join should fire – typically this is presented as the ratio of
incoming branches that need to be live for firing as against the total number of incoming
branches to the join, e.g., a 2-out-of-3 join signifies that the join construct should fire when
two of three incoming arcs are live. Subsequent completions of other remaining incoming
branches have no effect on (and do not trigger) the subsequent branch. As such, the
Structured Partial Join provides a mechanism for progressing the execution of a process
once a specified number of concurrent tasks have completed rather than waiting for all of
them to complete.

Overview The Structured Partial Join pattern is one possible variant of the AND-Join
construct where the number of incoming arcs that will cause the join to fire (n) is between
2 and m - 1 (i.e. the total number of incoming branches less one, i.e. 2≤n<m). There are
a number of possible specializations of the AND-join pattern and they form a hierarchy
based on the value of n. Where only one incoming arc must be live for firing (i.e. n=1),
this corresponds to one of the variants of the Discriminator pattern (cf. WCF-9, WCF-10
and WCF-11).

The pattern provides a means of merging two or more branches in a process and pro-
gressing execution of the process as rapidly as possible by enabling the subsequent (merged)
branch as soon as a thread of control has been received on n of the incoming branches where
n is less than the total number of incoming branches. The semantics of the Structured Par-
tial Join pattern are illustrated in Figure 115. Note that B requires n tokens in place p1

to progress. In this realization, the same set of CPN patterns is used as for the Structured
Discriminator pattern, which indicates a specialization relationship between them.

Context There are two context conditions associated with the use of this pattern: (1)
once the Structured Partial Join has been activated and has not yet been reset, it is not

142 Chapter 4 Workflow Control-Flow Patterns

Figure 115: Structured Partial Join pattern

possible for another signal to be received on the activated branch or for multiple signals
to be received on any incoming branch. In other words, all input places to the Structured
Partial Join (i.e. i1 to im) are safe and (2) once the associated Parallel Split has been
enabled none of the tasks in the branches leading to the Structured Partial Join can be
canceled before it has been triggered. The only exception to this is that it is possible for
all of the tasks leading up to the Structured Partial Join to be canceled.

There are two possible variants of this pattern that arise from relaxing some of the
context conditions associated with it. Both of these improve on the efficiency of the join
whilst retaining its overall behavior. The first alternative, the Blocking Partial Join (WCF-
13) removes the requirement that each incoming branch can only be enabled once between
join resets. It allows each incoming branch to be triggered multiple times although the
construct only resets when one triggering has been received on each input branch. It is
discussed in detail on page 143. Second, the Canceling Partial Join (WCF-14), improves
the efficiency of the pattern further by canceling the other incoming branches to the join
construct once n incoming branches have completed. It is discussed in further detail on
page 144.

Implementation One of the difficulties in implementing the Structured Partial Join is
that it essentially requires a specific construct to represent the join if it is to be done
in a tractable manner. iPlanet does so via the router construct which links preceding
tasks to a target task. A router can have a custom trigger condition specified for it
that causes the target task to trigger when n incoming branches are live. SAP Workflow
provides partial support for this pattern via the fork construct although any unfinished
branches are canceled once the first completes. None of the other offerings examined
offers a dedicated construct. Staffware provides for a 1-out-of-2 join, but more complex
joins must be constructed from this resulting in an over-complex process model. Similar
difficulties exist for COSA. Of the business process modelling languages, both BPMN and
XPDL appear to provide support for the Structured Partial Join via the complex gateway
construct but the lack of detail on how the IncomingCondition is specified results in a partial
rating. UML 2.0 ADs also suffers from a similar lack of detail on the JoinSpec configuration
required to support this pattern. There is no ability to represent the construct in BPEL.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the

Section 4.1 Revisiting the control-flow patterns 143

context assumptions. If there is any ambiguity in how the join condition is specified, an
offering is considered to provide partial support for the pattern.

Pattern WCF-13 (Blocking Partial Join)

Description The convergence of two or more branches (say m) into a single subsequent
branch following one or more corresponding divergences earlier in the process model. The
thread of control is passed to the subsequent branch when n of the incoming branches
have been enabled (where 2≤n<m). The join construct resets when all active incoming
branches have been enabled once for the same process instance. Subsequent enablements
of incoming branches are blocked until the join has reset.

Example

– When the first member of the visiting delegation arrives, the check credentials task can
commence. It concludes when either the ambassador or the president arrives. Owing to
staff constraints, only one instance of the check credentials task can be undertaken at
any time. Should members of another delegation arrive, the checking of their credentials
is delayed until the first check credentials task has completed.

Motivation The Blocking Partial Join is a variant of the Structured Partial Join that
is able to run in environments where there are concurrent process instances, particularly
process instances that have multiple concurrent execution threads.

Overview Figure 116 illustrates the operation of this pattern. The Blocking Partial Join
functions by keeping track of which inputs have been enabled (via the triggered input

place) and preventing them from being re-enabled until the construct has reset as a conse-
quence of receiving a trigger on each incoming place. After n incoming triggers have been
received for a given process instance (via tokens being received in n distinct input places
from i1 to im), the join fires and a token is placed in output o1. The completion of the
remaining n-m branches has no impact on the join except that it is reset when the last of
them is received.

The pattern shares the same advantages over the Structured Partial Join as the Blocking
Discriminator does over the Structured Discriminator, namely greater flexibility as it is
able to deal with the situation where a branch is triggered more than once, e.g., where
the construct exists within a loop. In this realization, the same set of CPN patterns is
used as for the Blocking Discriminator pattern, which implies a specialization relationship
between these patterns.

Figure 116: Blocking Partial Join pattern

144 Chapter 4 Workflow Control-Flow Patterns

Context There is one context conditions associated with the pattern: all inputs associated
with m branches are assumed to arrive.

Implementation The approach to implementing this pattern is essentially the same as
that for the Blocking Discriminator except that the join fires when n incoming branches
have triggered rather than just the first. The Blocking Partial Join is partially supported
by BPMN, XPDL and UML 2.0 ADs as it is unclear how the join condition is specified.

Issues None identified.

Solutions N/A.

Evaluation Criteria An offering achieves full support if it provides a construct that
satisfies the description for the pattern. If there is any ambiguity in how the join condition
is specified, an offering is considered to provide partial support for the pattern.

Pattern WCF-14 (Canceling Partial Join)

Description The convergence of two or more branches (say m) into a single subsequent
branch following one or more corresponding divergences earlier in the process model. The
thread of control is passed to the subsequent branch when n of the incoming branches have
been enabled where n is less than m. Triggering the join also cancels the execution of all of
the other incoming branches and resets the construct.

Example

– Once the picture is received, it is sent to three art dealers for the examination. Once
two of the prepare condition report tasks have been completed, the remaining prepare
condition report task is canceled and the plan restoration task commences.

Motivation This pattern provides a means of expediting a process instance where a series
of incoming branches to a join need to be synchronized but only a subset of those tasks
associated with each of the branches needs to be completed.

Overview The operation of this pattern is shown in Figure 117. It operates in the same
way as the Canceling Discriminator except that, for this pattern, the cancelation is only
triggered when n distinct incoming branches have been enabled. In this realization, the
same set of CPN patterns is used as for the Canceling Discriminator pattern, which implies
that a specialization relation exists between these patterns.

Context There is one context condition associated with the use of this pattern: once the
Canceling Partial Join has been activated and has not yet been reset, it is not possible for
another signal to be received on the activated branch or for multiple signals to be received
on any incoming branch. In other words, all input places to the Canceling Partial Join
(i.e. i1 to im) are safe. Furthermore, all inputs are expected to arrive.

Implementation The approach to implementing this pattern is essentially the same as
that for the Canceling Discriminator except that the join fires when n incoming branches
have triggered rather than just the first. The Canceling Partial Join is supported by SAP
Workflow and UML 2.0 ADs. BPMN and XPDL achieve a partial support rating as it is
unclear exactly how the join condition is specified.

Issues As for the Canceling Discriminator pattern.

Solutions As for the Canceling Discriminator pattern.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption. An offering is considered to provide partial support for the pattern if

Section 4.1 Revisiting the control-flow patterns 145

()

()

pi

pi

pi
pi

pi

pi

()
pi

(m-n)`pi

pi

pin`pi

pi

pi

pi

pi

Sm

S1

reset

B

Am

A1

o1

piID

p2

()

Unit

p6

piID

p1

piID

im

piID

i1

piID

()

Figure 117: Canceling Partial Join pattern

there are undesirable side-effects associated with the construct firing (e.g., tasks in incom-
ing branches which have not completed being recorded as complete) or if the semantics
associated with the join condition are unclear.

Sub-class: XOR-joins The XOR-join characterizes situations where one or more
distinct branches need to be merged into a single branch. Two patterns Simple Merge
and Multi Merge belong to this join type. While the Simple Merge pattern operates in
a safe context, where at most one incoming branch may be active simultaneously, the
Multi Merge pattern allows multiple active branches to be merged into a single branch
without synchronizing them.

Pattern WCF-15 (Simple Merge)

Description The convergence of two or more branches into a single subsequent branch
such that each enablement of an incoming branch results in the thread of control being
passed to the subsequent branch.

Examples

– At the conclusion of either the bobcat-excavation or the D9-excavation tasks, an estimate
of the amount of earth moved is made for billing purposes.

– After the cash-payment or provide-credit tasks, initiate the produce-receipt task.

Motivation The Simple Merge pattern provides a means of merging two or more distinct
branches without synchronizing them. As such, this presents the opportunity to simplify
a process model by removing the need to explicitly replicate a sequence of tasks that is
common to two or more branches. Instead, these branches can be joined with a simple
merge construct and the common set of tasks need only to be depicted once in the process
model.

Overview Figure 118 illustrates the behavior of this pattern. Immediately after either task
A or B is completed, task C will be enabled. There is no consideration of synchronization.

Context There is one context condition associated with the pattern: the place at which
the merge occurs (i.e. place p1 in Figure 118) is safe and can never contain more than one

146 Chapter 4 Workflow Control-Flow Patterns

i1

piID

i2

piID

p1

piID

o1

piID

A

B

C

pi

pi

pi pi

pi

pi

Figure 118: Simple Merge pattern

token.

Implementation Similar to patterns WCF6–WCF9 described earlier, this pattern can
either be represented explicitly or implicitly. Staffware, SAP Workflow and UML 2.0 ADs
provide specific join constructs for this purpose whereas it is represented implicitly in
WebSphere MQ, FLOWer, COSA and BPEL. BPMN and XPDL allow it to be represented
in both ways.

Issues One issue that can arise with the use of this pattern occurs where it cannot be
ensured that the incoming place to the merge (p1) is safe.

Solutions In this situation, the context conditions for the pattern are not met and it
cannot be used, however there is an alternative pattern – the Multi-Merge (WCF-16) –
that is able to deal with the merging of branches in potentially unsafe process instances.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption.

Pattern WCF-16 (Multi-Merge)

Description The convergence of two or more branches into a single subsequent branch
such that each enablement of an incoming branch results in the thread of control being
passed to the subsequent branch.

Example

– The lay foundations, order materials and book labourer tasks occur in parallel as separate
process branches. As each of them completes the quality review task is run before that
branch of the process finishes.

Motivation The Multi-Merge pattern provides a means of merging distinct branches in
a process into a single branch. Although several execution paths are merged, there is no
synchronization of control-flow and each thread of control which is currently active in any
of the preceding branches will flow unimpeded into the merged branch.

Overview The operation of this pattern is illustrated in Figure 119. Note that this figure
is identical to Figure 118, which indicates specialization relationship between them. Any
threads of control on incoming branches to p1 should be passed on to the outgoing branch.
The analogy to this in CPN terms, is that each incoming token to place p1 should be
preserved. The distinction between this pattern and the Simple Merge is that it is possible
for more than one incoming branch to be active simultaneously and there is no necessity
for place p1 to be safe.

Context There is one context condition associated with this pattern: the Multi-Merge
pattern assumes that there is a corresponding Multi-Choice construct preceding it.

Section 4.1 Revisiting the control-flow patterns 147

i1

piID

p1

piID

i2

piID

o1

piID

A

B

C

pi

pi

pi

pi

pi pi

Figure 119: Multi-Merge pattern

Implementation iPlanet allows the Multi-Merge pattern to be implemented by specifying
a trigger condition for a task that allows it to be triggered when any of its incoming routers
are triggered. BPMN and XPDL directly implement it via the XOR-join construct and
UML 2.0 ADs have an analogue in the form of the MergeNode construct. EPCs also provide
the XOR-join construct, however they only expect one incoming thread of control and
ignore subsequent simultaneous triggers, hence they do not support the pattern. FLOWer
is able to support multiple concurrent threads through dynamic subplans however its highly
structured nature does not enable it to provide general support for the Multi-Merge pattern.
Although COSA is based on a Petri net foundation, it only supports safe models and hence
is unable to fully support the pattern. For example, both A and B in Figure 119 will block
if there is a token in place p1. Staffware attempts to maintain a safe process model by
coalescing subsequent triggerings of a step whilst it is active into the same thread of control
hence it is also unable to support this pattern. This behavior is quite problematic as it
creates a race condition in which all of the execution sequences ABC, BAC, ACBC and BCAC

are possible.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumptions. Partial support is awarded to offerings that do not provide support
for multiple branches to merge simultaneously or do not provide for preservation of all
threads of control where this does occur.

Sub-class: OR-joins The OR-join characterizes situations where one or more
branches that have been previously enabled by a corresponding OR-split, need to be
synchronized into a single branch. The original Synchronizing Merge pattern did not
adequately differentiate between possible context assumptions, each of which has a
distinct semantics. Depending on whether there is a single corresponding OR-split
construct preceding the OR-join, and whether it is possible to foresee which of the
branches were enabled and when will they complete, we distinguish three variants of
the Synchronizing Merge:

• Structured Synchronizing Merge: a join corresponding to a preceding split (i.e.
Multi-Choice) which applies only to structured process models where there is a
one-to-one correspondence between splits and joins;

148 Chapter 4 Workflow Control-Flow Patterns

• Local Synchronizing Merge: a join whose evaluation is based on directly available
information about the enablement of incoming branches that is signaled, for
instance, by passing true/false tokens (i.e. local semantics); and

• General Synchronizing Merge: a join, whose evaluation is based on the current
and potential future states of a process instance (i.e. non-local semantics).

In order to differentiate between specific OR-join implementations in distinct offer-
ings, in Section 4.2.1 we introduce a graphical notation able to capture synchronization
based on both local and non-local semantics. As the analysis of non-local semantics is
the research topic in its own right, we give a brief overview of approaches to handling
non-local semantics on page 205.

Pattern WCF-17 (Structured Synchronizing Merge)

Description The convergence of two or more branches (which diverged earlier in the pro-
cess at a uniquely identifiable point) into a single subsequent branch such that the thread of
control is passed to the subsequent branch when each active incoming branch has been en-
abled. The Structured Synchronizing Merge occurs in a structured context, i.e. there must
be a single Multi-Choice construct earlier in the process model with which the Structured
Synchronizing Merge is associated and it must merge all of the branches emanating from
the Multi-Choice. These branches must either flow from the Multi-Choice to the Structured
Synchronizing Merge without any splits or joins or they must be structured in form (i.e.
balanced splits and joins).

Example

– Depending on the type of emergency, either or both of the despatch-police and despatch-
ambulance tasks are initiated simultaneously. When all emergency vehicles arrive at the
accident, the transfer-patient task commences.

Motivation The Structured Synchronizing Merge pattern provides a means of merging the
branches resulting from a specific Multi-Choice (or OR-split) construct earlier in a process
into a single branch. Implicit in this merging is the synchronization of all of the threads
of execution resulting from the preceding Multi-Choice.

Overview It is not necessary that all of the incoming branches to the Structured Synchro-
nizing Merge are active in order for the construct to be enabled, however all of the active
threads of control associated with the incoming branches must have reached the Structured
Synchronizing Merge before it can fire.

One of the difficulties associated with the use of this pattern is knowing when the
Structured Synchronizing Merge can fire. The Structured Synchronizing Merge construct
must be able to resolve the decision based on local information available to it during the
course of execution. Critical to this decision is knowledge of how many branches emanating
from the preceding Multi-Choice are active and require synchronization. This is crucial
in order to remove any potential for the “vicious circle paradox” [140] to arise where the
determination of exactly when the merge can fire is based on non-local semantics which
by necessity includes a self-referencing definition and makes the firing decision inherently
ambiguous.

Addressing this issue without introducing non-local semantics for the Structured Syn-
chronizing Merge can be achieved by structuring of the process model following a Multi-
Choice such that the subsequent Structured Synchronizing Merge will always receive pre-

Section 4.1 Revisiting the control-flow patterns 149

cisely one trigger on each of its incoming branches and no additional knowledge is required
to make the decision as to when it should be enabled.

The implementation of this pattern is illustrated in Figure 120. The assumption associ-
ated with this alternative is that the merge construct always occurs in a structured context,
i.e. it is always paired with a distinct preceding Multi-Choice. It is interesting to note that
the combination of the Structured Synchronizing Merge and the preceding Multi-Choice
(together with the intervening tasks) forms a structured component that is compositional
in form and can be incorporated in other structured processes whilst retaining the overall
structural form. This approach involves adding an alternate “bypass” path around each
branch from the multi-merge to the Structured Synchronizing Merge which is enabled in
the event that the normal path is not chosen. The “bypass” path is merged with the nor-
mal path for each branch prior to the Structured Synchronizing Merge construct ensuring
that it always gets a trigger on all incoming branches and can hence be implemented as
an AND-join construct. In this model, the BCI Filter CPN pattern (cf. page 42) is used
to block inputs that do not satisfy guard conditions associated with the A transition. The
selection of branches and their associated bypass paths is done according to the Deter-
ministic XOR-split CPN pattern (cf. page 36). The split and merge of branches in this
diagram is associated with the Distributed Data Processing CPN pattern (cf. page 65) with
the only difference that the focus is on the spliting/merging of threads of control rather
than spliting/merging data elements.

pi

pi pi pi pi

pi

pi pi pi

pi

if cond1 then empty else 1`pi

if cond1 then 1`pi
else empty

if cond2 then 1`pi
else empty

if cond2 then empty else 1`pi

A

[cond1 orelse
cond2]

B

C

D

Ei1

piID

p1

piID

p2

piID

p3

piID

p4

piID

p5

piID

o1

piID

Figure 120: Structured Synchronizing Merge pattern

Context There are two context conditions associated with the use of this pattern: (1) once
the Structured Synchronizing Merge has been activated and has not yet been reset, it is not
possible for another signal to be received on the activated branch or for multiple signals
to be received on any incoming branch In other words, all input places to the Structured
Synchronizing Merge (i.e. p4 and p5) are safe and (2) once the Multi-Choice has been
enabled none of the tasks in the branches leading to the Structured Synchronizing Merge
can be canceled before the merge has been triggered. The only exception to this is that
it is possible for all of the tasks leading up to the Structured Synchronizing Merge to be
canceled.

Implementation The Structured Synchronizing Merge can be implemented in any process
language which supports the Multi-Choice construct and can satisfy the context conditions
discussed above. It is directly supported in WebSphere MQ, FLOWer, FileNet, BPMN,
BPEL, XPDL and EPCs.

150 Chapter 4 Workflow Control-Flow Patterns

Issues One consideration that arises with the implementation of the OR-join is providing
a form that is able to be used in arbitrary loops and more complex process models which
are not structured in form. The Structured Synchronizing Merge cannot be used in these
contexts.

Solutions Both the Local Synchronizing Merge (WCF-18) and the General Synchronizing
Merge (WCF-19) are able to be used in unstructured process models. The latter is also
able to be used in arbitrary loops. The Local Synchronizing Merge tends to be more
attractive from an implementation perspective as it is less computationally expensive than
the General Synchronizing Merge.

Evaluation Criteria Full support for this pattern in an offering is evidenced by the
availability of a construct which when placed in the proper context will synchronize all
active threads emanating from the corresponding Multi-Choice.

Pattern WCF-18 (Local Synchronizing Merge)

Description The convergence of two or more branches which diverged earlier in the process
into a single subsequent branch such that the thread of control is passed to the subsequent
branch when each active incoming branch has been enabled. Determination of how many
branches require synchronization is made on the basis of information locally available to
the merge construct. This may be communicated directly to the merge by the preceding
diverging construct or alternatively it can be determined on the basis of local data such as
the threads of control arriving at the merge.

Example After advertising an Open Day at the school of modern art, visitors are expected
to arrive at the particular date and time. Show-lessons start at the indicated time for all
visitors that have arrived.
Motivation The Local Synchronizing Merge provides a deterministic semantics for the
synchronizing merge which does not rely on the process model being structured (as is
required for the Structured Synchronizing Merge) but also does not require the use of
non-local semantics in evaluating when the merge can fire.

Overview Figure 121 illustrates one approach to implementing this pattern. It is based on
the use of “true” and “false” tokens which are used to indicate whether a branch is enabled
or not. After the divergence at transition A, one or both of the outgoing branches may
be enabled. The determinant of whether the branch is enabled is that the token passed
to the branch contains both the case id as well as a Boolean variable which is “true” if
the tasks in the branch are to be executed, “false” otherwise. As the control-flow token
is passed down a branch, if it is a “true” token, then each task that receives the thread
of control is executed otherwise it is skipped (illustrated by the execution of the bypass
task S1..Sn associated with each task). The Local Synchronizing Merge, which in this
example is illustrated by transition E, can be evaluated when every incoming branch has
delivered a token to the input places for the same case. This realization uses the BSI Filter
CPN pattern (cf. page 42) for enabling of the A transition based on the status of its guard,
whose execution results in the selection of one or more branches. The ID Matching CPN
pattern (cf. page 49) is applied multiple times when matching branch inputs using pi as
a process instance identifier. The choice between execution or skipping of tasks in each
of the enabled branches is non-deterministic and is realized using the Non-deterministic
XOR-split CPN pattern (cf. page 38).

Another possible solution is provided by Rittgen [189]. It involves the direct communi-
cation of the number of active branches from the preceding OR-Join(s) divergence to the
Local Synchronizing Merge so that it is able to determine when to fire.

Section 4.1 Revisiting the control-flow patterns 151

(pi,false)(pi,false)

(pi,false)(pi,false)(pi,false)(pi,false)

(pi,st2)

(pi,st1)

pi

(pi,st2)(pi,true)(pi,true)

(pi,st1)

(pi,true)(pi,true)(pi,true)(pi,true)

pi

S2

S3

S1

E

D

C

B

A

[st1 orelse
st2]

o1

piID

p5

piIDxBOOL

p4

piIDxBOOL

p3

piIDxBOOL

p2

piIDxBOOL

p1

piIDxBOOL

i1

piID

Figure 121: Local Synchronizing Merge pattern

Context There are two context conditions associated with the use of this pattern: (1)
once the Local Synchronizing Merge has been activated and has not yet been reset, it is not
possible for another signal to be received on the activated branch or for multiple signals
to be received on any incoming branch, i.e. all input places to the Local Synchronizing
Merge (places p4 and p5) are safe and (2) the Local Synchronizing Merge construct must
be able to determine how many incoming branches require synchronization based on local
knowledge available to it during execution.

Implementation WebSphere MQ, FLOWer, COSA, BPEL and EPCs provide support
for this pattern. UML 2.0 ADs seems to provide support although there is some ambiguity
over the actual JoinSpec configuration required.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumptions. If there is any ambiguity as to the manner in which the synchroniza-
tion condition is specified, then it rates as partial support.

Pattern WCF-19 (General Synchronizing Merge)

Description The convergence of two or more branches which diverged earlier in the process
into a single subsequent branch such that the thread of control is passed to the subsequent
branch when either (1) each active incoming branch has been enabled or (2) it is not
possible that any branch that has not yet been enabled will be enabled at any future time.

Example Figure 122 provides an example of the General Synchronizing Merge pattern.
It shares a similar fundamental structure to the examples presented in Figures 120 and
121 for the other forms of OR-join however the conditional feedback path from p4 to p1

involving F (which effectively embeds a “loop” within the process where cond3 evaluates
to true) means that it is not possible to model it either in a structured way or to use
local information available to E to determine when the OR-join should be enabled. In this

152 Chapter 4 Workflow Control-Flow Patterns

realization, the same CPN patterns have been used as for the Local Synchronizing Merge
pattern.

pi

if cond2 then 1`pi
else empty

if cond1 then 1`pi
else empty

pi

pi

pipi

pi

pipipipi

pi

F

E

D

C

B

A

[cond1 orelse
cond2]

o1

piID

p5

piID

p4

piID

p3

piID

p2

piID

p1

piID

i1

piID

o2

piID
if cond3 then empty
else 1`pi

if cond3 then 1`pi
else empty

Figure 122: Problem addressed by General Synchronizing Merge pattern

Motivation This pattern provides a general approach to the evaluation of the General
Synchronizing Merge (or OR-join) in processes. It is able to be used in non-structured
and highly concurrent processes including process models that include arbitrary looping
structures.

Overview This pattern provides general support for the OR-join construct that is widely
utilized in modeling languages but is often only partially implemented or severely restricted
in the form in which it can be used. The difficulty in implementing the General Synchro-
nizing Merge stems from the fact that its evaluation relies on non-local semantics [11] in
order to determine when it can fire. In fact, it is easy to see that this construct can lead
to the “vicious circle paradox” [140] where two OR-joins depend on one another.

The OR-join can only be enabled when the thread of control has been received from all
incoming branches and it is certain that the remaining incoming branches which have not
been enabled will never be enabled at any future time. Determination of this fact requires
a (computationally expensive) evaluation of possible future states for the current process
instance.

Context There are no specific context conditions associated with this pattern.

Implementation FileNet is the only offering examined to support this pattern. An algo-
rithm describing an approach to implementing the General Synchronizing Merge based on
Reset-Nets is described in [232] and has been used as the basis for the OR-join construct
in the YAWL reference implementation [15].

Issues There are three significant issues associated with this pattern: (1) when determining
whether an OR-join should be enabled in a given process instance, how should composite
tasks which precede the OR-join be handled, (2) how should preceding OR-joins be handled
and (3) how can the performance implications of OR-join evaluation (which potentially
involves a state space analysis for the case in which the OR-join appears) be addressed.

Solutions Solutions to all of these problems are described in [232]. It provides a determin-
istic means of evaluating whether an OR-join should be enabled based on an evaluation

Section 4.1 Revisiting the control-flow patterns 153

of the current execution state of preceding tasks. It considers composite tasks to function
in the same way as atomic tasks – i.e. they are either enabled or not, – and there is no
further consideration of the execution specifics of the underlying subprocess. Moreover it is
assumed that they will continue executing and pass the thread of control onto subsequent
tasks when complete. In terms of the second issue, any preceding OR-joins are all consid-
ered to function either as XOR-joins or AND-joins when determining if the task with which
they are associated can be enabled. By doing this, the “vicious circle” problem is avoided.
It also offers some potential solutions to the third issue involving the use of reduction rules
which limit the size of the state space evaluation required in order to establish whether the
OR-join should be enabled.

Evaluation Criteria An offering achieves full support if it provides a construct that
satisfies the description for the pattern.

Sub-class: thread-joins The thread-join characterizes situations where distinct
threads of control along a single branch need to be coalesced into a single thread
of control as described by the Thread Merge pattern. The Thread Merge is applied in
the context, where it is always preceded by a corresponding thread-split.

Pattern WCF-20 (Thread Merge)

Description At a given point in a process, a nominated number of execution threads in a
single branch of the same process instance should be merged together into a single thread
of execution.

Example

– Instances of the register-vehicle task run independently of each other and of other tasks
in the Process Enquiry process. They are created as needed. When ten of them have
completed, the process-registration-batch task should execute once to finalize the vehicle
registration system records update.

Motivation This pattern provides a means of merging multiple threads within a given
process instance. It is a counterpart to the Thread Split pattern which creates multiple
execution threads along the same branch.

Overview The operation of this pattern is illustrated in Figure 123. Note that numinsts
indicates the number of threads to be merged.

pinuminsts`pi
A o1

piID

i1

piID

Figure 123: Thread Merge pattern

Context There is one context consideration for this pattern: the number of threads needing
to be merged (i.e. numinsts) must be known at design-time.

Implementation Implementation of this pattern implies that an offering is able to sup-
port the execution of processes in a non-safe context. This rules out the majority of the
offerings examined from providing any tractable forms of implementation. BPMN and
XPDL provide direct support for the pattern by including a task after the spawned task
in which the StartQuantity attribute is set to the number of threads that need to be syn-
chronized. The StartQuantity attribute specifies the number of incoming tokens required

154 Chapter 4 Workflow Control-Flow Patterns

to start a task. UML 2.0 ADs offer a similar behavior via weights on ActivityEdge objects.
BPEL provides an indirect means of implementation based on the correlation facility for
feedback from the <invoke> action although some programmatic housekeeping is required
to determine when synchronization should occur.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption. If any degree of programmatic extension is required to achieve the
same behavior, then the partial support rating applies.

Class: Repetition patterns

Repetition patterns describe situations where the execution of a task or a process
fragment needs to be repeated on a conditional basis. The Arbitrary Cycles pattern
did not adequately cover more restrictive forms of iteration such as while and repeat
loops, hence the class of repetition patterns has been extended with the Structured
Loop pattern. Similarly, the Recursion pattern has been introduced in order to address
repetitive task execution which is based on self-invocation. Three repetitions patterns
(Arbitrary Cycles, Structured Loop, and Recursion), addressing different approaches to
the realization of repetitive execution, are described in a detail below.

Pattern WCF-21 (Arbitrary Cycles)

Description The ability to represent cycles in a process model that have more than one
entry or exit point. It must be possible for individual entry and exit points to be associated
with distinct branches.

Example Figure 124 provides an illustration of the pattern with two entry points: p3 and
p4.

pi

pi
if cond1
then 1`pi
else empty

pi

pipipi

A

piID

i1

piID

piID

piIDpiID

p1

piID

B p3 D p4 E P5 F

piID

pi

pi

pi

o1

if cond1
then empty
else 1`pi

C
pi

p2

if cond2
then empty
else 1`pi

if cond2
then 1`pi
else empty

Figure 124: Arbitrary Cycles pattern

Motivation The Arbitrary Cycles pattern provides a means of supporting repetition in a
process model in an unstructured way without the need for specific looping operators or
restrictions on the overall format of the process model.

Overview The only further consideration for this pattern is that the process model is able
to support cycles (i.e. it is not block structured).

Context There are no specific context conditions associated with this pattern.

Section 4.1 Revisiting the control-flow patterns 155

Implementation Staffware, COSA, iPlanet, FileNet, BPMN, XPDL, UML 2.0 ADs and
EPCs are all capable of capturing the Arbitrary Cycles pattern. Block structured offerings
such as WebSphere MQ, FLOWer, SAP Workflow and BPEL are not able to represent
arbitrary process structures.

Issues The unstructured occurrences of the Arbitrary Cycles pattern are difficult to capture
in some types of PAIS, particularly those that implement structured process models.

Solutions In some situations, it is possible to transform process models containing Ar-
bitrary Cycles into structured processes, thus allowing them to be captured in offerings
based on structured process models. Further details on the types of process models that
can be transformed and the approaches to doing so can be found elsewhere [135,136].

Evaluation Criteria An offering achieves full support for the pattern if it is able to
capture unstructured cycles that have more than one entry and/or exit point.

Pattern WCF-22 (Structured Loop)

Description The ability to execute a task or subprocess repeatedly. The loop has either
a pre-test or post-test condition (or both) associated with it that is either evaluated at
the beginning or end of the loop to determine whether it should continue. The looping
structure has a single entry and exit point.

Examples

– While the machine still has fuel remaining, continue with the production process.
– Continue processing photographs from the film until all of them have been printed.

Motivation There are two general forms of this pattern – the while loop which equates
to the classic while...do pre-test loop construct used in programming languages and the
repeat loop which equates to the repeat...until post-test loop construct.

The while loop allows for the repeated sequential execution of a specified task or a
subprocess zero or more times providing a nominated condition evaluates to true. The
pre-test condition is evaluated before the first iteration of the loop and is re-evaluated
before each subsequent iteration. Once the pre-test condition evaluates to false, the thread
of control passes to the task immediately following the loop.

The repeat loop allows for the execution of a task or subprocess one or more times,
continuing with execution until a nominated condition evaluates to true. The post-test
condition is evaluated after the first iteration of the loop and is re-evaluated after each
subsequent iteration. Once the post-test condition evaluates to true, the thread of control
passes to the task immediately following the loop.

Overview As indicated above, there are two variants of this pattern: the while loop
illustrated in Figure 125 and the repeat loop shown in Figure 126. In both cases, task
B is executed repeatedly. The conditional choice as to whether to continue with another
iteration of the loop or exit it is realized using the Deterministic XOR-Split CPN pattern
(cf. page 36).

Context There is one context condition associated with this pattern: only one instance of
a loop can be active at any time, i.e. places p1 and p2 (and any other places in the body
of the loop) must be safe.

Implementation The main consideration in supporting the Structured Loop pattern is the
availability of a construct within a modelling language to denote the repeated execution
of a task or subprocess based on a specified condition. The evaluation of the condition
to determine whether to continue (or cease) execution can occur either before or after the
task (or subprocess) has been initiated.

156 Chapter 4 Workflow Control-Flow Patterns

pi

pi pi pi

if cond
then 1`pi
else empty

if cond
then empty
else 1`pi

pi

pi

pi

C

A pre-test Bp2

piID

o1

piID

i1

piID

p1

piID

p3

piID

Figure 125: Structured Loop pattern (while variant)

pi pi pipi pi pi

if cond
then empty
else 1`pi

if cond then 1`pi
else empty

pi
A B Cpost-testp1

piID

p3

piID

i1

piID

p2

piID

o1

piID

Figure 126: Structured Loop pattern (repeat variant)

WebSphere MQ provides support for post-tested loops through the use of exit conditions
on block or process constructs. Similarly, FLOWer provides the sequential plan construct
that allows a sequence of tasks to be repeated sequentially until a nominated condition is
satisfied. iPlanet also supports post-tested loops through conditions on outgoing routers
from a task that loop back to the beginning of the same task. BPEL directly supports
pre-tested loops via the <while> construct. BPMN and XPDL allow both pre-tested and
post-tested loops to be captured through the loop task construct. Similarly UML 2.0 ADs
provide the LoopNode construct which has similar capabilities. SAP provides two loop
constructs corresponding to the while loop and the repeat loop. (In fact, the SAP loop
construct is more general merging both the while and repeat loop into a single construct).

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption.

Pattern WCF-23 (Recursion)

Description The ability of a task to invoke itself during its execution or an ancestor in
terms of the overall decomposition structure with which it is associated.

Example

– An instance of the resolve-defect task is initiated for each mechanical problem that is
identified in the production plant. During the execution of the resolve-defect task, if
a mechanical fault is identified during investigations that is not related to the current
defect, another instance of the resolve-defect is started. These subprocesses can also
initiate further resolve-defect tasks should they be necessary. The parent resolve-defect

Section 4.1 Revisiting the control-flow patterns 157

task cannot complete until all child resolve-defect tasks that it initiated have been sat-
isfactorily completed.

Motivation For some types of task, simpler and more succinct solutions can be provided
through the use of recursion rather than iteration. In order to harness recursive forms of
problem solving within the context of a process, a means of describing a task execution in
terms of itself (i.e. the ability for a task to invoke another instance of itself whilst executing)
is required.

Overview Figure 127 illustrates the format of the recursion pattern in Petri net terms.
Task A can be decomposed into the process model with input i1 and output o1. It is
important to note that this process also contains the task A hence the task is described in
terms of itself.

pi pi pi pi pi pi

pi pi

B A C

D

i1

piID
In

p1

piID

p2

piID

o1

piID
Out

A

Figure 127: Recursion pattern

In order to implement the pattern, a process model requires the ability to denote the
synchronous invocation of a task or subprocess within the same model. In order to ensure
that use of recursion does not lead to infinite self-referencing decompositions, Figure 127
contains one path (illustrated by task sequence BDC) which is not self-referencing and
will terminate normally. This corresponds to the terminating condition in mathematical
descriptions of recursion and ensures that, where recursion is used in a process, the overall
process will eventually complete normally when executed.

Context There are no specific context conditions associated with this pattern.

Implementation In order to implement recursion within the context of a process, some
means of invoking a distinct instance of a task is required from within a given task imple-
mentation. Staffware, WebSphere MQ, COSA, iPlanet and SAP Workflow all provide the
ability for a task to invoke an instance of itself whilst executing.

The actual mechanics of implementing recursion for a process such as that depicted
in Figure 127 are shown in Figure 128. The execution of the recursive task A is denoted
by the transitions startA and endA. When an instance of task A is initiated in a process
instance pi, any further execution of the process instance is suspended and the thread of
control is passed to the decomposition that describes the recursive task (in this case, task B

is enabled). A new process instance id is created for the thread of control that is passed to
the decomposition and a mapping function (in this example denoted by child()) is used
to capture the relationship between the parent case-id and the decomposition case-id, thus
ensuring that once the child case has completed, the parent case can continue from the
point at which it originally suspended execution and invoked the child instance of itself.

Issues None identified.

Solutions N/A.

158 Chapter 4 Workflow Control-Flow Patterns

pi

pi

pipi

pi

pi

child(pi)child(pi)

pi

pi
pi

pipi

pipipipipi

t2t1

EndA

D

CStartAB

o2

piID

p4

piID

i2

piID

p2 piID

o1

piID

p3

piID

p1

piID

i1

piID

Figure 128: Recursion implementation

Evaluation Criteria An offering achieves full support if it provides a construct that
satisfies the description for the pattern.

Class: Multiple Instance (MI) patterns

Multiple Instance patterns describe situations where, for a given task, several instances
need to be created and executed either sequentially or concurrently. The MI without
Synchronization, MI with Design-Time Knowledge, MI with Run-Time Knowledge, and
MI without Run-Time Knowledge patterns identify different ways to synchronize cre-
ated task instances on completion. They differ in terms of the moment at which it is
known how many instances need to be created. Unlike the MI without Synchronization
pattern, which passes the thread of control to a subsequent task immediately after task
instances have been initiated, the other three patterns acknowledge the ability to pass
control to a subsequent task after all existing instances have completed.

Existing multiple instances patterns assume that all task instances must complete
before a subsequent task can be enabled. In recognition that the process can proceed
beyond the multiple instance task prior to the completion of all instances of a given
task, the notion of a partial join has been introduced for multiple instance patterns.
A partial join between instances of a particular task allows a subsequent task to be
triggered once a threshold of concurrent task instances have completed. Three variants
of partial join for MI task are described in the Static Partial Join for MI, Canceling
Partial Join for MI, and Dynamic Partial Join for MI patterns.

Pattern WCF-24 (MI without Synchronization)

Description Within a given process instance, multiple instances of a task can be created.
These instances are independent of each other and run concurrently. There is no require-
ment to synchronize them upon completion. Each of the instances of the multiple instance
task that are created must execute within the context of the process instance from which
they were started (i.e. they must share the same case identifier and have access to the same
data elements) and each of them must execute independently from and without reference
to the task that started them.

Example

– A list of traffic infringements is received by the Transport Department. For each in-
fringement on the list an Issue-Infringement-Notice task is created. These tasks run to

Section 4.1 Revisiting the control-flow patterns 159

completion in parallel and do not trigger any subsequent tasks. They do not need to be
synchronized at completion.

Motivation This pattern provides a means of creating multiple instances of a given task.
It caters for situations where the number of individual tasks required is known before the
spawning action commences, the tasks can execute independently of each other and no
subsequent synchronization is required.

Overview There are two possible variants in the way in which this pattern can operate.
The first is illustrated by Figure 129 in which the create instance task runs within a
loop and the new task instances are created sequentially. Place p2 indicates the number
of instances required and is decremented as each new instance is created. New instances
can only be created when the token in p2 has a value greater than zero – the guard on
the create instance task ensures this is the case. When all instances have been created,
the next task (B) can be enabled – again the guard on task B ensures this is also the case.
The selection between transitions B and create instance, each associated with a guard,
corresponds to the Deterministic XOR-Split pattern (cf. page 36). The synchronization of
the counter with transitions A and B corresponds to the Distributed Data Processing CPN
pattern (cf. page 65). The conditional enabling of the B transition depends on the number
of instances created, thus represents the BSD Filter CPN pattern (cf. page 43).

Figure 129: Multiple Instances without Synchronization (Variant 1)

In Figure 130, the task instances are all created simultaneously. In both variants, it is
a requirement that the number of new instances required is known before the creation task
commences. It is also assumed that task instances can be created that run independently
(and in addition to the thread of control which started them) and that they do not require
synchronizing as part of this construct.

pi pi pi

numinst`pi pi

pi pi

pi

pi
A

create
instances

C

Bi1

piID

p1

piID

p3

piID

p2

piID

o2

piID

o1

piID

Figure 130: Multiple Instances without Synchronization (Variant 2)

Context There is one context condition associated with this pattern: the number of task
instances (i.e. numinst) is known at design time and is a fixed value.

160 Chapter 4 Workflow Control-Flow Patterns

Implementation Most offerings – COSA, iPlanet, BPEL, BPMN, XPDL and UML 2.0
ADs – support the sequential variant of this pattern (as illustrated in Figure 129) with the
task creation occurring within a loop. SAP Workflow also does so, but with the limitation
that a new process instance is started for each task instance invoked. BPMN also supports
the second variant, as do Staffware and FLOWer, and they provide the ability to create
the required number of task instances simultaneously.

Issues None identified.

Solutions N/A.

Evaluation Criteria An offering achieves full support if it provides a construct that
satisfies the description for the pattern. Where the newly created task instances run in a
distinct process instance to the task that started them or it cannot access the same data
elements as the parent task, the offering achieves only partial support.

Pattern WCF-25 (MI with a priori Design-Time Knowledge)

Description Within a given process instance, multiple instances of a task can be created.
The required number of instances is known at design time. These instances are independent
of each other and run concurrently. It is necessary to synchronize the task instances at
completion before any subsequent tasks can be triggered.

Example

– The Annual Report must be signed by all six Directors before it can be issued.

Motivation This pattern provides the basis for concurrent execution of a nominated task
a predefined number of times. It also ensures that all task instances are complete before
subsequent tasks are initiated.

Overview Similar to WCF-24, the Multiple Instances without Synchronization pattern,
there are both sequential and simultaneous variants of this pattern illustrated in Figures
131 and 132 respectively. In both figures, task C is the one that executes multiple times.
The realization in Figure 131 uses the Deterministic XOR-Split CPN pattern (cf. page 36)
to specify by means of transition guards which of the tasks create instance or complete
MI task, i.e. B, needs has to be selected. To synchronize multiple branches, the Distributed
Data Processing CPN pattern (cf. page 65) is used in association with transitions A and B.

Figure 131: Multiple Instances with a priori Design-Time Knowledge (Variant 1)

Context There is one context condition associated with this pattern: the number of task
instances (i.e. numinst) is known at design time and is a fixed value.

Implementation In order to implement this pattern, an offering must provide a specific
construct in the process model that is able to denote the actual number of concurrent

Section 4.1 Revisiting the control-flow patterns 161

Figure 132: Multiple Instances with a priori Design-Time Knowledge (Variant 2)

task instances that are required. Staffware, FLOWer, SAP Workflow and UML 2.0 ADs
support the simultaneous variant of the pattern through the use of dynamic subprocedure,
dynamic subplan, multi-line container element and ExpansionRegion constructs respec-
tively. BPMN and XPDL support both options via the multi-instance loop task construct
with the MI Ordering attribute supporting both sequential and parallel values depending
on whether the tasks should be started one-by-one or all together. Unlike other BPEL
offerings which do not support this pattern, Oracle BPEL provides a <flowN> construct
that enables the creation of multiple concurrent instances of a task.

Issues Many offerings provide a work-around for this pattern by embedding some form
of task invocation within a loop. These implementation approaches have two significant
problems associated with them: (1) the task invocations occur at discrete time intervals
and it is possible for the individual task instances to have distinct states (i.e. there is no
requirement that they execute concurrently) and (2) there is no consideration of the means
by which the distinct task instances will be synchronized. These issues, together with the
necessity for the designer to effectively craft the pattern themselves (rather than having it
provided by the offering) rule out this form of implementation from being considered as
satisfying the requirements for full support.

Solutions One possibility that exists where this functionality is not provided by an offering
but an analogous form of operation is required is to simply replicate the task in the process-
model. Alternatively a solution based on iteration can be utilized.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption. Although work-arounds are possible which achieve the same behavior
through the use of various constructs within an offering such as task replication or loops,
they have a number of shortcomings and are not considered to constitute support for the
pattern.

Pattern WCF-26 (MI with a priori Run-Time Knowledge)

Description Within a given process instance, multiple instances of a task can be created.
The required number of instances may depend on a number of runtime factors, including
state data, resource availability and inter-process communications, but is known before the
task instances must be created. Once initiated, these instances are independent of each
other and run concurrently. It is necessary to synchronize the instances at completion
before any subsequent tasks can be triggered.

Examples

– When diagnosing an engine fault, multiple instances of the check-sensor task can run
concurrently depending on the number of error messages received. Only when all mes-
sages have been processed, can the identify-fault task be initiated;

– In the review process for a paper submitted to a journal, the review paper task is executed
several times depending on the content of the paper, the availability of referees and the
credentials of the authors. The review process can only continue when all reviews have
been returned;

162 Chapter 4 Workflow Control-Flow Patterns

– When dispensing a prescription, the weigh compound task must be completed for each
ingredient before the preparation can be compounded and dispensed.

Motivation The Multiple Instances with a priori Run-Time Knowledge pattern provides
a means of executing multiple instances of a given task in a synchronized manner with the
determination of exactly how many instances will be created being deferred to the latest
possible time before the first of the tasks is started.

Overview As with other multiple instance patterns, there are two variants of this pattern
depending on whether the instances are created sequentially or simultaneously as illustrated
in Figures 133 and 134. In both cases, the number of instances of task C to be executed
(indicated in these diagrams by the variable numinst6) is communicated at the same time
that the thread of control is passed for the process instance. In this realization, the same
CPN patterns are used as for the MI with Design-Time Knowledge pattern.

Figure 133: Multiple Instances with a priori Run-Time Knowledge (Variant 1)

Figure 134: Multiple Instances with a priori Run-Time Knowledge (Variant 2)

Context There is one context condition associated with this pattern: the number of task
instances (i.e. numinst) is known at runtime prior to the creation of instances of the task.
Once determined, the number of task instances is a fixed value.

Implementation Staffware, FLOWer and UML 2.0 ADs support the simultaneous vari-
ant of the pattern through the use of dynamic subplan and ExpansionRegion constructs
respectively. BPMN and XPDL support both options via the multi-instance loop task
construct. In the case of FLOWer, BPMN and XPDL, the actual number of instances
required is indicated through a variable passed to the construct at runtime. For UML 2.0
ADs, the ExpansionRegion construct supports multiple instantiations of a task based on
the number of instances of a defined data element(s) passed at runtime. Oracle BPEL
supports the pattern via its (unique) <flowN> construct.

Issues None identified.

6Note that ‘numinst’ was first used as a constant and is now being used as a variable.

Section 4.1 Revisiting the control-flow patterns 163

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption.

Pattern WCF-27 (MI without a priori Run-Time Knowledge)

Description Within a given process instance, multiple instances of a task can be created.
The required number of instances may depend on a number of runtime factors, including
state data, resource availability and inter-process communications and is not known until
the final instance has completed. Once initiated, these instances are independent of each
other and run concurrently. At any time, whilst instances are running, it is possible
for additional instances to be initiated. It is necessary to synchronize the instances at
completion before any subsequent tasks can be triggered.

Example

– The despatch of an oil rig from factory to site involves numerous transport shipment
tasks. These occur concurrently and although sufficient tasks are started to cover initial
estimates of the required transport volumes, it is always possible for additional tasks to
be initiated if there is a shortfall in transportation requirements. Once the whole oil
rig has been transported, and all transport shipment tasks are complete, the next task
(assemble rig) can commence.

Motivation This pattern is an extension to the Multiple Instances with a priori Run-Time
Knowledge pattern which defers the need to determine how many concurrent instances of
the task are required until the last possible moment – either when the synchronization of
the multiple instances occurs or the last of the executing instances completes. It offers more
flexibility in that additional instances can be created “on-the-fly” without any necessary
change to the process model or the synchronization conditions for the task.

Overview Similar to other multiple instance patterns, there are two variants to this pat-
tern depending on whether the initial round of instances are started sequentially or simul-
taneously. These scenarios are depicted in Figures 135 and 136. It should be noted that it
is possible to add additional instances of task C in both of these implementations via the
add instance transition at any time up until all instances have completed and the join
associated with them has fired triggering the subsequent task (B). In both realizations, the
Distributed Data Processing pattern (cf. page 65) is used in association with transitions A
and B to create and synchronize multiple branches respectively. In both implementation
variants, the Non-Deterministic XOR-split CPN pattern (cf. page 38) is used to specify
that creation of new process instance and completion of the MI task can be executed
non-deterministically.

Context There is one context condition associated with this pattern: the initial number
of task instances (i.e. numinst) is known at runtime prior to the completion of the multiple
instance task (note that the final number of instances does not need to be known when
initializing the MI task).

Implementation Only one of the offerings examined – FLOWer – provides direct support
for this pattern. It does this through the dynamic subplan construct.

Issues None identified.

Solutions N/A.

164 Chapter 4 Workflow Control-Flow Patterns

Figure 135: Multiple Instances without a priori Run-Time Knowledge (Variant 1)

Figure 136: Multiple Instances without a priori Run-Time Knowledge (Variant 2)

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption.

Pattern WCF-28 (Static Partial Join for Multiple Instances)

Description Within a given process instance, multiple concurrent instances of a task (say
m) can be created. The required number of instances is known when the first task instance
commences. Once n of the task instances have completed (where n is less than m), the next
task in the process is triggered. Subsequent completions of the remaining m-n instances are
inconsequential, however all instances must have completed in order for the join construct
to reset and be subsequently re-enabled.

Example

– Examine 10 samples from the production line for defects. Continue with the next task
when 7 of these examinations have been completed.

Motivation The Static Partial Join for Multiple Instances pattern is an extension to
the Multiple Instances with a priori Runtime Knowledge pattern which allows the process
instance to continue once a given number of the task instances have completed rather than
requiring all of them to finish before the subsequent task can be triggered.

Section 4.1 Revisiting the control-flow patterns 165

Overview The general format of the Static Partial Join for Multiple Instances pattern is
illustrated in Figure 137. This diagram focuses only on one process instance in isolation.
Transition A corresponds to the multiple instance task. In terms of the operation of this
pattern, once the input place i1 is triggered for a case, m instances of the multi-instance
task A are initiated concurrently and an “active” status is recorded for the pattern. These
instances proceed independently and once n of them have completed7, the join can be
triggered and a token placed in output place o1 signalling that the thread of control can be
passed to subsequent tasks in the process model. Simultaneously with the join firing, the
token is removed from the active place allowing the remaining n - m tasks to complete.
Once all m instances of task A have finished, the status of the pattern changes to “ready”
allowing it to be re-enabled. This realization uses the Distributed Data Processing CPN
pattern (cf. page 65) to synchronize branches between transitions start and join. The
NBSD Filter CPN pattern (cf. page 47) is used to enable the join transition when sufficient
number of instances have completed, and to complete all remaining instances in one go by
transition complete afterwards.

i1

piID

UNIT

active

A

piID

INT

joinstart

piID piID

p2

ready

UNIT

p3

piID

counter complete

pi

()

()

() ()

m`pi
p1

pi pi

[x=m orelse x=n]

pi

m

m

()

m

[min<=m,
m<=max]

(m-x)`pi

x

x

x`pi
o1

Figure 137: Static Partial Join implementation for Multiple Instances

There are two variants of this pattern which relax some of the restrictions associated
with the form of the pattern described above. First, the Canceling Partial Join for Multiple
Instances pattern removes the need to wait for all of the task instances to complete by
canceling any remaining task instances as soon as the join fires. It is illustrated in Figure
138 and discussed further on page 166.

The second, the Dynamic Partial Join for Multiple Instances pattern allows the value of
m (i.e. the number of instances) to be determined during the execution of the task instances.
In particular, it allows additional task instances to be created “on the fly”. This pattern
is illustrated in Figure 139 and described in further detail on page 167.

Context There are two context conditions associated with this pattern: (1) the initial
number of concurrent task instances (denoted by variable m in Figure 137) is known prior
to task commencement and (2) the number of tasks that need to be completed before
subsequent tasks in the process model can be triggered (denoted by variable n in Figure
137) is also known prior to task commencement.

Implementation BPMN and XPDL both appear to offer support for this pattern via the

7Note that n is a constant in this case.

166 Chapter 4 Workflow Control-Flow Patterns

Multiple Instance Loop Activity construct where the MI Flow Condition attribute is set
to complex and ComplexMI FlowCondition is an expression that evaluates to true when
exactly n instances have completed causing a single token to be passed on to the following
task. However no detail is provided to explain how the ComplexMI FlowCondition is
specified hence this is considered to constitute partial support for the pattern.

Issues None identified.

Solutions N/A.

Evaluation Criteria An offering achieves full support if it provides a construct that
satisfies the description and context criteria for the pattern. It achieves partial support if
there is any ambiguity associated with the specification of the join condition.

Pattern WCF-29 (Canceling Partial Join for Multiple Instances)

Description Within a given process instance, multiple concurrent instances of a task (say
m) can be created. The required number of instances is known when the first task instance
commences. Once n of the task instances have completed (where n is less than m), the next
task in the process is triggered and the remaining m−n instances are canceled.

Example

– Run 500 instances of the Protein Test task with distinct samples. Once 400 have com-
pleted, cancel the remaining instances and initiate the next task.

Motivation This pattern is a variant of the Multiple Instances with a priori Runtime
Knowledge pattern that expedites process throughput by both allowing the process to
continue to the next task once a specified number (n) of the multiple instance tasks have
completed and also cancels any remaining task instances negating the need to expend any
further effort executing them.

Overview Figure 138 illustrates the operation of this pattern. It is similar in form to
that for the Static Partial Join for Multiple Instances pattern (WCF-34) but functions
in a different way once the join has fired. At this point any remaining instances which
have not already commenced are “bypassed” by allowing the skip task to execute in their
place. The skip task executes almost instantaneously for those and the pattern is almost
immediately able to reset. In addition to the CPN patterns used in the Static Partial
Join for MI pattern, this realization uses the Non-Deterministic XOR-Split CPN pattern
(cf. page 38) to effect cancelation of the task individual instances (i.e. either transition A

or skip is executed depending on the circumstances).

Figure 138: Canceling Partial Join implementation for Multiple Instances

Section 4.1 Revisiting the control-flow patterns 167

Context This pattern has the same context conditions as the Static Partial Join for Mul-
tiple Instances pattern: (1) the number of concurrent task instances (denoted by variable
m in Figure 137) is known prior to task commencement and (2) the number of tasks that
need to complete before subsequent tasks in the process model can be triggered (denoted
by variable n in Figure 137) is also known prior to task commencement.

Implementation This pattern relies on the availability of a Cancel Task or Cancel Region
capability within an offering and at least one of these patterns needs to be supported for
this pattern to be facilitated. Both BPMN and XPDL appear to offer support for this
pattern by associating an error type intermediate trigger with the multiple instance task.
Immediately following this task is a task that issues a cancel event effectively terminating
any remaining task instances once the first n-of-them have completed. However it is unclear
how the ComplexMI FlowCondition should be specified to allow the cancelation to be
triggered once n task instances have completed.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption. An offering achieves partial support if there is any ambiguity associ-
ated with the implementation of the pattern (e.g., if it is unclear how the join condition is
specified).

Pattern WCP-30 (Dynamic Partial Join for Multiple Instances)

Description Within a given process instance, multiple concurrent instances of a task can
be created. The required number of instances may depend on a number of runtime factors,
including state data, resource availability and inter-process communications and is not
known until the final instance has completed. At any time, whilst instances are running,
it is possible for additional instances to be initiated providing the ability to do so has
not been disabled. A completion condition is specified which is evaluated each time an
instance of the task completes. Once the completion condition evaluates to true, the next
task in the process is triggered. Subsequent completions of the remaining task instances
are inconsequential and no new instances can be created.

Example

– The despatch of an oil rig from factory to site involves numerous transport shipment
tasks. These occur concurrently and although sufficient tasks are started to cover initial
estimates of the required transport volumes, it is always possible for additional tasks to be
initiated if there is a shortfall in transportation requirements. Once 90% of the transport
shipment tasks are complete, the next task (invoice transport costs) can commence. The
remaining transport shipment tasks continue until the whole rig has been transported.

Motivation This pattern is a variant of the Multiple Instances without a priori Runtime
Knowledge pattern that provides the ability to trigger the next task once a nominated
completion condition is satisfied.

Overview Figure 139 illustrates the operation of this pattern. The multiple instance task
is illustrated by transition A. At commencement, the number of instances initially required
is indicated by variable m. Additional instances may be added to this at any time via the
start instance transition. At commencement, the pattern is in the active state. Once
enough instances of task A have completed and the join transition has fired, the next task

168 Chapter 4 Workflow Control-Flow Patterns

is enabled (illustrated via a token being placed in the output place o1) and the remaining
instances of task A run to completion before the complete transition is enabled. No new
instances can be created at this time. Finally when all instances of A have completed, the
pattern resets and can be re-enabled. An important feature of the pattern is the ability
to disable further creation of task instances at any time after the first instances have been
created. In this realization, the same set of CPN patterns is used as for the Static Partial
Join for MI pattern. In addition, the BSD Filter CPN pattern (cf. page 43) is used to
allow the dynamic creation of new process instances by the start instance transition
once the initial tasks have been initiated up to the time when the join transition fires.

Figure 139: Dynamic Partial Join implementation for Multiple Instances

Context This pattern has two context conditions: (1) the number of concurrent task
instances to be started initially (denoted by variable m in Figure 137) is known prior to
task commencement and (2) it must be possible to access any data elements or other
necessary resources required to evaluate the completion condition at the conclusion of each
task instance.

Implementation Of the offerings identified, only FLOWer provides support for the dy-
namic creation of multiple instance tasks (via dynamic subplans), however it requires all of
them to be completed before any completion conditions associated with a dynamic subplan
(e.g., partial joins) can be evaluated and subsequent tasks can be triggered. This is not
considered to constitute support for this pattern.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumptions. It achieves partial support if the creation of task instances cannot
be disabled once the first task instance has commenced.

Section 4.1 Revisiting the control-flow patterns 169

Class: Concurrency Control patterns

Concurrency Control patterns describe situations where a number of restrictions are
imposed on the execution order of several available branches, i.e. none of the branches
may execute simultaneously, and where one branch may not proceed if the other branch
is not in a certain state. The original Interleaved Parallel Routing pattern is extended
to two new patterns: Critical Section and Interleaved Routing. These three patterns
have been combined together with the Milestone pattern as each of them operate in the
context where execution of one branch is dependent on the state of other branch(es).
This group of patterns consists of four patterns:

- the Interleaved Routing pattern denotes situations where a group of tasks are
executed sequentially in any order, providing that none of them execute concur-
rently;

- the Interleaved Parallel Routing pattern imposes a partial ordering over the exe-
cution of tasks described by the Interleaved Routing pattern;

- the Critical Section pattern extends a group of tasks, whose execution must be
interleaved as specified by the Interleaved Routing pattern, to a group of process
fragments, thus providing the ability to prevent concurrent execution of specific
parts of a process within a given process instance; and

- the Milestone pattern describes the synchronization of two distinct branches of
a process instance, such that one branch cannot proceed unless the other branch
is in a specified state.

Pattern WCF-31 (Interleaved Routing)

Description Each member of a set of tasks must be executed once. They can be executed
in any order but no two tasks can be executed at the same time (i.e. no two tasks can
be active for the same process instance at the same time). Once all of the tasks have
completed, the next task in the process can be initiated.

Example

– The check-oil, test-feeder, examine-main-unit and review-warranty tasks all need to be
undertaken as part of the machine-service process. Only one of them can be undertaken
at a time, however they can be executed in any order.

Motivation The Interleaved Routing pattern allows a sequence of tasks to be executed in
any order, but not simultaneously.

Overview Figure 140 illustrates the operation of this pattern. After A is completed, tasks
B, C, and D can be completed in any order. The mutex place ensures that only one of
them can be executed at any time. After all of them have been completed, task E can be
undertaken. The realization of the mutex place corresponds to a simple variant of the Lock
Manager CPN pattern (cf. page 98). Thread split and join associated with transitions A

and E correspond to the Distributed Data Processing (cf. page 65), where the role of the
data perspective is minimal and is used for the purpose of the process instance identification
(as described by the ID Matching CPN pattern on page 49)).

Context There is one consideration associated with the use of this pattern: tasks must
be initiated and completed on a sequential basis, in particular it is not possible to suspend
one task during its execution to work on another.

170 Chapter 4 Workflow Control-Flow Patterns

Figure 140: Interleaved Routing pattern

Implementation In order to effectively implement this pattern, an offering must have an
integrated notion of state that is available during execution of the control-flow perspective.
COSA has this from its Petri net foundation and is able to directly support the pattern.
Other offerings lack this capability and hence are not able to directly support this pattern.
BPEL (although not Oracle BPEL) can achieve similar effects using serializable scopes
within the context of a <pick> construct. FLOWer has a distinct foundation to that
inherent in other workflow products in which all tasks in a case are always allocated to the
same resource for completion hence interleaving of task execution is guaranteed, however
it is also possible for a resource to suspend a task during execution to work on another
hence the context conditions for this pattern are not fully satisfied. BPMN and XPDL
indirectly support the pattern through the use of ad-hoc processes however it is unclear
how it is possible to ensure that each task in the ad-hoc subprocess is executed precisely
once.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption. An offering is rated as having partial support if it has limitations on
the range of tasks that can be coordinated (e.g., tasks must be in the same process block)
or if it cannot enforce that tasks are executed precisely once or ensure tasks are not able
to be suspended once started whilst other tasks in the interleave set are commenced.

Pattern WCF-32 (Interleaved Parallel Routing)

Description A set of tasks has a partial ordering defining the requirements with respect
to the order in which they must be executed. Each task in the set must be executed once
and they can be completed in any order that accords with the partial order. Moreover,
any tasks in the set can be routed to resources for execution as soon as they are enabled,
thus there is the provision within the partial ordering for parallel routing of tasks should
more than one of them be enabled simultaneously and there is no necessity that they be
routed sequentially. However, there is an additional requirement, that no two tasks can be
executed at the same time (i.e. no two tasks in the set can be active for the same process
instance at the same time), hence the execution of tasks is also interleaved.

Example

Section 4.1 Revisiting the control-flow patterns 171

– When despatching an order, the pick goods, pack goods and prepare invoice tasks must
be completed. The pick goods task must be done before the pack goods task. The prepare
invoice task can occur at any time. Only one of these tasks can be done at any time for
a given order.

Motivation The Interleaved Parallel Routing pattern offers the possibility of relaxing the
strict ordering that a process usually imposes over a set of tasks. Note that Interleaved
Parallel Routing is related to mutual exclusion, i.e. a semaphore makes sure that tasks are
not executed at the same time without enforcing a particular order.

Overview Figure 141 provides an example of Interleaved Parallel Routing. Place p3 en-
forces that tasks B, C and D be executed in some order. In this example, the permissible
task orderings are: ABDCE, ABCDE and ACBDE. For the realization of this CPN model, the
same set of the CPN patterns as for the Interleaved Routing pattern has been used.

pi

pi pi

()

()()
pi

pi pi
pi

pi pi

pi pi

pi
()

()

()

A E

B

C

Dp1

piID

p3

piID

mutex

Unit

()

p2

piID

p4

piID

i1

piID

o1

piID

p5

piID

Figure 141: Interleaved Parallel Routing pattern

Context There is one context condition associated with this pattern: tasks must be initi-
ated and completed on a sequential basis and it is not possible to suspend one task during
its execution to work on another.

Implementation In order to effectively implement this pattern, an offering must have an
integrated notion of state that is available during execution of the control-flow perspective.
COSA has this from its Petri net foundation and is able to directly support the pattern.
Other offerings lack this capability and hence are not able to directly support this pattern.
BPEL (although surprisingly not Oracle BPEL) can indirectly achieve similar effects using
serializable scopes within the context of a <pick> construct although only tasks in the
same block can be included within it. It also has the shortcoming that every permissible
execution sequence of interleaved tasks must be explicitly modeled. FLOWer has a distinct
foundation to that inherent in other workflow products in which all tasks in a case are
always allocated to the same resource for completion hence interleaving of task execution
is guaranteed, however it is also possible for a resource to suspend a task during execution
to work on another hence the context condition for this pattern is not fully satisfied.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption. It achieves a partial support rating if there are any limitations on the
set of tasks that can be interleaved or if tasks can be suspended during execution.

172 Chapter 4 Workflow Control-Flow Patterns

Pattern WCF-33 (Critical Section)

Description Two or more connected subgraphs of a process model are identified as “critical
sections”. At runtime for a given process instance, only tasks in one of these “critical
sections” can be active at any given time. Once execution of the tasks in one “critical
section” commences, it must complete before another “critical section” can commence.

Example

– Both the take-deposit and insurance-payment tasks in the holiday booking process require
the exclusive use of the credit-card-processing machine. Consequently only one of them
can execute at any given time.

Motivation The Critical Section pattern provides a means of limiting two or more sections
of a process from executing concurrently. Generally this is necessary if tasks within this
section require exclusive access to a common resource (either data or a physical resource)
necessary for a task to be completed. However, there are also regulatory situations (e.g.,
as part of due diligence or quality assurance processes) which necessitate that two tasks
do not occur simultaneously.

Overview The operation of this pattern is illustrated in Figure 142. The mutex place
serves to ensure that within a given process instance, only the sequence BD or CE can be
active at any given time. For the realization of this CPN model, the same set of the CPN
patterns as for the Interleaved Routing pattern has been used, with the only difference
being that the scope of the process fragments interleaved via the mutex place is larger and
consists of multiple transitions.

critical section

critical section

pi

pi

pi
() ()

()
pi

pi pi

pi pi

pi pi pi

pi pi

pi

()

()

A F

B

C

D

E

p1

piID

p5

piID

Unit

p2

piID

p4

piID

i1

piID

o1

piID

p3

piID

p6

piID

mutex

Figure 142: Critical Section pattern

Context There is one consideration associated with the use of this pattern: tasks in
critical sections must be initiated and completed on a sequential basis, in particular it is
not possible to suspend one task during its execution to work on another.

Implementation Although useful, this pattern is not widely supported amongst the of-
ferings examined. BPEL allows it to be directly implemented through its serializable scope
functionality. COSA supports this pattern by including a mutex place in the process
model to prevent concurrent access to critical sections. FLOWer provides indirect support
through the use of data elements as semaphores.

Issues None identified.

Solutions N/A.

Section 4.1 Revisiting the control-flow patterns 173

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption. Where an offering is able to achieve similar functionality through
additional configuration or programmatic extension of its existing constructs (but does not
have a specific construct for the pattern) this qualifies as partial support.

Pattern WCF-34 (Milestone)

Description A task is only enabled when the process instance (of which it is part) is
in a specific state (typically in a parallel branch). The state is assumed to be a specific
execution point (also known as a milestone) in the process model. When this execution
point is reached the nominated task can be enabled. If the process instance has progressed
beyond this state, then the task cannot be enabled now or at any future time (i.e. the
deadline has expired). Note that the execution does not influence the state itself, i.e.
unlike normal control-flow dependencies it is a test rather than a trigger.

Example

– Most budget airlines allow the routing of a booking to be changed providing the ticket
has not been issued;

– The enrol student task can only execute whilst new enrolments are being accepted. This
is after the open enrolment task has completed and before the close off enrolment task
commences.

Motivation The Milestone pattern provides a mechanism for supporting the conditional
execution of a task or subprocess (possibly on a repeated basis) where the process instance
is in a given state. The notion of state is generally taken to mean that control-flow has
reached a nominated point in the execution of the process instance (i.e. a Milestone). As
such, it provides a means of synchronizing two distinct branches of a process instance, such
that one branch cannot proceed unless the other branch has reached a specified state.

Overview The nominal form of the Milestone pattern is illustrated by Figure 143. Task
A cannot be enabled when it receives the thread of control unless the other branch is
in state p1 (i.e. there is a token in place p1). This situation presumes that the process
instance is either in state p1 or will be at some future time. It is important to note that
the repeated execution of A does not influence the top parallel branch. Note that the A

transition performs synchronization of threads belonging to the same process instance (for
this purpose the ID Matching CPN pattern (cf. page 49) is used).

pi pi pi pi

pi pi

pipi

B C

A

i1

piID piID

o1

piID

on

piID

in

piID

p1

Figure 143: Milestone pattern

Note that A can only occur if there is a token in p1. Hence a Milestone may cause a
potential deadlock. There are at least two ways of avoiding this. First of all, it is possible
to define an alternative task for A which takes a token from the input place(s) of A without
taking a token from p1. One can think of this task as a time-out or a skip task. This way
the process does not get stuck if C occurs before A. Moreover, it is possible to delay the

174 Chapter 4 Workflow Control-Flow Patterns

execution of C until the lower branch finishes. Note that in both cases A may be optional
(i.e. not execute at all) or can occur multiple times because the token in p1 is only tested
and not removed.

Context There are no specific context conditions for this pattern.

Implementation The necessity for an inherent notion of state within the process model
means that the Milestone pattern is not widely supported. Of the offerings examined,
only COSA is able to directly represent it. FLOWer offers indirect support for the pattern
through the introduction of a data element for each situation in which a Milestone is
required. This data element can be updated with a value when the Milestone is reached
and the branch which must test for the Milestone achievement can do so using the FLOWer
milestone construct. Note that this is only possible in a data-driven system like FLOWer.
It is not possible to use variables this way in a classical control-flow driven system because
a “busy wait” would be needed to constantly inspect the value of this variable. (Note that
FLOWer only re-evaluates the state after each change with respect to data elements).

Issues None identified.

Solutions N/A.

Evaluation Criteria An offering achieves full support if it provides a construct that
satisfies the description for the pattern. It receives a partial support rating if there is not
a specific construct for the Milestone but it can be achieved indirectly.

Class: Triggering patterns

Triggering patterns describe situations where the moment at which a work item com-
mences needs to be synchronized with a signal (or trigger) from external environment.
The ability to respond to external signals within a process instance was not well cov-
ered by the original patterns other than by the Deferred Choice (cf. page 127) which
allows a decision regarding possible execution paths to be based on environmental in-
put. Therefore two new patterns are introduced to denote the ability of external signals
to affect process execution. Depending on the nature of the trigger, we distinguish the
Transient Trigger and Persistent Trigger patterns.

Pattern WCF-35 (Transient Trigger)

Description The ability for a task instance to be triggered by a signal from another part
of the process or from the external environment. These triggers are transient in nature and
are lost if not acted on immediately by the receiving task. A trigger can only be utilized
if there is a task instance waiting for it at the time it is received.

Examples

– Start the Handle Overflow task immediately when the dam capacity full signal is re-
ceived.

– If possible, initiate the Check Sensor task each time an alarm trigger signal is received.

Motivation Transient triggers are a common means of signalling that a pre-defined event
has occurred and that an appropriate handling response should be undertaken – comprising
either the initiation of a single task, a sequence of tasks or a new thread of execution in a
process. Transient triggers are events which must be dealt with as soon as they are received.
In other words, they must result in the immediate initiation of a task. The process provides

Section 4.1 Revisiting the control-flow patterns 175

no form of memory for transient triggers. If they are not acted on immediately, they are
irrevocably lost.

Overview There are two main variants of this pattern depending on whether the process
is executing in a safe execution environment or not. Figure 144 shows the safe variant, only
one instance of task B can wait on a trigger at any given time. Note that place enabled

holds a token for each possible process instance. This place ensures that at most one
instance of task B exists at any time. In both realization variants, the ID Matching CPN
pattern (cf. page 49) is used for matching an external trigger with relevant process instance.
Furthermore, the safe variant of the transient trigger realization uses the anti-place of the
Capacity Bounding pattern (cf. page 71) to ensure that only one instance of task B can
wait for a trigger.

enabled

()

()

()

Figure 144: Transient Trigger pattern (safe variant)

The alternative option for unsafe processes is shown in Figure 145. Multiple instances
of task B can remain waiting for a trigger to be received. However only one of these can
be enabled for each trigger when it is received.

piID

Ai1
pi

piID piID piID

p1
pi

B
pi pi

p2 C
pi pi

o1

trigger

Trigger

t

Remove
trigger

t

[match(t,pi)]

t

Produce
trigger

Figure 145: Transient trigger pattern (unsafe variant)

Context There are no specific context conditions associated with the pattern.

Implementation Staffware provides support for transient triggers via the Event Step
construct. Similarly COSA provides a trigger construct which can operate in both syn-
chronous and asynchronous mode supporting transient and persistent triggers respectively.

176 Chapter 4 Workflow Control-Flow Patterns

Both of these offerings implement the safe form of the pattern (as illustrated in Figure 144).
SAP Workflow provides similar support via the “wait for event” step construct. UML 2.0
ADs provide the ability for signals to be discarded where there are not immediately re-
quired through the explicit enablement feature of the AcceptEventAction construct which
is responsible for handling incoming signals.

Issues One consideration that arises with the use of transient triggers is what happens
when multiple triggers are received simultaneously or in a very short time interval. Are the
latter triggers inherently lost as a trigger instance is already pending or are all instances
preserved (albeit for a potentially short timeframe)?

Solutions In general, in the implementations examined (Staffware, COSA and SAP Work-
flow) it seems that all transient triggers are lost if they are not immediately consumed.
There is no provision for transient triggers to be duplicated.

Evaluation Criteria An offering achieves full support if it provides a construct that
satisfies the description for the pattern.

Pattern WCF-36 (Persistent Trigger)

Description The ability for a task instance to be triggered by a signal from another part
of the process or from the external environment. These triggers are persistent in form and
are retained by the process until they can be acted on by the receiving task.

Examples

– Initiate the Staff Induction task each time a new staff member event occurs.
– Start a new instance of the Inspect Vehicle task for each service overdue signal that is

received.

Motivation Persistent triggers are inherently durable in nature, ensuring that they are
not lost in transit and are buffered until they can be dealt with by the target task. This
means that the signalling task can be certain that the trigger will result in the task to
which they are directed being initiated either immediately (if it already has received the
thread of control) or at some future time.

Overview There are two variants of the persistent triggers. Figure 146 illustrates the
situation where a trigger is buffered until control-flow passes to the task to which the
trigger is directed. Once this task has received a trigger, it can commence execution.
Alternatively, the trigger can initiate a task (or the beginning of a thread of execution) that
is not contingent on the completion of any preceding tasks. This scenario is illustrated by
Figure 147. The realization in Figure 146 uses the ID Matching CPN pattern (cf. page 49)
to identify the correspondence between the process instance pi and an external trigger t
that has been received.

Context There are no specific context conditions associated with the pattern.

Implementation Of the offerings examined, COSA provide support for persistent triggers
via its integrated trigger construct, SAP Workflow has the “wait for event” step construct,
FLOWer and FileNet provide the ability for tasks to wait on specific data conditions that
can be updated from outside the process. The business process modelling formalisms
BPMN, XPDL and BPEL all provide a mechanism for this form of triggering via messages
and in all cases the messages are assumed to be durable in nature and can either trigger a
standalone task or can enable a blocked task waiting on receipt of a message to continue.
UML 2.0 Activity Diagrams provide a similar facility using signals. Although EPCs provide
support for multiple input events which can be utilized as persistent triggers, it is not

Section 4.1 Revisiting the control-flow patterns 177

Figure 146: Persistent Trigger pattern

produce
trigger

start
thread

Trigger

B

o1

t

t

create_pi(t)

Figure 147: Persistent Trigger pattern (new execution thread variant)

possible to differentiate between them hence this is viewed as partial support. Note that if
the pattern is not directly supported, it is often possible to implement persistent triggers
indirectly by adding a dummy task which “catches” the trigger.

Issues None identified.

Solutions N/A

Evaluation Criteria An offering achieves full support if it has a construct that satisfies
the description for the pattern. If triggers do not retain a discrete identity when received
and/or stored, an offering is viewed as providing partial support.

Class: Cancelation and Completion patterns

Cancelation and Completion patterns describe situations where an individual task,
an arbitrary group of tasks in a process, or a complete process instances need to be
canceled during execution. Previous notions of cancelation only related to individual
tasks and complete process instances (as specified in the Cancel Task and Cancel Case
patterns respectively). The Cancel Region pattern has been introduced in order to
deal with cancelation in a more general sense where arbitrary groups of tasks in a
process need to be canceled during execution. Additionally, the multiple instances
task is considered to be a special case, for which both the ability to cancel and to
force its completion during execution are recognized (as described by the Cancel MI
Task and Complete MI Task patterns respectively). Not all task instances may have
completed when the decision regarding the cancelation or forced-completion of the MI
task is taken. Therefore the Cancel MI Task and Complete MI Task patterns explicitly
specify how the remaining instances and the flow of control are dealt with.

178 Chapter 4 Workflow Control-Flow Patterns

In Section 4.2.1 we propose a graphical notation to visually depict the cancelation
set associated with a given task. Although this graphical notation is used to differenti-
ate the operational semantics of process modeling entities encountered in any PAIS, one
can extend it with multiple instance tasks in order to differentiate between cancelation
and force completion.

Pattern WCF-37 (Cancel Task)

Description An enabled task is withdrawn prior to or during to its execution. If the task
has started, it is disabled and, where possible, the currently running instance is halted and
removed.

Examples

– The assess damage task is undertaken by two insurance assessors. Once the first assessor
has completed the task, the second is canceled;

– The purchaser can cancel their building inspection task at any time before it commences.

Motivation The Cancel Task pattern provides the ability to withdraw a task which has
been enabled or is already executing. This ensures that it will not commence or complete
execution.

Overview The general interpretation of the Cancel Task pattern is illustrated by Figure
148. The thread of control which has enabled task B is removed, preventing the task from
proceeding. In this realization, we used the Non-deterministic XOR-Split CPN pattern
(cf. page 38) to define the choice between executing task B and its cancelation on a non-
deterministic basis.

pi pi pi pi

pi

pi pi
A B

cancel B

Ci1

piID

p1

piID

p2

piID

o1

piID

Figure 148: Cancel Task pattern (Variant 1)

There is also a second variant of the pattern where the task has already commenced
execution but has not yet completed. This scenario is shown in Figure 149, where a task
which has been enabled or is currently executing can be canceled. It is important to note for
both variants that cancelation is not guaranteed and it is possible that the task will continue
executing to completion. In effect, the cancelation vs continuation decision operates as a
Deferred Choice with a race condition being set up between the cancelation event and the
much slower task of resources responding to work assignment. For all practical purposes,
it is much more likely that the cancelation will be effected rather than the task being
continued.

Where guaranteed cancelation is required, the implementation of tasks should take the
form illustrated in Figure 150. The decision to cancel task B can only be made after it
has been enabled and prior to it completing. Once this decision is made, it is not possible
for the task to progress any further. For obvious reasons, it is not possible to cancel a
task which has not been enabled (i.e. there is no “memory” associated with the action of

Section 4.1 Revisiting the control-flow patterns 179

Figure 149: Cancel task pattern (Variant 2)

pi pi pi pi pi pipi

pi
pi

A CstartB endB

terminate

i1

piID

p2

piID

p1

piID

o1

piID

B-run.

piID

cancelB

enabled

activity B

() () ()

()

()

()()

Unit

Unit

pi

Figure 150: Cancel task pattern with guaranteed termination

canceling a task in the way that there is for triggers) nor is it possible to cancel a task
which has already completed execution.

Context There are no specific context conditions associated with the pattern.

Implementation The majority of the offerings examined provide support for this pattern
within their process models. Most support the first variant as illustrated in Figure 148:
Staffware does so with the withdraw construct, COSA allows tokens to be withdrawn
from the places before tasks, iPlanet provides the AbortActivity method, FileNet provides
the <Terminate Branch> construct and SAP Workflow provides the process control step
for this purpose although it has limited usage. BPEL supports the second variant via
fault compensation handlers attached to tasks, as do BPMN and XPDL using error type
triggers attached to the boundary of the task to be canceled. UML 2.0 ADs provide a
similar capability by placing the task to be canceled in an interruptible region triggered
by a signal or another task. FLOWer does not directly support the pattern although tasks
can be skipped and redone.

Issues None identified.

Solutions N/A.

Evaluation Criteria An offering achieves full support if it provides a construct that
satisfies the description for the pattern. If there are any side-effects associated with the
cancelation (e.g., forced completion of other tasks, the canceled task being marked as
complete), the offering is rated as having partial support.

Pattern WCF-38 (Cancel Region)

Description The ability to disable a set of tasks in a process instance. If any of the tasks

180 Chapter 4 Workflow Control-Flow Patterns

are already executing (or are currently enabled), then they are withdrawn. The tasks need
not be a connected subset of the overall process model.

Examples

– Stop any tasks in the Prosecution process which access the evidence database from
running.

– Withdraw all tasks in the Waybill Booking process after the freight-lodgement task.

Motivation The option of being able to cancel a series of (potentially unrelated) tasks is
a useful capability, particularly for handling unexpected errors or for implementing forms
of exception handling.

pi

active

pi

pi

pi

pi

pi
pi

region
start

piID

start

t

t
SKIP

pi

t

cancel
region

Trigger

cancel

t'
SKIP

t'

piID

normal
end

end
bypass

end

pi

pi

[match(t,pi)]

Figure 151: Cancel Region implementation

Overview The general form of this pattern is illustrated in Figure 151. It is based on
the premise that every task in the required region has an alternate “bypass” task. When
the cancelation of the region is required, the process instance continues execution, but the
bypass tasks are executed instead of the original tasks. As a consequence, no further work
occurs on the tasks in the cancelation region. However, as shown for the Cancel Case
(WCF-39) pattern, there are several alternative mechanisms that can be used to cancel
parts of a process.

Context There are no specific context conditions associated with the pattern.

Implementation The concept of cancelation regions is not widely supported. Staffware
offers the opportunity to withdraw steps but only if they have not already commenced
execution. FLOWer allows individual tasks to be skipped but there is no means of canceling
a group of tasks. UML 2.0 Activity Diagrams are the only offering examined which provides
complete support for this pattern: the InterruptibleActivityRegion construct allows a set
of tasks to be canceled. BPMN and XPDL offer partial support by enclosing the tasks
that will potentially be canceled in a subprocess and associating an error event with the
subprocess to trigger cancelation when it is required. In both cases, the shortcoming of this
approach is that the tasks in the subprocess must be a connected subgraph of the overall
process model. Similarly BPEL only supports cancelation of tasks in the same scope hence
it also achieves a partial rating as it is not possible to cancel an arbitrary group of tasks.

Section 4.1 Revisiting the control-flow patterns 181

As COSA has an integrated notion of state, it is possible to implement cancelation regions
in a similar way to that presented in Figure 151 however the overall process model is likely
to become intractable for cancelation regions of any reasonable scale hence this is viewed
as partial support.

Issues One issue that can arise with the implementation of the Cancel Region pattern
occurs when the canceling task lies within the cancelation region. Although this task must
run to completion and cause the cancelation of all of the tasks in the defined cancelation
region, once this has been completed, it too must be canceled.

Solutions The most effective solution to this problem is to ensure that the canceling task
is the last of those to be processed (i.e. the last to be terminated) of the tasks in the
cancelation region. The actual cancelation occurs when the task to which the cancelation
region is attached completes execution.

Evaluation Criteria An offering achieves full support if it provides a construct that
satisfies the description for the pattern. It rates as partial support if the process model
must be changed in any way (e.g., use of subprocesses, inclusion of bypass tasks) in order
to accommodate cancelation regions.

Pattern WCF-39 (Cancel Case)

Description A complete process instance is removed. This includes currently executing
tasks, those which may execute at some future time and all subprocesses. The process
instance is recorded as having completed unsuccessfully.

Examples

– During an insurance claim process, it is discovered that the policy has expired and, as
a consequence, all tasks associated with the particular process instance are canceled;

– During a mortgage application, the purchaser decides not to continue with a house pur-
chase and withdraws the application.

Motivation This pattern provides a means of halting a specified process instance and
withdrawing any tasks associated with it.

Overview Cancelation of an entire case involves the disabling of all currently enabled
tasks. Figure 152 illustrates one scheme for achieving this. It is based on the identification
of all possible sets of states that the process may exhibit for a process instance. Each
combination has a transition associated with it (illustrated by C1, C2,. . . etc) that disables
all enabled tasks. Where cancelation of a case is enabled, it is assumed that precisely one
of the canceling transitions (i.e. C1, C2, . . .) will fire canceling all necessary enabled tasks.
To achieve this, it is necessary that none of the canceling transitions represent a state
that is a superset of another possible state, otherwise tokens may be left behind after the
cancelation.

An alternative scheme is presented in Figure 153, where every state has a set of cance-
lation transitions associated with it (illustrated by C1, C2 . . . etc.). When the cancelation
is initiated, these transitions are enabled for a very short time interval (in essence the
difference between time t and t + epsilon where epsilon is a time interval approaching
zero), thus effecting an instantaneous cancelation for a given state that avoids the potential
deadlocks that might arise with the approach shown in Figure 152. Note that time is used
as a priority mechanism as CPNs do not directly support this.

A more general approach to cancelation has been illustrated in Figure 151. This may be
used to cancel individual tasks, regions or even whole cases. It is premised on the creation
of an alternative “bypass” task for each task in a process that may need to be canceled.

182 Chapter 4 Workflow Control-Flow Patterns

piID

piID

piID

piID

end

piID

piID

start

C1 C2
CN

Trigger

[match(t,pi)]
[match(t,pi)][match(t,pi)]

piID

Cancel

Figure 152: Cancel Case pattern (Variant 1)

When a cancelation is initiated, the case continues processing but the “bypass” tasks are
executed rather than the normal tasks, so in effect no further work is actually achieved on
the case.

Context There is an important context condition associated with this pattern: cancelation
of an executing case must be viewed as unsuccessful completion of the case. This means
that even though the case was terminated in an orderly manner, perhaps even with tokens
reaching its endpoint, this should not be interpreted in any way as a successful outcome.
For example, where a log is kept of events occurring during process execution, the case
should be recorded as incomplete or canceled.

Implementation There is reasonable support for this pattern amongst the offerings ex-
amined. SAP Workflow provides the process control step for this purpose, FileNet provides
the <Terminate Process> construct, BPEL provides the <terminate> construct, BPMN
and XPDL provide support by including the entire process in a transaction with an as-
sociated end event that allows all executing tasks in a process instance to be terminated.
Similarly UML 2.0 ADs achieve the same effect using the InterruptibleActivityRegion con-
struct. FLOWer provides partial support for the pattern through its ability to skip or redo
entire cases.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption. If there are any side-effects associated with the cancelation (e.g.,
forced completion of other tasks, the process instance being marked as complete), then the
offering is rated as having partial support.

Pattern WCF-40 (Cancel Multiple Instance Task)

Description Within a given process instance, multiple instances of a task can be created.
The required number of instances is known at design time. These instances are independent
of each other and run concurrently. At any time, the multiple instance task can be canceled

Section 4.1 Revisiting the control-flow patterns 183

start

piID

piID

piID

piID

piID

piID

end

piID

t

t

t

tt

begin
cancel cancel

end

t
t@+epsilon

t

Trigger

cancel

p1

p2

C1 C2 CN

[match(t,pi)] [match(t,pi)] [match(t,pi)]

pi
pi

pi

Figure 153: Cancel Case pattern (Variant 2)

and any instances which have not completed are withdrawn. Task instances that have
already completed are unaffected.

Example

– Run 500 instances of the Protein Test task with distinct samples. If it has not completed
one hour after commencement, cancel it.

Motivation This pattern provides a means of canceling a multiple instance task at any
time during its execution such that any remaining instances are canceled. However any
instances which have already completed are unaffected by the cancelation.

Overview There are two variants of this pattern depending on whether the task instances
are started sequentially or simultaneously. These scenarios are depicted in Figures 154 and
155. In both cases, transition C corresponds to the multiple instance task, which is executed
numinst times. When the cancel transition is enabled, any remaining instances of task C

that have not already executed are withdrawn, as is the ability to initiate any additional
instances (via the create instance transition). No subsequent tasks are enabled as a
consequence of the cancelation. Note that in the sequential and concurrent initiation
variants of the Cancel MI Task pattern utilize the Distributed Data Processing CPN pattern
(cf. page 65) to synchronize branches between transitions A and B. Additionally, we used
the Deterministic XOR-Split CPN pattern (cf. page 36) to define conditions for creating
new task instances, completing and canceling the MI task.

Context There is one context condition associated with this pattern: it is assumed that
only one instance of each multiple instance task is executing for a given case at any time.

Implementation In order to implement this pattern, an offering also needs to support

184 Chapter 4 Workflow Control-Flow Patterns

Figure 154: Cancel Multiple Instance Task pattern (sequential initiation)

one of the Multiple Instance patterns that provide synchronization of the task instances at
completion (i.e. WCF-29 – WCF-31). Staffware provides the ability to immediately termi-
nate dynamic subprocedures albeit with loss of any associated data. SAP Workflow allows
multiple instances created from a “multi-line container element” to be terminated when the
parent task terminates. BPMN and XPDL support the pattern via a MI task which has an
error type intermediate event trigger at the boundary. When the MI task is to be canceled,
a cancel event is triggered to terminate any remaining MI task instances. Similarly UML
2.0 ADs provide support by including the multiple instance task in a cancelation region.
Oracle BPEL is able to support the pattern by associating a fault or compensation handler
with a <flowN> construct. As the <flowN> construct is specific to Oracle BPEL, there
is no support for this pattern by BPEL more generally.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption. If there are any limitations on the range of tasks that can appear
within the cancelation region or the types of task instances that can be canceled then an
offering achieves a partial rating.

Pattern WCF-41 (Complete Multiple Instance Task)

Description Within a given process instance, multiple instances of a task can be created.
The required number of instances is known at design time. These instances are indepen-
dent of each other and run concurrently. It is necessary to synchronize the instances at
completion before any subsequent tasks can be triggered. During the course of execution, it
is possible that the task needs to be forcibly completed such that any remaining instances
are withdrawn and the thread of control is passed to subsequent tasks.

Example

Section 4.1 Revisiting the control-flow patterns 185

pipi

n

BCA

UNIT

p2

piID

counter

INT

o1

piID

p3

INT

piIDxN

pi

0

cancel

n

[not(canc)]

running

add
pi

piID

(i-n)`pi

i+1[not(canc)]
i

canc
cancelled

canc

true

p1

numinst

i1
(pi,numinst)

i

(i-n)`pi

i`pi

()

()

pi

0

false

canc false

i

[n<i]

n+1 n

i

BOOL
()

Figure 155: Cancel Multiple Instance Task pattern (concurrent initiation)

– Run 500 instances of the Protein Test task with distinct samples. One hour after com-
mencement, withdraw all remaining instances and initiate the next task.

Motivation This pattern provides a means of finalizing a multiple instance task that has
not yet completed at any time during its execution such that any remaining instances
are withdrawn and the thread of control is immediately passed to subsequent tasks. Any
instances which have already completed are unaffected by the cancelation.

Overview There are two variants of this pattern depending on whether the task instances
are started sequentially or simultaneously. These scenarios are depicted in Figures 156
and 157. In both cases, transition C corresponds to the multiple instance task, which
is executed numinst times. When the complete transition is enabled, any remaining
instances of task C that have not already executed are withdrawn, as is the ability to
add any additional instances (via the create instance transition). The subsequent task
(illustrated by transition B) is enabled immediately. In this realization, we used the counter-
place counters of the Capacity-Bounding CPN pattern (cf. page 71) in order to keep track
of the total number of task instances.

The counters place in Figure 156 keeps track of task instances in different states: the
p1 place stores one token for a given process instance that enables task instance creation,
instances that have been initiated are stored in the p2 place, and instances that have
completed are stored in the p3 place. Process instances that have not yet completed and
which are represented as tokens in the p2 place can be forced to complete by removing
tokens both from the p1 and p2 places, and producing a corresponding token in place p3.

Figure 157 represents the semantics of completing the multiple instance task, instances
associated with which execute concurrently. The variable numinst indicates the number
of instances of task C which need to be created. This number is both supplied to the p1

place and the count place. The count place keeps track of how many instances of task C

186 Chapter 4 Workflow Control-Flow Patterns

(numinst,i,j)(numinst,0,0)

(numinst,i,j)

pi

numinst`pi

pipipi pipipipi

C B
create

instance

[numinst>i+j]

A p3

piIDpiID

o1

piID

p1

piID

i1

piID

(numinst,i,j)(numinst,i+1,j)

(numinst-j)`pi

pi

(numinst,i,j)

[j<>numinst]

INTxINTxINT

counters

p2

complete

(i-j)`pi (numinst,0,numinst)

(numinst,i,j+1)

Figure 156: Complete Multiple Instance Task pattern (sequential initiation)

have been initiated (the value of the counter n is deducted with 1 each time a new task
instance has been created). After execution of each of the task instances a token is placed
to the p2 place. Prior to the initiation of task C there exists the possibility to force the
completion of this task by firing the complete transition.

Figure 157: Complete Multiple Instance Task pattern (concurrent initiation)

Context There is one context condition associated with this pattern: only one instance of
a multiple instance task can execute at any time.

Implementation In order to implement this pattern, an offering also needs to support
one of the Multiple Instance patterns that provide synchronization of the task instances at
completion (i.e. WCF-29 – WCF-31). FLOWer provides indirect support for this pattern
via the auto-complete condition on dynamic plans which force-completes unfinished plans
when the condition evaluates to true however this can only occur when all subplans have
completed. Similarly, it also provides deadline support for dynamic plans which ensures
that all remaining instances are forced complete once the deadline is reached, however this
action also causes all subsequent tasks to be force completed as well.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering which
provides a construct which satisfies the description when used in a context satisfying the
context assumption. It demonstrates partial support if there are limitations on when the

Section 4.1 Revisiting the control-flow patterns 187

completion task can be initiated or if the force completion of the remaining instances does
not result in subsequent tasks in the process instance being triggered normally.

Class: Termination patterns

Termination patterns define two alternative approaches to recognizing process comple-
tion. An implicit termination of a process instance, which occurs when there are no
remaining work items that can be executed, was previously described by the Implicit
Termination pattern. The Explicit Termination pattern is introduced as an alternative
approach to process instance termination which occurs when a dedicated end-node is
executed and a specific nominated state is reached.

Pattern WCF-42 (Implicit Termination)

Description A given process (or subprocess) instance should terminate when there are no
remaining work items that are able to be done either now or at any time in the future and
the process instance is not in deadlock. There is an objective means of determining that
the process instance has successfully completed.

Example The research project is considered to be completed when all students have
completed courses, wrote reports, and no outstanding tasks have been remained.

Motivation The rationale for this pattern is that it represents the most realistic approach
to determining when a process instance can be designated as complete. This is when there
is no remaining work to be completed as part of it and it is not possible that work items
will arise at some future time.

Overview Figure 158 illustrates a process model where after executing task A multiple
branches can be enabled simultaneously. The given process instance does not terminate
when the execution of tasks in one of the branches has completed, as there are (potentially)
tasks left in other branches which still could be executed. An Implicit Termination pattern
presumes that the execution of a process instance terminates when no tasks that still could
be executed remain. In CPN terms this means that a process instance terminates when all
tokens have reached the end of the process.

Workflow offerings that do not enforce all branches in a process model to be synchro-
nized with a single end node, but which do support implicit termination, implement the
behavior which is illustrated in Figure 159. Note that this diagram represents only the
semantics of the pattern and does not specify how exactly such behavior needs to be im-
plemented in the offerings.

Context There are no specific context conditions associated with this pattern.

Implementation Staffware, WebSphere MQ, FLOWer, FileNet, BPEL, BPMN, XPDL,
UML 2.0 ADs and EPCs support this pattern. iPlanet requires processes to have a unique
end node. COSA terminates a process instance when a specific type of end node is reached.

Issues Where an offering does not directly support this pattern, the question arises as to
whether it can implement a process model which has been developed based on the notion
of Implicit Termination.

Solutions For simple process models, it may be possible to indirectly achieve the same
effect by replacing all of the end nodes for a process with links to an OR-join which then
links to a single final node. However, it is less clear for more complex process models
involving multiple instance tasks whether they are always able to be converted to a model

188 Chapter 4 Workflow Control-Flow Patterns

?

Figure 158: Example of a process with multiple branches whose execution needs to be implicitly
terminated

Figure 159: Implicit Termination pattern: a process instance implicitly terminates when no
tasks left which still can be execute

with a single terminating node. Potential solutions to this are discussed at length by
Kiepuszewski et al. [137].

It is worthwhile noting that some languages do not offer this construct on purpose: the
Implicit Termination pattern makes it difficult (or even impossible) to distinguish proper
termination from deadlock. Often it is only through examination of the process log that it
is possible to determine if a particular case has actually finished. Additionally, processes
without explicit endpoints are more difficult to use in compositions.

Evaluation Criteria An offering achieves full support if it is possible to have multiple
final nodes and the behavior of these nodes satisfies the description for the pattern.

Pattern WCF-43 (Explicit Termination)

Description A given process (or subprocess) instance should terminate when it reaches
a nominated state. Typically this is denoted by a specific end node. When this end node

Section 4.1 Revisiting the control-flow patterns 189

is reached, any remaining work in the process instance is canceled and the overall process
instance is recorded as having completed successfully, regardless of whether there are any
tasks in progress or remaining to be executed.

Example The recruitment process terminates when a suitable candidate has been found
for a specific position. As a consequence of this, any pending interactions with remaining
candidates are stopped.

Motivation The rationale for this pattern is that it represents an alternative means of
defining when a process instance can be designated as complete. This is when the thread
of control reaches a defined state within the process model. Typically this is denoted by a
designated termination node at the end of the model. Where there is a single end node in
a process, its inclusion in other compositions is simplified.

Overview Figures 160 and 161 illustrate the semantics of Explicit Termination pattern
in the context of a process model with a single and multiple end nodes respectively.

Figure 160: Explicit Termination pattern: after reaching a designated end-node, the process
instance terminates

For models with a single end node, as shown in Figure 160, after executing the End

transition, a token is produced to the o1 place indicating the termination of the given
process instance. This assumes that any remaining work is canceled.

In Figure 161 a process model with two end nodes is shown. When any of these nodes is
reached, a process instance is considered to be successfully completed. In order to illustrate
that any remaining work is canceled after an end node is reached, each of the transitions
End1 and End2 is associated with a cancelation region.

190 Chapter 4 Workflow Control-Flow Patterns

Figure 161: Explicit Termination pattern: after reaching any of the designated end-points the
process instance terminates and any remaining tokens are withdrawn

Context There is one context condition associated with this pattern: every task in a
process must be on a path from a designated start node to a designated end node.

Implementation COSA, iPlanet, SAP Workflow, BPMN, XPDL and UML 2.0 ADs sup-
port this pattern although other than iPlanet, none of these offerings enforce that there is
a single end node.

Issues One consideration that does arise where a process model has multiple end nodes is
whether it can be transformed to one with a single end node.

Solutions For simple process models, it may be possible to simply replace all of the
end nodes for a process with links to an OR-join which then links to a single final node.
However, it is less clear for more complex process models involving multiple instance tasks
whether they are always able to be converted to a model with a single terminating node.
Potential solutions to this are discussed at length elsewhere [137].

Evaluation Criteria An offering achieves full support for this pattern if it demonstrates
that it can meet the description and context criterion for the pattern.

4.1.4 Relationships between control-flow patterns

In order to facilitate an understanding the commonalities and differences between patterns
in order to enable selection of the best pattern for a specific purpose, we have analyzed
which patterns can be implemented through combination of other patterns and which
patterns represent a more restricted form of another pattern. Figure 162 illustrates two
types of relationships between patterns: a composition relationship and a specialization
relationship. A composition relationship is shown with a dashed line and specialization
relationship is shown with a solid line.

An example of a composition relationship is the Multi-Choice pattern (cf. page 128)
which can be realized by combining the Parallel Split pattern (cf. page 124) with the Ex-
clusive Choice pattern (cf. page 125). Another example is the Structured Loop pattern (cf.
page 155) which can be realized by combining the Exclusive Choice pattern (cf. page 125)
with the Multi-Merge pattern (cf. page 146).

Section 4.2 Patterns operationalization 191

Partial Join

Discriminator
Structured

Structured
Synchronizing

Merge

Synchronizing
Merge

General

Local
Synchronizing

Merge

Blocking
Discriminator

Cancel Case Cancel Region

Cancel Activity

Cancel Multiple
Instance Activity

Instance Activity
Complete Multiple

Exclusive Choice
 Cancelling

 Partial Join for
Multiple Instances

Blocking

 Partial Join

Dynamic

Multiple Instances

Static

Multiple Instances

Interleaved
Parallel
Routing

Multiple Instances
without Run Time

Knowledge

Multiple Instances
with Run Time

Knowledge

Multiple Instances
with Design Time

Knowledge

Structured Loop

Multiple Merge

Parallel Split

Multiple Choice

Simple Merge

Arbitrary Cycles Generalized
AND−Join

Multiple Instances
without

Synchronization

Interleaved
Routing

Synchronization

Structured

CancellingCancelling
Discriminator

Partial Join forPartial Join for

Partial Join

Composition relationship
Specialization relationship

Figure 162: Specialization and composition relationships between control-flow patterns

An example of a specialization relationship is the Parallel Split pattern (cf. page 124)
which represents a special case of the Multi-Choice pattern (cf. page 128). The Multi-Choice
pattern can be configured to unconditionally enable all outgoing branches as required by the
Parallel Split pattern. A pattern can represent a generic variant for several specializations.
For instance, the Synchronization pattern (cf. page 131) has four specializations, whilst
the Structured Discriminator (cf. page 135) has two specializations.

Having described the control-flow patterns, we now move on to an analysis of the constructs
required for their implementation in PAISs.

4.2 Patterns operationalization

The control-flow patterns presented in Section 4.1.3 provide an insight into generic con-
structs that are commonly used in workflow offerings for describing possible behavior in

192 Chapter 4 Workflow Control-Flow Patterns

the control-flow perspective. Since the control-flow patterns abstract from the details of
their operationalization, distinct offerings may implement the same pattern in different
ways8. To illustrate the variations in the modeling languages used by workflow systems,
we briefly review a set of PAISs: YAWL, COSA, Staffware and Oracle BPEL PM. In doing
so, we show that even basic constructs such as the XOR-join and AND-join (the Petri-net
representations of which are given in Figure 163), which are supported by the majority
of workflow systems, are not implemented in a uniform way. In order to differentiate be-
tween different implementation approaches, in Section 4.2.1 we examine the core process
constructs that can be encountered in any offering and propose a formal language that
offers an intuitive graphical notation to depict differences between distinct implementation
approaches in a uniform and language-independent way.

In Petri-nets, states, tasks and causal dependencies between them are modeled by places,
transitions, and arcs respectively. The XOR-join specifies that several distinct paths come
together without synchronization (cf. a place p1 with ingoing arcs from transitions A and
B in Figure 163(a)). The AND-join specifies the synchronization of multiple paths (cf. a
transition C with incoming arcs from places p1 and p2 in Figure 163(b)).

p1

A

B

C

A

B

Cp2

p1

p2

p3

(a) (b)

Figure 163: XOR-join (a) and AND-join (b) in Petri Nets

The Petri-net based workflow system YAWL offers direct support for the XOR-join
and AND-join constructs (cf. Figure 164(a) and (b) respectively). Places in YAWL have
unbounded capacity, and in order to enable a task, each input place must contain at least
one token. YAWL also allows the modeling of an OR-join (Figure 164(c)), which is a
construct that may behave like an XOR-join or an AND-join (or a mixture of the two)
depending on the context in which it is used. The OR-join waits until no additional tokens
can arrive and only then does it fire.

Figure 164: Notation for (a) XOR-join, (b) AND-join, and (c) OR-join in YAWL

COSA is a Petri-net based workflow management system. The main building blocks of
COSA are states, activities, and transitions, which are based directly on the concepts of

8Note that the CPN models were only added to provide semantics and not intended as an end-user
language implementation.

Section 4.2 Patterns operationalization 193

Petri-nets as places, transitions, and arcs respectively. Figures 165(a) and (b) depict the
XOR-join and the AND-join constructs respectively. A COSA model can be considered as
a safe Petri-net, i.e. at most one token can be stored in a place at any given time. Hence,
activities block when the output states are not empty. For example, activity A blocks
when there is a token in place s1. As a result, COSA behaves differently from YAWL and
ordinary Petri nets.

(a) (b)

Figure 165: Notation for XOR-join (a) and AND-join (b) in COSA: activities block if not all
output states are empty

The XOR-join and AND-join constructs in Staffware are denoted by means of Step

and Wait objects (cf. models (a) and (b) of Figure 166 respectively). Step C behaves as an
XOR-join, i.e. it is triggered when Step A or Step B has completed. Only one instance of
C can be active at a time. For instance, if Step C is still active and a new trigger arrives,
it will be ignored and all information associated with it will be lost. Note that this way a
so-called “race condition” is created.

(a) (b)

Figure 166: Constructs for (a) an XOR-join and (b) an AND-join in Staffware. The default
semantics of a step (e.g., C) is an XOR-join. A wait step (sand-timer symbol) needs to be inserted
to synchronize flows (AND-join))

Just like COSA, Staffware forces intermediate states to be “safe”. However, COSA
enforces safeness by blocking activities, while Staffware simply removes excess triggers.
The Wait object synchronizes left and top input arcs. This object may only have one left
and up to 16 top arcs. However, the Wait object can only be triggered by a signal arriving
at the left arc. When the object has been triggered, it starts evaluating the status of the

194 Chapter 4 Workflow Control-Flow Patterns

top arcs. When all input arcs provided input, the Wait object executes. Note that when
used in a loop, the Wait object behaves differently. For instance, if Step B is in the loop,
but Step A is not, then for the repeated enabling of Step C, it is sufficient for Step B to
complete. However, if both steps A and B are in the loop, they both must complete in order
to trigger Step C again.

Currently there are many systems supporting BPEL [94]. In this thesis, we selected
Oracle BPEL as a representative of this class. Oracle BPEL PM implements the XOR-
join and the AND-join by means of BPEL activities <switch> and <flow> as shown in
Figures 167(a) and (b) respectively. In contrast to YAWL, Staffware and COSA, these
constructs are applied within a structured workflow, i.e. every join is preceded by a corre-
sponding split-construct. This way the corresponding processes are safe and the exceptional
situations mentioned for COSA and Staffware cannot occur.

Figure 167: Constructs for an XOR-join and an AND-joins in Oracle BPEL PM. Although
BPEL is a textual language, a graphical interface is provided which directly reflects the BPEL
code

We have shown that the implementation of XOR- and AND-joins in COSA, YAWL,
Staffware and Oracle BPEL PM are based on different assumptions in regard to the manner
in which these constructs behave. Thus, even simple constructs such as the XOR-join and
AND-join are not interpreted in a uniform way in different PAISs.

In order to describe how the control-flow patterns can be operationalized, we need to
describe the semantics of the constructs used for their realization. With this aim in mind,
in Section 4.2.1 we concentrate on a subset of patterns and describe the constructs required
for their realization in a uniform, precise and language-independent way. To achieve this,
we define a Core Process Constructs Modeling Language that provides a graphical notation
to depict various core constructs available in every PAIS. Note that in doing so, we abstract
from more complex process features as multiple-instance tasks, triggers and hierarchical
decomposition.

4.2.1 Core Process Constructs Modeling Language

In this subsection, we describe the core process modeling constructs that are typically
encountered in every PAIS in the form of the Core Process Constructs Modeling Language
(CPC-ML). This language is formally defined, and offers a graphical notation to depict

Section 4.2 Patterns operationalization 195

individual variants of these process constructs. The goal of CPC-ML is to provide an
instrument for comparing different approaches to the implementation of the control-flow
patterns in distinct PAISs.

The scope of the language is limited to a single process instance, covering the details of
task routing, while leaving external relationships with other process instances, processes,
and the external environment out of consideration. There are two fundamental premises in
regard to the semantics of CPC-ML. First, all behavior in the modeled process is associated
with active tasks, i.e. tasks whose execution changes the state of the modeled system.
Second, the modeled process behaviors are message-driven and discrete. Discrete means
that a modeled system is characterized by a certain state at each moment in time.

Figure 168 illustrates the control-flow patterns, the core process constructs inherent to
CPC-ML, and the hierarchical relationship between them.

Task Message Channel

Intra-

task
behavior

Inter-task behavior

Process instance

Control-flow patternsPatterns

Behavior

Basic constructs

Figure 168: Relation between control-flow patterns and core modeling constructs

In order to describe this figure, first we need to introduce a new concept. A Generic
Workflow Net (GWF-net) is a language-independent representation of a workflow model,
which can be created using process entities encountered in any PAIS, expressed in terms of
CPC-ML constructs. Three structural constructs the GWF-net is composed of, i.e. a task,
a channel, and a message are represented on the bottom layer. In terms of Petri nets, a task,
a channel, and a message correspond to a transition, a place, and a token respectively. A
task is an abstraction of an activity, characterized by a set of inputs and outputs, assigned
to a certain resource. Note that we concentrate only on atomic tasks9. A message refers to
the task input/output expressed in terms of a basic or complex data structure. A message
is an abstraction of the control data, used for routing purposes, and/or the production
data, i.e. any information (excluding control data) that can be manipulated as a discrete
entity for the purpose of executing a certain activity. Note that by using messages we
abstract from the actual data contained in the messages. A channel connects tasks and is
used to convey messages.

The next layer is behavioral; it addresses the details of inter-task and intra-task be-
haviors. The intra-task area defines the variants of the task behavior based on the task
properties, while the inter-task area addresses different ways of combining the structural
entities together.

At the highest level of abstraction there is a set of extensible control-flow patterns,
which are obtained as a result of the interplay between the inter- and intra-task behaviors.

9We abstract from multiple instances tasks and composite tasks since these are special cases and are
not as common as atomic tasks (note that these could be formally defined as has been done in [15]).

196 Chapter 4 Workflow Control-Flow Patterns

In this context, a control-flow pattern is defined as a three-part rule expressing a relation
between a certain context (the lifecycle of a single process instance), a problem (addressing
the behavioral aspects of task routing), and a solution (expressed in terms of the struc-
tural entities). When expressed using the semantics of CPC-ML, operationalization of the
control-flow patterns presented in Section 4.1 can be discussed at a more detailed level.

In Figure 168, we only introduced the main concepts related to the operationalization
of the control-flow patterns. Now we will present a detailed description of CPC-ML, all
elements of which are graphically depicted in Figure 169.

o1

o2

Task Name

i4

i1c1

i2

Local input port

Local channel

(safe)

External input port

External channel

(safe)

Output port

jtype
blp
mcm
ism
IS
OS
CS

Optional port

Mandatory port

i5
External channel

(bounded)

Local channel

(bounded)

i6External channel
(unbounded)

i3Local channel

(unbounded)

c4

c3

c2

c5

c6

Task attributes:

jtype: join type

blp: blocking mode of output ports

mcm: message consumption mode

ism: input selection mode
IS: input sets

OS: output sets

CS: cancellation set

Figure 169: The various notations for tasks, channels, and ports

Tasks send and receive messages to/from channels via ports, which play the role of mes-
sage gates. Ports producing messages are called output ports. Ports consuming messages
are called input ports. Every input port is mapped to a channel, which stores messages.
We will refer to the combination of an input port and a channel to which this port is
mapped as a task input, whilst we understand a task output to be the combination of an
output port and a channel to which this port sends messages. We denote input and output
channels as squares residing on the front and back edges of the task block respectively.

Every GWF-net may have multiple input channels and output channels, however ex-
actly one input channel and one output channel are involved in the initiation and termi-
nation of the process instance.

Every channel is characterized by a set of parameters, such as the maximal capacity,
the minimal capacity, and the enabling status. The maximal capacity parameter defines
how many messages the channel may hold at once. A channel with unlimited maximal
capacity is called an unbounded channel, while a channel with limited maximal capacity is
called a bounded channel. We will refer to bounded channels that are able to hold at most
one message at a time, as safe channels. We denote safe, bounded and unbounded channels
as a single, double and triple circles respectively. The direction of the arrows represents
the message flow.

The minimal capacity parameter of a channel defines at least how many messages the
channel must contain in order to make a port, consuming messages from this channel,

Section 4.2 Patterns operationalization 197

enabled. A channel is enabled if its minimal capacity has been reached, otherwise the
channel is said to be disabled.

Depending on the enabling status of a channel, an input port mapped to it can be
either enabled or disabled. An input port is enabled if the channel to which this port is
mapped is also enabled, otherwise the port is considered to be disabled.

Depending on the level of visibility of the transferred messages and the accessibility of
them, two types of channels can be distinguished. A local channel (relative to the task
input) is used for dedicated message transfer, i.e. when messages sent by a task-producer
are to be received by a single dedicated task-consumer, and no other tasks may access
the messages stored in this channel. The external channel (relative to the task input) is
used for non-dedicated message transfer, i.e. when the message sent by a task-producer to
the channel is to be consumed by one of several task-consumers which share access to the
messages stored in this channel. To distinguish local and external channels graphically, we
merge local channels with input ports.

Input ports which are mapped to local channels are called local input ports, while input
ports mapped to external channels are called external input ports. The availability of
messages in input channels is a property associated with input ports. A mandatory input
port is a port, which must be enabled before the task may commence. An optional input
port is a port, the enabling of which is not compulsory for task commencement. The
output ports can also be mandatory or optional. An output port produces one message
upon task termination. A mandatory output port always produces a message upon task
termination. An optional output port produces one message upon the task termination if
and only if a data-based condition associated with this port has been satisfied (we do not
elaborate on the data conditions, since in the context of this work we abstract from the
data perspective). We denote optional and mandatory ports as white and dark squares
respectively.

Every task has a set of properties that define the input and output logic of the task
and the behavior of the task in an active state. A task is in the active state after it has
commenced but before it has terminated. The input sets (IS) of a task define all possible
sets of input ports, which must be enabled for task commencement. The input selection
mode (ism) of a task defines which set of enabled input ports is to be selected from the
input sets.

The message consumption mode (mcm) of a task defines how many messages are to be
consumed from the channels attached to the ports selected for consumption. In minimal
message consumption mode, the minimal channel capacity is consumed from each of the
channels, attached to the enabled ports selected for message consumption. Any non-
consumed messages remain in the channels unless these channels are explicitly included
in the task cancelation set (CS), which specifies locations from which all messages are to
be removed upon task termination. In maximal message consumption mode, all messages
available in the channels attached to the enabled ports selected for message consumption,
are consumed at once.

The output sets (OS) of a task defines a set of output ports each of which will produce
one message at the moment of task termination.

The blocking mode (blp) of output ports is a property defined for each task. In blocked
mode, output ports may send messages to output channels if and only if the maximal
capacity of the corresponding channels has not been reached. If the maximal capacity of
the channel has been reached, the output ports are blocked and wait until the required
channel capacity becomes available. In open mode, output ports may send messages to

198 Chapter 4 Workflow Control-Flow Patterns

channels whose maximal capacity has been reached, however these messages will be lost
and will not modify the state of the channels.

The cancelation set (CS) defines which parts of the net should be emptied at the time
of task termination. Emptying part of a GWF-net corresponds to removing messages from
specified locations. Removing messages from a task corresponds to aborting execution of
that task. We denote the cancelation set as a dashed-line attached to a task (cf. Figure 172).

Every task has a data-based guard, the status of which influences the enabling status of
the task. Furthermore, the join logic of a given task is dependent on the jtype parameter,
which specifies whether the processing of the task inputs is local, i.e. based on the messages
currently available in the input channels, or future, i.e. postponed until no new messages
can arrive at the task inputs.

Definition of CPC-ML The following section formalizes the notions just introduced.
First, we define a GWF-net.

Definition 4.2.1. (GFW-net)
A generic workflow net (GWF-net) N is a tuple (C, LC , EC , i, o, T, P, IP, OP, ManP,
OptP, ptoc, psend, mincap, maxcap, blp, IS , ism, OS, mcm, CS, guard, jtype, F) where:

• C is a set of channels.

• LC ⊆ C is a set of local channels.

• EC ⊆ C is a set of external channels, such that LC and EC partition C, i.e.
LC

⋂
EC = ∅ ∧ LC

⋃
EC = C.

• i ⊂ C is a set of input channels.

• o ⊂ C is a set of output channels, such that i
⋂

o = ∅.

• T is a set of tasks.

• P is a set of ports.

• IP : T → P(P) defines a set of input ports for each task.

• OP : T → P(P) defines a set of output ports of a task t ∈ T , such that ∀t1,t2∈T :
(IP(t1)

⋃
OP(t1))

⋂
(IP(t2)

⋃
OP(t2)) 6= ∅) ⇒ t1 = t2 and IP(t)

⋂
OP(t) = ∅ for

any task t ∈ T .

• ManP : T → P(P) defines a set of mandatory ports for each task, such that ∀t∈T :
ManP(t) ⊆ (IP(t)

⋃
OP(t))

• OptP : T → P(P) defines a set of optional ports for each task, such that ∀t∈T :
ManP(t)

⋂
OptP(t) = ∅ ∧ (ManP(t)

⋃
OptP(t) = IP(t)

⋃
OP(t))

• ptoc : P → C maps every port to a channel, such that a single input/output port is
mapped to a local channel, while multiple ports can be mapped to the same external
channel.

∀p1,p2∈P∀c∈C : ptoc(p1) = ptoc(p2) = c ⇒ (p1 = p2 ∨ c ∈ EC)

As a shorthand we use p = ptoc(p) for any p ∈ P . This is generalized for sets:
X = {ptoc(x)|x ∈ X } for X ⊆ P .

• mincap : C → N defines the minimal channel capacity. (Note that a channel with
mincap(c)=0 behaves like a reset arc [79]).

• maxcap : C → (N\{0})
⋃
{∞} defines the maximal channel capacity.

Section 4.2 Patterns operationalization 199

if maxcap(c) = ∞, then the channel c is unbounded.

if maxcap(c) = k, where k ≥ 2, then the channel c is bounded.

if maxcap(c) = 1 then the channel c is safe.

• blp : P 9 {blocked, open} defines the blocking mode of all output ports. Note that
dom(blp) =

⋃
t∈T OP (t).

• IS : T → P(P(P)) defines input sets for each task, specifying input ports the enabling
of which is sufficient for task commencement, such that
(∀t∈T∀Q∈IS(t) : (Q ⊆ IP(t) ∧ (ManP(t)

⋂
IP(t) ⊆ Q)))

• ism : T → {max ,min, ran} defines the input selection mode of a task.

max : indicates a “maximal” set of IS(t), i.e. there is not a larger set Q of enabled
input ports in IS(t) with respect to set inclusion.

min: indicates a “minimal” set of IS (t), i.e. there is not a smaller set Q of enabled
input ports in IS(t) with respect to set inclusion.

ran: indicates any set of enabled input ports in IS (t).

• OS : T → P(P(P)) defines output sets of a task specifying what sets of output ports
are to produce messages upon task termination, such that
(∀t∈T∀Q∈OS(t) : (Q ⊆ OP(t) ∧ (ManP(t)

⋂
OP(t) ⊆ Q)))

• mcm : T → {min, max} defines the message consumption mode, i.e. how many
messages are to be consumed from the enabled inputs selected according to ism(t)
for the given task t ∈ T .

min: consume the number of messages specified by the minimal capacity parameter
of the channel.

max : consume all messages available in the channel.

• CS : T → P((C
⋃

T) \ (i
⋃

o)) specifies the task cancelation set, i.e. what additional
messages are to be removed by emptying a part of the workflow.

• guard : T → Bool defines the status of the data-based task guard, which influences
the enabling status of the task. (Note that the signature of this function might be
misleading, since the dependency on data elements is missing due to the abstraction
from the data perspective. Given a task t, guard(t) may evaluate to true or false
depending on the data values at the moment of evaluation.)

• jtype : T → {local, future} specifies whether the processing of task inputs is local,
i.e. based on the messages currently available in the input channels, or future, i.e.
postponed until no more new messages may arrive at the task inputs.

• F = {(c, t) ∈ C × T |c ∈ IP(t)}
⋃
{(t, c) ∈ T × C|c ∈ OP(t)} is the flow relation.

• every node in the graph (C
⋃

T, F) is on a directed path from some c1 ∈ i to some
c2 ∈ o, i.e.

(∀x∈C∪T∃c1∈i∃c2∈o : (c1, x) ∈ F ∗ ∧ (x, c2) ∈ F ∗)

where F ∗ is the transitive closure of F .

In order to illustrate how the CPC-ML graphical notation can be used in practice, let’s
consider a travel agency example.

200 Chapter 4 Workflow Control-Flow Patterns

Example 4.2.2. (Travel Agency)
The typical procedure for booking a business trip consists of several steps: registering a
client, booking a flight, a hotel, a car, or a combination thereof, and payment. In order
to demonstrate different values of the task and channel attributes, let’s consider three
situations, where: (1) payment is performed each time a booking of a car, a hotel, or
a flight has been completed; (2) payment is performed only once, i.e. after all initiated
bookings have been completed; and (3) payment is performed only once, after the first
booking has completed.

 s1
 c4 e1

Register

jtype
blp
mcm
ism
IS
OS

CS

i1

o1

o2

o3

Hotel

jtype
blp
mcm
ism
IS
OS
CS

i3 o5

Flight

jtype
blp
mcm
ism
IS
OS

CS

i2 o4

Car

jtype
blp
mcm
ism
IS
OS
CS

i4 o6

Pay

jtype
blp
mcm
ism
IS
OS
CS

i5 o7

 c1

 c2

 c3

jtype(Register)=local jtype(Pay)=local mincap(s1)=1

mcm(Register)=min mcm(Pay)=min mincap(c1)=1
ism(Register)=min ism(Pay)=min mincap(c2)=1

IS(Register)={{i1}} IS(Pay)={{i5}} mincap(c3)=1
OS(Register)={{o1},{o2},{o3},{o1,o2},{o2,o3},{o1,o3},{o1,o2,o3}} OS(Pay)={{o7}} mincap(c4)=1

CS(Register)={} CS(Pay)={} mincap(e1)=1

jtype(Flight)=local jtype(Hotel)=local jtype(Car)=local i={s1}

mcm(Flight)=min mcm(Hotel)=min mcm(Car)=min o={e1}
ism(Flight)=min ism(Hotel)=min ism(Car)=min

IS(Flight)={{i2}} IS(Hotel)={{i3}} IS(Car)={{i4}}
OS(Flight)={{o4}} OS(Hotel)={{o5}} OS(Car)={{o6}}

CS(Flight)={} CS(Hotel)={} CS(Car)={}

for all output ports p: blp(p)=open

Figure 170: Task Pay executes each time one of the three preceding tasks completes

The first CPC-ML specification for multiple payments presented in Figure 170 starts
with the Register task which enables tasks for booking of Flight, Hotel and/or Car.
Task Pay is executed each time one of the three tasks (Flight, Hotel or Car) completes.
In this graphical notation, unbounded channels are used, i.e. channels which are able to
store an unlimited number of messages at any moment of time. The minimal capacity
mincap of all channels is set to 1, specifying that exactly one message is required from
each channel to enable a port attached to the given channel. Although channels are able to
store multiple messages, the message consumption mode mcm of all tasks is set to minimal,
meaning that exactly one message (as specified by the minimal channel capacity) will be
consumed by the corresponding ports, while the rest of the messages will be ignored and
thus kept in the channels for subsequent task enabling. In order to show that as the result

Section 4.2 Patterns operationalization 201

of the execution of task Register a message is sent to a single task (Flight, Hotel or Car)
or their combination, the output set of task Register, i.e. OS(Register), lists all set of
channels that may be enabled upon the termination of the considered task. The enabling
of all tasks in Figure 170 is based on the messages currently available in the channels. This
is reflected by the jtype parameter, which is set to local .

 s1 e1

Register

jtype
blp
mcm
ism
IS
OS
CS

i1

o1

o2

o3

Hotel

jtype
blp
mcm
ism
IS
OS
CS

i3 o5

Flight

jtype
blp
mcm
ism
IS
OS
CS

i2 o4

Car

jtype
blp
mcm
ism
IS
OS
CS

i4 o6

Pay

jtype
blp
mcm
ism
IS
OS
CS

i5

o7

 c1

 c2

 c3 jtype(Register)=local jtype(Pay)=future
mcm(Register)=min mcm(Pay)=min

ism(Register)=min ism(Pay)=max
IS(Register)={{i1}} IS(Pay)={{i5},{i6},{i7},{i5,i6}, {i5,i7}, {i6,i7},{i5,i6,i7}}

OS(Register)={{o1},{o2},{o3},
{o1,o2},{o2,o3},{o1,o3}, {o1,o2,o3}} OS(Pay)={{o7}} i ={s1}

CS(Register)={} CS(Pay)={} o={e1}

jtype(Flight)=local jtype(Hotel)=local jtype(Car)=local mincap(s1)=1
mcm(Flight)=min mcm(Hotel)=min mcm(Car)=min mincap(c1)=1

ism(Flight)=min ism(Hotel)=min ism(Car)=min mincap(c2)=1
IS(Flight)={{i2}} IS(Hotel)={{i3}} IS(Car)={{i4}} mincap(c3)=1
OS(Flight)={{o4}} OS(Hotel)={{o5}} OS(Car)={{o6}} mincap(c4)=1

CS(Flight)={} CS(Hotel)={} CS(Car)={} mincap(c5)=1
mincap(c6)=1

for all output ports p: blp(p)=open mincap(e1)=1

 c4

i6 c5

i7 c6

Figure 171: Task Pay executes only once, i.e. after all started tasks have completed

The second CPC-ML specification shown in Figure 171 combines individual payments
into one payment. Task Pay waits until each of the tasks enabled by task Register

completes. Note that task Pay does not synchronize incoming channels if and only if a
flight, a hotel or a car is booked. However, if the trip contains two or three elements, task
Pay is delayed until all have completed. This mechanism is reflected by the parameter
jtype of task Pay which is set to future. Moreover, to indicate that the maximal set of
input ports from the ones specified in the input sets IS (Pay) is to be selected for the
message consumption, the input selection mode ism(Pay) is set to maximal. For instance,
if tasks Hotel and Car were executed, i.e. the messages were placed in channels c5 and c6,
then both ports i6 and i7 (attached to these channels respectively) will be enabled.

The third CPC-ML specification shown in Figure 172 enables all three tasks (Flight,
Hotel and Car) but executes task Pay after the first task has completed. After the payment
all running tasks are canceled. In contrast to the two earlier specifications, this CPC-ML
specification associates a non-empty cancelation set with task Pay. The cancelation set

202 Chapter 4 Workflow Control-Flow Patterns

 s1
 c4 e1

Register

jtype
blp
mcm
ism
IS
OS
CS

i1

o1

o2

o3

Hotel

jtype
blp
mcm
ism
IS
OS
CS

i3 o5

Flight

jtype
blp
mcm
ism
IS
OS
CS

i2 o4

Car

jtype
blp
mcm
ism
IS
OS
CS

i4 o6

Pay

jtype
blp
mcm
ism
IS
OS
CS

i5 o7

 c1

 c2

 c3

jtype(Register)=local jtype(Pay)=local

mcm(Register)=min mcm(Pay)=min
ism(Register)=min ism(Pay)=min

IS(Register)={{i1}} IS(Pay)={{i5}}
OS(Register)={{o1},{o2},{o3},{o1,o2},{o2,o3},{o1,o3}, {o1,o2,o3}} OS(Pay)={{o7}}

CS(Register)={} CS(Pay)={c1,c2,c3,c4, Flight, Hotel, Car}

jtype(Flight)=local jtype(Hotel)=local jtype(Car)=local mincap(s1)=1 i={s1}
mcm(Flight)=min mcm(Hotel)=min mcm(Car)=min mincap(c1)=1 o={e1}

ism(Flight)=min ism(Hotel)=min ism(Car)=min mincap(c2)=1
IS(Flight)={{i2}} IS(Hotel)={{i3}} IS(Car)={{i4}} mincap(c3)=1
OS(Flight)={{o4}} OS(Hotel)={{o5}} OS(Car)={{o6}} mincap(c4)=1

CS(Flight)={} CS(Hotel)={} CS(Car)={} mincap(e1)=1

for all output ports p: blp(p)=open

CS(Pay)

Figure 172: Task Pay executes only once, i.e. after the first task has completed

of task Pay contains all channels and tasks which will be emptied the moment the task
completes. Graphically the cancelation set of a task is visualized as a dashed rectangle
attached to the given task, the scope of which is also indicated by the attribute CS .

Semantics of CPC-ML Definition 4.2.1 on page 198 specifies the syntax of the GWF-
net in mathematical terms, however it does not give any semantics. In order to do this,
we need to define the state space and state transitions.

The state space of GWF-net consists of a collection of messages, which serve as wrappers
for data10. In order to deal with identical messages which may accumulate in channels we
use bags also known as multi-sets. The state of a channel is represented by a multi-set of
messages. In order to define the state space, we first introduce some notations.

10Note that in this specification we do not consider the data perspective.

Section 4.2 Patterns operationalization 203

Notation

We denote input ports and output ports of a task t ∈ T as •t and t•, and input channels
and output channels of the task as •t and t• respectively, such that:

•t = IP(t)
t• = OP(t)
•t = •t
t• = t•

A bag over alphabet A is a function from A to the natural numbers IN. For some bag X over
alphabet A and a ∈ A, X(a) denotes the number of occurrences of a in X , and is referred
to as the cardinality of a in X . [] denotes the empty bag, [a, a, b] and [a2, b] denote the bag
containing two a’s and one b. Let B(A) denote the set of all bags over A. The sum of two
bags X and Y , denoted X

⊎
Y , is defined as [an|a ∈ A∧n = X(a)+ Y (a)]. The difference

of X and Y , denoted as X −Y , is defined as [an|a ∈ A∧n = max((X(a)−Y (a)), 0)]. The
size of a bag is denoted as size(X) =

∑
a∈A X(a). The restriction of X to some domain

D ⊆ A, denoted as X ↾ D, is defined as [aX(a)|a ∈ D]. Restriction binds more strongly
than sum and difference (note that the binding of sum and difference is left-associative).
Bag X is a sub-bag of Y , denoted as X ⊆ Y , iff for all a ∈ A, X(a) ≤ Y (a). X ⊂ Y
iff X ⊆ Y and for some a ∈ A, X(a) < Y (a). Note that any finite set of elements from
A also denotes a unique bag over A, namely the function yielding 1 for every element in
the set and 0 otherwise. Therefore, finite sets can also be used as bags. If X is a bag
over A and Y is a finite subset of A, then X − Y, X

⊎
Y, Y − X, Y

⊎
X yield bags over

A. Let set(x) denote a function which transforms a bag x ∈ B(A) into a set, such that
set(x) = {a ∈ A|x(a) ≥ 1}.

Now we can formally define the state space. In this definition, we consider channels
and tasks as locations and the state space is a bag over all locations.

State space

Definition 4.2.3. (State space)
Let N=(C, LC, EC, i, o, T, P, IP, OP, ManP, OptP, ptoc, psend, mincap, maxcap, blp,
IS, ism, OS, mcm, CS, guard, jtype, F) be a GWF-net. A workflow state s is a multi-set
over the channels and tasks, i.e. s ∈ S, where S = B(C

⋃
T) is the state space of N .

Whenever there is a need to refer to a set of locations (i.e. either channels or internal task
states) marked in state s by messages, we will use the function set(s) = {x ∈ C

⋃
T |x ∈ s}.

Let us consider the task lifecycle visualized in Figure 173. This figure shows the internal
structure of a task t. Note that in a state s ∈ S, there is a token in Activet if and only
if t ∈ s. A task is considered to be active if its internal state is marked by a message, i.e.
after the task has commenced but before it has terminated.

Definition 4.2.4. (Task enabling)
Let N=(C, LC, EC, i, o, T, P, IP, OP, ManP, OptP, ptoc, psend, mincap, maxcap, blp,
IS, ism, OS, mcm, CS, guard, jtype, F) be a GWF-net. The boolean function enable(t, s)
evaluates to true if and only if for a task t ∈ T in state s ∈ S the following three conditions
are satisfied:

• The task guard evaluates to true:

204 Chapter 4 Workflow Control-Flow Patterns

Active

Task

Enter Exitt

t

t

t

Figure 173: The internal task states

guard(t) = true

• One of the input sets is enabled:

(∃Q∈IS(t) : Q ⊆ {p ∈ •t|s(p) ≥ mincap(p)})

• Let S′ be a set of states reachable from s (assuming some reachability relation without
executing t). If jtype(t) = future, then 6 ∃s′∈S′ s↾ (•t) ⊂ s′↾ (•t).

Let us clarify the semantics of the message consumption/production using a task with
multiple input and output ports connected to a single external input and output channel
respectively. This situation is depicted in Figure 174.

Task 1

i1
jtype
blp

mcm

ism
IS
OS

o1

i2 o2

c1 c2

Figure 174: Message consumption/production

To illustrate the semantics, we consider two cases:

• If IS (Task1) = {{i1}, {i2}} and OS(Task1) = {{o1}, {o2}}, then a single message
is consumed from the channel c1 and a single message is produced on channel c2.

• However, if IS(Task1) = {{i1, i2}} and OS(Task1) = {{o1, o2}}, then there is an
asymmetry in message consumption/production, i.e. a single message is consumed
from channel c1 and two messages are produced for channel c2. Note that such an
asymmetry has to do with the rules for task enabling, message consumption and
message production. If the minimal capacity of the channel c1 has been reached,
both input ports i1 and i2 of Task 1 become enabled. At the time of task activation,
the minimal capacity of the channel c1 is consumed once by the input ports (either
i1 or i2), while at task termination both output ports produce a message to the
outgoing channel c2.

Enablement of a task t where jtype(t) = future and that has multiple inputs which need to
be synchronized (we will refer to such tasks as OR-joins) needs to be postponed until no
more messages can arrive, thus resulting in the enabling of a larger number of input ports
for the OR-join. Since enabling of the OR-join depends on the possible future states, its
semantics are non-local. Non-locality of the semantics of the OR-join has been a subject

Section 4.2 Patterns operationalization 205

for a debate, and as a consequence several approaches to handling non-local semantics
have been proposed. In [11], Kindler et al. address the problem of non-local semantics
in the context of EPCs demonstrating that there is no sound formal semantics for EPCs
that is fully compliant with the informal semantics of EPCs. In [138,139], Kindler defines
a non-local semantics of EPCs using techniques from fixed point theory and a pair of
corresponding transition relations. The proposed technique is claimed to be applicable to
the formalization of all kinds of non-local semantics. In [151], Mendling et al. present a new
semantics definition for EPCs which also covers the behavior of the OR-join. In contrast to
other semantical proposals for process modeling languages with OR-joins, their definition is
applicable for any EPC without imposing a restriction on the syntax and yields into sound
behavior. In [231], Wynn et al. propose a general and formal approach to OR-joins in
workflow using Reset-nets. The authors examine the concept of the OR-join in the context
of the workflow language YAWL and propose an algorithmic approach towards determining
OR-join enablement. Because the issue of non-local semantics of OR-joins is a subject of
intense an investigation on its own, we consider this issue to be outside of the scope of
this thesis. Thus, we simply assume that a suitable approach for dealing with non-local
semantics of OR-joins is known. Therefore, we assume some S′ in Definition 4.2.4, where
S′ is the set of reachable states and if jtype(t) = future, then the enabling of t depends on
this set S′.

State transitions

Let’s formalize the transitions possible in a given state by means of binding functions
bindingenter and bindingexit corresponding to task commencement, which brings a task
from the disabled state to the active state, and task termination, which brings a task from
an active state back to the disabled state, respectively.

Definition 4.2.5. (Task commencement)
Let N=(C, LC, EC, i, o, T, P, IP, OP, ManP, OptP, ptoc, psend, mincap, maxcap,
blp, IS, ism, OS, mcm, CS, guard, jtype, F) be a GWF-net. The Boolean function
bindingenter(t, cons, prod, s) evaluates to true if and only if the transition enter can oc-
cur for a task t ∈ T in the state s ∈ S, while consuming the bag of messages cons and
producing the bag of messages prod, such that the following conditions are satisfied:

• The task t is enabled in the given state s:

enable(t, s) = true

• Messages to be consumed are present in the state:

cons ⊆ s

• There exists a set Q ∈ IS(t) such that:

⋄ Messages are consumed from inputs of the task:

set(cons) = Q

⋄ If the input selection mode is set to maximal, then a maximal set of enabled input
ports of IS (t) is selected, i.e. there is no a bigger set with respect to set inclusion:

if ism(t) = max, then ∀Q′∈IS(t)(Q ⊆ Q′) ⇒ ∃p∈Q′\Q s(p) < mincap(p)

206 Chapter 4 Workflow Control-Flow Patterns

⋄ If the input selection mode is set to minimal, then a minimal set of enabled task
inputs of IS(t) is selected for message consumption, i.e. there is not smaller set
with respect to set inclusion:

if ism(t) = min, then (∀Q′∈IS(t) : Q′ 6⊂ Q)

⋄ If the input selection mode is set to random, then any set of enabled task inputs
of IS(t) can be selected for the message consumption.

• One message is created for the active task state:

prod = [t]

• The task is not active yet:

t /∈ s

• The number of messages consumed from the selected task inputs is determined by
the message consumption mode of the considered task. In the minimal message
consumption mode, the number of messages required for enabling of the input is
consumed, while the rest of the messages remain in the input channels. In the
maximal message consumption mode, all messages contained in the channels of the
selected input ports are consumed. For all c ∈ set(cons):

(mcm(t) = min) ⇒ (cons(c) = mincap(c))

and

(mcm(t) = max) ⇒ (cons(c) = s(c))

Next we define the function bindingexit which does not consider cancelations.

Definition 4.2.6. (Task termination)
The boolean function bindingexit(t, cons, prod, s) evaluates to true if and only if the tran-
sition exit can occur for a task t in state s, while consuming the bag of messages cons and
producing the bag of messages prod, and the following conditions are satisfied:

• Task t is active in state s:

t ∈ s

• One message is consumed from the internal task state:

cons = [t]

• There exists a set Q ∈ OS(t) such that potentially one message is produced for
each of the selected output ports and the maximal channel capacity is respected (cf.
blocking mode):

prod′ = [p1|p ∈ Q]

if blp(t) = blocked, then prod = prod′ and ∀c∈t• (s
⊎

prod)(c) ≤ maxcap(c)

if blp(t) = open, then ∀c∈t• prod(c) = min(prod′(c), (maxcap(c) − s(c)))

Using bindingexit function, we define bindingCS
exit which takes cancelation into account.

Definition 4.2.7. (Task termination with cancelation)
The boolean function bindingCS

exit(t, cons, prod, s) yields true if and only if there exists a
cons′ such that bindingexit(t, cons′, prod, s) yields true and for any x ∈ C

⋃
T :

Section 4.2 Patterns operationalization 207

cons(x) = s(x) if x ∈ CS (t)

and

cons(x) = cons′(x) if x /∈ CS (t)

Messages are removed from all input channels of task t and from its cancelation set. This
implies cancelation of tasks in the cancelation set which have not yet completed.

Definition 4.2.8. (Task binding)
Let N=(C, LC, EC, i, o, T, P, IP, OP, ManP, OptP, ptoc, psend, mincap, maxcap,
blp, IS, ism, OS, mcm, CS, guard, jtype, F) be a GWF-net. The Boolean function
binding(t, cons, prod, s) yields true if and only if one of the following conditions holds:

- The enter part of a task is enabled:

bindingenter(t, cons, prod, s)

- The exit part of a task is enabled:

bindingCS
exit(t, cons, prod, s)

Definition 4.2.9. (State transition)
Let N=(C, LC, EC, i, o, T, P, IP, OP, ManP, OptP, ptoc, psend, mincap, maxcap, blp,
IS, ism, OS, mcm, CS, guard, jtype, F) be a GWF-net, S its state space and s1 and s2

two workflow states in S. s1 s2 if and only if there are t ∈ T , cons, prod ∈ S such that
binding(t, cons, prod, s1) and s2 = (s1 − cons) ⊎ prod.

 defines a transition relation on the states of the given workflow. The reflexive
transitive closure of is denoted ∗ and R(s) = {s′ ∈ S|s ∗ s′} is the set of states
reachable from state s.

The state space S and transition relation define a transition system (S,) for a
given GWF-net.

This completes the formalization of GWF-nets. Using this formalization we can also
reason about the correctness of GWF-nets. For example, we can generalize the well-known
soundness property as shown in Definition 4.2.10.

Definition 4.2.10. (Soundness)
Let N=(C, LC, EC, i, o, T, P, IP, OP, ManP, OptP, ptoc, psend, mincap, maxcap, blp,
IS, ism, OS, mcm, CS, guard, jtype, F) be a GWF-net.

- N has the option to complete iff for any state s ∈
⋃

c∈i R([c]) : ∃c∈o[c] ∈ R(s).

- N has no dead tasks iff for any t ∈ T there is a state s ∈
⋃

c∈i R([c]) such that
t ∈ set(s).

- N has proper completion iff for any state s ∈
⋃

c1∈i R([c1]) and any c2 ∈ o : (s ≥ [c2])
⇒(s = [c2]).

N is sound iff N has the option to complete, has no dead tasks, and has proper completion.

Note that three GWF-nets used in the travel agency example 4.2.2 on page 200 have
the option to complete and have no dead tasks. In contrast to the GWF-nets depicted in
Figures 171 and 172, the GWF-net in Figure 170 has no proper completion because of the
multiple messages produced by task Pay directed to the end channel e1.

208 Chapter 4 Workflow Control-Flow Patterns

CPC-ML in action Having precisely described the core process modeling constructs
using CPC-ML, we now want to illustrate its use with respect to the operationalization of
the control-flow patterns defined in Section 4.1.3.

As an example, we illustrate that even the simplest control-flow patterns such as Se-
quence (WCF-1) can be operationalized using different approaches11. Thereafter, we show
how CPC-ML can be used to assess the functionality of distinct PAISs and we compare
realizations of specific behavioral constructs.

For the Sequence pattern, we describe a selected CPC-ML specification, its alternative
representations, and the mapping of the implementations in Staffware and Oracle BPEL
PM to the CPC-ML notation. Note that to describe different variants of the Sequence
pattern, we use relevant task attributes as variation points. By setting each of the task
attributes to a specific value, a configuration of a pattern variant can be specified.

Pattern WCF1 - Sequence

Description A task in a process is enabled after the completion of a preceding task in the
same process.

Selected CPC-ML specification Figure 175 shows the CPC-ML notation of the Se-
quence pattern. In terms of CPC-ML, task t2 is executed after the execution of task t1.
Messages are transferred via a safe external channel c1. The blocking mode of an output
port o1 of task t1 is chosen to be open to allow task t1 to complete if the channel c1 is
non-empty. The enabling of task t2 is based on the messages currently available in the
channel, i.e. jtype is set to local. Messages are consumed in the minimal message con-
sumption mode. The choice of the input selection mode for this net is irrelevant, since
the number of the input ports is limited to one, thus no option for the input selection is
available. However, to make the specification complete, ism for t2 is set to minimal. For
the sake of convenience, the input sets of task t1 and output sets of task t2, which may
vary without influencing the behavior of a pattern, are omitted in this net. This is one of
many possible interpretations of the pattern.

o1

Task 1

jtype
blp
mcm
ism
IS
OS
CS

Task 2

jtype
blp
mcm
ism
IS
OS
CS

blp(o1) = open
OS(t1)={{o1}}
CS(t1)={}

c1

Channel c1 is safe, i.e.
maxcap(c1)=1
mincap(c1)=1

jtype(t2)= local
mcm(t2)= min
ism(t2)=min
IS(t2)={{i1}}
CS(t2)={}

 i1

Figure 175: WP1 - Sequence. Selected CPC-ML specification

Alternative CPC-ML specifications The variation points, based on which alternative
configurations of the Sequence pattern can be obtained, are listed below:

• Channel characteristics. Channel capacity: the maximal channel capacity can be
increased from safe to bounded or unbounded, depending on the number of messages

11More complex patterns can be analyzed in a similar vein as has been done in [156].

Section 4.2 Patterns operationalization 209

the channel is able to store at once. If the minimal channel capacity mincap(c1) = 1
does not change, this notation is equivalent to the main notation. Note however, that
by increasing the minimal channel capacity, the enabling of the input port connected
to this channel would be delayed until the specified minimal channel capacity is
reached.
Channel positioning: an external channel can be used (as in Figure 175) with the
additional requirement that no tasks other than those comprising the sequence are
connected to this channel. However, for direct message transfer, the local channel
type can be selected.

• Blocking of output ports. Output port o1 of task t1 can be set to open or blocked.
If the safe channel c1 is not empty, then an open output port o1 for task t1 is allowed
to produce a message, however this message will be lost. If the output port is in the
blocked mode, the completion of task t1 will be postponed until the capacity of the
channel c1 is freed. Note that if the maximal capacity of the channel c1 is unbounded,
the output port o1 of task t1 is always open and is never blocked since the maximal
capacity of the channel cannot be reached.

• Message consumption mode. In the minimal message consumption mode, the
number of messages required to enable the channel (equivalent to the minimal channel
capacity) is consumed, the rest of the non-consumed messages are stored in the
channel for the subsequent task execution. To consume all messages available in the
channel, the message consumption mode should be set to maximal.

Note that in the initial definition of the Sequence pattern on page 123 such attributes as
the message consumption mode, the blocking of output ports, and the channel capacity
are not specified, which makes the pattern definition subject to multiple interpretations.

Staffware implementation The Staffware model of the Sequence and its corresponding
CPC-ML interpretation are presented in Figures 176 (a) and (b) respectively. The behavior
of this pattern can be described by means of the CPC-ML attributes as follows. Messages in
Staffware are transferred via a safe channel (c1 is chosen to be safe, i.e. maxcap(c1) = 1).
The enabling of task B is based on the messages available locally (jtype(B) = local).
The consumption of messages is performed in the minimal message consumption mode
(mcm(B) = min). In Staffware, messages can be sent to a channel even if the capacity
of the channel has been reached. The second message will cancel the first one. Although
Staffware has no notion of ports, the described behavior corresponds to the open mode of
the output port (blp(o1) = open) in the CPC-ML terms.

Oracle BPEL PM implementation The 〈sequence〉 construct presented in Figure 177,
which also corresponds to the BPEL code listed below, allows the definition of the collection
of tasks to be performed in the lexical order.

<sequence name="Sequence_1">

<empty name="A"/>

<empty name="B"/>

</sequence>

The fact that BPEL is structured and acyclic, implies that it does not facilitate rea-
soning about attributes such as the input selection mode and the blocking mode of the
ports. Activity B is enabled as soon as it is triggered by a message, therefore jtype of
the corresponding CPC-ML task is set to local. It is sufficient to have a single trigger for
enabling a task, therefore the message consumption mode of task B is set to minimal, i.e.
min.

210 Chapter 4 Workflow Control-Flow Patterns

o1

A

jtype
blp
mcm
ism
IS
OS
CS

B

i1
jtype
blp
mcm
ism
IS
OS
CS

CS(A)={} jtype(B)= local mincap(c1)=1
OS(A)= {{o1}} mcm(B)= min maxcap(c1)=1
blp(o1) = open CS(B)= {}

IS(B)= {{i1}}

c1

a) b)

Figure 176: Staffware implementation of WP1

o1

A

jtype
blp
mcm
ism
IS
OS
CS

B

i1
jtype
blp

mcm
ism
IS
OS
CS

OS(A)= {{o1}} jtype(B)= local mincap(c1)=1
CS(A)={} IS(B)= {{i1}} maxcap(c1)=1

mcm(B)= min
ism(B)=min
CS(B)= {}

c1

a) b)

Figure 177: Oracle implementation of WP1

Variation points expressed in terms of CPC-ML for each of the control-flow patterns
serve as classification criteria for distinguishing different variants of the same pattern. As
an example of this we have illustrated that even such a basic pattern as Sequence, which is
supported by all workflow systems evaluated in [193], has several variants. To distinguish
between different pattern variants, it is important to identify the characteristics of channels
used to model the pattern, specifying explicitly the maximal channel capacity that indicates
the number of messages the channel is able to store at once; the minimal channel capacity
and the message consumption mode specifying how many messages are required to enable
tasks in the sequence; and the blocking mode of the output ports of tasks in a net defining
whether the tasks producing messages may complete when the maximal channel capacity
has been reached.

Although such a classification could potentially lead to an explosion of the number
of patterns, it offers the potential to increase the precision of pattern definitions from an
operational perspective significantly, thus avoiding possible misinterpretations. Moreover,
the properties of the basic model entities that are captured in CPC-ML are orthogonal. By
explicitly identifying the various dimensions and by distinguishing all combinations of val-
ues in different dimensions we can obtain a large set of variants of the control-flow patterns.

Section 4.2 Patterns operationalization 211

CPC-ML is a powerful tool for the analysis of workflow systems. So far, we have used CPC-
ML as a means of comparing the expressiveness of the implementations of the control-flow
patterns in Staffware and Oracle BPEL PM. Note that CPC-ML can easily be used for
the analysis of other workflow systems. To illustrate this, we will show the mapping of
the XOR-join and the AND-join constructs implemented in COSA, GLIF and YAWL to
CPC-ML. Some of these systems were also mentioned at the beginning of Section 4.2.1 on
page 192. The mapping of process modeling languages to CPC-ML allows us not only to
reason about features of specific languages but also to compare them using CPC-ML as an
evaluation tool. Figure 178 depicts the mapping of the XOR-join construct to CPC-ML
(cf. models (a) and (b) respectively).

C

jtype
blp
mcm
ism
IS
OS
CS

A

i1

jtype
blp
mcm
ism
IS
OS
CS

B

jtype
blp
mcm
ism
IS
OS
CS

o2

o1

OS(A)={{o1}}
OS(B)={{o2}}
OS(C)={{o3}}

jtype(C)= local
mcm(C)=min
IS(C)={{i1}}
CS(C)={}
ism(C)=max
for all output ports p:
blp(p)=blocked

mincap(s1)=1 maxcap(s1)=1
mincap(s2)=1 maxcap(s2)=1

s1 o3 s2

a) b)

Figure 178: The XOR-join: mapping of COSA to CPC-ML

COSA activities A, B and C and states s1 and s2 correspond to CPC-ML tasks A, B
and C and channels s1 and s2 respectively. The maximal capacity of channels in COSA
is bounded to one, therefore the channels are safe. In COSA, tasks A and B can not be
enabled if state s1 is not empty. This corresponds to the blocked mode set for all output
ports in the GWF-net.

Figures 179(a) and (b) show the mapping of the AND-join construct implemented in
COSA to CPC-ML respectively. COSA activities A, B and C and states s1, s2 and s3
correspond to CPC-ML tasks A, B and C and channels s1, s2 and s3 respectively. Activity
C requires both inputs from states s1 and s2, which corresponds to the synchronization of
incoming threads. Such AND-join behavior is denoted in CPC-ML by means of the input
sets of task C. Similar to the description of the XOR-join implementation in COSA, this
model corresponds to a GWF-net with safe channels, blocked output ports, and maximal
input selection mode. The enabling of tasks is based on locally-available information.

In contrast to COSA, a language for modeling clinical guidelines GLIF has no notion
of states that could be directly mapped to channels of CPC-ML. Figure 180 shows the
mapping of the XOR-join construct in GLIF to CPC-ML. The action steps A and B are
followed by the patient state step C, which merges the outputs of A and B. Step C is
executed as soon as an input from either of these branches has arrived, therefore the
message consumption mode for task C is set to min. The output ports of tasks A and B

212 Chapter 4 Workflow Control-Flow Patterns

C

jtype
blp
mcm
ism
IS
OS
CS

A

i1

s1

jtype
blp
mcm
ism
IS
OS
CS

B

i2s2

jtype
blp
mcm
ism
IS
OS
CS

o2

o1

jtype(C)= local
mcm(C)= min
ism(C)= max

OS(A)={o1}
OS(B)={o2}
OS(C)={o3}
IS(C)={{i1,i2}}
CS(C)={}
for all output ports p:
blp(p)=blocked

mincap(s1)=1 maxcap(s1)=1
mincap(s2)=1 maxcap(s2)=1
mincap(s3)=1 maxcap(s3)=1

a) b)

s3o3

Figure 179: The AND-join: mapping of COSA to CPC-ML

Figure 180: The XOR-join: mapping of GLIF to CPC-ML

are set to the open mode, which means that they may produce messages even if previous
messages have not yet been processed by task C.

Figure 181 depicts the mapping of the AND-join construct in GLIF to CPC-ML. Since
the threshold of the synchronization step C can be set to a subset of incoming branches,
the input consumption mode of step C is set to minimal. Note however that the message
consumption mode for this step is set to maximal in order to ensure that all inputs provided
are consumed. The merge of inputs is based on the locally available information, therefore
jtype(C) is set to local.

Figure 182, Figure 183 and Figure 184 depict the mapping of the XOR-join, AND-join

Section 4.2 Patterns operationalization 213

Figure 181: The AND-join: mapping of GLIF to CPC-ML

C C

jtype
blp
mcm
ism

IS
OS
CS

A

i1

jtype
blp
mcm
ism
IS
OS
CS

B

jtype
blp
mcm
ism
IS
OS
CS

o2

o1

OS(A)={{o1}}
OS(B)={{o2}}
OS(C)={{o3}}
for all output ports p:
blp(p)=open

jtype(C)= local
mcm(C)=min
IS(C)={{i1}}
CS(C)={}
mincap(p1)=1

p1 o3

p2

a) b)

Figure 182: The XOR-join: mapping of YAWL to CPC-ML

and OR-join implemented in YAWL to CPC-ML respectively. In contrast to COSA, YAWL
allows an unlimited number of messages to be stored in places, therefore channels in the
GWF-net are chosen to be unbounded. Since the maximal capacity of the channels can
never be reached, all output ports produce messages in the open mode. The input selection
mode for all joins is set to maximal, meaning that the maximal set of enabled input ports
from the perspective of set inclusion is selected by task C. The join logic is incorporated
into the input sets of task C, the enabling of which is based on local and future states for
XOR-join, AND-join, and OR-join respectively. The messages are consumed from channels
in minimal mode, i.e. one message is consumed from every channel selected for message
consumption.

214 Chapter 4 Workflow Control-Flow Patterns

C

jtype
blp
mcm
ism
IS
OS
CS

A

i1

jtype
blp
mcm
ism
IS
OS
CS

B

i2

jtype
blp
mcm
ism
IS

OS
CS

o2

o1

jtype(C)= local
mcm(C)= min
ism(C)= max

OS(A)={o1}
OS(B)={o2}
IS(C)={{i1,i2}}
CS(C)={}

for all output ports p: blp(p)=open
mincap(p1)=1
mincap(p2)=1

o3

p2

p1

p3

a) b)

Figure 183: The AND-join. Mapping of YAWL to CPC-ML

C

jtype
blp
mcm
ism
IS
OS
CS

A

i1

jtype
blp
mcm
ism
IS
OS
CS

B

i1

jtype
blp
mcm
ism
IS
OS
CS

o2

o1

jtype(C)= future
mcm(C)= min
ism(C)=max

IS(C)={{i1},{i2},{i1,i2}}
OS(A)={{o1}}
OS(B)={{o2}}
OS(C)={{o3}}
CS(C)={}

for all output ports p:
blp(p)=open

o3 p3

p2

p1

a) b)

Figure 184: The OR-join. Mapping of YAWL to CPC-ML

We have shown that CPC-ML can also be used for specifying the functionality of systems
such as COSA and YAWL, and thus is generic enough to serve as a point of reference when
assessing and comparing modeling languages employed by PAISs. The examples presented
highlight many subtle differences between systems and many possible interpretations of
the control-flow patterns. This concludes the discussion of requirements for PAIS from the
control-flow perspective. We now move on to a comprehensive evaluation of control-flow
pattern support in a selection of PAISs.

4.3 Tool evaluations

In this section, we show how the control-flow patterns can be used for assessing and com-
paring process modeling languages employed by a wide range of PAISs. In particular, we

Section 4.3 Tool evaluations 215

concentrate on two extreme approaches utilizing process models: a BPEL-based process
engine (Oracle BPEL PM) and clinical Computer-Interpretable Guideline (CIG) modeling
languages. The medical community claims that CIG modeling languages are very different
from workflow management systems, as they require the support of processes of more flexi-
ble and unpredictable nature, therefore it is interesting to investigate the actual differences
between workflow management systems and CIG modeling languages from the control-flow
perspective. In Section 4.3.1, we give a brief overview of languages selected for the eval-
uation. The evaluation of the BPEL-based process engine is presented in Section 4.3.2,
whereas the evaluation of the CIG modeling languages is presented in Section 4.3.3.

We have selected Oracle BPEL Process Manager 10.1.3.1 as a candidate offering which
supports processes based on the BPEL standard. Although this tool provides functionality
for inter-process communication, in this evaluation we concentrate only on the control-flow
perspective in the context of a single process instance. Oracle BPEL PM can be considered
to be a system employing an imperative approach, i.e. it explicitly specifies tasks and the
order in which they should be performed.

Clinical CIG modeling languages utilize an alternative approach in regard to address-
ing particular modeling challenges. Instead of dictating what should be done and how,
these languages guide users through the process and provide recommendations for decision
making. The main goal of CIG modeling languages is to assist users in making decisions
by providing computer-interpretable representations of the clinical knowledge contained
in clinical guidelines. To analyze CIG modeling languages from the control-flow perspec-
tive, we chose four standards, i.e. Asbru, PROforma, EON and GLIF, supported by the
AsbruView, Tallis, and Protege-2000 tools respectively.

4.3.1 Background

Before we proceed with a more detailed analysis of the control-flow patterns support, we
first give some background information about BPEL and CIG modeling languages.

Business Process Execution Language for Web-Services (WS-BPEL)

Oracle BPEL Process Manager 10.1.3.1 is a tool providing facilities for modeling, deploying
and managing BPEL-processes [166] (v.1.1). It provides a graphical interface for visualizing
BPEL process modeling activities, which are described below.

The Business Process Execution Language for Web-Services (WS-BPEL) is a business
process modeling language that is executable. We chose Oracle BPEL PM as an example
of a system that provides operational support for WS-BPEL. WS-BPEL is an orchestration
language, which allows multiple services to be linked together. It takes the viewpoint of a
single participant in the specification of such an interaction. Processes deployed as web-
services can be linked together and communicate by means of messages. The messaging
mechanism that WS-BPEL relies on is defined by the Web Services Description Language
(v1.1) [60].

Apart from its ability to specify abstract processes, i.e. providing a high-level view
on the interaction between communicating processes, WS-BPEL also provides constructs
for specifying executable processes. While WS-BPEL supplies only a textual description
of processes expressed in the form of an XML-schema, Oracle BPEL PM provides also a
graphical interface to visualize each of the process modeling activities.

216 Chapter 4 Workflow Control-Flow Patterns

A generic BPEL-document contains definitions of partner links, variables, fault han-
dlers, and the description of a structure of a business process. Partner links define parties
that are involved in an interaction; these are declared in the <partnerLinks> section. Each
partner link is of type PartnerLinkTypeswhich represents dependencies between services,
each playing one of the two specified roles (i.e. a service provider or a service consumer).
The variables section defines data variables used in a process and messages exchanged by
the given process during its execution. Each message has a type whose definition is based
on an XML-schema and is defined in a corresponding WSDL-document. The fault handlers
section defines activities that must be performed in response to faults that may happen
during interaction. Finally, the <process> definition contains a description of the process
behavior. WS-BPEL offers a set of process activities that represent the actions associated
with tasks which comprise a business process. We will briefly describe each of these process
activities below.

The <receive>, <reply>, <invoke> and <pick> are activities used in WS-BPEL to
send and receive messages between processes. The <invoke> activity allows a business
process to invoke an operation provided by another process. Depending on whether such
call is one-way or request-response, the requestor process may specify how the expected
response needs to be processed. The <receive> activity is executed when a message whose
message type matches the corresponding port type is received (ports are considered to be
gates for messages for a particular type). An alternative means of receiving a message
is provided by the <pick> construct. It includes multiple branches, each of which can
be associated with a particular action, e.g., on message receival <onMessage> or on the
basis of a particular event <onEvent>. A race condition exists between activities included
in these branches, i.e. only the first one can execute, while the rest are withdrawn. The
<reply> activity allows a business process to send a message in response to a message
that was previously received by any of Inbound Message Activities (IMA) (i.e. <receive>,
<onMessage>, or <onEvent>).

The <assign> activity is used to update variables with new data. The <validate>

activity is used to validate the values of variable against the corresponding XML definition.
Faults are generated inside a business process by means of the <throw> activity. Waiting
for a given period of time can be accomplished via the <wait> activity. It can also be used
as a timeout event in the pick construct. The <empty> activity represents an empty task,
that is used primarily for synchronization purposes. The <exit> activity is used to end
the execution of the business process immediately.

The <scope> activity is used in WS-BPEL to define a nested activity. If execu-
tion within the scope fails, the <compensateScope> activity can be performed. The
<compensate> activity is used to compensate all inner scopes that have completed suc-
cessfully. The <rethrow> activity is used to rethrow the fault which was originally caught
by the enclosing fault handler.

The following set of constructs defines the execution order of tasks in a process. The
<sequence> activity defines a set of tasks to be performed sequentially in a defined order
(i.e. in the order that activities are listed). The <flow> activity specifies multiple branches
that run concurrently. By means of links associated with tasks in these branches, a partial
order can be enforced. The <forEach> activity iterates an enclosed activity a specified
number of times, either sequentially or in parallel. This construct corresponds to the
<flowN> construct in Oracle BPEL PM. The <if> activity is used to describe conditional
choice, where one activity is selected from a set of choices. The <while> activity defines
conditions for repeating the execution of a child activity. Finally, the <repeatUntil>

Section 4.3 Tool evaluations 217

activity defines the repetitious execution of a child activity until a specified condition is
satisfied.

Computer-Interpretable Guideline modeling languages

Clinical practice guidelines and protocols are being applied in diverse areas including policy
development, utilization management, education, clinical decision support, conduct of clin-
ical trials, and workflow facilitation. The main intent of clinical guidelines is to improve the
quality of patient care and reduce costs. Difficulties associated with accessing information
contained in conventional guidelines and applying it in practice have motivated the develop-
ment of decision-support systems whose main purpose is to create computer-interpretable
representations of the clinical knowledge contained in clinical guidelines.

We introduce the main concepts of four functioning Computer-Interpretable Guideline
(CIG) modeling languages selected for evaluation, i.e. Asbru, EON, GLIF, and PROforma,
by modeling the following patient diagnosis scenario in each of the corresponding tools. A
patient is registered at a hospital, after which he is consulted by a doctor. The doctor
requests the patient to give a blood test and a urine test. When the results of both tests
become available, the doctor makes a diagnosis and confirms the treatment strategy.

Figure 185 presents the scenario modeled in AsbruView [34]. AsbruView is a markup
tool among many others (e.g., Delt/A [75, 215], URUZ [142], and CareVis [22, 52]) that
were developed to support the authoring of guidelines in Asbru [34]. A process model in
Asbru [201] is represented by means of a time-oriented skeletal plan.

time

le
v
e
ls

sequential plans are specified from left to right

parallel sub-plans reside
next to each other on the

top of a common plan

Parallel plans

Figure 185: The patient-diagnosis scenario modeled in AsbruView

The root plan (marked as Plan A in Figure 185) is composed of a set of other plans,
which are depicted with different colors for the purpose of differentiation. The plans are
represented as 3-dimensional objects, where the width represents the time axis, the depth
represents plans at the same level of the decomposition (i.e. which are performed in paral-
lel), and the height represents the decomposition of plans into sub-plans. Parent plans are
considered to be completed when all mandatory sub-plans have been completed. Enabling,
completion, resumption and abortion conditions can be specified for each plan where re-
quired. As the time axis shows, plans Register patient, Consult doctor, Test phase

218 Chapter 4 Workflow Control-Flow Patterns

and Define treatment are executed sequentially. The Test phase plan is a parallel plan
consisting of two activities Ask for urine test and Ask for blood test. In this model,
we used only two types of plans: sequential (root plan) and parallel (Test phase plan).
AsbruView also support the visualization of the Any-order Plan, Unordered Plan, Cyclical
Plan, and If-then-else Plan, and two types of actions: Ask and Variable Assignment.

Branch step Synchronization step

Figure 186: The patient-diagnosis scenario modeled in EON/Protege

An EON model of the patient-diagnosis scenario created in the Protege-2000 environ-
ment is illustrated in Figure 186. Protege-2000 is an ontology-editor and knowledge-base
framework [162]. The main modeling entities in EON [211] are scenarios, action steps,
branching, decisions, and synchronization [210,212]. A scenario is used to characterize the
state of a patient. There are two types of decision steps in EON, i.e. a Case step and a
Choice step, which allow exactly one path or more than one path to be selected respec-
tively. An Action step is used to specify a set of action specifications or a sub-guideline
that are to be carried out. Branch and Synchronization steps are used to specify parallel
execution.

GLIF 3.5 [46] is a specification method for the structured representation of guidelines.
To create a model in GLIF, an ontology schema and a graph widget have to be loaded
into the Protege-2000 environment. Figure 187 illustrates the GLIF model of the patient-
diagnosis scenario.

In GLIF3.5, five main modeling entities are used for process modeling, i.e. an Action
Step, a Branch Step, a Decision Step, a Patient Step, and a Synchronization Step. An
Action Step is a block used to specify a set of tasks to be performed, without constraints
set on the execution order. It allows the inclusion of sub-guidelines into the model. Decision
steps, combining a Case Step and a Choice Step from GLIF 3.4, are used for conditional
and unconditional routing of the flow to one of multiple steps. Branch and Synchronization
steps are used for modeling concurrent steps and synchronization of the parallel branches
respectively. A Patient Step is a guideline step used for describing a patient state and for
specifying an entry point(s) to a guideline. A remarkable feature of GLIF3.5 is its ability
to specify several alternative entry-points to a process model, the execution of any of which
results in the initiation of a new process instance. In Chapter 6 of this thesis, we focus

Section 4.3 Tool evaluations 219

Branch step Synchronization step

Figure 187: The patient-diagnosis scenario modeled in GLIF3.5/Protege

on different approaches to process flexibility and describe them in the form of patterns.
The ability of GLIF3.5 to support multiple entry-points corresponds to the Alternative
Entry-Points process flexibility pattern described on page 335. Interesting to note, that
this pattern is not supported by typical workflow systems and is the typical characteristic
of CIG modeling languages.

Action
Enquiry Plan Decision

Keystone

Figure 188: The patient-diagnosis scenario modeled in PROforma/Tallis

220 Chapter 4 Workflow Control-Flow Patterns

PROforma [93] is a formal knowledge representation language for authoring, publish-
ing and executing clinical guidelines. It deliberately supports a minimal set of modeling
constructs: actions, compound plans, decisions, and enquiries that can be used as tasks
in a task network. In addition, a keystone may be used to denote a generic task in a
task network. All tasks share attributes describing goals, control flow, preconditions, and
postconditions. A model of the patient-diagnosis scenario created in Tallis is shown in
Figure 188. Note that in PROforma control-flow behavior is captured by modeling con-
structs in combination with scheduling constraints. Scheduling constraints are visualized
as arrows connecting two tasks, meaning that the task at the tail of the arrow may become
enabled only after the task at the head of the arrow has completed.

Unlike other CIG modeling languages, PROforma combines two approaches to process
specification: an imperative approach and a declarative approach. As a consequence of
this, it is capable of expressing the majority of process flexibility patterns (cf. page 323)
that can be included in the process definition at design-time.

4.3.2 Evaluation of Oracle BPEL PM

In this section, we consider the evaluation results obtained from a detailed analysis of the
control-flow patterns in Oracle BPEL PM 10.1.3.1. In total, Oracle BPEL PM supports 20
of the 43 patterns directly and 3 patterns indirectly. The evaluation results are summarized
in Table 4.2.

All branching patterns are well supported by Oracle BPEL PM, the only exception
being that realization of the Thread Split pattern (WCF-6) is only indirectly achievable
through the use of the <invoke> construct in conjunction with programmatic extensions.
From the Synchronization patterns, Oracle BPEL PM supports a basic variant of the
Synchronization pattern and all structured-type patterns. The native support for the
Structured Discriminator pattern (WCF-9) and the Structured Synchronizing Merge pat-
terns (WCF-17) is due to the block-structured nature of the process modeling language.
Note however that more flexible variants of the Discriminator pattern, i.e. the Blocking
Discriminator and Canceling Discriminator, are not supported. Although a more generic
variant of the Structured Synchronizing Merge, i.e. the General Synchronizing Merge, that
requires “future”-based semantics is not supported, Oracle BPEL PM allows the Local
Synchronizing Merge to be realized using links within the <flow> construct.

The Repetition pattern Structured Loop (WCF-21) is supported by Oracle BPEL PM
in two ways, i.e. via the <repeatUntil> and the <while> constructs. No support for
the Arbitrary Cycles pattern (WCF-23) is provided due to the block-structured nature of
the modeling language. Nor is there the support for self-invocation as required by the
Recursion pattern (WCF-22).

Although Oracle BPEL PM has no notion of a multiple instance task, three of the Mul-
tiple Instance patterns can be realized. The MI without Synchronization pattern (WCF-24)
can be implemented using the <invoke> construct within the <while> loop. The MI with
a priori Design-Time Knowledge pattern (WCF-25) and the MI with a priori Run-Time
Knowledge pattern (WCF-26) are supported through the use of the <flowN> construct,
which allows multiple instances of a task to be created based on the dynamically set vari-
able N indicating the desired number of instances.

Of the four concurrency control patterns, Oracle BPEL PM directly supports only one
of them: the Critical Section (WCF-33). Despite the fact that BPEL has a notion of
serializable scopes, providing concurrency control in governing access to a common set of

Section 4.3 Tool evaluations 221

shared variables, the realization of serializable scopes in Oracle BPEL PM does not behave
as expected. In Oracle BPEL, the serializable scopes they behave as if they executed in
sequence rather than concurrently. This means that the Interleaved Routing and Interleaved
Parallel Routing patterns are not supported.

Since events in Oracle BPEL PM are of a durable nature, there is a direct support for
the Persistent Trigger pattern (WCF-35), but no corresponding support for the Transient
Trigger pattern (WCF-36).

Cancelation and Completion patterns are very well supported by Oracle BPEL PM as
follows. The Cancel Task pattern (WCF-37) is achieved by associating a fault or a com-
pensation handler with a task. The Cancel Case pattern (WCF-39) is directly supported
via the <terminate> construct. The Cancel MI Task pattern (WCF-40) is supported in
a <flowN> construct by associating it with a fault or compensation handler. The Cancel
Region pattern (WCF-38) is not directly supported, since there is no means of canceling
arbitrary groups of tasks, although tasks within the same scope can be canceled. Oracle
BPEL PM does not support the Complete MI Task pattern (WCF-41) since there is no
notion of a multiple instance task.

Only one means of denoting process instance termination, - Implicit Termination, - is
supported by Oracle BPEL PM. The process instance terminates when there are no more
tasks remaining.

4.3.3 Evaluation of CIG modeling languages

In this section, we provide a detailed examination of the CIG modeling languages. Table 4.2
summarizes the comparison. As the results of the analysis show, PROforma offers direct
support for the largest number of patterns (22 out of 43) among the examined offerings.
Asbru and GLIF offer support for 20 and 17 patterns respectively. Even less patterns are
supported by EON (it supports only 11 patterns).

More detailed analysis of the pattern support reveals that all offerings examined directly
support the majority of the Branching and Synchronization patterns, which are relatively
common in business processes used in practice. Note that the Structured Synchronizing
Merge pattern (WCF-17) is not supported by any of the examined offerings. While PRO-
forma supports this pattern directly, Asbru adds a time restriction to the synchronization
process to approximate the desired behavior. The semantics of the synchronization blocks
in EON and GLIF are not precise enough, i.e. they do not specify what happens to the
active tasks after the Synchronization task has been executed. This is also the reason why
some of the variants of the Synchronizing Merge are not supported by EON and GLIF.

None of the examined modeling languages support the concept of a multiple instance
activity and, therefore, patterns from the Multiple Instances pattern group are not sup-
ported. In the business process domain, multiple threads of execution that relate to the
same activity are often supported (e.g., an insurance claim with a variable number of wit-
ness statements or an order containing multiple order lines). Similar situations may arise,
for example, when a clinical trial is executed for groups of patients. To identify whether
there is a need for CIG modeling constructs supporting multiple instances, more research
needs to be done addressing the nature of the clinical guidelines requirements (note that
this falls outside of the scope of work presented in this thesis).

Although EON and GLIF have the notion of patient state, they lack the notion of pro-
cess state, thus providing no support for the Concurrency Control patterns. The only lan-
guage that employed these concepts is PROforma. PROforma is the only system/language

222 Chapter 4 Workflow Control-Flow Patterns

Table 4.2: Support for the Control–flow Patterns in (1) Asbru, (2) EON, (3) GLIF, (4)
PROforma, and (5) Oracle BPEL PM

ID Pattern name 1 2 3 4 5

WCF-1 Sequence + + + + +
WCF-2 Parallel Split + + + + +
WCF-3 Exclusive Choice + + + + +
WCF-4 Deferred Choice + - + + +
WCF-5 Multi-Choice + + + + +
WCF-6 Thread Split - - - - +/-

WCF-7 Synchronization + + + + +
WCF-8 Generalized AND-join - - - - -
WCF-9 Structured Discriminator + + + + +
WCF-10 Blocking Discriminator - - - - -
WCF-11 Canceling Discriminator + - - + -
WCF-12 Structured Partial Join + - + + -
WCF-13 Blocking Partial Join - - - - -
WCF-14 Canceling Partial Join - - - + -
WCF-15 Simple Merge + + + + +
WCF-16 Multi-Merge - - - - -
WCF-17 Structured Synch. Merge +/- - - + +
WCF-18 Local Synch. Merge - - - + +
WCF-19 General Synch. Merge - - - - -
WCF-20 Thread Merge - - - - +/-

WCF-21 Structured Loop + + + + +
WCF-22 Arbitrary Cycles - + + - -
WCF-23 Recursion + - - - -

WCF-24 MI without synch. - - - - +
WCF-25 MI with a priori DTK +/- +/- +/- +/- +
WCF-26 MI with a priori RTK - - - - +
WCF-27 MI without a priori RTK - - - - -
WCF-28 Static partial join for MI - - - - -
WCF-29 Canceling partial join for MI - - - - -
WCF-30 Dynamic partial join for MI - - - - -

WCF-31 Interleaved Routing + - + - -
WCF-32 Interleaved Parallel Routing + - - - -
WCF-33 Critical Section + - + - +
WCF-34 Milestone - - - + -

WCF-35 Transient Trigger - - - + -
WCF-36 Persistent Trigger - - + + +

WCF-37 Cancel Task + + + + +
WCF-38 Cancel Region - - - - +/-
WCF-39 Cancel Case + - +/- + +
WCF-40 Cancel MI Task + - + + +
WCF-41 Complete MI Task + - - + -

WCF-42 Implicit Termination + + + + +
WCF-43 Explicit Termination - - - - -

Section 4.4 Related work 223

supporting the Milestone pattern (WCF-34). In contrast, Asbru supports all variants of
the Interleaved Routing pattern (i.e. WCF-31, WCF-32 and WCF-33) directly via its Any-
order type plans.

All of the languages analyzed except EON support the Cancelation and Completion
patterns relatively well. Note that none of the systems has the functionality for canceling
an arbitrary group of tasks available. PROforma plays a leading role in supporting the
Trigger patterns. In addition to the Transient Trigger and Persistent Trigger patterns,
it also offers the notion of force triggers, i.e. triggers that force a certain task to execute
such that any non-satisfied pre-conditions for its execution are ignored. In terms of process
instance termination, all the languages examined provide support for implicit termination,
i.e. the process instance terminates when no tasks are left to execute.

Based on the results of evaluating CIG modeling languages, we can conclude that from
the control-flow perspective these languages are very similar to the process languages of
workflow management systems. This is remarkable since one would have expected dedi-
cated constructs allowing for more flexibility given the more dynamic nature of care pro-
cesses.

4.4 Related work

There have been multiple attempts to define business process modeling languages, aiming
to provide a single point of reference for business process specification. In [56], Casati et al
propose a WorkFlow Description Language (WFDL) where a workflow model is composed
of workflow tasks and routing tasks are used to denote partial and iterative joins. In [182],
Reichert and Dadam present the ADEPT Workflow Model that is based on the concept of
symmetrical control structures (e.g., splits, joins and loops specified as symmetrical blocks
with a single start and end points). In [143], Kradolfer and Geppert describe a TRAMs
workflow model, where control flow is specified through start and end conditions associated
with workflow tasks.

Various formal techniques such as process algebra [42, 124], pi calculus [177], state
charts [224] and Petri nets [102] have been used as a basis for developing process modeling
languages. Of these, Petri nets have established themselves as the most pervasive concep-
tual basis for describing control-flow in a process language. In [2], van der Aalst advocates
three main advantages that Petri nets offer: (1) availability of a formal semantics despite
the graphical nature, (2) state-based reasoning (instead of event-based), and (3) a large
number of analysis techniques. In spite of these advantages, very few PAISs directly use
Petri nets as a basis for describing control-flow. Nevertheless, many of the languages are
very similar to Petri Nets in many respects.

The varying interpretations of basic process modeling concepts employed in distinct
PAISs have motivated the definition of a single standard providing a common vocabulary,
a universal reference model, and operational semantics. One of the most widely cited
attempts in this direction was the Workflow Reference Model [63] by the Workflow Man-
agement Coalition (WfMC) which aimed to identify the range of constructs that should
be embodied in a workflow engine. Due to relatively limited set of control-flow constructs
it described, and their incomplete and imprecise definition, it failed to provide a univer-
sal source of reference. A more considered pattern-based approach aiming to cover the
insufficiencies identified has been introduced by the Workflow Patterns Initiative.

The first application of a pattern-based approach to identification of generic workflow
constructs in [9] resulted in a set of patterns relevant to the control-flow perspective. A

224 Chapter 4 Workflow Control-Flow Patterns

subsequent step towards gathering control-flow patterns has resulted in a collection of
twenty control-flow patterns that aimed to provide a formal basis for understanding the
requirements of PAIS from the control-flow perspective. These patterns were applied for
evaluation of capabilities a large set of commercial and research workflow systems and web
services standards.

In [135], the expressiveness of the systems was evaluated using control-flow patterns.
In [81], the control-flow patterns were utilized to examine the capabilities of UML 1.4
Activity Diagrams, with the aim of identifying their strengths, weaknesses and areas for
possible improvement. Similar investigations into the expressiveness of languages have
been performed for BPEL4WS [225], BML [227], UML 2.0 Activity Diagrams [228], and
BPMN [226].

In recognition that the original workflow patterns were limited to the control-flow per-
spective, and a comprehensive description of a workflow process also requires an under-
standing of the data and resource perspectives [128], in the context of the Workflow Pat-
terns Initiative additional research was conducted aiming at the identification of require-
ments in the data and resource perspectives. As a result, 40 data patterns [191] and 43
resource patterns [192] have been identified and documented. In [190], subsequent research
has also proposed a patterns-based approach to workflow exception handling.

Some of the control-flow patterns presented in this chapter are related to control-flow
patterns of Jablonski et al [128]. However, [128] aims at the development of a WFMS
that can be extended with new patterns rather than characterizing existing control-flow
structures and using them for evaluation. Note that the term of workflow patterns has been
already used by other authors, however their focus was more on workflow architecture [152]
or on data-flow related issues arising in the context of collaborative work on document
processing [147].

The workflow control-flow patterns formed the starting point for the development of Yet
Another Workflow Language (YAWL) [15]. This language extends Petri nets, illustrating
support for almost all control-flow patterns. It also aimed to support all data, resource
and exception handling patterns identified in [190–192] respectively.

In [107], Greco et al. investigate the problem of mining unconnected patterns in work-
flows as the authors believe that detecting sequences of tasks which frequently occur to-
gether are crucial for discovering meaningful execution patterns. For this purpose, they
propose a mechanism for graphical analysis of the frequencies of process instances. Business
process discovery has become an interesting topic in the research and has been addressed
by many authors [98,100,233]. Following on from the topic of discovering workflow patterns
in the form of workflow regions in a model, Truong et al. analyze performance metrics for
use in evaluating the performance of Grid workflows.

In [48], Braghetto et al. propose an alternative business process definition language, the
suitability and expressiveness of which is evaluated using the set of the workflow control-
flow patterns. In [51], Cardoso proposes a metric for computing the complexity of BPEL-
processes, and uses the control-flow patterns, data patterns, and resource patterns as a basis
for the evaluation. Philippi and Hill [173] propose the APRIL process modeling language,
where they use control-flow patterns to illustrate the animation aspects of the language;
furthermore, the authors identify future plans to implement all control-flow patterns. In
[49], Brambilla et al. address the topic of process modeling in web application. The authors
analyze various tools and use the workflow patterns as a means of benchmarking.

In their paper [133], Joncheere et al. aim at the definition of a new generation of
workflow systems, tailored for grid service composition. In order to identify requirements

Section 4.5 Summary 225

for this workflow system, the authors extensively use workflow control-flow patterns. The
topic of grid environments and grid optimizations has been also addressed in [58, 69, 112].

In [91], Fortino et al. propose an agent-based approach for modeling and enactment
of distributed workflows. In their model, the authors use a workflow schema based on
the workflow control-flow patterns. Zhao et al. also refer to workflow patterns in their
work [237] related to agent-based flow control. In [197], Savarimuthu et al. apply the
workflow patterns also for monitoring and controlling of a multi-agent based workflow
system.

In a series of related works [104–106], Gomes et al. present an approach for extending
tools for composition of application by with design patterns and operators, aiming at
providing a better way to manipulate and manage the execution of available components.

4.5 Summary

In this chapter, we have revisited the control-flow patterns. In order to specify the opera-
tional semantics of the control-flow patterns precisely, we developed a set of CPN diagrams
that define the conceptual operation of each pattern. Where applicable, we identified spe-
cific CPN patterns that were used during the CPN-modeling of control-flow patterns. An
interesting observation is that many CPN diagrams designed to describe the semantics of
the control-flow patterns resemble implementations of the CPN patterns, however they are
not the same thing. The CPN patterns describe generic structures that might be encoun-
tered in CPN models of various kinds of systems, while the CPN models of the control-flow
patterns represent the semantics of the control-flow constructs in business process modeling
languages. Despite the similarity in the CPN models structure, the context in which they
operate and their actual realization differ significantly.

To provide an objective basis for pattern evaluations, we have established a set of
evaluation criteria for each of the control-flow patterns. Furthermore, we have classified
patterns into groups based on the similarities in problems addressed by each of the patterns.
The control-flow patterns have a wide range of potential application areas, each of which
we will expand on subsequently. These include:

• Reuse of accumulated knowledge;

• Benchmarking of offerings;

• Enhancement of existing tools;

• Development of new tools and standards;

• Education and training.

By systematically documenting common constructs used in process modeling, the
control-flow patterns facilitate the reuse of accumulated knowledge. Proven in practice
solutions communicated in form of patterns can be reused by practitioners without having
to reinvent them over and over again. The control-flow patterns also provide a basis for
benchmarking of offerings : the degree of pattern support can be checked across distinct
PAISs and standards. The results of the evaluation can be used as a trigger for enhance-
ment of existing tools by redesign or extension with missing patterns. The patterns have
directly influenced the development of many academic and commercial tools as well as
the development of standards including BPMN and BPEL. In particular, FLOWer 3.0
of Pallas Athena has extended the functionality with the synchronizing merge construct,
Staffware Process Suite has been extended based on the patterns for multiple instances,

226 Chapter 4 Workflow Control-Flow Patterns

and BizAgi of Vision Software has been completely redesigned to support more patterns.
Furthermore, open source workflow systems Ivolutia Orchestration, OpenWFE, Zebra, and
Alphaflow were inspired by the workflow patterns. The Workflow Patterns Initiative has
also influenced the development of a Yet Another Workflow Language (YAWL) [1], which
aims to provide both workflow language that is based on the workflow patterns and also
an open-source reference implementation that demonstrates the manner in which these
constructs can interoperate. In addition, the proved in the practice solutions can be used
for education and training purposes.

Apart from describing the capabilities of PAISs to support control-flow patterns, we
have illustrated that realization of the same control-flow constructs can be based on distinct
assumptions that impose syntactic restrictions on the process modeling languages employed
by different PAISs. In this context, we showed that operationalization aspect of the control-
flow patterns can be made more precise by setting the structural and behavioral properties
of the basic process modelling constructs in more detail, as described in the CPC-ML.

Expressing the control-flow patterns in terms of CPC-ML forces us to think of the
behavior inherent to a pattern from the perspective of all entity attributes, thus allowing
for more precise definitions of the patterns from the operationalization point of view. De-
pending on the value of the attributes set for the modeling entities, a single pattern may
have different notations which correspond to the same behavioral pattern or be treated
as different behavioral pattern variants depending on the values chosen for the variations
points. The practical value of CPC-ML is multilateral: it can be used as

• a means of precise specification of the control-flow patterns, and

• a deterministic basis for capturing the operationalization semantics of process mod-
eling constructs in distinct PAISs.

Furthermore, CPC-ML can be used by workflow system developers to prevent them
from imposing restrictive constraints on workflow specifications, and identifying pattern
variants a system needs to support.

In this chapter, we have concentrated on the internal aspects of a process, focusing on
issues related to control-flow within a process instance. However, this knowledge is in-
sufficient to describe interactions between processes. Interactive processes provide and/or
use services to/from other processes. In order to understand requirements for such pro-
cesses, interactions with the external environment have to be examined. The next chapter
is devoted to the analysis of requirements from the service interaction perspective.

Chapter 5

Service Interaction Patterns

In Chapter 4, we concentrated on the internal aspects of a business process and presented
the fundamental constructs for describing the structure of a process model in the form
of control-flow patterns. In this chapter, we shift our focus from the internals of the
process to the interaction of the process with the external environment. The insights
that we provide in this chapter are crucial for understanding the requirements associated
with service interaction. These are especially important for organizations which need to
integrate third party applications and external services into their business processes, and
for PAISs aiming to provide support for interactive business processes. A significant issue in
the field of service orientation is that the requirements associated with service interactions
are not very well understood. Some aspects of these interactions are ambiguous in their
interpretation, and some relevant attributes are not considered at all. Furthermore, these
requirements are limited to simple interactions, i.e. they do not cover interaction scenarios
of a more complex nature.

In this chapter, we consolidate the results of an in-depth analysis of the requirements in
service interaction and present them in the form of service interaction patterns. We start
by introducing concepts relevant to service interaction in Section 5.1. Then in Section 5.2,
we adapt an approach to compactly present service interaction patterns identified in the
form of the configurable framework. In Section 5.3, we perform the tool evaluation using
the patterns identified. We discuss the related work in Section 5.4 and draw the conclusions
in Section 5.5.

5.1 Introduction

In light of current trends in the development of PAISs (as described in Section 1.2), the SOA
paradigm has gained widespread acceptance as an approach to supporting the integration
of software applications within and across organizational boundaries. In this context,
distributed processes can be deployed as stand-alone services and interconnected using
Web-based standards (cf. Appendix B). The functionality offered by a service can be
linked to execution of a certain task in a process. Effectively, interaction between the
process requesting a service and the process offering the service is performed via tasks
dedicated to send and/or receive units of information in form of messages.

The interaction of one process with another process, can be characterized using one

228 Chapter 5 Service Interaction Patterns

of four basic interaction types presented in Figure 189. In unidirectional interactions,
depicted in Figure 189(a) and (b), a dedicated task in one process either sends a message
to another process, or receives a message from it. From the orchestration perspective, i.e.
the point of view of a single party, process A sends a message to process B via Task A1, and
receives a message from process B via Task A2. From the choreography perspective, i.e.
the global view on the interaction between processes, in each of the interactions presented
in Figure 189(a) and (b) both parties execute a send task and a receive task.

Task A1 Task B1

Process A
Process Instance 1

Process B
Process Instance 1

(a) send interaction: A to B

Task A2 Task B2

(b) receive interaction: A from B

Task A3 Task B3

(c) asynchronous interaction

Task A4 Task B4

(d) synchronous interaction

Party Party

message

Figure 189: Basic types of inter-process interactions

Two types of bidirectional interactions, presented in Figure 189(c) and (d), are possible:
an asynchronous interaction and a synchronous interaction. An asynchronous interaction
is the interaction between two parties, where one party sends a request message to another
party, and expects a reply message to be received back in response to the first message.
Assuming that the processing of the request may take a significant amount of time, in an
asynchronous interaction the requestor party is not blocked and can continue processing.
An asynchronous interaction can also be represented as a series of related interactions,
where process A sends a request message to process B, which responds with a reply message
at a later time. In contrast, in a synchronous interaction, a task in the requestor party is
blocked until a reply message is received from the responder party.

Since services offered by different organizations may potentially be developed using

Section 5.1 Introduction 229

distinct technologies, they must adopt a common set of standards in order to allow such
services to be easily integrated. Although contemporary technologies for web-services de-
velopment and integration have reached a reasonable level of maturity in realizing simple
bilateral interactions, many issues remain unresolved when it comes to managing more
complex long-running interactions involving multiple (and possibly loosely-coupled) ser-
vices [64].

The requirements for service interactions between multiple processes can be described
using the concepts of orchestration and choreography. The difference between them is in
the point of view from which an interaction is considered. Whilst orchestration defining
the rules for a business process from the point of view of a single participant, choreography
provides a global view on the interaction between the processes. The latest and the most
significant standard, addressing issues of orchestration, is the Business Process Execution
Language for Web-Services (WS-BPEL or BPEL) [164]. It provides a set of process ac-
tivities for modeling of structured workflows combined with capabilities of incoming and
outgoing message interactions. The W3C’s Web Services Choreography Definition Lan-
guage (WS-CDL) [217] adopts a global view in order to define common ordering conditions
and constraints under which messages are exchanged between participants in an interaction.
While BPEL and WS-CDL aim to support a coordinated exchange between participants,
the scope of the requirements they address is limited to bilateral interactions [40, 64].

To specify requirements in service interaction more extensively than had previously been
done in the context of BPEL4WS and WS-CDL, thirteen service interaction patterns [37]
covering bilateral, multilateral, competing, atomic and causally related interactions were
identified. We have systematically reviewed the thirteen service interaction patterns pre-
sented in [37] and concluded that the scope of these patterns is limited to simple interaction
scenarios, and that these patterns potentially suffer from ambiguous interpretation due to
their imprecise definition. We have taken up the challenge of reconciling the requirements
for service interaction and describing them using the pattern approach. Understanding
these requirements in detail is crucial for improving existing standards in the field, mak-
ing correct design choices when developing SOA-based PAISs, evaluating and selecting the
right technology for realization and integration of business processes.

The scope of the work presented in this chapter goes beyond simple interactions: we
concentrate on various aspects of long-running interactions between multiple tightly and
loosely-coupled processes. Due to the large number of patterns identified, instead of listing
each pattern separately, we present them in the form of a configurable framework. The
framework proposed consists of five pattern families. Each pattern family combines a large
set of pattern variants related to the same set of concepts. Pattern variants are generated
from a pattern configuration by assigning different values to each of the configuration pa-
rameters defined for a particular pattern family. Figure 190 illustrates the main building
blocks the framework consists of, and indicates how many meaningful pattern variants can
be generated for each of the pattern families identified. Note that the original thirteen ser-
vice interaction patterns [37] correspond to pattern variants belonging to different pattern
families presented in this chapter.

In order to exclude the possibility of ambiguous interpretation, for each of the pattern
configurations we provide a precise formal semantics in the form of CPNs. For every pattern
family, we have developed a set of CPN models and tested them using CPN Tools [66].
Furthermore, for each pattern family we propose an intuitive notation that allows different
values of configuration parameters to be graphically depicted. Thus, the graphical notation
serves as a means for both visualizing and distinguishing pattern variants.

230 Chapter 5 Service Interaction Patterns

Multi-party Multi-message Request-Reply Conversation

Renewable Subscription

Message Correlation

Message Mediation

Bipartite Conversation Correlation

1072

20

100

392

18

pattern
families

pattern
configuration

Figure 190: The configurable framework for service interaction

The five pattern families described in this chapter address the following problems:
• The Multi-party Multi-message Request-Reply Conversation pattern family considers

conversations in which a single party interacts with multiple parties via multiple
messages. It addresses the problems of non-guaranteed response and different aspects
of message handling, e.g., sorting, consumption, and utilization of messages. This
pattern family combines 1072 pattern variants.

• The Renewable Subscription pattern family identifies requirements related to long-
running conversations (often termed subscriptions) where either of the two parties
involved in the conversation can take the initiative when initializing and renewing a
subscription. In total, 20 pattern variants can be derived from the pattern configu-
ration for this family.

• The pattern families Message Correlation, Message Mediation and Bipartite Conver-
sation Correlation address the problem of correlation, where the first pattern family
addresses the problem at a low-level of abstraction, while the latter two do so at a
higher-level.

- In the context of interactions between two tightly-coupled parties, the Message
Correlation pattern family addresses the issue of correlating incoming messages
with previously exchanged messages related to the same conversation. This
pattern family combines 100 pattern variants.

- The Message Mediation pattern family concentrates on message exchange be-
tween two loosely coupled parties that interact via an intermediary. Two types
of messages mediation, named Mediated Introduction and Mediated Interaction,
are distinguished where the role of the intermediary is to introduce one party
to another or to forward messages back-and-forth between these parties. This
pattern family combines 72 pattern variants for Mediated Introduction and 320
pattern variants for Mediated Interaction.

- The Bipartite Conversation Correlation pattern family concentrates on message
correlation in the context of a long-running conversation between two parties,
whose knowledge used for the message correlation may change during the course

Section 5.2 Configurable framework for service interaction patterns 231

of the conversation. This pattern family combines 18 meaningful pattern vari-
ants.

In Section 5.2, we present the conceptual foundation for the framework in the form of a
meta-model, which is later augmented with the concepts specific to a particular pattern
family. The five pattern families: Multi-party Multi-Message Request-Reply Conversation,
Renewable Subscription, Message Correlation, Message Mediation, and Bipartite Conver-
sation Correlation are described in sections 5.2.1, 5.2.2, 5.2.3, 5.2.4 and 5.2.5 respectively.
The operational support for the pattern variants identified in selected PAISs is examined
in Section 5.3.

5.2 Configurable framework for service interaction pat-

terns

In this section, we present a framework for describing new service interaction patterns. To
systematically describe the various patterns identified, pattern variants sharing the same
set of concepts are combined into a single pattern family. The differences between pattern
variants belonging to the same pattern family are described by means of pattern attributes.
For each of the pattern attributes a range of possible values is identified. The set of all
pattern attributes identified for a given pattern family forms a pattern configuration. By
instantiating all pattern attributes, a pattern configuration representing a specific pattern
variant can be obtained.

The pattern families introduced in this section adopt a consistent presentation format.
We depict each pattern configuration using an intuitive graphical notation, consisting of
a set of labels each of which corresponds to a specific pattern attribute. By configuring
these attributes, a graphical notation of a specific pattern variant is obtained.

The meta-model describing the key concepts shared by all pattern family is illustrated
by the UML class diagram shown in Figure 191. Later, various parts of this core model
will be extended with concepts specific to each of the pattern families.

Party

Conversation

Message

Request Reply

1

1..*

corresponds to

involves

2..*

0..*

1 0..*

Figure 191: UML meta-model of service interaction concepts shared by all pattern families

232 Chapter 5 Service Interaction Patterns

For the purpose of this thesis, a conversation is defined as the communication of a set of
contextually related messages between two or more parties. A party is an entity involved in
communication with other parties by means of sending/receiving messages. A party may
represent a process, a service, a business unit, etc. A message is a unit of information that
may be composed of one or more data fields.

The association involves in Figure 191 shows that two or more parties may be involved
in a conversation, represented as Party and Conversation classes respectively. The com-
position relation between Conversation and Message classes indicates that at least one
message is exchanged in a conversation. A message may represent a request or a reply as
visualized by specializations Request and Reply of the Message class. There is an asso-
ciation between Request and Reply message types indicating that there may be zero or
more replies corresponding to a given request. In case of the one-way interaction, no reply
is required, whereas in case of the two-way interaction a reply message may be either not
sent at all, or one or more replies may be sent in response to the request message received.

To clarify the semantics of the pattern configuration we use a formalism based on
CPNs. For each pattern family, we have designed a (set of) CPN model(s) which is exe-
cutable in CPN Tools [66]. Declarations used within CPN models are consistent with the
concepts described in the meta-model and pattern attributes characterizing the pattern
configuration.

The pattern attributes that influence the detailed semantics of each pattern variant
are described separately. Pattern attributes (also referred to as parameters) represent
orthogonal dimensions used for classifying different aspects of service interaction within
the context of the given meta-pattern. All possible combinations of the attribute values
result in a large set of pattern variants, each of which can be easily derived from the
pattern configuration and are depicted by a corresponding label. In total, for the five
pattern families identified, 1602 meaningful pattern variants can be generated.

The five pattern families, from which this framework is composed of, are described
using the following format:

- Description: service interaction scenarios to which the given pattern family applies.
- Examples : examples illustrating the application of the given pattern variant in prac-

tice.
- UML meta-model : a model describing the concepts specific to a given pattern family.
- Visualization: a graphical notation representing a pattern configuration and the

detailed description of configuration parameters.
- Illustrative example: classification of one of the examples using the configuration

parameters and its representation using the graphical notation defined for the given
pattern family.

- CPN semantics : the semantics of a generic pattern illustrated in the form of CPNs
presented by means of the screen-shots of the models and their corresponding de-
scription.

- Issues: issues that can be encountered when applying a pattern variant from the
given pattern family in practice and corresponding solutions.

In the remainder of this section, we describe each of the pattern families in more detail.

Section 5.2 Configurable framework for service interaction patterns 233

Various graphical notations exist for depicting service interactions (e.g., BPMN [165],
WS-CDL [217], Let’s Dance [235]). They focus on different aspects of service interac-
tion and adopt different approaches to its visualization. Even when describing basic
interactions, using these notations not all interaction parameters are taken into account.
For example, there is the possibility of a deadlock situation in the following scenario
where two parties, a customer and a provider, are engaged in a order/purchase pro-
cess. Whilst the provider waits for the payment to arrive before delivering the ordered
product, the customer may wait for the product to be delivered before paying for it.
In order to prevent an endless waiting process, it is important to specify under which
conditions an interaction is completed/aborted. In BPMN and WS-CDL this problem
is solved by identifying control-flow dependencies between the parties. Let’s Dance
adopts the interaction modeling approach, where interactions are visualized as basic
building blocks in the choreography model. However, parameters such as the possibil-
ity for missing requests and replies are not included in these notations. Furthermore,
the interaction attributes such as conditions for (force)completion of an interaction or
rules describing consumption and utilization of messages received are also not fully
addressed.

On page 234, we introduce a graphical notation for depicting the dynamic nature of
request-reply interactions which can be configured according to the required interaction
characteristics.

5.2.1 Pattern family: Multi-party Multi-message Request-Reply

Conversation

The first pattern family described using the format discussed in the previous section is the
Multi-party Multi-message Request-Reply Conversation pattern family.

Description A requestor posts a compound request consisting of N sub-requests to a set
of M parties and expects a reply message to be received for each sub-request. There exists
the possibility that some parties will not respond at all and also the possibility that a
responder will not reply to some sub-requests. The requestor queues all incoming messages
in a certain order. The enabling of the requestor for consumption of reply messages depends
on the fulfillment of certain activation criteria. The requestor should be able to, optionally,
consume a subset of the responses and even process a subset of the consumed set - hence
allowing for use in cases where only the best or fastest responses are needed. The number
of times the requestor may consume messages from the queue can be specified explicitly.

Example

• Requests to submit an abstract or to submit a paper are issued by an editor to a list
of 117 people registered for participation in a workshop. Only papers and abstracts
submitted before the deadline will be reviewed. If a large number of papers arrive,
only the first 50 will be reviewed and only 10 best papers out of the reviewed ones
will be published.

UML meta-model An object diagram illustrating the Multi-party Multi-message Request-
Reply Conversation pattern family at a conceptual level is presented in Figure 192. A con-
versation consists of a set of messages (cf. the composition relation between Conversation

and Message). A conversation involves an initiating process (e.g., requestor), and at
least one following process (e.g., responder), depicted by the associations requestor and

234 Chapter 5 Service Interaction Patterns

responder. A process may be or may not be involved in multiple conversations (cf. the
multiplicity of the association involves). The requestor generates at least one Request

message, while the responder returns one or more Reply messages or does not react at
all. The relation between Request and Reply messages is depicted by the corresponds

to association, and the sending of request and reply messages by a party is illustrated by
the is sent by and is produced by dependency relations. Request messages issued by a
requester can be composite. This means that the requestor may send several sub-requests
in a single message concurrently to a single or to multiple parties.

Party

Conversation

Message

Request Reply

1

1..*

corresponds to

involves

2..*

0..*

requestor responder

0..*0..*

1 1..*

is sent by is produced by

1 0..* 0..*0..*

Figure 192: UML meta-model of Multi-party Multi-message Request-Reply Conversation

Visualization The graphical notation of the configurable Multi-party Multi-message
Request-Reply Conversation is shown in Figure 193. The parties are visualized as rectan-
gles. Directed arrows represent the direction in which a party sends a message. A message
containing a single request is visualized as a black token, while a compound request is
represented by multiple overlapping tokens. Parameters specific to a given party are vi-
sualized as labels residing within the boundaries of a rectangle representing a party. This
graphical notation is used to specify the following set of configuration parameters :

C

FIFO

U

 M

?

?

List of

Responders

Sorting algorithm of

messages in the

queue

Number of messages

consumed from queue
Consumption

frequency

Enabling condition

for message

consumption

Number of used

messages

from the consumed

ones

List of sub-

requests

Possibility

of missing

replies

Possibility of

non-responding

parties
Requestor

Reply

Message

 E

F

Figure 193: Graphical notation: Multi-party Multi-message Request-Reply Conversation

Section 5.2 Configurable framework for service interaction patterns 235

 M

?

? ?

?

 (4a) (4b) (4c) (4d)

K B

 (2a) (2b)

(1a) (1b)

 FIFO LIFO PRIO NOQUEUE

 (3a) (3b) (3c)

(5a) (5b) (5c) (5d)

Figure 194: Variants of graphical notation for Multi-party Multi-message Request-Reply Con-
versation

• N - a parameter denoting a list of sub-requests sent by a requestor to a responder in
a single message.
Range of values : size(N)≥1.
Default value: size(N)=1.
Visualization: This parameter is depicted by the dots on the arc from the requester
to the responder(s). For size(N)>1 and size(N)=1 the graphical notations depicted
in Figure 194 (1a) and (1b) are used respectively.

• M - a parameter denoting a list of responders involved in the conversation.
Range of values : size(M)≥1.
Default value: size(M)=1.
Visualization: For size(M)>1 and size(M)=1 the graphical notations depicted in
Figure 194 (2a) and (2b) are used respectively.

• Possibility of non-responding parties - a parameter specifying whether some of the
responders will ignore the request issued by the requestor.
Range of values :

◦ No: all M responders will reply at least something (for example, a request to
report the level of income to the tax-office obliges all receivers to reply);

◦ Yes: some responders may not reply at all (for example, only interested parties
react on the invitation to participate in a social event).

Default value: No.
Visualization: Figure 194 depicts the graphical representation of four variations,
where: in (4a) and (4b) all M responders will produce at least some replies; in (4c)
and (4d) some responders may not reply to all requests received. (See also the next
configuration parameter).

• Possibility of missing replies - a parameter specifying whether the responder will not
reply to some of the sub-requests (i.e. it is the choice of the responder to engage in
a conversation or not, and to reply to all or only to some of the received requests).

236 Chapter 5 Service Interaction Patterns

Range of values :

◦ No: responders reply to all sub-requests (for example, the responder answers on
all questions in the tax declaration);

◦ Yes: responders reply only to some sub-requests (for example, a client subscribes
only to two out of the five journal offers received).

Default value: No.
Visualization: Figure 194 depicts the graphical representation of four variations,
where: in (4a) and (4c) no replies are lost; in (4b) and (4d) some replies may not
reach the requestor. Note that this notation is combined with the notation of the
previous parameter.

• Sorting of queued messages - a parameter specifying an ordering discipline according
to which response messages queued by the sender are sorted.
Range of values :

◦ FIFO: oldest message is the first one in the queue;
◦ LIFO: newest message is the first one in the queue;
◦ PRIO: sorting based on some criterion (for instance, on price);
◦ NoQueue: messages are not queued and are consumed upon arrival if the sender

is ready to process them, otherwise they are lost.

Default value: NoQueue.
Visualization: Figure 194 (5a)-(5d) depicts the graphical notation of different policies
that cab be applied for sorting messages in the queue.

• Enabling condition - a parameter specifying the condition that has to be fulfilled to
enable the requestor to consume replies.
Range of values :

◦ a timeout (for example, requests for purchase on a discounted basis are accepted
only until the expiration of the discount period);

◦ a specified minimal number of messages K (0<K≤N);
◦ a Boolean condition, examining the properties of the queued messages (for ex-

ample, at least three low-cost offers are required in order to select the best of
them).

Default value: K=1.
Visualization: the E label residing at the requestor’s side in Figure 193 substituted
with one of the graphical notations presented in Figure 194 (3a), (3b) and (3c) which
denote activation conditions based on a timeout, availability of specific number of
messages and a Boolean expression respectively.

• Consumption index - a parameter specifying the number of reply messages to be
consumed by the requestor from the queue.
Range of values :

◦ 0: none of the messages are removed from the queue (for example, messages
enable the receival process, but it may be necessary to leave them on the queue
for another process to use);

◦ S: S messages are removed from the queue such that 0<S<K, where K is the
number of replies sufficient for activation of the requester (as specified in the
enabling condition);

◦ All: all messages contained in the queue are removed.

Default value: All.
Visualization: the C label residing at the requestor’s side in Figure 193 substituted

Section 5.2 Configurable framework for service interaction patterns 237

with a suitable value, i.e. 0, S or All.

• Utilization index - a parameter specifying the number of messages from those con-
sumed that are used by the requestor for the processing.
Range of values :

◦ 0: no messages are used for processing (for example, if no messages were con-
sumed, or if none of the consumed messages are required by the receiving pro-
cess);

◦ 1: one message is used for processing (for instance, the best offer from the
available ones is selected);

◦ UN: a specific number of messages is used for processing such that 1<UN<C,
where C is the number of messages consumed;

◦ All: all consumed messages are used for processing.

Default value: All.
Visualization: the U label residing at the requestor’s side in Figure 193 substituted
with its value, i.e. 0, 1, UN or All.

• Consumption Frequency - a parameter specifying the number of times the requestor
performs the consumption of messages from the queue.
Range of values :

◦ 1: the requestor is activated only once, after this all remaining and arriving
messages are destroyed;

◦ FN: the requestor consumes messages FN number of times, 1<FN, after which
all remaining and subsequent messages are destroyed;

◦ ∞: the requestor consumes messages as long as they continue to arrive.

Default value: 1.
Visualization: the F label residing at the requestor’s side in Figure 193 substituted
with its value, i.e. 1, FN, or ∞.

The pattern variant representing a scenario in which every parameter is set to the
default value is presented in Figure 195. A party A sends a single request to a party B, who
sends a reply back. The party A does not queue messages, and consumes them as soon as
they arrive. Only one message is necessary for party A to become enabled and start the
consumption and processing of messages. All other messages that may arrive later will be
discarded.

NoQueue

All

1

A B

All

1

1

single request (N=1) single responder (M=1)

(No) possibility of

non-responding
parties;

(No) possibility for

missing replies

All messages
available are

consumed

(C=All)

All messages
consumed

are utilized

(U=All)
Enabling upon a single

message (K=1)

Consume only once (F=1)

No queueing, immediate

consumption (NoQueue)

Figure 195: Notation for the default Multi-party Multi-message Request-Reply Conversation
pattern variant

238 Chapter 5 Service Interaction Patterns

Meaningful configurations Various pattern variants can be obtained by setting con-
figuration parameters to a specific value. The total number of possible configurations
can be calculated by multiplying the number of values defined for each of the configuration
parameters. One could conceive that for the Multi-party Multi-message Request-Reply Con-
versation pattern family in total 6912 configurations would be permissible. This number
is obtained by counting all possible combinations of parameter settings. However, few of
them represent meaningful pattern variants. Therefore, we try to provide a more accurate
number.

Meaningful configurations are illustrated in Figure 196 that represents an alternative to
commonly used tree structure. As the latter is used to determine the number of paths from
the top parent node to bottom children nodes, this representation can be used to calcu-
late the total number of meaningful pattern configurations. The configuration parameters
correspond to nodes, and arcs directed downwards correspond to the leaves. Each arc is
associated with a set of values the configuration parameters may take, thus multiple val-
ues associated with an arc compactly represent multiple arcs each associated with a single
value.

(1,>1)

(1,>1)

(YY,YN,NY,NN)

(NoQueue) (FIFO,LIFO,PRIO)

Enabling

Sorting

Possibility of nonresponding parties and missing replies

M

N

Consumption index

(K=1) (Timeout)
(Bool)

(K messages)

(0) (All) (0) (All)(0) (All)(0) (All)
(S)

Utilization index

(0) (0,1,All) (0) (0) (0)(0,1,
UN,

All)

(0,1,
UN,

All)

(0,1,
UN,

All)

(0,1,
UN,

All)
Consumption frequency

(1) (1) (1) (1) (1) (1) (1)(1,
FN,

)

(1)

Figure 196: Meaningful configurations of Multi-party Multi-message Request-Reply Conversa-
tion (total 1072 configurations)

In order to arrive at an arithmetic expression for calculating the total number of mean-
ingful configurations, we define a set of rules describing how to construct such an expression.
We start with an empty expression and extend it gradually by moving from the top to the
bottom of the tree structure in Figure 196. Where a parameter has a single outgoing arc,
the expression is extended by multiplying it by the number of values associated with the
arc. For example, starting with an empty expression and processing the parameter N (i.e.
number of sub-requests in a message) with 2 values on its outgoing arc (representing a
single request in a message or multiple ones), will result in a total expression of “2 ∗ ...′′.
Processing the next node M (i.e. number of responders) will result in the same extension to
the expression, i.e. “2 ∗ 2 ∗ ...′′. When dealing with a parameter with several arcs outgoing
from the same point the following extension to the expression is made: “

∑A

i=1 ni ∗ (...)”,

Section 5.2 Configurable framework for service interaction patterns 239

where A is the number of arcs outgoing from the same point and ni is a number of values
associated with the arc i. Then each of the bracket-pairs needs to be filled in separately.
Each bracket pair has to be initialized with an empty expression if the bottom of the
structure has not been reached, or be treated as 1. The described procedure has to be
recursively applied to every bracket.

Using the rule described, a total number of 1072 meaningful configurations can
be calculated (e.g., 2*2*4*(1*(1*(1*1*1 + 1*3*1)) + 3*(1*(1*1*1+1*3*3+1*3*1) +
1*(1*1*1+1*3*1) + 1*(1*1*1+1*3*1))) = 1072). It is interesting to see why not all
pattern configurations are considered to be meaningful. The configuration parameters
specifying the number of sub-requests in a message, the number of responders involved in
the conversation, the possibility of non-responding parties and missing replies are orthogo-
nal, i.e. any combination of their values is possible. Distinct approaches for calculating the
meaningful configurations start from the sorting algorithm applied for messages queued. If
no queuing mechanism is available (NoQueue), then incoming messages are consumed and
processed upon arrival. This means that enabling conditions related to counting of mes-
sages in a queue, analyzing their properties or postponed consumption are not applicable.
In other cases, when messages are queued, they are sorted according to one of the sorting
algorithms, i.e. FIFO, LIFO or PRIO. To differentiate between rules for consumption
and processing for queued and non-queued messages, the latter are visualized separately.

If messages are not queued, then they are consumed immediately for processing, i.e. the
number of messages required for starting the message consumption K = 1. The message
arrived may be either discarded, in which case the consumption index is C = 0, or it is
consumed C = All. If no messages are consumed, none of them can be utilized (i.e. U = 0).
If all messages were consumed, then either none, one or all of them can be utilized. Note
that in this case, consuming one or all messages has the same semantics. Because there
is no queue available, no messages are left for future consumption, thus the only possible
value of consumption frequency is F = 1.

If messages are queued, the consumption of messages from the queue may be enabled
based on a timeout, the availability of messages satisfying a certain property and the
availability of a minimal number of messages. In the first two cases, if the consumption of
messages is enabled, either none or all messages are consumed from the queue (C = 0 or
C = All). If the enabling of message consumption is based on the availability of a minimal
number of messages in the queue, then all, none or a subset of these messages (C = S) may
be consumed for processing. Only in the case when not all messages available in the queue
are consumed, is there the possibility for multiple consumption (F = FN or F = ∞).

Illustrative example To illustrate how the pattern configuration of the Multi-party Multi-
message Request-Reply Conversation can be applied in practice, we revisit the example
presented earlier for which we describe the corresponding pattern variant by defining values
for the configuration parameters.

In this example, the editor plays the role of the requestor and people registered for
participation in a workshop represent multiple responders (size(M)=117). The editor sends
a request to submit an abstract or to submit a paper, thus the request is of a composite
nature and size(N)≥1. Since there is no guarantee that the responders will reply, there
is the possibility of non-responding parties. Since not all responders may respond by
sending an abstract and a paper, there is also the possibility of missing replies. Reply
messages are sorted according to a FIFO policy. The enabling condition for consumption
of replies for processing is set to the timeout corresponding to the nominated deadline.
The consumption index is set to 50 papers, this means that all other messages will be

240 Chapter 5 Service Interaction Patterns

discarded. The utilization index is set to 10 (only the 10 best papers will be reviewed).
The consumption frequency is set to 1, no messages are stored in the queue for subsequent
processing. The graphical notation representing the pattern configuration for this example
is shown in Figure 197.

FIFO

10

M=117

50

1

N=2

?

?

Figure 197: Notation for the paper submission example

CPN semantics To avoid an ambiguous interpretation of the pattern variants related
to Multi-party Multi-message Request-Reply Conversation we formalize the semantics by
means of CPNs. Figure 198 depicts the top view of the CPN diagram representing the
pattern. Requestor and responder are represented as substitution transitions which can
be unfolded to the nets depicted in Figure 199 and Figure 200(c) respectively. In every
conversation, the parties exchange requests and replies of type Message. Since the requestor
process does not expect a simultaneous reply, the interactions between the requestor and
the responder are realized using the Asynchronous Transfer CPN pattern, described on
page 54.

The requestor (whose behavior is shown in Figure 199) can send requests and receive

Table 5.1: Data types used in Figures 198 -201

colset Party = string;
colset Request = string;
colset Requests = list Request;
colset Reply = string;
colset Replies = list Reply;
colset ConvId = int;
colset Content = union Req:Requests + Repl:Replies; 1

colset Message = product ConvId * Party * Party * Content; 2

1 The content of a message is ei-
ther a list of requests or a list of replies.
The CPN union type is used to specify
this.

2 A message is a tuple
(cid,P1,P2,c) where cid is a conversa-
tion identifier, P1 is the requestor, P2
is the responder, and c is the content.
Such a message is of type Message.

Responder

Responder

Requestor

Requestor

reply

Message

request

Message

Requestor Responder

Figure 198: CPN diagram: The top view of
Multi-party Multi-response Request-Reply Con-
versation

Section 5.2 Configurable framework for service interaction patterns 241

response messages using substitution transitions Send request and Receive response

whose decompositions are shown in Figure 200(b) and Figure 201. A requestor process
may have multiple process instances, whose lifecycle is shown in Figure 200(a). Process
instances available for participation in a conversation are stored in the enabled place.
A process instance chosen for conversation is stored in the running place. Transitions
activate, deactivate and complete control the status of a process instance during its
lifecycle. When an enabled process instance is activated, it has the status active and may
participate in sending and receiving of messages. Meanwhile the active process instance
can become inactive through deactivation or can become completed. The lifecycle of
a process instances ends when it is complete and the process instance is added to the
completed place. Note that in order to realize different statuses of a process instance we
use the Non-deterministic XOR-split CPN pattern, described on page 38.

Each process instance is represented by a list of requests crqs that need to be sent,
a list of replies crps received from the responder parties, and the status of the process
instance. In order to refer to requests and replies associated with a given process instance

Table 5.2: Data types used in Figure 199

colset Count = int;
colset MTime = int;
colset Status = with active|inactive|enabled|completed; 3

colset ConvRequest = product Parties * Requests;
colset ConvRequests = list ConvRequest;
colset ConvReply = product Parties * Replies;
colset ConvReplies = list ConvReply;
colset Pr = product ConvRequests*ConvReplies*Status;
colset Proc = product ConvId*Pr; 4

colset ConvInfo = record start time: MTime * last act:MTime
* nof unique messages: Count * nof parties: Count *

total nof messages: Count;
colset Conv = product ConvId * ConvInfo * Status;

3The lifecycle of a pro-
cess instance starts with the
activation of an enabled in-
stance. An active instance can
become inactive through de-
activation, or completed when
the instance lifecycle ends.

4Process instances of type
Pr contain a list of requests
sent, replies received and the
status of the instance. When
a conversation starts, a process
instance is coupled with a con-
versation identifier.

Receive response

Receive response

Send request

Send request

Process instances

process instances

Conversations

Conv

Requestor
ID

"X"

Party

running

Proc

Message

Message

Send request

Receive response

Request

OutOut

Reply

InIn

process instances

Figure 199: CPN diagram: The Requestor page of
Multi-party Multi-message Request-Reply Conversation

242 Chapter 5 Service Interaction Patterns

(crqs,crps,completed)

proc

proc

end

start

running

I/O
Proc

enabled

InitProc

Pr

completed

Proc

I/O

(crqs,crps,completed)

complete

completecomplete

activate

activateactivate

deactivate

deactivatedeactivate

(a) The Process instances sub-page

(c) The Responder sub-page

Variation point:
messages with N
requests are sent
to M parties

cid cid+1

(crqs,crps,active)

(tl(crqs),crps,active)

requestor

create_messages(cid,requestor,crqs)
send

[crqs<>[]]

conversation
counter

1

ConvId

Proc

Conv

"X"

Party

request

Out
Message

Out

conversations

OutOut

Requestor
ID

I/OI/O

create_conversation(cid,requestor,crqs)

running

I/OI/O

(b) The Requestor’s Send Request sub-page

Figure 200: CPN diagrams of Multi-party Multi-message Request-Reply Conversation

as a single entity, we aggregate them in a collection using the Aggregate Objects CPN
pattern, described on page 67.

The requestor’s Send Request sub-page in Figure 200(b) shows that the requestor,
whose identifier is stored in place Requestor ID, at the moment of sending a request
message creates a new conversation. In order to distinguish conversations, for each of
them a conversation identifier cid is generated. The uniqueness of identifiers is ensured
by incrementing a counter whose value is stored in the conversation counter place. To
realize this counter we applied the ID Manager CPN pattern, described on page 51. Note

Section 5.2 Configurable framework for service interaction patterns 243

that request messages are sent by the requestor only if the list of requests is not empty.
This condition is included in the guard of the send transition, and acts as a filter based on
the BSD Filter CPN pattern, described on page 43.

Function create messages() takes a list of conversation requests crqs (which is of the
ConvRequests type), which contains a list of parties to whom a request should be sent,
and a list of sub-requests that should be sent to each party, and creates as many messages
as there are parties in the list. This function directly corresponds to the configuration
parameter specifying that messages with N sub-requests are sent to M parties.

When request messages are created, a new conversation is created by means of the
function create conversation(). This function records information about the conver-
sation identifier, conversation-specific parameters (the start time of the conversation, the
time of the last activation, a total number of messages sent, the number of parties to
whom the requests have been sent, and the number of unique messages (i.e. a number
of sub-requests can be contained in the single message)), and the status of the process
instance. The recorded conversation information is used later on for the purpose of cor-
relating response messages received with the requests sent and for identifying how many
times the received messages can be consumed for processing. This behavior corresponds
to the Shared Database CPN pattern, described on page 90.

The responder page shown in Figure 200(c) illustrates the behavior of responders in-
volved in the conversation. The identities of the responders are stored in place self.
They are used to relate incoming requests to the right party, based on the party iden-
tifier. The operation of matching the party identifiers is realized according to the ID
Matching CPN pattern, described on page 49. When a responder receives a request mes-
sage, it unpacks the composite requests into separate messages each containing a distinct
sub-request. The parameter prob all lost for party corresponds to a configuration pa-
rameter specifying the probability that the responder will ignore a received composite
request or will process it. If the responder decides to reply to the request, the param-
eter prob individual message lost is used as a configuration parameter to define the
probability that a reply will be sent for every unpacked sub-request.

The requestor’s Receive response sub-page presented in Figure 201 illustrates the
mechanism for queueing and processing incoming responses by the requestor. The re-
questor processes only messages addressed to it based on the requestor identity stored in
the Requestor ID place. For this purpose the ID Matching CPN pattern, described
on page 49, is used. The response messages received are queued according to the
QueueingDiscipline() function, which corresponds to the configuration parameter that
can be set to any of the supported queueing disciplines, i.e. LIFO, FIFO or PRIO, and re-
alized using the Queue (cf. page 75), FIFO Queue (cf. page 78), LIFO Queue (cf. page 79),
and Priority Queue (cf. page 81) CPN patterns respectively. If messages should not be
sorted (NoQueue), they are filtered out using the BSD Filter CPN pattern, described on
page 43, and consumed immediately.

Function Consume() corresponds to the configuration parameter specifying how many
messages from the queued ones have to be consumed. One, several, or all available messages
in the queue can be consumed. The consumption of messages occurs when the enabling
condition (encoded as a guard of transition Pull) is satisfied. The Activated function
can be configured to enable the pull transition based on the availability of one or sev-
eral messages in a queue, upon the satisfaction of a certain condition or upon a timeout.
The guarded enabling of the Pull transition corresponds to the BSD Filter CPN pattern
(cf. page 43).

244 Chapter 5 Service Interaction Patterns

Variation point:
a number of times
the sender is activated
for consumption

Variation point:
immediate consumption
or not

Variation point:
enabling condition
for activating the
consumption of
messages

Variation point:
sorting of the messages

(cid,(crqs,crps,sp))

mss

filter(mss,cid,sc,sp,NoQueue)

(cid,ci,i,sc)

(cid,(crqs,crps,active))

responder
(cid,requestor,responder,con)

(cid,ci,i,active)

(cid,upd(ci),i+1,
if i<MaxAct
then active
else completed)

QueueingDiscipline((cid,requestor,responder,con),mss)

mss

mss

destroy messages

[mss<>filter(mss,cid,sc,sp,NoQueue)]

receivepull

[Activated(cid,ci,mss)]

Responder
 ID

I/O

"X"

Party

Reply

In
Message

running

I/O
Proc

Conversations

I/O
Conv

queue

[]

Messages

I/O

I/O

In

I/O

Consume(cid,ci,mss)

Variation point:
a number of consumed
messages

(cid,(crqs,crps^^Use(cid,ci,mss),active))

Variation point:
a number of messages
used from the
consumed ones

Figure 201: CPN diagram: The Requestor’s Receive Response sub-page

From the messages consumed only the number of messages defined by the Use() func-
tion are actually used by the requestor for the processing. This configuration parameter
can be set to use either one, several or all consumed messages.

The MaxAct parameter corresponds to the configuration parameter specifying how many
times the requestor may consume the messages from the queue for the given conversation.
If the messages have been consumed the specified number of times, the process instance
receives the status completed and the messages left in the queue are removed from it
by means of the filter() function. Transition destroy messages is used to retrieve
messages from the queue place if the incoming response messages do not need to be sorted
and have to be consumed immediately upon arrival.

When describing the behavior of the Multi-party Multi-message Request-Reply Conver-
sation pattern family in the form of CPN, we used 12 distinct CPN patterns. Table 5.3
indicates how frequently each of the patterns has been used and how many patterns in
total, i.e. including the repeating ones, were applied.

Issues When applying pattern variants belonging to the Multi-party Multi-message
Request-Reply Conversation pattern family the issue of the message correlation may
arise while matching replies received with the requests sent. This issue can be addressed
by applying a suitable pattern variant from the Message Correlation pattern family (de-
scribed in Section 5.2.3). If the Multi-message Multi-Party Request-Reply Conversation
pattern variant has to be applied in the context of a long-running conversation, where
a series of requests have to be sent one after another, the given pattern variant can be
combined with a suitable pattern variant from the Bipartite Conversation Correlation
pattern family (described in Section 5.2.5).

Section 5.2 Configurable framework for service interaction patterns 245

Table 5.3: CPN patterns used in the implementation of Multi-party Multi-message Request-
Reply Conversation

CPN pattern Frequency
ID Matching 2
ID Manager 1
Aggregate Objects 2
Queue 1
FIFO Queue 1
LIFO Queue 1
Priority Queue 1
Shared Database 1
Data Distributor 1
BSD Filter 3
Asynchronous Transfer 2
Non-deterministic XOR-split 1
Total 16

The publish-subscribe interaction is a special kind of interaction between two parties,
a provider and a customer, whose main goal is to establish an agreement on delivery
of a particular product according the specific subscription terms. A publish-subscribe
interaction is usually performed in several phases: an initiation phase where an agree-
ment to deliver a product is established between a customer and a provider, and a
renewal phase where one of the parties takes the responsibility to renew or cancel the
current subscription. In software community, the publish-subscribe pattern is often
used to describe a situation where an entity maintains a list of dependents and notifies
them of any state change. Interesting to note that when considering publish-subscribe
scenarios the focus is usually set on the initiation of a particular conversation, whereas
the renewal phase is not considered at all. For example, the ‘Publish-Subscribe Chan-
nel’ described in the Enterprise Integration Patterns by Hohpe [125] concentrates on
broadcasting of an event to interested receivers by splitting one input channel into
several output channels and delivering an event to each of these output channels. The
main focus of the Hohpe’s pattern is to announce an event to multiple receivers; hence
it does not address possible variants of reacting to events by a subscriber and omits
strategies for renewing an established subscription.

In Section 5.2.2, we focus on renewable subscriptions. On page 246, we describe
possible variants of subscription renewal and provide a graphical notation to depict both
subscription initiation and subscription renewal phases of the conversation established
between a publisher and a subscriber.

5.2.2 Pattern family: Renewable Subscription

This sub-section describes the second pattern family named Renewable Subscription.

Description Two parties, a provider and a customer, are involved in a conversation with
each other. A provider offers a product under specific subscription terms and a customer
consumes the product. Both the provider and the customer may initiate the subscription
process by sending a request message. There may be a confirmation/rejection response to

246 Chapter 5 Service Interaction Patterns

the subscription request or no response at all. Depending on the terms of subscription,
the subscription can be renewed automatically, at the initiative of the customer or the
provider.

Examples

• To apply for travel insurance, a client contacts an insurance company. The insurance
company informs the client about available types of insurance and duration terms.
Once the client has taken out insurance, it is automatically renewed every year. The
insurance can be canceled at the client’s request at any time.

• A short-term trial newspaper subscription can be extended at the request of a reader.

UML meta-model Concepts specific to the Renewable Subscription pattern family are
illustrated by means of the class diagram in Figure 202. By subscription we understand a
conversation between two parties, one party offering a product (cf. the provider association
between Party and Subscription) and another party consuming it (cf. the customer

association between Party and Subscription), to establish an agreement for delivery of a
certain product according to pre-agreed subscription terms. A party may offer zero or more
products and define a set of subscription terms (cf. aggregation relations between Party,
and Product and SubscrTerms). Subscription terms define a subscription period, a number
of products to be delivered during this subscription period, a response period within which
the customer has to acknowledge the acceptance or rejection of the offered subscription,
and how the acknowledgment should be notified. The established subscription relates to
one product and a particular set of subscription terms, although these could be the same
for multiple subscriptions.

Each subscription has one initiation phase and may have multiple renewal phases or
may not have a Renewal phase at all (cf. the association relations between Subscription,
Initiation and Renewal). Initiation and renewal are conversations (cf. specialization
relation between Conversation, Initiation and Renewal) held for the purpose of estab-
lishing and renewing of a subscription respectively. Parties involved in the conversation,
play the role of requestor or responder, where requestor initiates a phase by sending a
Request message and responder replies with zero or more Reply messages.

Visualization Figure 203 illustrates the graphical notation for the Subscription Renewal
pattern configuration. Depending on who initiates the subscription and who takes the
initiative for its renewal, six subscription renewal types can be distinguished. For each
subscription renewal type listed in Table 5.4 there is a separate graphical notation as
shown in Figure 203.

Table 5.4: Renewable Subscriptions types

Subscription type Initiator Renewer

(a) Customer-initiated Automatically-renewed Customer none

(b) Provider-initiated Automatically-renewed Provider none

(c) Customer-initiated Customer-renewed Customer Customer

(d) Provider-initiated Customer-renewed Provider Customer

(e) Customer-initiated Provider-renewed Customer Provider

(f) Provider-initiated Provider-renewed Provider Provider

The parties are visualized as rectangles with a vertical line in the center of a rectan-
gle representing internal message flow. Directed arrows between rectangles represent the
direction in which a party sends a message. A dashed arrow indicates that no reply may

Section 5.2 Configurable framework for service interaction patterns 247

Party

Conversation

Message

Request Reply

1

1..*

corresponds to

involves

2..*

0..*0..*

0..*

1

is sent by is produced by

1 0..* 0..*0..*

1

requestor

responder

1 1

Subscription

Product SubscrTerms

Initialization Renewal

1
*

1

*

**

0..* 0..*

1 1

11

1 0..*

1
1

*

*

customer

provider

Figure 202: UML meta-model of Renewable Subscriptions

be sent back, i.e. the reply is optional. Every message is represented as a black token.
The message properties are embedded in the rectangles attached to the message. The time
sequence of message exchange corresponds to the time axis. Request and reply messages
are denoted as REQ and RPL respectively. Message indexes c and p denote that message is
sent by the customer or the provider respectively. Message indexes init and renew denote
that the message is related to the initialization or renewal of a subscription, while index
cnlrenew identifies the message is related to the cancelation of an automatically renewed
subscription.

Besides selecting the subscription renewal type, there is a set of the following configu-
ration parameters5 that have to be set to a specific value in order to differentiate pattern
variants:

• Expected initiation confirmation: confirmation expected by the provider to the sub-
scription initiation offer sent to the customer. This parameter applies only for the
provider-initiated subscription type.
Range of values :

◦ Yes/No: the provider requests the customer to reply with “Yes” or “No” to
accept or reject an offer for initiation of a subscription. If no confirmation is
received, no subscription is established.

5We omit the default values of the configuration parameters, since these may not apply to all subscription
renewal types.

248 Chapter 5 Service Interaction Patterns

◦ Yes: the provider requests the customer to reply with “Yes” in order to initiate
a subscription. If the expected response is not received, no subscription is
established.

◦ No: the provider requests the customer to reply “No” in order to terminate the
initiation of a subscription which is implicitly considered to be established. If
expected response is not received, the subscription is considered to be accepted.

Visualization: the Qi label in the message properties of an initiation request sent by
the provider to the customer, substituted with a suitable value (Figure 203)(d),(e) and
(f)). An example illustrating the provider’s request with an expected confirmation
“Yes” is presented in Figure 204.

• Expected renewal confirmation: confirmation expected by the provider to the sub-
scription renewal offer sent to the customer. This parameter applies only to the
provider-renewed subscription type.
Range of values :

◦ Yes/No: the provider requests the customer to reply with “Yes” or “No” to
accept or reject an offer for the renewal of a subscription. If no confirmation is
received, no subscription is established.

◦ Yes: the provider requests the customer to reply with “Yes” in order to renew
a subscription. If the expected response is not received, no subscription is
established.

◦ No: the provider requests the customer to reply with “No” in order to terminate
the renewal of a subscription which is implicitly considered to be established. If
expected response is not received, the subscription is considered to be accepted.

Visualization: the Qr label in the message properties of a renewal request sent by
the provider to the customer, substituted with a suitable value (Figure 203(c) and
(f)).

Besides the configuration parameters, the graphical notation in Figure 203 also contains
a set of dynamic attributes. Values of dynamic attributes may vary for different examples
that are characterized by the same pattern variant. The dynamic attributes describe
characteristics of a subscription such as the period of subscription (SP), the specific product
(Prod), the number of products to be delivered (Nr) within the subscription period, and the
response period (RP) during which a subscription offer has to be accepted. Furthermore,
the customer’s response to the subscription initiation offer and to the subscription renewal
offer (denoted Ri and Rr respectively), and the provider’s response to the subscription
initiation request or the subscription renewal request received from the customer (denoted
PRi and PRr respectively) belong to the behavioral variables that may have different values
in different conversations. In particular, the customer may reply to the subscription offer
received from the provider with Yes or No, or not reply at all. When the customer sends
a request to the provider to initiate or renew a subscription, the provider may accept or
reject the request, or may not reply at all. The behavioral variables are visualized by
substituting labels Prod, SP, RP, NR, Ri, Rr, PRi, and PRr, residing in the properties
of messages in the corresponding subscription renewal type in Figure 203, with a suitable
value.

Section 5.2 Configurable framework for service interaction patterns 249

REQc,cnlrenew(Prod)ti
m

e

SP

Customer Provider

REQc,init(Prod)

RPLp,init(Prod,Nr,SP,PRi)

Message propertiesMessage

Product
delivery

(a) Customer-initiated
Automatically-renewed Subscription

REQc,renew(Prod)ti
m

e

RPLp,renew(Prod,Nr,SP,PRr)

SP

Customer Provider

REQc,init(Prod)

RPLp,init(Prod,Nr,SP,PRi)

(b) Customer-initiated Customer-renewed
Subscription

ti
m

e

REQp,renew(Prod,Nr,SP,RP,Qr)

RPLc,init(Prod,Rr)

Customer Provider

REQc,init(Prod)

RPLp,init(Prod,Nr,SP,PRi)

SP

RP

(c) Customer-initiated Provider-renewed
Subscription

REQc,cnlrenew(Prod)ti
m

e

REQp,init(Prod,Nr,SP,RP,Qi)

RPLc,init(Prod,Ri)

RP

Customer Provider

SP

(d) Provider-initiated Automatically-renewed
Subscription

ti
m

e

REQp,init(Prod,Nr,SP,RP,Qi)

REQc,renew(Prod)

RPLc,init(Prod,Ri)

RPLp,renew(Prod,Nr,SP,PRr)

RP

SP

Customer Provider

(e) Provider-initiated Customer-renewed
Subscription

ti
m

e

REQp,init(Prod,Nr,SP,RP,Qi)

REQp,renew(Prod,Nr,SP,RP,Qr)

RPLc,init(Prod,Ri)

RPLc,init(Prod,Rr)

RP

SP

Customer Provider

(f) Provider-initiated Provider-renewed
Subscription

Figure 203: Graphical notation: Renewable Subscriptions

250 Chapter 5 Service Interaction Patterns

The example shown in Figure 204 presents a subscription offer for 4 issues of a journal
“Cosmo” that will be delivered within 30 days. The customer is expected to reply on this
offer with “Yes” to accept the offer within the response period of 14 days. The values of be-
havioral variables Ri and PRr are not specified, because these are set dynamically and thus
may take different values for each conversation. In a particular instance of the subscription
conversation, the customer could accept the offer from the provider and acknowledge the
acceptance by sending “Yes”. When the subscription period is about to finish, the cus-
tomer can request the renewal of the subscription by sending a request specifying the name
of the magazine. The provider may acknowledge the acceptance of the renewal request by
issuing the “Accept” response, confirming the subscription period and the number of issues
to be delivered.

Customer is expected to reply
with "Yes", otherwise "No" is

assumed, i.e.

Qi=Yes

REQp,init("Cosmo",4,30,14,Yes)

RPLc,init("Cosmo", Ri)

ti
m

e

REQc,renew("Cosmo")

RPLp,renew("Cosmo",4,30,PRr)

Customer Provider

Customer replies
with Ri= "Yes"/

"No"/none

If Customer
accepted

subscirption, the

subscription is

reniewed on its
initiative

Provider notifies whether

subscription is renewed:
PRr="Yes"/"No"/none

Figure 204: An example of the Provider-initiated Customer-renewed pattern variant

Meaningful configurations Figure 205 depicts the structure for calculating meaning-
ful pattern configurations of Renewable Subscriptions. Applying the rules described on
page 238 for calculating the total number of possible configurations depicted in Figure 205,
results in 20 pattern variants. In this structure, the expected initiation confirmation and ex-
pected renewal confirmation configuration parameters are applied only in case the provider
plays the role of the subscription initiator and subscription renewer respectively.

Illustrative example To describe the pattern variants used in one of the examples listed
earlier, let’s define the values of the configuration parameters. In the travel insurance
example, where a client contacts an insurance company to apply for travel insurance, the
insurance is renewed automatically every year. The client and the insurance company
map to the roles of the customer and the provider respectively. This corresponds to the
Customer-initiated Automatically-renewed subscription type. The graphical notation for
the pattern configuration for the given example is depicted in Figure 206. In a request
to the insurance provider, the client specifies the product requested “trvl insurance”. The
provider indicates to the client in the reply message the number of products to be delivered,
i.e. 1, the subscription period of 1 year, and its acceptance response PRi, which can be either
“Accept” or “Reject”. Since the acceptance response is determined dynamically, it’s value
is not specified. Within the subscription period, the client may send a cancelation request
to the insurance provider to cancel the insurance.

CPN semantics In this section, we only describe in detail the semantics of Provider-

Section 5.2 Configurable framework for service interaction patterns 251

Initiator

Renewer

Expected initiation confirmation

Expected renewal confirmation

 (Customer) (Provider)

(Customer)

(automatic)

(Provider) (Customer)

(automatic)

(Provider)

(Yes/No,Yes,No)

(Yes/No,Yes,No) (Yes/No,Yes,No)

Figure 205: Meaningful configurations of Renewable Subscription (total 20 configurations)

REQc,cnlrenew("trvl ins")ti
m

e

1 year

Customer Provider

REQc,init("trvl ins")

RPLp,init("trvl ins",1,1year,PRi)

Figure 206: Notation for the travel insurance example

initiated Customer-renewed subscription type. The CPN models for the remaining sub-
scription renewal types are listed in [157].

Figure 207 illustrates the top view of the Provider-initiated Customer-renewed sub-
scription scenario. Customer and provider are represented by substitution transitions with
corresponding names that unfold to the sub-pages presented in Figure 208 and Figure 209
respectively. The definition of data types is based on the concepts and notation introduced
earlier. The subscription scenario is based on the assumption, that there is a one-to-one
relation between customer and provider. This means that from the customer perspective,
conversations are performed with a single provider, and the same holds for the provider.
This implies that customer and provider do not need to specify their identities in the
messages exchanged (this could easily be added if desired). However, since multiple sub-
scriptions can be established between customer and provider for the same product, the
subscriptions have to be differentiated. For this purpose, a subscription identifier of type
SID is introduced in the messages exchanged. Since interactions between the customer
and the provider are of the asynchronous type, we realized them using the Asynchronous
Transfer CPN pattern described on page 54.

The customer, whose behavior is presented in Figure 208, receives an initialization re-
quest reqpinit and puts it in the Subscription offered place by means of the Receive

252 Chapter 5 Service Interaction Patterns

init request transition. If the customer decides to reply, the createcinitreply() func-
tion generates an initialization reply message of type RPLcinit. A variable r of type R indi-
cates whether the request is accepted, rejected or ignored. Its value is non-deterministically
determined. If the customer accepts the subscription, the subscription details are recorded
in the Subscription established place by means of the recordsubscr() function. To
create an initiation reply and record accepted subscriptions, we used the OR-split CPN
pattern (cf. page 40) which allows both or either of these operations to be performed.

Products sent by the provider are received by the customer via transition Receive

product, which examines whether the product delivered is the product expected by the
customer by means of the productforme() function. For this, matching of the party

Table 5.5: Data types used in Fig. 207-210

colset Prod = string; 6

colset RP = int; 7

colset SP = int; 8

colset Nr = int; 9

colset Q = with YesNo|Yes|No; 10

colset R = with Yes|No|none; 11

colset PR = with Accept|Reject|Neglect; 12

colset SID = int; 13

colset REQpinit = product SID * Prod * Nr *RP * SP * Q; 14

colset REQprenew = product SID * Prod * Nr * RP * SP *Q; 15

colset REQcinit = Prod; 16

colset REQcrenew = product SID * Prod; 17

colset RPLpinit = product SID * Prod * Nr * SP * PR; 18

colset RPLprenew = product SID * Prod * Nr * SP * PR; 19

colset RPLcinit = product SID * Prod * R; 20

colset RPLcrenew = product SID * Prod * R; 21

6Product name
7Response period
8Subscription period
9 Number of products to be deliv-

ered
10Confirmation expected by

provider
11Confirmation sent by customer
12Confirmation sent by provider
13An identifier for distinguishing

identical subscriptions
14Init. request of provider
15Renewal request of provider
16Init. request of customer
17Renewal request of customer
18Init. reply of provider
19Renewal reply of provider
20Init. reply of customer
21Renewal reply of customer

Provider

Provider

Customer

Customer

Renew
reply

RPLprenew

Renew
request

REQcrenew

Product

Prod

Init
reply

RPLcinit

Init
request

REQpinit

Customer Provider

Figure 207: CPN diagram: The top view of
Provider-initiated Customer-Renewed Subscrip-
tion

Section 5.2 Configurable framework for service interaction patterns 253

identifiers is performed according to the ID Matching CPN pattern described on page 49.
In order to block unintended messages, the BSD Filter CPN pattern (cf. page 43) is
applied. When the last product has been received by the customer, the customer generates
a renewal request via the createcrenewreq() function and sends it to the provider by
the Send renew request transition. In order to match future replies from the provider
with the request sent, the customer stores the subscription request in the Subscription

requested place. When a renewal reply rplprenew is received from the provider, the
replyforcustomer() function locates a corresponding request. If the provider accepted
the renewal request, the function updatesubscr() records the details of the subscription
renewed in the place Subscription established. From this moment on, the customer
may continue receiving products and may perform subscription renewal requests again.
Note that in order to filter out replies that match with requests sent both the ID Matching
CPN pattern (cf. page 49) and the BSD Filter CPN pattern (cf. page 43) are used.

The provider, whose behavior is presented in Figure 209, initiates the conversation with
the potential customer by sending an initialization request for subscription reqpinit of type
REQpinit. Decomposition of a substitution transition Send init request is presented in
Figure 210. The createpinitrequest() function generates an initialization request based
on the product offers available at the provider in Product offers place and a variable q

of type Q that represents the confirmation expected by the provider on the given request.
This is a configuration parameter that is set dynamically to one of the values of the small
color-set Q. Subscription offers sent are stored in place Offered subscription. In order
to distinguish subscriptions between each other, they are assigned a conversation identifier
generated by incrementing the value of a counter stored at the Conv Counter place. The
use of the ID Manager CPN pattern (cf. page 51) ensures the uniqueness of the generated
identifiers.

When a customer replies on the initialization request, the provider at first examines
the reply message (rplcinit) received. The replyforprovider() function checks whether
the reply received corresponds to any of the requests sent. The matching replies are
passed through, while the other replies are blocked. To accomplish this behavior, the ID
Matching (cf. page 49) and BSD Filter (cf. page 43) CPN patterns are used. Then, for
correlated requests the subscription details are recorded by the createsubscr() function
in the Established subscription place if the customer confirms the acceptance of the
subscription. For established subscriptions, the provider delivers a specified number of
products nr during the agreed subscription period sp.

Products are sent to the customer via transition Send product. When the provider re-
ceives a renewal request reqcrenew from the customer, it examines by the reqforprovider()
function whether there is a corresponding subscription that could be renewed. A subscrip-
tion which can be renewed is stored in place Requested subscription. If the provider
decides not to neglect the reply, a reply message is created by the createrenewreply()

function, and if the provider accepts the request received, the subscription details are
recorded by the renewsubscr() function in the Established subscription place.

When describing the behavior of the Provider-initiated Customer-renewed Subscription
in the form of a CPN, we used 7 distinct CPN patterns. The Table 5.7 indicates how
frequent each of the patterns has been used and how many patterns were used in total, i.e.
including the repeating ones, were applied.

Issues The pattern variants belonging to the family of Renewable Subscription consider
one-to-one relation between a customer and a provider. However, in many real life scenarios

254 Chapter 5 Service Interaction Patterns

Table 5.7: CPN patterns used in the implementation of Provider-initiated Customer-renewed
Subscription

CPN pattern Frequency
ID Matching 3
ID Manager 1
Shared Database 4
Data Distributor 1
BSD Filter 4
Asynchronous Transfer 5
OR-Split 2
Total 20

Figure 208: The Customer page of Provider-initiated Customer-Renewed Subscription

Table 5.6: Data types used in Fig. 208-210

colset Offer = product Prod * Nr * RP * SP * Ren;
colset Subscr = product SID * Prod * Nr * SP *Ren;
colset OfferedSubscr = product SID * Prod * Nr * RP * SP * Q * Ren;
colset RequestedSubscr = product SID * Prod;

Section 5.2 Configurable framework for service interaction patterns 255

(prod,nr,rp,sp)

os

req_pinit

if pr=Accept then renewsubscr(sbcr,pr)
 else empty

sbcr

sbcr

sbcr

createsubscr(rpl_cinit,os)

os

req_crenew

rpl_cinit

Send product

Send product

Send
init request

Send init request

Send
renew reply

Receive
renew request

[reqforprovider(req_crenew,sbcr)]

Receive
init reply

[replyforprovider(rpl_cinit,os)]

Product
offers

Offer

Requested
subscription

Subscr

Established
subscription

Subscr

Offered
subscription

OfferedSubscr

Renew
reply

Out
RPLprenew

Renew
request

In
REQcrenew

Init
reply

In
RPLcinit

Init
request

Out
REQpinit

Product

Out
Prod

Out

Out

In

In

Out

Send init request

Send product

Variable pr of type PR (small color-set) is
set non-deterministically to define whether
the provider will accept, reject, or neglect
the request for subscription renewal

if pr=Neglect then empty else
createrenewreply(sbcr,pr)

1`("Cosmo",5,14,60)

Figure 209: CPN diagram: The Provider page of Provider-initiated Customer-Renewed Sub-
scription

i+1 i (prod,nr,rp,sp)

recordofferedsubscr(i,prod,nr, rp,sp,q)

createpinitrequest(i,prod,nr,rp,sp,q)

Send
init request

Conv
counter

1`1

INT Product
offers

I/O

Offer

Offered
subscription

Out

OfferedSubscr

Init
request

Out
REQpinit

Out

Out

I/O

Variation point:
variable q of type Q (small color-set)
representing an expected
subscription initiation confirmation is set
dynamically

Figure 210: CPN diagram: The Send init request sub-page of Provider-initiated Customer-
Renewed Subscription

a customer may have multiple subscriptions with the same or different providers and a
provider may have multiple subscriptions with the same or different customers. Such
context conditions obviously require a deep insight into the message correlation issue.
The issues of correlation can be addressed by combining a Renewable Subscription pattern
variant with a suitable pattern variant from the families of Message Correlation or Bipartite
Conversation Correlation. The involvement of multiple providers and customers as well as
requests for multiple subscriptions can be expressed by combining a renewable subscription
pattern variant with the pattern variants of the Multi-party Multi-message Request-Reply
Conversation pattern family.

256 Chapter 5 Service Interaction Patterns

The term message correlation is often used for matching a reply message that has been
received with an earlier request message that was sent, especially when multiple replies
may be possible for a given request. In order to perform correlation, an entity needs to
keep track of events describing executions, and each such log must include identifiers
that associate a message with a specific context. Different sources of information are
used as a key during correlation: a message id, a party id, a conversation id or a
combination thereof. In some situations, this information is neglected, and the use
of an artificial correlation identifier is enforced (the use of such correlation identifiers
has been observed in Oracle BPEL PM (cf. Section 5.3.1)). In reality, information
provided for correlation is rarely complete, therefore correlation is performed based
on the analysis of the message content. When correlation fails (i.e. no corresponding
earlier messages can be found), a new conversation may be initiated or the received
message is discarded. The main goal of message correlation is to find a conversation
to which a message received relates, and because a conversation may involve multiple
parties, also to identify the corresponding party.

In Section 5.2.3, we focus on the fundamentals of message correlation and describe
possible variants of successful correlation. The situation where a response to a message
received needs to be sent to a third party is known as mediator-based interaction. We
classify such scenarios on page 264. It is interesting to note that during a conversation
the information used for correlation purposes may change. On page 281, we provide a
graphical notation that is able to capture the dynamic character of message correlation
in a bilateral context.

5.2.3 Pattern family: Message Correlation

The third pattern family, named Message Correlation, addresses issues of correlation at a
lower-level of abstraction. This family is described in this sub-section.

Description A party communicating with other parties has to handle incoming messages
in accordance with a history of established conversations. Message Correlation is the act
of identifying the relevant conversation for a message received by the party.

Example
• An insurance company handles claims for refund of lost baggage, medical costs, etc.

When a claim is received, an insurance advisor determines whether the client has a
valid insurance policy and whether there are any records related to the claim received.
If the client has no valid insurance, the advisor may provide the client with a new
policy or may refuse to handle the claim.

UML meta-model Concepts specific to the Message Correlation pattern family are illus-
trated by means of the class diagram in Figure 211. A party may participate in multiple
conversations with other parties (illustrated by the association relation between Party and
Conversation). The party may send messages to and receive messages from other parties
(cf. relations send and receive between Party and Message). It is an assumption of this
pattern that messages exchanged between parties contain information about the sender,
the receiver as well as additional content in the format (From, To, Content). The party
sending out a message determines what information relating to the sender’s and receiver’s
identity it wants to reveal in the message.

Visualization Figure 212 illustrates the graphical notation for the Message Correlation

Section 5.2 Configurable framework for service interaction patterns 257

Party

Conversation

Message

1

1..*

involves

2..*

0..*

sends

receives

0..*

0..*

1

0..1

Figure 211: UML meta-model of Message Correlation

pattern configuration. A party is visualized as a rectangle. The direction of arrows linked
to the party node indicates the direction of message flow. Information about the message
sender contained in the message is enclosed in the From-field. The information about
the message receiver contained in the message is enclosed in the To-field. Information
the receiving party has about its own credentials before correlating a message received is
enclosed in the Me field. The information a party has about the credentials of the other
party involved in a conversation is enclosed in the You field. Information a party has
about its own identity and the identity of the other party from whom a message has been
received after message correlation is enclosed in fields Me and You’ respectively. We assume
that information associated with the Content field of a message is irrelevant for message
correlation, therefore we omit this field in the graphical notation.

This graphical notation contains a set of static attributes and configuration parameters.
Both static attributes and configuration parameters have to be configured for each of the
pattern variants. For all pattern variants, the value of static attributes is fixed and does
not change, while configuration parameters can be configured in accordance with values in
the specified range.

Values of the static attribute representing the knowledge of the receiving party about
own identity before and after message correlation are denoted by the Me label. Me is a
pair (Pr, Cr) where Pr denotes the id of the party-receiver and Cr denotes the id of the
conversation used by the receiving party to correlate the message received. To illustrate a
pattern variant, the Me label is substituted with the value (Pr, Cr). Note that Me is not a
configuration parameter.

The graphical notation shown in Figure 212 illustrates that this pattern family has the
following set of configuration parameters:

• Message Sender field : the extent of the information revealed by the sender of a mes-
sage regarding its identity.
Range of values : From is a tuple comprised of potential sender identifier and conver-
sation identifier. The sender identifier is denoted Ps and the conversation identifier
used by the sender for correlation purposes is denoted Cs. Either the id of the sender,
the id of the conversation or both can be missing in the From-field. Missing informa-
tion can be either intentionally or accidentally underspecified by the message sender

258 Chapter 5 Service Interaction Patterns

Me You

ToFrom

Credentials of the
receiving party after

message correlation

Information about sender

in a message

Credentials of the receiving
party before message

correlationInformation about receiver

in a message

Me You`

Credentials of the
sending party before

message correlation

Credentials of the

sending party after

message correlation

Figure 212: Graphical notation: Message Correlation

(for instance, when a party wants to hide its id or when it forgets to include some
information). Missing information is denoted as ⊥. So, possible values of the From-
field are (Ps, Cs), (Ps,⊥), (⊥, Cs) and (⊥,⊥).
Default value: (Ps, Cs) (i.e. both the party identifier and the conversation are sup-
plied by the sender).
Visualization: the From label shown in Figure 212 substituted with a suitable value.
An example specifying the default value of the message sender field is shown in Fig-
ure 213.

• Message Receiver field : the extent of information specified by the sender of a message
regarding the receiver’s identity.
Range of values : To is a tuple comprised of the intended receiver identifier and its
conversation identifier. The receiver identifier is denoted Pr and the conversation
identifier used by the receiver for correlation purposes is denoted Cr. Either the id
of the receiver, the id of the conversation or both can be omitted in the To-field. So,
possible values of the To-field are (Pr, Cr), (Pr ,⊥), (⊥, Cr) and (⊥,⊥).

Information specified by the message sender about the identity of the receiving party
is required by the message receiver to uniquely identify a conversation related to the
message received.
Default value: (Pr,⊥) (i.e. only the id of the intended party is specified).
Visualization: the To label shown in Figure 212 substituted with a suitable value.
An example specifying the default value for the message receiver field is shown in
Figure 213.

• Credentials of the message sender before message correlation: receiver’s knowledge
in regard to the credentials of the sending party involved in the conversation with
the receiving party.
Range of values : You is a tuple including the potential message sender identifier
and its conversation identifier. The same notation as introduced earlier is used to
denote the id of the party-sender and its conversation identifier. Since the receiver’s
information about the message sender may be incomplete, possible values of the You-
field are (Ps, Cs), (Ps,⊥), (⊥, Cs) and (⊥,⊥).
Default value: (Ps,⊥) (i.e. the receiving party has knowledge only about the identity
of the sending party).

Section 5.2 Configurable framework for service interaction patterns 259

Visualization: the You label shown in Figure 212 substituted with a suitable value.
An example specifying the default value of the message receiver field is shown in
Figure 213.

• Credentials of the message sender after message correlation: information about the
credentials of the sending party involved in the conversation with the given receiving
party, updated after message correlation.
Range of values : You’ is a pair comprised of the possible sender identifier and its
conversation identifier. Since information the party has about the sender id and its
conversation id available before the message correlation might be incomplete, some
of the missing knowledge can be gained by the receiving party from the information
provided in the message sender field. For instance, if You=(⊥,⊥) and From =
(Ps, Cs), then You’= (Ps, Cs) if all missing information is recorded. Note that some
of the missing information may be forgotten, and the resulting value of You’ may be
(Ps,⊥), (⊥, Cs) or may even remain unchanged (⊥,⊥). Table 5.8 illustrates possible
values of the You’ field calculated based on the information available in the You field,
the information provided in the From field and the possibility of not recording the
provided information.

Default value: (Pr, Cr).
Visualization: the You’ label shown in Figure 212 substituted with a suitable value.
An example specifying the default value for the message receiver field is shown in
Figure 213.

Figure 213 illustrates the graphical notation used for the Message Correlation pattern
variant where all configuration parameters are set to the default values.

(Pr,Cr)(Ps,)

(Pr,Cr)(Ps,Cs)

(Pr,)(Ps,Cs)

The message sender
field FROM=(Ps,Cs)

indicates that both its
party and conversation

identifiers are provided.

The message receiver field

TO=(Pr, |) indicates that
the message is aimed for

party Pr, and its

conversation id is unknown.

The credentials of the message
sender available to the

receiving party after message
receival also contain the

conversation id gained from the
message received.

The credentials of the message

sender available to the
receiving party before message

receival contain only the party
identifier, the conversation id is

unknown.

Figure 213: Default notation: Message Correlation

Meaningful configurations Figure 214 illustrates the structure describing meaningful
pattern configurations of Message Correlation. Applying the rules for traversing the struc-
ture, described on page 238, a total number of 100 configurations can be obtained. Fig-
ure 214 is constructed from the information presented in Table 5.8 describing 25 scenarios
regarding possible information gained after message arrival. As entries in Table 5.8 do not
consider the values which the message receiver field (i.e. To) might take. If we do consider
these values (there are 4 of them), then the total number of meaningful combinations is
achieved by multiplying 25 by 4.

260 Chapter 5 Service Interaction Patterns

Table 5.8: Enumeration of all scenarios regarding possible information gained

From You You’
(Ps,Cs) (Ps,Cs) (Ps,Cs)

(Ps,⊥) (Ps,Cs)
(Ps,⊥)

(⊥, Cs) (Ps,Cs)
(⊥, Cs)

(⊥,⊥) (Ps,Cs)
(Ps,⊥)
(⊥, Cs)
(⊥,⊥)

(Ps,⊥) (Ps,Cs) (Ps,Cs)
(Ps,⊥) (Ps,⊥)
(⊥, Cs) (Ps,Cs)

(⊥, Cs)
(⊥,⊥) (Ps,⊥)

(⊥,⊥)
(⊥, Cs) (Ps,Cs) (Ps,Cs)

(Ps,⊥) (Ps,Cs)
(Ps,⊥)

(⊥, Cs) (⊥, Cs)
(⊥,⊥) (⊥, Cs)

(⊥,⊥)
(⊥,⊥) (Ps,Cs) (Ps,Cs)

(Ps,⊥) (Ps,⊥)
(⊥, Cs) (⊥, Cs)
(⊥,⊥) (⊥,⊥)

To

((Pr,Cr),(Pr,_),(_,Cr),(_,_))

From

(Ps,Cs)
(Ps,_) (_,Cs)

(_,_)

You

 (Ps,Cs)

(Ps,_) (_,Cs)

(_,_) (Ps,Cs)

(Ps,_) (_,Cs)

(_,_) (Ps,Cs)

(Ps,_) (_,Cs)

(_,_) (Ps,Cs)

(Ps,_) (_,Cs)

(_,_)

You'

 (Ps,Cs)((Ps,Cs),

(Ps,_))

((Ps,Cs),

(_,Cs))
((Ps,Cs),

(Ps,_),

(_,Cs),

(_,_))

 (Ps,Cs) (Ps,_) ((Ps,Cs),
(_,Cs))

((_,Cs),

(_,_))

 (Ps,Cs)((Ps,Cs),

(Ps,_))

(_,Cs) ((_,Cs),

(_,_))

 (Ps,Cs) (Ps,_) (_,Cs) (_,_)

Figure 214: Meaningful configurations of Message Correlation (total 100 configurations)

Illustrative example To illustrate the example presented earlier, we identify values for
the configuration parameters of the Message Correlation pattern configuration, and show
the graphical notation for the given pattern configuration (cf. Figure 215). In the insurance
claims handling example, when a claim is received, an insurance advisor determines whether

Section 5.2 Configurable framework for service interaction patterns 261

the client has a valid insurance policy and whether there are any records related to the
claim received. Let Ps be an identity of the client specified by the client, Cs be the
insurance number specified by the client for handling the claim, Pr be the identity of the
insurance advisor, and Cr be a client number associated with the client used within the
insurance company. It is assumed in this example that the client has a valid insurance
policy. The client specifies both information about their identity, the insurance number
in their claim, and the identity of the insurance company. Since no correlation-related
information is gained by the insurance advisor from the incoming message, the knowledge
about the client after handling the claim does not change.

(Pr,Cr)(Ps,Cs)

(Pr,Cr)(Ps,Cs)

(Pr,)(Ps,Cs)

Figure 215: Notation for the claim handling example

CPN semantics In this section, we formalize the semantics of Message Correlation by
means of CPN. The CPN diagram presented in Figure 216 illustrates the act of correlating
an incoming message of type Message with the history of existing conversations Conv via
transition Correlate. Messages that have to be processed by the party are supplied in the
form (from,to,cont), where from (of type From) represents the identity of the message
sender; to (of type To) represents the identity of the party to which the message is intended,
and cont (of type Cont) represents the content of the message. The knowledge relating to
the history of existing conversations available to the party before a received message has
been correlated has the form (me,you,cont old). The element me (of type Me) represents
the knowledge of the receiving party itself. The element you (of type You) represents the
knowledge about the message sender from previous interactions. The element cont old

(of type Content) represents the content of all messages previously exchanged in the given
conversation.

Values NoPartyId and NoConvId (which correspond to the symbol ⊥ introduced in the
pattern visualization section above) denote the absence of information about the party
identifer and conversation identifier respectively. Note that a union type is used to incor-
porate such “missing values”.

The abletocorrelate() function matches information supplied in the incoming mes-
sage with the history of previous and current conversations. In particular, matches
are performed between variables to and me, and from and you. In this example, the
abletocorrelate() function performs correlation by matching the identities of the mes-
sage sender and message receiver supplied in the message with the corresponding identities
available to the party-receiver in the history of conversations.

Note that instead of correlating based on matching the information contained in the
incoming message with local knowledge of the party, also some analysis of the message
content can be performed (this issue is discussed in more detail in the paragraph related
to issues). If correlation is successful, i.e. the abletocorrelate() function has identified

262 Chapter 5 Service Interaction Patterns

a conversation to which the message received can be uniquely correlated, then the history
of existing conversations is updated. In particular, the merge() function adds the content
cont of the message received to the old content cont old of the identified conversation.
The addmissing() function identifies if there is any missing information regarding the
credentials of the message sender, and where such information is identified, adds it to the
existing information. Note that since not all information provided necessarily has to be
recorded, the some() function defines how much of the missing information will be actually
recorded.

In the net presented in Figure 216, messages which can not be correlated are blocked in
the Incoming messages place. This net could be extended with mechanisms for handling
correlation failure. In particular, constructs could be added for creating a new conversation
or for discarding an incoming message for which no corresponding conversation has been
found in the history of existing conversations.

In this implementation, we applied the ID Matching CPN pattern (cf. page 49) and
BSD Filter CPN patterns (cf. page 43) in order to perform the message matching and filter
out unintended messages respectively. The Table 5.10 indicates how frequently each of the
patterns has been used and how many patterns in total, i.e. including the repeating ones,
were applied.

Issues The Message Correlation pattern family identifies the issues experienced by a party
receiving a message that must be correlated. The given pattern family considers correlation

Table 5.9: Data types used in Fig. 216

colset PartyId = union smallstr + NoPartyId; 22

colset ConvId = union smallint + NoConvId; 23

colset PxC = product PartyId*ConvId;
colset Content = string;
colset From = PxC;
colset To = PxC;
colset Me = PxC;
colset You = PxC;
colset Conv = product PxC*PxC*Content;
colset Message = product From*To*Content;

22The id of a party
is a small color-set of a
certain type (STRING
in this case) or is de-
noted by NoPartyId if
not specified.

23The id of a
conversation is a small
color-set of a certain
type (INT in this
case) or is denoted
by NoPartyId if not
specified.

Variation point:
knowledge about the
message sender

Variation points:
information provided
about the message
sender and the message
receiver
**************** *********************

Variation point: all, some or no
information is gained after
message correlation

(me,you',cont_new)

(me,you,cont_old)

(from,to,cont)
Correlate

[abletocorrelate((from,to,cont),
(me,you,cont_old))]

input (you, from, cont, cont_old);
output (you', cont_new);
action
 (addmissing(you,some(from)),
 merge(cont, cont_old));

History
after

correlation

Conv

History
before

correlation

Conv

Incoming
message

Message

Figure 216: CPN diagram: Message Correlation

Section 5.2 Configurable framework for service interaction patterns 263

Table 5.10: CPN patterns used in the implementation of Message Correlation

CPN pattern Frequency
ID Matching 1
BSD Filter 1
Total 2

between two tightly-coupled parties. When fewer dependencies are desired between the
parties, the tight binding between them may be relaxed. The issue of message mediation
among two loosely-coupled parties is addressed in the Message Mediation pattern family
(cf. page 264). Furthermore, the Message Correlation pattern family concentrates on
a single interaction between two parties in the context of already existing conversation.
Thus, it does not provide any insight into how information used for correlation changes
during the course of the conversation. The issue of varying correlation information in the
context of a bipartite conversation is addressed in the Bipartite Conversation Correlation
pattern family (cf. page 281).

From a functional point of view, message correlation is performed by a party using
either a key-matching or a property-analysis approach. A party may use key-matching
to uniquely identify a conversation related to the message received. For this, message
fields From and To are used as keys for correlation. The mapping of these keys to the
values of You and Me should be unique, i.e. no two conversations can be identified as a
result of applying key-matching. In situations, where key-matching results in a non unique
mapping, some additional analysis of the message content might be needed. The property-
analysis approach is used to identify a conversation related to the message received based
on examination of message content. For analysis purposes, other information available to
the party may also be used. Based on the content of the message (for instance, message id,
conversation id, time-stamp, etc.) together with other information available to the party
it may be possible to determine the conversation to which the message received relates.
Note that in this section we only considered key matching.

The perfect scenario leading to successful correlation would contain the maximal pos-
sible information for all configuration parameters. However, in real-life situations not all
information is guaranteed to be available. For instance, information specified by the mes-
sage sender in the message may be incomplete or information available to the receiver
about the sender may be missing. If no identifier for the receiving party is specified in
the message, no guarantee can be given that the message will be delivered to the right
party. If the message sender does not disclose its id in the message, there is no guarantee
that the follow-up response will be correctly delivered. If no conversation id, used by the
receiver for correlation purposes, is contained in the message, then there is the possibility
of it being correlated with the wrong conversation.

An exceptional situation may occur if, as a result of correlation, no conversation related
to the message received can be identified (i.e. in case of the correlation failure). To deal
with such an exception, a party may create a new conversation or discard the message
received.

The majority of existing products rely on the key-matching approach, i.e. they perform
correlation based on matching of information supplied in the message with information
available to the party. These products discard messages which do not provide complete
information about the credentials of the message receiver, while the identity of the party
or the conversation identifier could potentially be inferred based on analysis of available
message content.

264 Chapter 5 Service Interaction Patterns

There are a number of considerations when deciding if an interaction between two par-
ties needs to be performed directly or can be facilitated via another intermediary party.
Message mediation allows messages to be passed from one party to another without
requiring these parties to engage in interactions with each other directly. Mediation is
often used in situations where one party needs to be introduced to another party in
order to establish the basis for direct follow-up interaction or when one party wants
to utilize a service offered by another party without having their credentials revealed.
Although in a tripartite conversation each of the parties performs message correla-
tion as described on page 256, the message mediator is also responsible for correlating
messages exchanged amongst the parties involved. In Section 5.2.4, we analyze the
particularities of message correlation in tripartite conversations.

One could argue that message mediation can be used for determining whether a
message can be delivered based on some conditional logic. In order to facilitate such
behavior, one needs to apply the control-flow patterns (cf. Chapter 4) to describe the
internal behavior of the mediator and to specify the various interactions with the parties
involved using the graphical notation of tripartite interaction presented on page 266.

5.2.4 Pattern family: Message Mediation

In this sub-section, we describe the fourth pattern family called Message Mediation. This
pattern family concentrates on the mediation of messages related to a conversation between
two loosely-coupled parties.

Description A party requesting a service may not know the credentials of the party
providing this service or may know the party credentials but not be willing to engage in
a message exchange with them directly. To establish a conversation between two loosely-
coupled parties, the customer and the provider, a third intermediary party named “the
mediator” is required. The customer posts a request to the mediator and expects a response
to be received back. The mediator forwards requests from the service customer to the
service provider and replies from the provider back to the customer. Alternatively, the
mediator may provide a party with details of the credentials of the other party involved in
the conversation to allow for future interactions to occur directly between them.

Examples
• To order office equipment an employee contacts a secretary, who forwards the em-

ployee’s request to a supplier. After processing the request, the supplier delivers the
equipment ordered directly to the employee.

• Air-miles card owners may exchange accrued air-miles for reservation of flights pro-
vided by one of the airline partners. The miles-to-flight exchange is performed via the
Air-miles web-site, which mediates data exchange between the client and the airline
operator. The itinerary details provided to the client contains contact details for the
airline operator for any future enquiries regarding the booking.

UML meta-model Concepts specific to the Message Mediation pattern family are illus-
trated by means of the class diagram in Figure 217. A conversation between a customer
and a provider involves a third party, i.e. a mediator (the three parties involved in a con-
versation are illustrated by the association relations between Party and Conversation).
Each party involved in the conversation may send and receive messages (cf. the association
relations between Party and Message). Messages exchanged can be either of type Request

Section 5.2 Configurable framework for service interaction patterns 265

or Reply, where each reply corresponds to one request, and one request may have multiple
replies.

Party

Conversation

Message

Request Reply

1

1..*

corresponds to

involves

2..*

0..*

1 0..*

sends

receives

0..*

0..*

1

0..1

0..*
0..*

0..*

1

1

1

provider

customer

mediator

Figure 217: UML meta-model of Message Mediation

Visualization In tripartite conversations, the mediator may play two different roles: (1)
forward both a request from the customer to the provider and the provider’s reply back to
the customer; (2) route a request from a customer to a provider and supply the provider
with a reference to the customer’s credentials (so that the provider can reply to the customer
directly). The role of the mediator is one of the configuration parameters that must be set
in order to distinguish between two types of message mediation: Mediated Interaction and
Mediated Introduction, which are denoted using the notation presented in figures 218 and
221 respectively.

This notation is based on the graphical notation used for the Message Correlation
pattern family. It is assumed that messages exchanged between parties involved in the
tripartite conversation are of the format (From, To, Them, Expose, Content), where
From represents the credentials of the message sender, To represents the credentials of the
message receiver, Them identifies the third party involved in the given conversation, Expose
indicates permission to reveal the credentials of the message sender to the third party in
the conversation, and Content represents additional content of the message (i.e. payload).
As the Content field carries no information related for message routing, we omit it in
figures 218 and 221. Note that compared to the basic correlation scenario described in the
previous sub-section, there are two additional fields: Them and Expose.

Both graphical notations contain a set of configuration parameters (i.e. parameters
that have to be set to a specific value in order to configure a pattern variant), a set of
static attributes (i.e. pattern attributes whose value is fixed for all pattern variants derived
from the pattern configuration), and a set of dynamic attributes (i.e. pattern attributes
whose value is derived from other pattern attributes once all configuration parameters
characterizing a specific pattern variant have been set to a specific value).

266 Chapter 5 Service Interaction Patterns

Let P1, P2, and P3 denote the party identifiers of the customer, the mediator, and
the provider respectively. Let C1, C2, and C3 denote the conversation identifiers used by
the customer, the mediator and the provider for correlation purposes respectively. Let ⊥
denote the absence of either party or conversation identifier in the message.

From1 To1 Them1 Expose1

From2 To2 Them2

From3 To3 Them3 Expose3

 From4 To4 Them4

Mediator

 Me Cust Prov ExpC

 Me Cust Prov' ExpC

 Me Cust Prov'' ExpC ExpP

Credentials of

Mediator

Credentials of

Customer

Credentials of the Provider
supplied by the Customer

Knowledge about the

visibility of Customer's
credentials

Credentials of Provider used

in the forwarded request

Knowledge about the
visibility of Provider's

credentials

Credentials of Provider after
receiving the Provider's

reply

Customer's permission
to expose its credentials

Visibility of the

provider's credentials

Customer request

for specific provider

Figure 218: Graphical notation: Mediated Interaction

For the sake of clarity, first we will describe the pattern configuration of the Mediated
Introduction, followed by the description of the Mediated Interaction pattern configura-
tion. The graphical notation of the Mediated Interaction pattern configuration is shown
in Figure 218. This notation contains the following configuration parameters:

• Customer request for specific provider : denotes information revealed by the customer
about the identity of provider, which the mediator has to forward at the customer’s
request.
Range of values : Them1 is a pair comprising a party identifier and a conversation
identifier, potentially representing the credentials of the provider supplied by the
customer to the mediator. The customer may know the identity of provider or may
not know who the potential provider will be. If the customer knows the identity of the
provider, it may indicate it in the Them1 field in the form of (P3,⊥). The mediator
will forward the request to the specified party. If the customer does not know the
provider’s identity or does not want to specify it, the value (⊥,⊥) is assigned to the
Them1 field.
Default value: (⊥,⊥).
Visualization: the Them1 label substituted with a suitable value in Figure 218. An
example specifying a default value is given in Figure 219.

• Customer’s permission to expose its credentials: denotes permission granted to the
mediator by the customer to disclose its credentials to the provider.
Range of values : Expose1 is a Boolean variable, whose value can be true or false

indicating that the customer allows the mediator to expose its identity to the provider
or prohibits it to do so in order to remain anonymous respectively.

Section 5.2 Configurable framework for service interaction patterns 267

Default value: false (i.e. the customer does not give permission for its credentials
to be revealed).
Visualization: the Expose1 label substituted with a suitable value in Figure 218. An
example specifying a default value is given in Figure 219.

• Visibility of the provider’s credentials: denotes whether permission is granted to the
mediator by the provider to disclose its credentials to the customer.
Range of values : Expose3 is a Boolean variable, indicating whether the provider
allows the mediator to expose its identity to the customer or prohibits it to do so
in order to remain anonymous. The provider may expose its identity in order to
allow the customer to interact directly with them in the future independently of the
mediator.
Default value: false (i.e. the permission to expose the credentials is not granted).
Visualization: the Expose3 label substituted with a suitable value in Figure 218. An
example specifying a default value is given in Figure 219.

• Provider’s knowledge about credentials of customer : denotes information revealed by
the provider in the response message to the mediator about the credentials of the
customer. This information may be used by the mediator to correlate response mes-
sages received from the provider.
Range of values : Them3 is a pair comprising the customer identifier and the con-
versation identifier. The provider may specify none, some or all information received
from the mediator about the identity of the customer retrieved from the Them2 field.
So, possible values of Them3 are (P1, C1), (P1,⊥), (⊥, C1) or (⊥,⊥).
Default value: (⊥,⊥).
Visualization: the Them3 label substituted with a suitable value in Figure 218. An
example specifying a default value is given in Figure 219.

• Information about the message sender in the response from provider to mediator :
denotes credentials of the provider revealed by the provider in the response message
sent to the mediator.
Range of values : From3 is a pair comprising the provider identity and the conversation
identifier. The provider may underspecify some information about its identity in the
message sent to the mediator . If an underspecified identity is passed by the mediator
to the customer, the customer may fail to start a direct interaction with the provider
in the future. Thus, possible values of the From3 field are (P3, C3), (P3,⊥), (⊥, P3)
or (⊥,⊥).
Default value: (P3, C3).
Visualization: the From3 label substituted with a suitable value in Figure 218. An
example specifying a default value is given in Figure 219.

• Information about the message sender in the response from mediator to customer :
denotes the identity of mediator revealed in the response message sent by the mediator
to the customer.
Range of values : From4 is a pair comprising a party identifier and a conversation
identifier. The mediator may underspecify some information about its credentials,
therefore possible values of the From4 field are (P2, C2), (P2,⊥), (⊥, C2) and (⊥,⊥).
Default value: (P2, C2).
Visualization: the From4 label substituted with a suitable value in Figure 218. An
example of specifying a default value is given in Figure 219.

The static attributes of the Mediated Interaction pattern configuration are listed below:

268 Chapter 5 Service Interaction Patterns

- From1: information specified by the customer about its credentials in the request
message to the mediator. It is assumed that the customer reveals all information
about its credentials, therefore From1 = (P1, C1).

- To1: information about the mediator’s credentials specified by the customer in the
message receiver field of the request message sent to the mediator. Initially, the
customer has no knowledge about the conversation identifier used by the mediator
for correlation, therefore To1 = (P2,⊥).

- Me: knowledge of the mediator about its party identifier and the associated conver-
sation identifier: Me = (P2, C2).

- From2: information specified by the mediator about its credentials in the request
message to the provider. It is assumed that the mediator reveals all information
about its credentials in order for the response message to be delivered to the correct
address, therefore From2 = (P2, C2).

The dynamic attributes of the Mediated Interaction pattern configuration are listed
below. These can be derived given the relevant configuration parameters.

- Cust: information supplied by the customer about its credentials in the request
to the mediator. This information is retained knowledge held by the mediator for
correlation purposes. The knowledge about the identity of the customer is gained by
the mediator from the From1 field: Cust=From1.

- Prov: information supplied by the customer in the request sent to the mediator
about the identity of the provider. This information is retained knowledge held by
the mediator in order to forward the request received from the customer to the party
with the indicated identity (if it has been provided). This knowledge is gained from
the Them1 field: Prov=Them1.

- To2: information about the provider’s credentials specified by the mediator in the
message receiver field of the request message forwarded to the provider. The identity
of the provider is set to Prov if it has been provided by the customer, or is defined
by the mediator based on its implicit knowledge and set to (P3,⊥).

- Prov’: credentials of the provider to whom the mediator has sent the request,
recorded for the purpose of the future correlations. This information is derived from
the To2 field: Prov’=To2.

- Prov’’: knowledge about the credentials of the provider available to the mediator
after receiving the response message from the provider. The mediator extends infor-
mation about the provider’s identity stored in the Prov’ field with missing knowledge
gained from the From3 field of the response message received from the provider. Since
the provider could underspecify some knowledge about its identity, possible values of
Prov’’ are (P3, C3) or (P3,⊥).

- ExpC: knowledge of the mediator about permission granted by the customer to disclose
its credentials to the provider. It is assumed that the mediator hides the identities
of parties involved in the conversation and discloses them only if the corresponding
party has given permission to do so, i.e. ExpC=Expose1.

- Them2: information specified by the mediator in the request message to the provider
about the credentials of the customer. The knowledge retained in the Cust field is
used to set the value of the Them2 field only if the customer has granted permission to
disclose its credentials, i.e. Them2=Cust=(P1, C1) if and only if ExpC=true, otherwise
Them2=(⊥,⊥).

Section 5.2 Configurable framework for service interaction patterns 269

- ExpP: knowledge of the mediator about permission granted by the provider to disclose
its credentials to the customer. This knowledge is gained from the Expose3 field:
ExpP=Expose3.

- Them4: information specified by the mediator in the response message to the customer
about the credentials of the provider. The knowledge retained in the Prov field is
used to set the value of the Them4 field only if the provider has granted the permis-
sion to disclose its credentials, i.e. Them4=Prov if and only if ExpP=true, otherwise
Them4=(⊥,⊥).

- To4: information about the customer’s credentials specified by the mediator in the
message receiver field of the reply message sent to the customer. The mediator
retrieves the credentials of the customer from the Cust field: To4=Cust.

Figure 219 illustrates the graphical notation of the Message Interaction pattern variant
where all pattern attributes are set to their default value.

(P2,C2)(P3,)(,)

(P3,C3)(P2,C2)(,)(false)

Mediator

 (P2,C2) (P1,C1)(,)(false)

 (P2,C2) (P1,C1)(P3,C3)(false)(false)

 (P2,C2)(P1,C1)(,)

(P1,C1) (P2,) (,) (false)

 (P2,C2) (P1,C1)(P3,)(false)

From1 To1 Them1 Expose1

 From4 To4 Them4

From2 To2 Them2

From3 To3 Them3 Expose3

 Me Cust Prov ExpC

 Me Cust Prov' ExpC

 Me Cust Prov'' ExpC ExpP

Customer does not

provide the

credentials of the

Provider

Customer does not give
permission to expose

its credentials

Provider reveals its party

identifier P3 and the

conversation id C3

Provider supplies no

reference to the

customer credentials,

since these are unknown

Mediator reveals its identity,

including the party identifier

P2 and the conversation
identifier C2

Figure 219: Default notation: Message Interaction

Meaningful configurations Figure 220 illustrates the structure for calculating the total
number of meaningful configurations of Mediated Interaction. Applying the rules described
on page 238, 320 distinct pattern configurations can be deduced from the structure pre-
sented in Figure 220.

Depending on the customer’s permission to expose its credentials, different values of the
customer’s credentials can be exposed by the provider to the mediator. If no permission
has been granted by the customer to expose its credentials, the provider has no knowledge
about the customer’s credentials and thus may not reveal them in the response to the
mediator. Otherwise, the provider may reveal complete, partial or no information about

270 Chapter 5 Service Interaction Patterns

the customer’s credentials. The rest of the configuration parameters are independent from
each other, and their values may be combined without restriction.

Customer request for specific provider

Customer's persmission to expose its credentials

((P3,_),(_,_))

Visibility of the provider's credentials

(true)

Provider's knowledge about credentials of customer

(true,false)

Information about the message sender in the response from provider to mediator

((P1,C1),(P1,_),(_,C1),(_,_))

Information about the message sender in the response from mediator to customer

((P3,C3),(P3,_),(_,C3),(_,_))

((P2,C2),(P2,_),(_,C2),(_,_))

(false)

(true,false)

((_,_))

((P3,C3),(P3,_),(_,C3),(_,_))

((P2,C2),(P2,_),(_,C2),(_,_))

Figure 220: Meaningful configurations of Mediated Interaction (total 320 configurations)

Now we move to the second type of message mediation, i.e. Message Introduction. The
configuration parameters of the Mediated Introduction pattern configuration are described
below:

From1 To1 Them1

From2 To2 Them2

Mediator

 Me Cust Prov

Credentials of the third

party involved in the

conversation

Credentials of the
message receiver

Credentials of the
message sender

From5 To5 Them5

Figure 221: Graphical notation: Mediated Introduction

• Customer request for specific provider : denotes information revealed by the cus-
tomer about the identity of the provider, which the mediator has to forward at the
customer’s request.
Range of values : Them1 is a pair comprising a party identifier and a conversation
identifier, representing the credentials of the provider supplied by the customer to the
mediator. The customer may know the identity of provider or may not know who the
potential provider will be. If the customer knows the identity of the provider, it may
indicate it in the Them1 field in the form (P3,⊥). The mediator will forward the
request to the specified party. If the customer does not know the provider’s identity
or does not want to specify it, the value (⊥,⊥) is assigned to the Them1 field.

Section 5.2 Configurable framework for service interaction patterns 271

It is assumed that the customer has no knowledge about the conversation identifier
used by the provider, since there was no direct interaction between them in the
context of the previous conversation. Therefore, the values (P3, C3) and (⊥, C3) are
excluded.
Default value: (⊥,⊥).
Visualization: the Them1 label substituted with a suitable value in Figures 221. An
example specifying a default value is given in Figure 222.

• Information about the message sender in the request from mediator to provider : de-
notes information revealed by the mediator about its credentials in the request mes-
sage forwarded to the provider.
Range of values : information provided by the mediator about its credentials in the
request to the provider may be underspecified. The mediator may reveal all, some or
none of its identity to the provider, providing that the mediator passes a complete
reference to the credentials of the customer (the latter is required for sending a re-
sponse message directly back to the customer).
So, possible values for the From2 field are (P2, C2), (P2,⊥), (⊥, C2) and (⊥,⊥).
Default value: (P2, C2).
Visualization: the From2 label substituted with its value in Figure 221. An example
specifying a default value is given in Figure 222.

• Information about the message sender in the response from provider to customer : de-
notes the credentials of the provider revealed by the provider in the response message
sent to the customer.
Range of values : From5 is a pair comprising the provider identity and the conver-
sation identifier. The provider may underspecify some information about its iden-
tity in the message sent to the mediator. However, if an underspecified identity
is passed to the customer, the customer may be unable to start a direct interac-
tion with the provider in the future. Thus, possible values of the From5 field are
(P3, C3), (P3,⊥), (⊥, P3) or (⊥,⊥).
Default value: (P3, C3).
Visualization: the From5 label substituted with a suitable value in Figure 221. An
example of specifying a default value is given in Figure 222.

• Information about mediator exposed by provider to customer : denotes the credentials
of the mediator revealed by the provider in the response message sent to the customer.
Range of values : Them5 is a pair comprising the party identifier and the conversation
identifier, whose value is based on the From2 field. Table 5.11 illustrates possible
values of the Them5 field, containing all or part of the information from the From2

field.
Default value: (⊥,⊥).
Visualization: the Them5 label substituted with a suitable value in Figure 221. An
example specifying a default value is given in Figure 222.

The static attributes of the Mediated Introduction pattern configuration are listed
below:

- From1: information specified by the customer about its credentials in the request
message to the mediator. It is assumed that the customer reveals all information
about its credentials, therefore From1 = (P1, C1).

- To1: information about the mediator’s credentials specified by the customer in the
message receiver field of the request message sent to the mediator. Initially, the

272 Chapter 5 Service Interaction Patterns

Table 5.11: Enumeration of all scenarios regarding revealed credentials of the mediator

From2 Them5
(Ps, Cs) (Ps, Cs)

(Ps,⊥)
(⊥, Cs)
(⊥,⊥)

(Ps,⊥) (Ps,⊥)
(⊥,⊥)

(⊥, Cs) (⊥, Cs)
(⊥,⊥)

(⊥,⊥) (⊥,⊥)

customer has no knowledge about the conversation identifier used by the mediator
for correlation, therefore To1 = (P2,⊥).

- Me: knowledge of the mediator about its party identifier and the associated conver-
sation identifier: Me = (P2, C2).

The dynamic attributes of the Mediated Introduction pattern configuration are listed
below. Their values are derived from other pattern attributes.

- Cust: information supplied by the customer about its credentials in the request
to the mediator. This information is retained knowledge held by the mediator for
correlation purposes. The knowledge about the identity of the customer is gained by
the mediator from the From1 field: Cust=From1.

- Prov: information supplied by the customer in the request sent to the mediator
about the identity of the provider. This information is retained knowledge held by
the mediator in order to to forward the request received from the customer to the
party with the indicated identity (if it has been provided). This knowledge is gained
from the Them1 field: Prov=Them1.

- To2: information about the provider’s credentials specified by the mediator in the
message receiver field of the request message forwarded to the provider. The identity
of the provider is set to Prov if it has been provided by the customer, or is defined
by the mediator based on its implicit knowledge and set to (P3,⊥).

- Them2: information specified by the mediator in the request message to the provider
about the credentials of the customer. This information will be used by the provider
when sending the response to the customer. The knowledge retained in the Cust field
is used to set the value of the Them2 field, i.e. Them2=Cust.

- To5: information about the customer’s credentials specified by the provider in the
message receiver field of the reply message sent to the customer. The provider re-
trieves the credentials of the customer from the Them2 field: To5=Them2.

Figure 222 illustrates the graphical notation of the Message Introduction pattern variant
where all pattern attributes are set to their default value.

Meaningful configurations
Figure 223 illustrates the structure for calculating the total number of meaningful config-
urations of Mediated Introduction. Applying the rules described on page 238, 72 distinct
pattern configurations can be deduced from the structure presented in Figure 223.

Section 5.2 Configurable framework for service interaction patterns 273

(P1,C1)(P2,)(,)

(P2,C2)(P3,)(P1,C1)

(P3,C3)(P1,C1)(P2,C2)

 (P2,C2) (P1,C1) (,)

From1 To1 Them1

 Me Cust Prov

From2 To2 Them2

From5 To5 Them5

Customer does not

provide the
credentials of the

Provider

Mediator reveals its
identity: the party

identifier P2 and the

conversation id C2

Provider reveals

the credentials of mediator

including both the party id P2

and the conversation id C2

Provider reveals its own

identity, including the
party id P3 and the

conversation id C3

Figure 222: Default notation: Message Introduction

Depending on the information exposed by the mediator to the provider about the
mediator’s credentials, different values of the mediator’s credentials can be exposed by
the provider to the customer. If the mediator specified both the party identifier and the
conversation identifier, the provider may reveal both, some or none of them. Otherwise,
the provider reveals no information about the mediator’s credentials at all. The rest of the
configuration parameters are independent of each other, and their values may be combined
without restriction.

Customer request for specific provider

Information about the message sender in the request from mediator to provider

((P3,_),(_,_))

Information about the message sender in the response from provider to customer

Information about mediator exposed by provider to customer

(P2,C2) (P2,_) (_,C2) (_,_)

((P3,C3),(P3,_),(_,C3),(_,_))

((P2,C2),(P2,_),(_,C2),(_,_))

((P3,C3),(P3,_),(_,C3),(_,_)) ((P3,C3),(P3,_),(_,C3),(_,_))((P3,C3),(P3,_),(_,C3),(_,_))

((P2,_),(_,_)) ((_,C2),(_,_)) (_,_)

Figure 223: Meaningful configurations of Mediated Introduction (total 72 configurations)

Illustrative example To show how the pattern configuration can be used in practice, we
analyze one of the examples presented earlier and define the corresponding pattern variant.
In the air-miles exchange example, the air-miles card owner sends a request to the Air-miles
web-site to exchange accrued air-miles for the reservation of a specific flight. The air-miles
web-site serves as a mediator between the client and the airline operator (cf. Figure 224).
When forwarding the request from the client to the selected airline operator, the mediator
reveals the client’s credentials (these are needed to book a flight). The airline operator
sends the details of the reservation back to the mediator, who in its turn forwards them
to the client. Together with the details of the reservation made, the mediator specifies
the contact address of the airline operator in order to allow the customer to contact the
airline company directly in the future for any outstanding issues. In this example, the

274 Chapter 5 Service Interaction Patterns

Mediated Interaction is performed by the Air-miles web-site. The label Expose1 is set to
true, since the clients details have to be communicated to the airline operator. The Them1

label contains the identity of the airline operator selected by the client. The Expose3 label
is set to true, since the airline operator discloses its credentials to the client in order to
allow for the future interactions. The From3 label contains complete information about the
credentials of the airline operator and the From4 label also contains complete information
about the Air-miles organization.

(P2,C2)(P3,)(P1,C1)

(P3,C3)(P2,C2)(,)(true)

Mediator

 (P2,C2) (P1,C1)(P3,)(true)

 (P2,C2) (P1,C1)(P3,C3)(true)(true)

 (P2,C2)(P1,C1)(P3,C3)

(P1,C1) (P2,)(P3,) (true)

 (P2,C2) (P1,C1)(P3,)(true)

From1 To1 Them1 Expose1

 From4 To4 Them4

From2 To2 Them2

From3 To3 Them3 Expose3

 Me Cust Prov ExpC

 Me Cust Prov' ExpC

 Me Cust Prov'' ExpC ExpP

Figure 224: Notation for the air-miles exchange example

CPN semantics In this section, we describe the semantics of both Message Mediation
types in the form of CPN models. The Mediated Interaction scenario is represented in Fig-
ure 225. The three parties involved in a conversation, i.e. customer, mediator, and provider,
are represented as substitution transitions that are decomposed in Figures 226, 227 and 228
respectively. The interactions between these parties are realized using the Asynchronous
Transfer CPN pattern (described on page 54).

The behavior of the customer is shown in Figure 226. The customer communicates di-
rectly with the mediator by sending a request message of type CustRequest to and receiving
a response message of type MedReply from the mediator via transitions Send request and
Receive response respectively. The place Mediator identity stores information about
the identity of mediators to one of which a request message will be sent by the customer.
Initially, the customer has no knowledge of the conversation identifier used by the medi-
ator for correlation purposes. The customer may know the identity of the provider with
whom it wishes to communicate directly. The customer may either provide the mediator
with the identity of the provider or may leave it out. The knowledge about the identity
of the provider is enclosed in the them1 field of the request message. The value of this
configuration parameter is set by the non-deterministic defthem1() function that either
specifies the credentials of the provider or leaves this field empty. In the request message
the customer explicitly specifies whether it allows the mediator to disclose its credentials
to the provider or not by setting the expose1 variable of Boolean type to true or false

respectively.

Section 5.2 Configurable framework for service interaction patterns 275

Provider

Provider

Mediator

Mediator

Customer

Customer

Forward
response

ProvReply

Forward
request

MedRequest

Init
Response

MedReply

Init
Request

CustRequest

Customer Mediator Provider

Figure 225: CPN diagram: The top view of Mediated Interaction

Table 5.12: Data types used in the Mediated Interaction diagrams

colset PartyId = union smallstr + NoPartyId;
colset ConvId = union smallint + NoConvId;
colset PxC = product PartyId * ConvId;
colset Content = STRING;
colset From = PxC;
colset To = PxC;
colset Them = PxC;
colset Expose = BOOL;
colset ExpC = Expose;
colset ExpP = Expose;
colset Me = PxC;
colset You = PxC;
colset Cust = PxC;
colset Prov = PxC;
colset Conv = product Me * PxC * PxC * Content;
colset ConvM = product Me * Cust * Prov * ExpC * ExpP * Content; 24

colset CustRequest = product From * To * Them * Expose * Content;
colset MedRequest = product From * To * Them * Content;
colset MedReply = product From * To * Them * Content;
colset ProvReply = product From * To* Them * Expose * Content;

24ConvM denotes information recorded by mediator about conversations with customer
and provider. While customer and provider communicate directly only with one party and
store conversations of type Conv, the mediator has to keep track of interaction with both
parties at once.

276 Chapter 5 Service Interaction Patterns

Figure 226: CPN diagram: The Customer page of Mediated Interaction

The History place keeps track of all messages sent by the customer to the mediator,
including the credentials of all parties involved in the conversation. In order to distinguish
conversations, each of them is assigned an identifier, generated by incrementing the value
of a counter stored in the New Conv place. To realize the id generator we used the ID
Manager CPN pattern describe on page 51. Response messages sent by the mediator to
place Response are received by the customer via the Receive response transition. A
function abletocorrelate() in the transition guard checks whether the response message
received can be correlated with any of the requests sent. In this example, correlation is
performed based on matching the message receiver field with the identity of the customer. If
the result of the correlation is successful, the missing information gained from the response
message is recorded in the Updated history place by means of the addmissing() function,
otherwise the message is ignored. The matching operation corresponds to the ID Matching
CPN pattern (cf. page 49), and blocking of unintended messages corresponds to the BSD
Filter CPN patterns (cf. page 43). Information contained in the them4 field of the response
message can be used by the customer to send a follow-up request directly to provider.

The behavior of the mediator is shown in Figure 227. Requests sent by the customer to
the Init request place are received by the mediator via the Receive request transition.
For each of the requests received, the mediator creates a new conversation, whose identifier
is provided by the New Conv counter place (realized using the ID Manager CPN pattern
described on page 51). After receiving the request, the mediator adds a record about the
request received to the History of received requests place. This record contains infor-
mation about the credentials of the customer from1, information provided by the customer
about the identity of the provider them1, and information about the visibility of the cus-
tomer’s credentials to the provider expose1. When forwarding a request received from the
customer, the mediator specifies the address of the message receiver, its own credentials
and shows the credentials of the customer if the customer has granted the permission to
disclose its identity. The latter is done by means of the defthem() function. The defto2()
function determines the identity of the provider. If the customer has specified the identity

Section 5.2 Configurable framework for service interaction patterns 277

P3

(me,cust,prov, expC, expP,c)

(me,cust,addmissing(prov,from3), expC, expose3,c3)

(from3,to3,them3,expose3,c3)

(me,cust,prov, expC, c)

(me,cust,to2,expC,c)

(from2,to2,them2,c)

(me,cust,prov, expC,c)

(from4,to4, them4,c)

new(P2,C2)(P2,C2)

(from1,(P2,NoConv),them1,expose1,c1)

Receive
fw response

[abletocorrelate((from3,to3,c3),
(me,prov,c))]

Forward
request

input (P3,prov,cust,expC,me);
output (from2,to2,them2);
action
(me,defto2(P3,prov),defthem(cust,expC));

Send
reply

input (me,cust,prov,expP);
output (from4,to4,them4);
action
(some(me),cust,defthem(prov,expP));

Receive
request

Provider

1`P("C")

PartyId

History of
responses

ConvM2

History of
forwarded
requests

ConvM

Forward
response

In
ProvReply

Forward
request

Out
MedRequest

History of
received
requests

ConvM

New
Conv

1`(P("B"), C(1))

PxC

Init
response

Out
MedReply

Init
request

In

CustRequest

In

Out

Out

In

((P2,C2),from1,them1,expose1,c1)

Variation point:
the Customer has either specified
the identity of the Provider or not

Variation point:
the Customer has allowed its
credentials to be revealed to
the Provider or not

Variation point:
the Mediator specifies
either all information about
its identity or only part of it

Variation point:
the Mediator has either
specified all information about
its credentials or only part of it

Variation point:
the Mediator has either
allowed its credentials
to be exposed or not

Figure 227: CPN diagram: The Mediator page of Mediated Interaction

of the provider to which the mediator should forward the request, then this identity is used
in the to2 field, otherwise the mediator determines to which of the parties, whose identities
are stored in place Provider, the message can be forwarded. Note that we applied the
Data Distributor CPN pattern (cf. page 65) to replicate the message sent to the provider by
transition Forward request. This information is recorded in the History of forwarded

requests place and used for correlating future replies.

When response messages of type ProvReply, stored in place Forward response, are
received from the provider, the mediator tries to correlate them with previous requests
using the abletocorrelate() function. If the related conversation has been identified,
the mediator records the missing information gained from the response message in the
History of responses place using the addmissing() function. The mediator forwards
the response message to the customer via the Send Reply transition. In this message, the

278 Chapter 5 Service Interaction Patterns

mediator may underspecify its credentials in the from4 field using the function some().
Function defthem() is used to define the value of the them4 field. In particular, if the
provider has granted permission for its credentials to be revealed to the customer (i.e.
variable expP has been set to true), the credentials of the provider stored in variable prov
are assigned to the them4 field.

(from3,to3,them3,expose3,c3)

(me,you, them, c)

((P3,C3), from2, them2, c2)

(from2,to2,them2,c2)

(P3,C3)
new(P3,C3)

Send
response

input (me,you,them);
output (from3,to3,them3);
action
(some(me),you, them);

Receive
request

History

Conv

New
Conv

1`(P("C"), C(1))

PxC

Forward
request

In
MedRequest

Forward
response

Out
ProvReply

Out

In

Variation point:
the Mediator either
specifies all information about
its credentials or only part of it

Variation point:
the Mediator either
allows its credentials
to be exposed or not

Figure 228: CPN diagram: The Provider page of Mediated Interaction

The behavior of the provider is shown in Figure 228. For each of the requests forwarded
by the mediator, the provider creates a new conversation and records information related
to the conversation in the History place. The provider sends a response message to the
address specified by the mediator in the From2 field. When sending a response message,
the provider may decide to reveal all, some or none of its identity to the mediator. This
information is defined by the function some and enclosed in the from3 field of the response
message. Moreover, the provider may decide to expose its credentials to the customer, and
for this, the Boolean variable expose3 must be set to true.

The main page of the Mediated Introduction pattern configuration is shown in Fig-
ure 229. The behavior of the customer is identical to the one presented in Figure 226. The
behavior of both the mediator and provider differs slightly from the nets described in the
Mediated Interaction scenario and is presented in figures 230 and 231 respectively.

In the Mediated Introduction scenario, messages of different types are used (cf. Ta-
ble 5.13). None of the messages exchanged between parties in this scenario contains the
Expose field, because it is assumed that the credentials of the parties can be freely revealed
to other parties.

The substantial difference between the behavior of the mediator presented in Figure 230
and that of the mediator in the Mediated Interaction scenario, is that credentials of the
customer recorded by the mediator in the cust variable are assigned to the them2 field
in the response message sent to the provider without examining the permission of the
customer to expose its credentials. As has been mentioned already, this is done based on

Section 5.2 Configurable framework for service interaction patterns 279

Table 5.13: Data types used in Mediated Introduction diagrams

colset CustRequest = product From * To * Them * Content;
colset MedRequest = product From * To * Them * Content;
colset MedReply = product From * To * Them * Content;
colset ProvReply = product From * To* Them * Content;

Provider

Provider

Mediator

Mediator

Customer

Customer

Forward
request

MedRequest

Response

ProvReply

Init
Request

CustRequest

Customer

Mediator

Provider

Figure 229: CPN diagram: The top view of Mediated Introduction

the assumption that no permission is required for the mediator to expose the credentials
of the customer to the provider.

P3

(me,cust,to2,c)

(from2,to2,them2,c)

(me,cust,prov,c)

((P2,C2),from1,them1,c1)

new(P2,C2)(P2,C2)

(from1,(P2,NoConv),them1,c1)

Forward
request

input (P3,prov,cust,me);
output (from2,to2,them2);
action
(me,defto2(P3,prov),cust);

Receive
request

Provider

1`P("C")

PartyId

History of
forwarded
requests

Conv

Forward
request

Out
MedRequest

History of
received
requests

Conv

New
Conv

1`(P("B"), C(1))

PxC

Init
request

In

CustRequest

In

Out

Variation point: the Mediator
specifies all information about
its credentials or only part of it

Variation point: the Customer
 has either specified
the identity of the Provider
or lets the Mediator to do it

Figure 230: CPN diagram: The Mediator page of Mediated Introduction

The behavior of the provider is shown in Figure 231. After receiving a response message
from the customer, the provider sends the response message directly to the customer. As

280 Chapter 5 Service Interaction Patterns

there was no interaction between the customer and the provider in the past, and the
customer does not know the provider, the provider uses the reference to the customer’s
credentials provided by the mediator in the them2 field to specify the address of the message
receiver to5 in its response message.

(from5,to5,them5,c)

(me,you, them, c)

((P3,C3), from2, them2, c2)

(from2,to2,them2,c2)

(P3,C3)
new(P3,C3)

Send
response

input (me,you,them);
output (from5,to5,them5);
action
(some(me),them, some(you));

Receive
request

History

Conv

New
Conv

1`(P("C"), C(1))

PxC

Forward
request

In
MedRequest

Response

Out
ProvReply

Out

In

Variation point: the Provider
specifies either all information
about its identity or only part of it

Variation point:
the Provider either gives
all information about the
Mediator or only part of it

Figure 231: CPN diagram: The Provider page of Mediated Introduction

When describing the behavior of the Mediated Introduction and Mediated Interaction
in the form of CPN, we used 5 distinct CPN patterns. Table 5.14 indicates how frequently
each of the patterns has been used and how many patterns in total, i.e. including the
repeating ones, were applied in both models.

Table 5.14: CPN patterns used in the implementation of Message Mediation

CPN pattern Frequency
ID Matching 3
ID Manager 6
Data Distributor 4
BSD Filter 3
Asynchronous Transfer 7
Total 23

Issues Pattern variants belonging to the Message Mediation family address scenarios where
a single message is exchanged between involved parties. If multiple sub-requests have to
be sent to a set of mediators at once, or if a customer has to send requests to a set of
mediators, who in turn might want to forward the request to a set of providers, then the
given pattern variant can be combined with another suitable pattern variant belonging
the Multi-Party Multi-message Request-Reply Conversation family. One of the roles of the
mediator in the tripartite conversation is to pass a reference to the identify of one party
to another in order to enable their direct interaction in the future. In the course of long-

Section 5.2 Configurable framework for service interaction patterns 281

running bipartite conversations, information used for correlation may change. This issue
is addressed by the Bipartite Conversation Correlation pattern family.

In Section 5.2.3, we focused on the fundamentals of message correlation and described
possible variants of successful correlation. When considering a series of related inter-
actions, it is interesting to note that during a conversation the information used for
correlation purposes may change. On page 283, we provide a graphical notation that is
able to capture the dynamic character of message correlation in the bilateral context.

5.2.5 Pattern family: Bipartite Conversation Correlation

In this sub-section, we describe the fifth and final pattern family, named Bipartite Con-
versation Correlation, which addresses the issue of varying correlation information in the
context of a long-running conversation between two parties, i.e. the pattern family is con-
cerned about how earlier interactions can be exploited to set up a correlation agreement.

Description Each of the two parties involved in a long-running conversation may indicate
during the initiation of the conversation what correlation token it expects to receive in
follow-up messages in order to unambiguously relate them to the existing conversation.
Independently from the correlation information provided by one party during conversation
initiation, the other party may forget or choose to ignore it in the follow-up interactions.

Example
• A client requests a telephone subscription from the telephone company. The com-

pany registers the customer and confirms the registration by sending a letter with a
telephone number and the client’s name to the address specified by the client. The
company expects a client to indicate the telephone number in any future enquiries.
However, it is likely that when making future enquiries, the client will forget to do
so or will send incomplete information.

UML meta-model Concepts specific to the Bilateral Conversation Correlation pattern
configuration are illustrated by means of the class diagram in Figure 232. Two parties,
a requestor and a responder, are involved in a bipartite conversation (cf. the responder

and requestor association relations between Party and Conversation). Each of the
parties involved in a conversation may send and receive messages (cf. associations sends

and receives between Party and Message). Messages can either be of type Request

or Reply, where every reply corresponds to precisely one request and multiple replies
can be sent for the same request. A conversation consists of two phases: initiation and
follow-up interactions (represented as specializations Initiation and Follow-up). The
requestor initiates a conversation by sending a message to the other party. The requestor
specifies its correlation credentials (i.e. a party identifier and a conversation identifier) in
the initial message sent to the other party and expects the responding party to use the
same credentials in any response messages, however the responder may choose to ignore
this information in the follow-up interactions.

Visualization Figure 233 illustrates the graphical notation used for illustrating Bipartite
Conversation Correlation. Parties are visualized as rectangles. Arrows between rectangles
indicate interactions between parties, where direction of arrows corresponds to the message
flow. Interactions marked as initial request and initial response correspond to
the initiation of conversation, where parties notify each other about the credentials they
want to use as tokens for correlation in the follow-up interactions. It is an assumption

282 Chapter 5 Service Interaction Patterns

Party

Conversation

Message

Request Reply

1

1..*

corresponds to

involves

2..*

0..*

1 0..*

sends

receives

0..*

0..*

1

0..1

requestor

responder

0..*
0..*

1

1

Initiation

Follow-up

follows
1

1..*

1

1..*

Figure 232: UML meta-model of Bipartite Conversation Correlation

of this pattern, that messages exchanged have the form (From, To, Content), specifying
information about the message sender, message receiver, and the content of the message.
Labels, marked as From and To, denote information about the message sender and the
message receiver respectively.

Let P1 and P2 denote the party identifiers of the requestor and responder respectively.
Let C1 and C2 denote conversation identifiers used by the requestor and the responder for
correlation purposes respectively. Let ⊥ denote the absence of either party or conversation
identifier in a message.

This graphical notation in Figure 233 contains a set of static attributes, dynamic at-
tributes and configuration parameters. The static attributes refer to information that is
fixed in every pattern variant. The dynamic attributes derive their value from other pattern
attributes. The configuration parameters refers to information that varies in all pattern
variants, i.e. the configuration parameters have to be set to a value from the defined range
in order for a specific pattern variant to be configured. The list of the static attributes is
shown below:

• Requestor credentials in the initial request : information specified by the requestor
about its identity in the initial conversation request. The requestor expects the
responder to use the specified credentials when sending a response message back.
From1 is a pair comprising the requestor identifier and the conversation identifier
used by the requestor for correlation purposes. It is an assumption, that the requestor
always specifies the maximal possible information about its identity when initiating
a conversation with another party: From1=(P1, C1).

• Responder credentials in the initial request : information specified by the requestor
about the credentials of the responder in the initial conversation request. To1 is a
pair comprising the responder identifier and the conversation identifier used by the
responder for correlation purposes. It is assumed, that initially the requestor does

Section 5.2 Configurable framework for service interaction patterns 283

P1 P2

To1From1

To3From3

From2To2

Requestor Responder

Party
identifier

Message
sender field

Message
receiver field

initial request

initial response

follow-up request

Figure 233: Graphical notation:Bipartite Conversation Correlation

not have any knowledge about the conversation identifier the responder will use for
correlation: To1= (P2,⊥).

The graphical notation in Figure 233 contains only one dynamic pattern attribute
described below:

• Requestor credentials in the initial response: information specified by the responder
about the identity of the requestor in the response to the initiation request. To2 is
a pair comprising the requestor identifier and the conversation identifier used by the
requestor for correlation purposes, such that To2=From1.
Fixed value: (P1, C1).
Visualization: label To2 in Figure 233 substituted with its value.

The list of configuration parameters is given below.

• Responder credentials in the initial response: information specified by the responder
about its identity in the response to the initial request received from the requestor.
Range of values : From2 is a pair containing the responder identifier and the con-
versation identifier used by the responder for correlation purposes. The requestor
identifier is denoted as P2 and its conversation identifier is denoted as C2. It is
assumed, that the requestor may forget to specify or choose not to disclose some of
the information about its credentials. The absence of this information is denoted by
⊥. So, possible values of the From2 field are (P2, C2), (P2,⊥), (⊥, C2) and (⊥,⊥).
Default value: (P2, C2).
Visualization: the From2 label in Figure 233 substituted with a suitable value. An
example specifying a default value is shown in Figure 234.

• Responder credentials in the follow-up request : information specified by the requestor
about the identity of the responder in follow-up requests.
Range of values : To3 is a pair containing the possible responder identifier and the
conversation identifier used by the responder for correlation purposes. Although the
requestor has received information about the responder credentials in the initiation
response, it may decide to use all of the information provided, some of it or no
information at all. Where the requestor decides to use the credentials specified by

284 Chapter 5 Service Interaction Patterns

the responder in the FROM2 field, To3 = From2. If the requestor decides to specify only
part of the information retrieved from the FROM2 field, the responder’s party identifier,
the conversation identifier or both may be omitted. Thus, if From2=(P2, C2), then
possible values of the To3 field are (P2, C2), (P2,⊥), (⊥, C2) and (⊥,⊥).
Default value: From2.
Visualization: the To3 label in Figure 233 substituted with a suitable value. An
example specifying a default value is shown in Figure 234.

• Requestor credentials in the follow-up request : information specified by the requestor
about its identity in the follow-up requests sent to the requestor.
Range of values : From3 is a pair containing the responder identifier and the conver-
sation identifier used by the responder for correlation purposes. Depending on what
information the requestor specifies about the identity of the responder in the follow-
up request, i.e. whether it used all credentials specified by the responder or only part
of them, the requestor may specify either complete information about its identity as
indicated in the From1 field, or only part of it. So, possible values of the From3-field
are: (P1, C1), (P1,⊥), (⊥, C1) and (⊥,⊥). Note that the latter three values have the
meaning only if the complete responder’s credentials have been specified, otherwise
correlation performed by the responder may lead to ambiguous results.
Default value: (P1, C1).
Visualization: the From3 label in Figure 233 substituted with a suitable value. An
example specifying a default value is shown in Figure 234.

Figure 234 presents the graphical notation for one of the bipartite conversation pattern
variants where all configuration parameters are set to their default values. The requestor
and the responder retrieve all information from the messages received, and specify complete
information about the identity of the message sender and the message receiver.

P1 P2

(P2,)(P1,C1)

Requestor Responder

(P1,C1)

(P2,C2)

(P2,C2)

(P1,C1)

Responder provides
information about its party

identifier and conversation id,

i.e. FROM2 = (P2,C2)

Requestor specifies all
available information about

the responder credentials,

i.e. TO3=(P2,C2)

Requestor specifies
all information about

its credentials, i.e.

FROm3=(P1,C1)

To1From1

To3From3

From2To2

Figure 234: Default notation: Bipartite Conversation Correlation

Meaningful configurations Figure 235 illustrates the structure for calculating the total
number of meaningful configurations of Bipartite Conversation Correlation. Applying the
rules described on page 238, 18 distinct pattern configurations can be deduced from the
structure presented in Figure 235.

Section 5.2 Configurable framework for service interaction patterns 285

Depending on what information the responder has provided in the initiation response
to the requestor, the requestor may specify the same information about the responder’s
credentials in the follow-up request to realize the scenario where the responder defines the
correlation information for future interactions. Alternatively, the requestor may underspec-
ify part of the responders credentials and reveal as much information about own identity
as desired. The only requirement for specifying information in the follow-up request is
that the responder’s identity has to be explicitly specified. If in addition to the responder’s
identifier also its conversation identifier is also available to the requestor, and these are
explicitly specified in the follow-up request, the requestor may omit or underspecify the
information about its identity.

Responder credentials in the intial response

Responder credentials in the follow-up request

Requestor credentials in the follow-up request

(P2,C2) (P2,_) (_,C2) (_,_)

((P1,C1),

(P1,_),
(_,C1),

(_,_))

(P2,C2) (P2,_) (P2,_) (P2,C2) (P2,_) ((P2,_)

((P1,C1),

(P1,_),
(_,C1),

(_,_))

((P1,C1),

(P1,_),
(_,C1),

(_,_))

((P1,C1),

(P1,_),
(_,C1),

(_,_))

(P1,C1) (P1,C1)

Figure 235: Meaningful configurations of Bipartite Conversation Correlation (total 18 configu-
rations)

Illustrative example For the telephone subscription example described earlier we define
the pattern configuration depicted in Figure 236. In this example, a client requests a
telephone subscription from the telephone company. The company registers the customer
and confirms the registration by sending a letter with a telephone number and the client’s
name to the address specified by the client. The company expects a client to indicate the
telephone number in any future enquiries. However, when making the next enquiry, the
client forgets to specify their telephone number. In the graphical notation, the client and
the telephone company map directly to the roles of the responder and the provider. The
requestor omits the conversation id specified by the responder (i.e. the telephone number)
in the follow-up request. Note that the requestor assumes the responder to have used C1

as an identifier.

P1 P2

(P2,)(P1,C1)

Requestor Responder

(P1,C1)

(P2,)

(P2,C2)

(P1,C1)

Figure 236: Notation for the telephone subscription example

CPN semantics A CPN diagram illustrating the semantics of the Bipartite Conversation
Correlation is shown in Figure 237. Two parties, a requestor and a responder, represented
as substitution transitions Requestor and Responder, are involved in a conversation. In-
teractions between the parties are realized using the Asynchronous Transfer CPN pattern

286 Chapter 5 Service Interaction Patterns

(cf. page 54). The responder initiates a conversation by sending an initiation request Init
request of type Message. In this initiation request, the requestor specifies the credentials
it wants the responder to use when responding to this request. The responder sends an
initiation response Init response of type Message, where it specifies its own credentials
that must be used by the requestor in the follow-up requests. Messages exchanged between
the parties take the form (From,To,Content), where From is credentials of the message
sender, To is credentials of the message receiver and Content is the content of the message.

The decomposition of transitions Requestor and Responder is shown in Figure 238 and
Figure 239 respectively. The CPN models for bipartite conversation correlation are based
on the correlation mechanisms and data types introduced for the Message Correlation
pattern family (cf. Section 5.2.3).

The behavior of the requestor is depicted in Figure 238. Transitions Send init

request, Receive init request and Send follow-up request correspond to the send
conversation initiation request, receive initiation reply, and send follow-up request respec-
tively. To initiate a new conversation, a new unique conversation id is created by the
new() function, which increments the identifier of the last conversation. When sending
out an initialization request, the requestor specifies its identity (P1,C1), where P1 is a
party identifier of type PartyId and C1 is a conversation identifier of type ConvId. In the
credentials of the message receiver in the initiation request, the requestor only specifies
the id of the responder P2. The absence of the conversation identifier is denoted by means
of the value NoConvId. After the message has been sent, it is recorded in the History

Table 5.15: Data types used in Figs. 237-239

colset PartyId = union smallstring + NoPartyId; 25

colset ConvId = union smallint + NoConvId; 26

colset PxC = product PartyId * ConvId;
colset Content = string;
colset From = PxC;
colset To = PxC;
colset Me = PxC;
colset You = PxC;
colset Conv = product Me*You*Content;
colset Message = product From*To*Content;

25The id of a party is a small color-set of
type STRING or is denoted by NoPartyId if
not specified.

26The id of a conversation is a small color-
set of type INT or is denoted by NoPartyId if
not specified.

Follow-up
request

Message

Init
response

Message

Init
request

Message

Responder

Responder

Requestor

RequestorRequestor Responder

Figure 237: CPN diagram: The top view of Bi-
partite Conversation Correlation

Section 5.2 Configurable framework for service interaction patterns 287

function of type Conv. This place stores the history of all current conversations for use in
correlating response messages from the responder.

Figure 238: CPN diagram: The Requestor sub-page of Bipartite Conversation Correlation

When an initialization response arrives, the Receive init response transition checks
by means of the abletocorrelate() function whether the message received can be cor-
related with one of the conversations recorded in the place History. The correlation
mechanism is based on the model presented for the Message Correlation pattern family.
If the message received can be correlated, the history of conversations is updated. The
addmissing() function records information supplied by the responder about its identity
which was not known to the requestor. Since the requestor may forget to retrieve some
information, the some() function defines how much information will be included in each
case. By means of this function, it is possible to specify that either the party identifier,
the conversation identifier or both are forgotten.

In the follow-up request, the requestor may use all or just part of the information
stored in the Updated history place to specify the credentials of the message sender
and the message receiver. The some function determines how much information will be
underspecified in the From and To fields of the follow-up response.

The behavior of the responder is depicted in Figure 239. A conversation initiation
request sent by the requestor in place Init request is consumed by transition Receive

init request, which creates a new conversation identifier via the function new(). The

288 Chapter 5 Service Interaction Patterns

Variation point:
information specified
by the Responder about
its identity

(from3,to3,cont3)

(me,you,cont)

((P1,C1),(P2,C2),merge(cont1,cont2))

(from2,(P1,C1),cont2)

((P1,C1),(P2,C2),cont1)

((P1,C1),(P2,C2),cont1)

new(P2,C2)(P2,C2)

((P1,C1),(P2,NoConv),cont1)

Receive
follow-up
request

[abletocorrelate((from3,to3,cont3),
(me,you,cont))]

Send
init reply

[from2=some((P2,C2))]

Receive
init request

Updated
History

Conv

History

Conv

New
Conv

1`(P("B"), C(1))

PxC

Init
response

Out

Message

Follow-up
request

In
Message

Init
request

In

Message

In

In

Out

Figure 239: CPN diagram: The Responder sub-page of Bipartite Conversation Correlation

created conversation identifier will be used by the responder in the future interactions
with the requestor for correlation purposes. Information contained in the initialization
request received is associated with the newly created conversation identifier, and all of this
information is recorded in the History place. When sending the initialization response, the
responder may underspecify its identity in the from2-field by applying the some() function.
After the response message has been sent, the conversation history is updated and recorded
in the Updated History place. The responder expects the requestor to use the information
previously provided by the responder about its identity in follow-up requests. Follow-up
requests sent by the requestor to place Follow-up request are checked by transition
Receive follow-up request and consumed only if the function abletocorrelate() has
identified a conversation with which the message received can be correlated. In this net,
all messages for which no matching conversation can be found are ignored. Note that
a mechanism for handling correlation failure could be added to this model, in order to
specify whether such messages have to be discarded, or whether a new conversation has to
be created to process them.

Note that in this implementation we used the ID Manager CPN pattern (cf. page 51) to
ensure the uniqueness of identifiers associated with conversations; the ID Matching CPN
pattern (cf. page 49) and the BSD Filter CPN pattern (cf. page 43) for message matching
during message correlation, and the Data Distributor CPN pattern (cf. page 65) to record
the information about messages sent that is required for future correlations. Table 5.16
indicates how frequently each of the patterns has been used and how many patterns in
total, i.e. including the repeating ones, were applied.

Issues In long-running conversations, the information used for correlation purposes may

Section 5.2 Configurable framework for service interaction patterns 289

Table 5.16: CPN patterns used in the implementation of Bipartite Conversation Correlation

CPN pattern Frequency
ID Matching 3
ID Manager 2
Data Distributor 2
BSD Filter 4
Asynchronous Transfer 3
Total 14

change. If the parties involved in the conversation underspecify information about the
identity of a requestor or a responder, the correlation might fail. In this pattern family, the
parties involved in the conversation are assumed to already know each other. However, in
some situations the identity of a responding party is not known to the requestor directly.
The conversation in such a setting involves an intermediary, who either forwards requests
and replies between the involved parties and hides the identity of the parties involved from
each other, or brings the parties in contact by providing a reference to their identity. These
scenarios are described in the Message Mediation pattern family.

5.2.6 Pattern-based service interaction design method

In this section, we present a pattern-based design method which describes how the con-
figurable framework presented in Section 5.2 can be used for classifying service-interaction
scenarios. This method identifies which pattern families need to be applied, the order in
which they should to be applied, and what the rationale is for using a specific pattern
family. We illustrate this design method in action using a travel agency example.

In order to classify a particular service interaction scenario, one has to perform the
steps listed below in the order specified:

1 Use the Multi-party Multi-message Request-Reply Conversation pattern family, as
detailed on page 233, to describe the overall situation, i.e. model all parties involved
and their high-level interactions. The parameters defined for this pattern family have
to be configured in the order they are listed, and for each of them a specific value
from the defined range has to be determined.

2 Decide whether information related to individual conversations needs to be corre-
lated. This is especially important if interacting parties expect to receive messages
related to different conversations, or originating from different parties. Conversations
can be classified as short-running or long-running, depending on whether they con-
sist of a single request-response interaction or multiple interactions respectively, and
as bilateral or mediated, depending on whether the interaction between the parties
involved is performed directly or via a third party-mediator respectively.

The following types of interactions are possible27:

• Short-running bilateral conversation: to support this style of interaction use the
Message Correlation pattern family, as detailed on page 256, to specify what
information in regard to both party’s credentials is revealed in a message, and

27Note that this only applies to conversations involving correlation, i.e. in the same application scenario
multiple types may be identified.

290 Chapter 5 Service Interaction Patterns

how the message is correlated by (each of) the message receivers. The correla-
tion information obtained helps to differentiate between messages belonging to
different conversations, (and potentially involving multiple parties,) thus helping
to relate replies received with previously sent requests.

• Long-running bilateral conversation: to support this style of interaction use the
Bilateral Conversation Correlation pattern family, as detailed on page 281, to
specify what information must be specified in messages and used by the parties
to ensure that each message is delivered to the right destination. This gives
further insight into how information used for correlation purposes may change
during the course of the conversation.

Parties may be engaged in multiple conversations, therefore, it is important
to specify how messages are being correlated for each conversation. In order
to describe precisely how each party performs message correlation, and what
information they gain from the messages received, use the Message Correlation
pattern family, as detailed on page 256.

• Short-running mediated conversation: to support this style of interaction use the
Message Mediation pattern family, as detailed on page 264, to describe what
information about each party’s credentials is revealed in the messages exchanged.
The role of the mediator in the conversation is determined as follows:

a) introduction: the message mediator brings several parties in touch by re-
vealing the credentials of one party to another and thereafter lets the parties
interact directly: in this situation use the Message Introduction type of the
Message Mediation pattern family to describe the interaction between these
parties.

b) interaction: the message mediator forwards both requests and replies be-
tween two parties, without revealing their identities: in this situation, use
the Message Interaction type of the Message Mediation pattern family to
describe the interaction between these parties.

• Long-running mediated conversation: this conversation represents either a series
of short-running mediated conversations, or the combination of a short-running
mediated conversation with a short-running or long-running bilateral conversa-
tion. To describe the long-running mediated conversation, each of its composite
parts have to be described separately as indicated earlier.

3 For each of the conversations, determine whether the conversation is associated with
the distribution of goods or services by one party to another under specific subscrip-
tion terms. If the concept of subscription is relevant, use the Renewable Subscrip-
tion pattern family, as detailed on page 245, to describe who is the initiator of the
subscription, what the terms of subscription are, and how the subscription will be
renewed.

4 The complete description of an interactive process is obtained when both the internal
behavior of a party and the interactions this party is involved in are fully defined.
For modeling of the control-flow in each party use the control-flow patterns described
in Chapter 4.

To illustrate how this design method can be used in practice, let’s analyze a travel-
agency example. Imagine that one travel agency has bought another travel agency, and it

Section 5.2 Configurable framework for service interaction patterns 291

needs to integrate the systems of both agencies in an expeditious manner. To make such an
integration possible, it is necessary to identify requirements the systems to be integrated
have to support and what they are actually supporting. By applying the pattern-based
service-interaction design method, the agency would be able to define what aspects need to
be modeled and which pattern family needs to be selected for describing the characteristics
identified.

As an example, let’s consider a scenario where a client sends a request to the travel
agency. The request triggers the booking of a car, a hotel, and an airplane journey. The
client expects at least two offers, of which only the best and most affordable one will be
selected. The travel agent seeks to provide offers within a limited period of time. To
achieve this, it sends requests for booking a hotel, a car, and an airline journey to multiple
service partners. Responses are expected from two car-lease agencies, three hotels and five
airline operators, who are official partners the travel agency is constantly dealing with.

In order to classify this scenario, we start with applying the Multi-party Multi-message
Request-reply Conversation pattern family (Step 1). In this step, we define the high-
level interaction between the parties involved. In doing so, we use the graphical notation
presented in Figure 240 to describe the conversation between the client and the travel
agency from the perspective of the client, and the conversations between the travel agency
and car lease, hotel rental and airline partners from the perspective of the travel agency.

FIFO

1 All

1

B

FIFO

UN All

1

FIFO

All

1

FIFO

UN All

1

?

?

?

?

?

?

Client Travel Agency

Car Lease

M=1

M=3

M=5

M=2

Hotel

Airline Operator

UN

N=3

Figure 240: Travel agency: multi-party view (Step 1)

We define the number of parties involved in the conversation, i.e. more than two. Since
the client places multiple sub-requests to the travel agency, these are represented with
multiple circles (N=3). There is no possibility of non-responding parties and missing replies
since the conversation takes place at the travel agency directly. The client accepts offers

292 Chapter 5 Service Interaction Patterns

in order of their arrival, however only starts processing them when two offers have been
received. This condition is represented as a Boolean expression (B) that must be satisfied
to enable the client to start processing the information. When the enabling condition is
satisfied, the client processes all offers supplied (the consumption index C is set to All),
and only one of the offers is selected (the utilization index U is set to 1). The offers are
processed directly and only once, therefore the consumption frequency F is set to 1.

In order to delineate conversations between the travel agency and the car lease, hotel
booking and airline partners, these are depicted separately. Although the order in which
conversations with each of these partner groups may be started may be different, in this
example we assume it to be fixed as represented in Figure 240. A single request for booking
a car, a hotel, and an airplane is sent to a group of car lease partners, a group of hotel
partners, and a group of airline operators respectively. The number of partners in each of
the groups is represented via parameter M . This is the only parameter that distinguishes
these conversations. For the rest, all configuration parameters are set to the same value.
In particular, there is the possibility that some partners will not reply and that some
replies will be missing. Replies from the partners are accepted by the travel agency in
order of arrival. Since the waiting period is limited, the enabling condition is represented
by the timeout. Upon expiration all replies received by the travel agency are consumed
(C = All). The number of offers utilized by the travel agency, visualized as UN , represents
a subset of offers received. After offers from all partner groups have been received, these
are communicated to the client.

Having described the high-level interactions between the parties identified, we define
the details relating to the correlation of messages that are exchanged during each of the
conversations (Step 2). The interaction we consider consists of two parts: first, mediated
interaction between the client and the booking partners via the travel agency, and second,
direct interaction between the client and a booking partner. Thus, the conversation we
are considering can be classified as a long-running mediated conversation that consists of
a short-running mediated interaction followed by a short-running bilateral interaction.

Lets describe the interaction step-by-step, starting with the short-running mediated
interaction. The travel agency plays the role of the message mediator through which the
message interaction between the client and the booking partners is performed. We depict a
specific interaction between the client, the travel agency and a booking partner, and define
the configuration of the Message Mediation pattern family as depicted in Figure 241.

The client provides the travel agency with its credentials, which are openly communi-
cated to the booking partner (i.e. parameter Expose1 is set to true). The booking partner
is selected by the travel agency, since the client did not request a particular partner (i.e.
the Them1 field is empty). The travel agency forwards the credentials of the client to the
booking partner, who in response sends a reply to the travel agency. The booking partner
specifies its credentials in the From3 field, which are revealed to the client by the travel
agency.

Having described the short-running mediated interaction, we proceed with bilateral
interaction between the client and a booking partner. Since in the follow-up interaction
the credentials provided by the booking partners during mediated interaction are used,
the conversation is classified as long-running, therefore we apply the Bipartite Conversa-
tion Correlation pattern family. We depict this information by augmenting Figure 241
appropriately.

The reference to the credentials of the booking partner are used by the client in the
follow-up conversation, where the client directly contacts the booking partner without re-

Section 5.2 Configurable framework for service interaction patterns 293

(P2,C2)(P3,)(P1,C1)

(P3,C3)(P2,C2)(P1,C1)(true)

Travel Agency

 (P2,C2) (P1,C1)(,)(true)

 (P2,C2) (P1,C1)(P3,C3)(true)(true)

 (P2,C2)(P1,C1)(P3,C3)

(P1,C1) (P2,) (,) (true)

 (P2,C2) (P1,C1)(P3,)(true)

From1 To1 Them1 Expose1

 From4 To4 Them4

From2 To2 Them2

From3 To3 Them3 Expose3

 Me Cust Prov ExpC

 Me Cust Prov' ExpC

 Me Cust Prov'' ExpC ExpP

(P1,C1) (P3,C3)

 From5 To5

Client
Hotel/
Airline operator/

Car lease

Figure 241: Travel agency: message mediation and message correlation in the context of a
long-running conversation (Step 2)

quiring mediation by the travel agency. In order to facilitate correlation, the client specifies
the credentials of the booking partner in the To5 field, and also includes information about
their own identity in the From5 field.

To obtain the complete picture regarding correlation, for each of the parties it is im-
portant to specify exactly how incoming messages are correlated with outgoing ones, i.e.
either based on a certain property of the message (known as property-based analysis) or
based on matching of party and conversation identifiers (known as key-matching). In this
example, the key-matching approach is used for correlating replies with previously sent
requests. Furthermore, the mechanism for handling exceptional situations arising when an
incoming message cannot be correlated has to be defined, i.e. either the message has to be
discarded or a new conversation needs to be created. In this example, all messages that
arrive from booking partners after the timeout expiration or any unintended messages that
are received are ignored.

Step 3 does not apply, since the conversation considered is not related to subscriptions
for a particular product.

The classification obtained provides insights into the external interactions of the travel
agency with clients and booking partners. In order to complete the description, one has
to describe the control-flow of each of the parties (Step 4). For this, the Workflow Control
Flow patterns described in Chapter 4 can be used. Note that in Section 4.2.2 we already
used the Travel Agency example and illustrated its operational semantics using the CPC
modeling language.

Having illustrated how the design method presented can assist in selecting the pattern
configurations for classifying complex service-interaction scenarios, we now move on to a
detailed analysis of a selected PAIS from the perspective of service interaction.

294 Chapter 5 Service Interaction Patterns

5.3 Tool evaluations

This section presents the evaluation results obtained from a detailed analysis of the service-
interaction patterns across selected PAISs. In particular, we consider Oracle BPEL PM as
an example of a system which next to basic capabilities for modeling of business processes,
also provides BPEL-based support for inter-process communication. Note that we do not
consider CIG modeling languages, since their main goal is to automate support for decision-
making based on medical guidelines, rather than to describe high-level interactions between
business processes.

5.3.1 Evaluation of Oracle BPEL PM

Oracle BPEL PM is based on BPEL (whose concepts have been introduced in Section 4.3.1
on page 215), therefore it enables interactions across multiple organizations whose processes
are deployed as Web services. BPEL is based on XML Schema [50], Simple Object Access
Protocol (SOAP) [45], and Web Services Description Language (WSDL) [60]. In order to
be accessible by other processes, a process that has been defined in the Oracle Process
Designer, must be deployed to Oracle BPEL Server. Once deployed, a BPEL process is
published as a Web service, and can be accessed through a client that uses WSDL interface
definition of the given process and SOAP as a communication protocol. The role of the
client may be performed by a user initiating the deployed process via the BPEL console,
or by another process.

In order to send a message to a process, the client needs to know the custom data types
defined in the XML schema of the target process, the message types and the port types
declared in the WSDL definition of the process. Types of messages, sent and received by
a process, are defined in terms of the data types declared in the associated XML schema.
The portType element includes a supported set of operations, each describing the input
and output messages for each operation. Thus, in order to send a message to a process, in
fact an operation on the specific port type has to be called, and the type of the message
sent must coincide with the type of the input message defined for the given port type.

BPEL defines the concept of a partner link, which represents a dependency between
two services. A partner link specifies roles played by the services, and the port types
supported by each of the roles. In order to represent an interaction of a process with
another service, a valid partner link needs to be defined. In Oracle BPEL PM, in order to
define the partner link, one has to look up the required service in a Universal Description,
Discovery, and Integration (UDDI) browser. UDDI is a specification for maintaining a
standardized Web-based distributed directory containing information about Web services,
i.e. their capabilities, location and requirements, in a universally recognized format [163].

In Oracle BPEL PM, a web service can be invoked as a synchronous or asynchronous
operation. A synchronous service provides an immediate response, and blocks the BPEL
process for the duration of the operation. An asynchronous service does not block and
continues with the BPEL process, and is used when a service may take a long time to
process a client request.

Having introduced the main technologies and concepts, knowledge of which is necessary
for understanding the details of implementing services in Oracle BPEL PM, we proceed
with the pattern evaluations. For each of the pattern families, first, we illustrate how a
selected pattern variant can be implemented in Oracle BPEL PM. For this, we describe
the mapping between the configuration parameters and corresponding settings in the im-

Section 5.3 Tool evaluations 295

plementation presented. Thereafter, we discuss the support for other pattern variants by
analyzing each of the configuration parameters in detail.

Multi-party Multi-message Request-Reply Conversation

Figure 242 shows the notation for the pattern variant where all configuration parameters
are set to the default values. In this pattern variant, a Requestor sends one message to a
Responder, who responds with a reply message. Messages received by the Requestor are
not queued and are consumed immediately (one message is required for the requestor to
start the consumption and utilization of the messages received). The Requestor consumes
a message from the queue only once, and the rest of the messages are discarded.

NoQueue

All

1

All

1

1

Requestor Responder

Figure 242: Notation for the default pattern variant of the Multi-party Multi-message Request-
Reply Conversation pattern family

We implement this example as an asynchronous interaction, because there is the possi-
bility that the responder service will not reply. Each of the processes we consider, i.e. the
requestor and the responder, needs to define the other process as a partnerLink. Since
the requestor process needs to send a message to one responder process, only one part-
ner link needs to be defined. In order to send a message, the requestor process needs an
<invoke> activity, and in order to receive a message, one of the Inbound Message Activities
(IMA), i.e. <receive>, <pick>, and <onEvent> is required. The responder process needs a
<receive> activity to accept the incoming request, and a <reply> activity to return either
the requested information or an error message (i.e. a fault).

The requestor and responder processes, implemented in Oracle BPEL PM, are illus-
trated in Figures 243(a) and (b) respectively. Figure 243(a) shows an asynchronous pro-
cess which, upon an initiation by a client, performs an invocation of a synchronous ser-
vice ResponseProcess presented in Figure 243(b) using the SendRequestToResponder

invoke activity . The request message sent by the requestor process is specified in the
RequestorInputVariable input variable of the invoke activity as shown in the code frag-
ment in Table 5.17. Note that the type of the message sent by one process to another has
to be the same both in the input variable of the invoke activity and in the output variable
of the reply activity. The message types are defined in the WSDL definition for each of the
interacting processes. In this case, the input and output variables are of the String type
(the source code of the XML, WSDL and BPEL files can be found in [157]).

In order to specify the content of the message, prior to the invoke activity the value
of its input variable has to be set. For this, the <assign> activity AssignInputData in
Figure 243(a) is used.

The ResponseProcess process is initiated by a message received from the requestor pro-
cess. The message received via the <receive> activity is processed by an <assign> activity
ProcessRequest in Figure 243(b), and a response is sent back to the requestor process

296 Chapter 5 Service Interaction Patterns

Figure 243: Implementation in Oracle BPEL PM: the default pattern variant of the Multi-party
Multi-message Request-Reply Conversation

Table 5.17: Code fragment of the <invoke> activity

<invoke name="SendRequestToResponder" partnerLink="ResponseProcess"

portType="ns2:ResponseProcess" operation="process"

inputVariable="RequestorInputVariable"

outputVariable="ObtainedOutputVariable"/>

using a replyOutput reply activity. The response message sent by the responder process is
assigned to an output variable ObtainedOutputVariable of the SendRequestToResponder
invoke activity. Note that the <invoke> activity has no attribute for message queueing,
therefore response messages are not queued and are consumed and processed as soon as
they arrive. This maps to consumption and utilization indexes whose value is set to one,
and a sorting of messages configuration parameter whose value is set to NoQueue. Only
messages of a specific type can be consumed by the <invoke> activity, other messages are
ignored. In this implementation, as soon as the corresponding message is received by the
<receive> activity of the requestor process, the flow of control proceeds. This maps to a
consumption frequency configuration parameter whose value is set to one.

We have shown how the default pattern variant can be realized in Oracle BPEL PM. In
order to see which other pattern variants can be realized in Oracle BPEL PM, we analyze
the configuration parameters in detail below.

• Number of sub-requests in a message: to include multiple sub-requests in a message,
a RequestorInputVariable has to be a complex data type (whose definition needs
to be performed in a xsd-file (XML Schema definition) and has to be included in
both the Requestor and Responder process definitions). Since the message provided

Section 5.3 Tool evaluations 297

by the requestor may be of composite type, the responder has to send a separate
reply corresponding to each of the elements contained in the request message.

• Number of Responders involved in a conversation: an invocation activity may call
operations only on a single service represented as a partner link. In order to send the
same message to a set of responding parties, each party must be defined as a separate
PartnerLink, and a distinct <invoke> activity targeting each partner link has to be
added on a separate branch of the <flow> construct.

• Possibility of non-responding parties: when a request-response invocation is per-
formed by the Requester process, the <invoke> activity stays open until the response
is received. This however does not guarantee that the invoked service will respond.
The time interval within which a response should be received by the <invoke> ac-
tivity is fixed in Oracle BPEL PM. If within this time period a response has not
been received, a fault is thrown. To handle the fault, the <invoke> activity can be
included in a scope, and a corresponding event handler can be associated with this
scope.

• Possibility of missing replies: the Responder process after receiving a message from
the Requestor process via an <invoke>,<pick> or <onMessage> construct may send
a reply to all sub-requests in a single message, or to each of them separately. The
selection of sub-requests for which a reply message will be generated can be included
in the process logic (for instance, a <switch> construct could be used).

• Sorting of queued messages: receiving activities in Oracle BPEL PM need at most
one message to proceed. A message is processed as soon as it has been received by
a matching target activity. This corresponds to the pattern variant, where NoQueue

is specified. In order to support scenarios where multiple messages are required in
order to make a decision, the receiving activity has to be included in a loop. During
each iteration, an array can be used to aggregate data from the messages received.
When a sufficient number of messages have been received, the array data can be
examined and the required data can be extracted from it. For realization of FIFO,
LIFO and PRIO ordering of messages, custom functions need to be written for the
use in the copy rules of the <assign> activity. Still, even with such a workaround, not
all scenarios can be realized. For instance, scenarios where non-consumed messages
have to be kept in the queue for future use are not possible.

• Enabling condition: receiving activities in Oracle BPEL PM are triggered immedi-
ately when a matching message is received by a process instance (i.e. a message of
a specific type). This corresponds to an enabling condition where the number of
messages required is set to one, i.e. K=1. If queuing of the messages is realized by
a receiving activity inserted in a loop, the enabling condition examining properties
of the messages received can be specified as part of the loop termination condition.
To realize the enablement of message consumption based on a timeout, a <wait>

construct can be used.
• Consumption index : receiving activities are triggered by a matching message, and

this message is used for processing.
• Utilization index : since receiving activities can only consume one message at a time,

the message consumed is also the one used for processing, i.e. U=1.
• Consumption Frequency: since all messages received are consumed by receiving activ-

ities, eventually no messages are left in the queue. For this reason, no other pattern
variants except the one where the consumption frequency is set to 1 can be realized.

To conclude, the majority of pattern variants belonging to the Multi-party Multi-message

298 Chapter 5 Service Interaction Patterns

Request-Reply Conversation pattern family can be realized in Oracle BPEL PM through
the BPEL process activities and some programmatic extensions. However, since native
support for queues on inbound message activities is missing, pattern variants based on
queueing and consumption of multiple messages are difficult or even impossible to realize.

Renewable Subscription

Figure 244 shows the graphical notation for the Provider-initiated Customer-renewed sub-
scription. We will use this subscription type as an example for realizing the Renewable
Subscription pattern family in Oracle BPEL PM.

ti
m

e

REQp,init(Prod,Nr,SP,RP,Qi)

REQc,renew(Prod)

RPLc,init(Prod,Ri)

RPLp,renew(Prod,Nr,SP,PRr)

RP

SP

Customer Provider

Figure 244: Implementation in Oracle BPEL PM: Provider-initiated Customer-renewed sub-
scription

In this example, two communicating parties, i.e. a customer and a provider, are involved
in a conversation that consists of two phases: subscription initiation and subscription re-
newal. The customer and the provider have to be implemented as two processes, each
declaring the other process as a PartnerLink. Figures 245 and 246 show the implemen-
tation of the provider process, and figures 247 and 248 show the implementation of the
customer process respectively.

The processes presented describe the logic of the subscription renewal, where the
provider sends to the customer an offer for a subscription initiation via an <invoke> activ-
ity. This offer specifies the product being distributed, the subscription period, the period
within which the customer has to respond, and the expected initiation confirmation. The
messages exchanged in this example are based on composite data types, whose definition
must be shared between both the provider and customer processes. The code fragment
in Table 5.18 declares four message types that map directly to the graphical notation in
Figure 244. These are Request, Response, RenewRequest and RenewResponse defined
for the RespondingCustomerProcess customer process to represent an initiation request
issued by the provider, an initiation response issued by the customer, a renewal request
issued by the customer, and a renewal response issued by the provider respectively. These
message types are used in invocation and inbound message activities of both processes.

In general, in a renewable subscription process, both the customer and the provider
of a service can play the role of the subscription initiator. For this, an initiating party
has to execute an <invoke> activity, while the invoked party has to react to the message

Section 5.3 Tool evaluations 299

Table 5.18: Data types used in Provider-initiated Customer-renewed subscription

<schema attributeFormDefault="unqualified" elementFormDefault="qualified"

targetNamespace="http://xmlns.oracle.com/RespondingCustomer"

xmlns="http://www.w3.org/2001/XMLSchema">

<element name="REQpinit">

<complexType>

<sequence>

<element name="Prod">

<simpleType>

<restriction base="string"/>

</simpleType>

</element>

<element name="Nr" type="int"/>

<element name="SP" type="int"/>

<element name="RP" type="int"/>

<element name="Qi">

<simpleType>

<restriction base="string">

<enumeration value="Yes"/>

<enumeration value="No"/>

<enumeration value="YesNo"/>

</restriction>

</simpleType>

</element>

</sequence>

</complexType>

</element>

<element name="RPLcinit">

<complexType>

<sequence>

<element name="Prod" type="string"/>

<element name="R">

<simpleType>

<restriction base="string">

<enumeration value="Yes"/>

<enumeration value="No"/>

</restriction>

</simpleType>

</element>

</sequence>

</complexType>

</element>

<element name="REQcrenew">

<complexType>

received via a <receive> or <pick> activity, where the createInstance attribute is set to
“yes” (the latter is needed to create a new process instance which can be correlated with a
given subscription). In this example, the provider process plays the role of the subscription
initiator.

The top view of the provider process is shown in Figure 245. After a process has been

300 Chapter 5 Service Interaction Patterns

Table 5.19: Data types in Provider-initiated Customer-renewed subscription (Cont.)

<sequence>

<element name="Prod" type="string"/>

</sequence>

</complexType>

</element>

<element name="RPLprenew">

<complexType>

<sequence>

<element name="Prod" type="string"/>

<element name="Nr" type="int"/>

<element name="SP" type="int"/>

<element name="PR">

<simpleType>

<restriction base="string">

<enumeration value="Accept"/>

<enumeration value="Reject"/>

</restriction>

</simpleType>

</element>

</sequence>

</complexType>

</element>

</schema>

initiated, the AssignVariationPoints activity is executed setting each of the configura-
tion parameters in the initiation request to an allowable value. The product identifier,
subscription period, response period, and expected response period are the values specified
by the InvokeInitCustomerInputVariable input variable for the InvokeInitCustomer

invocation activity. This activity is of the synchronous type, which means that the flow
of control in the provider process is blocked until a response from the customer process
arrives.

Figure 246 shows the details of processing a renewal request sent by the customer when
the accepted subscription is about to expire. The <switch> construct is used to model
that either no response is sent by the provider or a response approving or rejecting the
subscription renewal request is sent to the customer. Figure 247 illustrates the top view
of the customer process, that is initialized upon arrival of a subscription offer from the
provider process via the <receiveInput> activity. The assignment activity is used to set
static attributes and configuration parameters of the customer response, i.e. whether the
subscription offer will be accepted, rejected or ignored.

The details of processing the offer received by the customer are shown in Figure 248.
Several switch cases are used to define the content of the initiation response message
depending on the type of the request posted by the Provider. As such, for instance, for
the subscription offer whose confirmation attribute Qi=“No”, no response is required to
accept the subscription, while for Qi=“Yes/No” an explicit response needs to be sent.

Figure 247(b) shows the logic for renewing a subscription at the instigation of the cus-
tomer. The decision of the customer process to renew or not to renew the subscription
is implemented via the <switch> construct with two branches. If the subscription does

Section 5.3 Tool evaluations 301

Figure 245: Provider process: top level

not need to be renewed, an <empty> activity is executed, after which the customer pro-
cess is terminated, otherwise the invocation activity is executed to send a message of the
RenewRequest type to the provider process.

In this example, only one configuration parameter (Qi) needs to be set in order for the
specific pattern variant to be realized. The expected initiation confirmation parameter is
set in the <assign> activity before the subscription initiation offer is sent to the customer
process.

We have shown how different pattern variants for the Provider-initiated Customer-
renewed subscription type can be realized in Oracle BPEL PM. To illustrate what other
pattern configurations can be realized, we discuss each of the configuration parameters
below.

• Subscription renewal type: the other five subscription renewal types can be realized
in the same manner as has been done for the Provider-initiated Customer-renewed
subscription earlier. In these subscription renewal types, one of the processes, either

302 Chapter 5 Service Interaction Patterns

Figure 246: Provider process: processing of the renewal request

a customer or a provider, has to initiate the subscription. For this, an initiating
party has to execute an <invoke> activity, while the invoked party has to react on
the message received via a <receive> or <pick> activity, where the createInstance
attribute is set to “yes” (the latter is needed to create a new process instance which
can be correlated with a given subscription).
The subscription renewal can be done at the initiative of the customer, the provider or
automatically. For automatically renewed subscriptions, in the customer process the
renewal phase must be realized using a <while> construct that contains an activity
for receiving the product subscriptions from the provider process. The termination
condition for this <while> construct determines whether the subscription should be
canceled or not. If a decision to terminate the subscription is taken, a message of the
cancelation type has to be sent to the provider process.
Different message types, i.e. initiation, renewal, and cancelation requests and replies
issued by the customer and the provider, must be defined for each of the subscription
renewal types. As has been discussed, the XML-based data type declarations must
be included in both the provider and the customer processes. The data type has to
consist of the configuration parameters and static attributes, which when instantiated
represent the pattern configuration for the specific pattern variant.

• Expected initiation confirmation: this configuration parameter constitutes a part of
the initiation request issued by the provider process. It is defined as an element with
three possible values: Yes, No, YesNo. For a specific pattern variant, this parameter
needs to be set to one of these values depending on what confirmation approach the

Section 5.3 Tool evaluations 303

(a) top level

(b) renewing the subscription

Figure 247: Customer process

provider process requires. In order to accept a subscription offer whose Qi field is set
to Yes or YesNo the customer process has to send Yes in the response message, or
not to send any response if the Qi field is set to No.

• Expected renewal confirmation: this confirmation parameter (Qr) constitutes a part
of the subscription renewal request issued by the provider process, thus it applies
only to provider-renewed subscriptions. The value of this configuration parameter
can be set to Yes, No, or YesNo in the provider-renewal request. A message of the
provider renewal request type can be defined in the same way as described for the
expected initiation confirmation parameter.
The decision of the customer to accept, reject or ignore the offer can be encoded using
a <switch> construct with three branches. Depending on the type of the confirmation
expected by the provider, either a message accepting or rejecting the offer is returned
or no message is sent at all.

Oracle BPEL PM provides basic primitives in the form of BPEL activities to describe
the behavior of a business process based on interactions with other processes through web

304 Chapter 5 Service Interaction Patterns

Figure 248: Customer process: processing the subscription initiation request by Customer

service interfaces. Since BPEL concentrates on message exchange between processes, it
does not define mechanisms for conversation-oriented scenarios like renewable subscriptions
because they are considered to occur at a higher level of abstraction and they are typically
managed at application level. Nevertheless, in Oracle BPEL PM renewable subscriptions
can be realized by specifying custom message types and defining supporting business logic.

Message Correlation

An example of the Message Correlation pattern variant where all configuration parameters
are set to the default value is presented in Figure 249. In this example, a customer sends
an order request to the provider, where it specifies its address (Ps), the order id (Cs) and
the address of the customer Pr. The provider receives the order request and records the id
of the order request received for use in future correlations. We will use this example for a
sample implementation in Oracle BPEL PM.

(Pr,Cr)(Ps,)

(Pr,Cr)(Ps,Cs)

(Pr,)(Ps,Cs)

Figure 249: Default notation: Message Correlation

Section 5.3 Tool evaluations 305

Table 5.20: Endpoint reference definition format

<wsa:EndpointReference>

<wsa:Address>xs:anyURI</wsa:Address>

<wsa:ReferenceProperties>... </wsa:ReferenceProperties> ?

<wsa:ReferenceParameters>... </wsa:ReferenceParameters> ?

<wsa:PortType>xs:QName</wsa:PortType> ?

<wsa:ServiceName PortName="xs:NCName"?>xs:QName</wsa:ServiceName> ?

<wsp:Policy> ... </wsp:Policy>*

</wsa:EndpointReference>

Table 5.21: Message header definition format

<wsa:MessageID> xs:anyURI </wsa:MessageID>

<wsa:RelatesTo RelationshipType="..."?>xs:anyURI</wsa:RelatesTo>

<wsa:To>xs:anyURI</wsa:To>

<wsa:Action>xs:anyURI</wsa:Action>

<wsa:From>endpoint-reference</wsa:From>

<wsa:ReplyTo>endpoint-reference</wsa:ReplyTo>

<wsa:FaultTo>endpoint-reference</wsa:FaultTo>

There are two approaches for realizing message correlation in Oracle BPEL PM. Either
the facilities of WS-Addressing [216], BPEL correlation sets or their combination can be
used for this purpose. Oracle BPEL PM uses WS-Addressing to automatically set location
and correlation information associated with a client role. WS-Addressing defines two con-
cepts: endpoint references and message information headers. Endpoint references convey
information providing addresses for individual messages sent to and from Web services.
The endpoint reference format shown in Table 5.20 includes the <Address> for specify-
ing the address of the message sender or the message receiver. Furthermore, it includes
<ReferenceProperties> or <ReferenceParameters> fields suitable for including the con-
versation identifier used by the party for correlation.

The message information headers convey message attributes including the addresses
of source and destination endpoints, and the message identity. The message information
header format shown in Table 5.3.1 specifies the source address via the From field and the
destination address via the To field. The address of the message destination must be ex-
plicitly specified, while the source address may be omitted (by doing so the message sender
may stay anonymous). These requirements directly map to the From and To configuration
parameters of the Message Correlation pattern family.

Endpoint references must contain an address identifying an endpoint (i.e. this informa-
tion may not be left out). Reference properties and reference parameters specify individual
properties and parameters required to effectively interact with the endpoint. This informa-
tion is optional and may be omitted. When address and reference properties supplied in
a message are compared with the actual address and reference properties of the endpoint,
they are checked for equivalence. Not only the addresses of endpoints must be equivalent,
but also the endpoints must contain the same number of individual properties, and for each
reference property there must exist an equivalent reference property in the other endpoint.
If the sender address appears to be anonymous, other information specified in the message
information header about the message id or about the relation of this message to another

306 Chapter 5 Service Interaction Patterns

Table 5.22: Order type

<element name="order" type="tns:orderType"/>

<complexType name="orderType">

<sequence>

<element name="orderId" type="string"/>

</sequence>

</complexType>

Table 5.23: Correlation set “Order”

<correlationSets>

<correlationSet name="Order" properties="tns:orderId"/>

</correlationSets>

message can be used to identify the destination where reply messages can be sent to. This
combines both key-matching and property-based analysis correlation methods.

In addition to the use of WS-Addressing, Oracle BPEL PM allows the specification of
correlation sets, i.e. a set of properties, that are used amongst web-services to uniquely
identify a conversation. To use correlation sets, custom data types must be defined in the
XML Schema definition files of the communicating processes. Table 5.22 shows an example
declaration of the order type that will be used to uniquely identify orders by their orderID
identifiers.

The actual definition of correlation sets is done in the BPEL-source of both sender and
receiver processes as shown in Table 5.23:

A receiving activity of the receiver processes a message, whose property orderID

matches with the property specified in the correlation set (as shown in Figure 250).

(a) General settings (b) Correlation settings

Figure 250: Correlation settings of the <Receive> activity

When a message with a particular correlation set is sent to a process for the first time,
the correlation set has to be initialized. For this, its initiate attribute is set to yes as
shown in Table 5.24.

Section 5.3 Tool evaluations 307

Table 5.24: Usage of correlation sets in the <receive> activity

<receive name="receiveInput"

partnerLink="client"

portType="tns:Customer"

operation="initiate"

variable="input"

createInstance="yes">

<correlations>

<correlation set="Order" initiate="yes"/>

</correlations>

</receive>

We have shown how a Message Correlation pattern variant can be implemented in
Oracle BPEL PM. In this implementation, both the facilities of WS-Addressing and BPEL
correlation have been used. For each of the configuration parameters listed below we
describe how other pattern variants can be realized in Oracle BPEL PM.

• Message Sender field : if BPEL correlation sets are used for correlation, then instead
of the party identifier and the conversation identifier representing the credentials of
the message sender, a set of properties shared by all messages in the correlated group
of operations within a process instance, known as a correlation set, has to be specified.

<correlationSets>?

<correlationSet name="NCName" properties="QName-list">+

</correlationSets>

Uniquely named correlation sets together with a partner link represent the credentials
of the message sender.

If WS-Addressing is used for correlation purposes, then information about the mes-
sage sender is specified in the From field of the endpoint reference.

• Message Receiver field : in Oracle BPEL PM, the credentials of the message receiver
are not included in the message explicitly, i.e. they are transparently added via WS-
Addressing to the To field of the endpoint reference. To specify the message sender
based on BPEL-capabilities, a PartnerLink representing the party is defined. Thus
the destination address can be specified in the process definition or it may be set
dynamically, however it is not possible to send a message to an arbitrary party. In
order to specify the conversation identifier used by the message receiver, a correla-
tion set initiated by the message receiver must have been included in the previous
interaction.

• Credentials of the message sender before message correlation: in BPEL terms, parties
with whom the message receiver has been or will be involved in a conversation, have
to be defined as partner links. Since a single dynamic partner link can be used by
different parties, messages sent by these parties have to be accompanied by uniquely
named correlation sets in order for these parties to be distinguished. Note that it is
possible that initially the message receiver does not have any knowledge about the
correlation set used by the message sender.

• Credentials of the message sender after message correlation: From the BPEL-
perspective, if a message received by a party contains a correlation set that has not

308 Chapter 5 Service Interaction Patterns

been initialized yet, the message receiver has to initiate it. After this, the initiated
correlation set can be used in the follow-up interactions. If at the moment of message
receival, the correlation set has been already initiated, no information is gained.

From the WS-Addressing perspective, the information about the message sender may
be retrieved from the Address, ReferenceProperties and ReferenceParameters

field of the From endpoint reference.

The combination of WS-Addressing and correlation sets allows for specification of the
majority of message correlation pattern variants except the ones where the identity of the
target process is underspecified by the sender process.

Message Mediation

In this subsection, we illustrate how a Mediated Introduction pattern variant can be im-
plemented in Oracle BPEL PM. We omit the implementation of the Mediated Interaction
pattern variant, since the realization of the default pattern variant is very similar to the
example of the Bipartite Conversation Correlation presented in the next section with the
only difference being that instead of two, three parties are involved in the conversation,
and for correlation of messages two kinds of correlation sets are used: one shared between
the customer, mediator, and provider, and the other shared only between the mediator and
the provider. The concept of correlation sets has been described in the previous section.

Figure 251 illustrates the graphical notation of the Message Introduction pattern variant
where all pattern attributes are set to their default values. In this pattern variant, the
customer sends a request to the mediator which in turn has to delegate it to the provider.
The customer does not specify credentials for the required provider (the Them1 field is
empty), therefore the mediator is responsible for its selection. The customer expects a
response to be returned. In order for the provider to contact the customer directly, the
mediator passes a reference to the credentials of the customer in the Them2 field. When
sending the response message to the customer, the provider specifies all information about
its credentials in the From5 field, and also a reference to the mediator in the Them5 field.

(P1,C1)(P2,)(,)

(P2,C2)(P3,)(P1,C1)

(P3,C3)(P1,C1)(P2,C2)

 (P2,C2) (P1,C1) (,)

From1 To1 Them1

 Me Cust Prov

From2 To2 Them2

From5 To5 Them5

Figure 251: Default notation: Message Introduction

In the default Mediated Introduction pattern variant, a customer process named FlowA

sends a request to the mediator process FlowB. The mediator process forwards the request
to the provider process FlowC, who based on the information provided by the mediator
dynamically, binds with the customer process and sends the response message directly
to it (note that the customer process does not know the identity of the provider process

Section 5.3 Tool evaluations 309

initially). The customer, mediator and provider processes are shown in figures 252, 253
and 254 respectively.

Figure 252: Customer process: FlowA

To correlate message exchange between these three processes, message invocation and
receival activities have to be associated with a shared correlation set. In this example, the
order identifier is used as a property for correlation set Order described in tables 5.25 and
5.26.

Table 5.25: Order identifier in a correlation set

<correlationSets>

<correlationSet name="Order" properties="tns:orderId"/>

</correlationSets>

After the customer process has sent a request, it awaits an asynchronous callback.
In this example, the callback location and correlation id is transparently handled using
WS-Addressing. In particular, the WSDL-file of the deployed FlowA process contains
a field specifying that the ReplyTo field of the message information header is used to
identify the address to which the response message should be sent. This corresponds to

310 Chapter 5 Service Interaction Patterns

Figure 253: Mediator process: FlowB

Figure 254: Provider process: FlowC

the configuration parameter Them2. Furthermore, the address location is set dynamically
by the caller (cf. Table 5.27).

To support all Message Mediation pattern variants, it should be possible to specify in
a message the credentials of a third-party process, the message receiver should be able to
dispatch information about the credentials of the third party and dynamically bind to it.
These requirements are met by WS-Addressing via the concepts of endpoints and message

Section 5.3 Tool evaluations 311

Table 5.26: Definition of order identifier

<complexType name="orderType">

<sequence>

<element name="orderId" type="string"/>

</sequence>

</complexType>

<bpws:property name="orderId" type="xsd:string"/>

<bpws:propertyAlias propertyName="tns:orderId"

messageType="tns:ABCARoutingFlowRequestMessage" part="payload"

query="/tns:order/tns:orderId"/>

Table 5.27: Dynamic address definition via WS-Addressing

<mesage name = "WSAReplyToHeader">

<part name = "ReplyTo" element = "wsa:ReplyTo"/>

</message>

<service name = "FlowACallbackService">

<port name = "FlowACallbackPort" binding="tns:FlowACallbackBinding">

<soap:address location = "http://set.by.caller" />

</port>

</service>

information headers, whose format is described in tables 5.20 and 5.27 respectively.

Message information headers convey information about the source and destination end-
points of a given message in the From and To fields, and a ReplyTo address that can be
used as a destination address for follow-up responses. The only mandatory field in the
message information header is the address of the message destination To. This means that
the message sender can stay anonymous by omitting detailed specification of the From field,
while at the same time it can provide additional information in the ReplyTo field, which
will be used as an address for sending response messages. The RelatesTo field may contain
information specifying how the given message relates to other messages. Besides that, the
MessageID field may contain a unique message identifier that can be used for correlation
purposes. In the example presented, the ReplyTo field of the request sent by the mediator
to the provider contains the credentials of the customer process (the Them2 field in Fig-
ure 251). The provider uses this information to specify in the To5 field the address of the
party to whom the response message will be sent, i.e. the address of the customer.

We have shown how the Mediated Introduction pattern variant can be implemented in
Oracle BPEL PM. Since this implementation uses both the facilities of WS-Addressing and
BPEL, it is interesting to see what other pattern variants can be implemented in Oracle
BPEL PM. For this, we analyze each of the configuration parameters below:

• Customer request for specific provider : in order to implement pattern variants, where
the customer specifies the credentials of the provider, the partner link of the provider
has to be set dynamically.

In order to send a request to the provider after the mediator has been triggered by

312 Chapter 5 Service Interaction Patterns

a request received from the customer, the mediator should be able to dynamically
bind to the reference provided. In WS-BPEL, this can be done via assignment of
end-point references using the <Assign> activity. The reference provided is copied
from the <from> field to the <to> field:

<from partnerLink="NCName" endpointReference="myRole|partnerRole"/>

<to partnerLink="NCName"/>

Note that the type for values specified in the from/to-assignment clause is:

<sref:service-ref>.
One could underspecify the PartnerLink by setting it to a generic service, and assign
its value during run-time using the endpoint reference of WS-Addressing. For this,
a variable of the EndpointReference type needs to be declared:

<variable name = "partyReference" element="wsa:EndpointReference">

The value of this variable has to be assigned to the dynamically-configured partner
link.

• Information about the message sender in the request from mediator to provider : to
receive a response message back, the mediator has to specify a correlation set that
is shared with the provider, otherwise the correlation set initiated by the customer
service has to be passed.

• Information about the message sender in the response from provider to customer :
the identity of the provider may be enclosed in the new correlation set (note that
correlation sets have to be shared) or via end-point references as has been described
earlier. An endpoint reference represents the data required to describe a partner
service endpoint as a service reference container <sref:service-ref>. This reference
can be used to dynamically determine a partner service that is not known at the
moment of process instantiation.

• Information about mediator exposed by provider to customer : in contrast to WS-
Addressing where the RelatesTo field is used to pass the reference to the related
process, in WS-BPEL this can only be done in the content of the message. The
message in this case has to be based on the data type defined in the XML-schema of
the corresponding process.

To realize all Message Introduction and Message Interaction pattern variants, processes
involved in a bilateral interaction should be able to provide references to other parties as
well as to use the references provided for dynamic binding. Through the use of WS-
Addressing and BPEL, Oracle BPEL PM is able to realize the majority of pattern variants
(note that the pattern variants where some of the information related to the message
receiver credentials is underspecified cannot be realized due to the limitations discussed in
the Section 5.3.1).

Bipartite Conversation Correlation

Figure 255 presents the graphical notation of Bipartite Conversation Correlation pattern
variant where all configuration parameters are set to their default values. In this pattern
variant, the requestor and the responder retrieve all information from the message received,
and specify complete information about the identity of the message sender and the message
receiver in messages exchanged. In the follow-up interaction, the requestor uses information

Section 5.3 Tool evaluations 313

provided by the responder as a token for correlation. We use this example as a basis for
illustrating its implementation in Oracle BPEL PM.

P1 P2

(P2,)(P1,C1)

Requestor Responder

(P1,C1)

(P2,C2)

(P2,C2)

(P1,C1)

Figure 255: Default notation: Bipartite Conversation Correlation

Two processes, Buyer and Seller, one requesting a service and another offering it,
are directly related and thus must be declared as partner links. To illustrate correlation
information changing in the course of a conversation between these processes let us consider
their implementations shown in Figures 256 and 257 respectively.

The Buyer sends a request to the Seller and specifies the correlation set that has to
be used in the response message. Note that the correlation set has been initialized before
the invocation of the Seller process, therefore its initiate attribute is set to no. Further-
more, the pattern attribute is set to out indicating that the correlation set applies to the
outbound message as shown in Table 5.28.

Table 5.28: Correlation set specified by the Buyer process in the initial request

<invoke partnerLink="Seller" portType="seller:Seller"

inputVariable="input"

name="SendRequest" operation="AsyncPurchase">

<correlations>

<correlation set="PurchaseOrder" initiate="no" pattern="out"/>

</correlations>

</invoke>

In order to be used in the process, this correlation set must be declared in the BPEL-
specification for the process. The correlation sets shown in tables 5.28-5.30 are the ones
used by the Buyer and Seller processes during the conversation. Each correlation set
contains two properties, representing the identity of the party and the order identifier.

Table 5.29: Correlation set specified by the Buyer process in the initial request

<correlationSets>

<correlationSet name="PurchaseOrder"

properties="cor:customerID cor:orderNumber"/>

<correlationSet name="Invoice" properties="cor:vendorID

cor:invoiceNumber"/>

</correlationSets>

314 Chapter 5 Service Interaction Patterns

Figure 256: Requestor process: Buyer

The Seller process, receives an initiation request from the Buyer process, and uses
the same correlation set PurchaseOrder for correlation. Note that this message not only
creates a new process instance, but also initiates the correlation set within this process
instance as shown in Table 5.30:

After processing an initiation request, the Seller process invokes the Buyer process
and, in addition to the PurchaseOrder correlation set required by the Buyer, also specifies
its own correlation set Invoice that must be used in the follow-up responses (cf. the code
fragment in Table 5.31).

The Buyer process receives the initiation response from the Seller, and initializes the
Invoice correlation set. Since the Invoice correlation set has not been used by the Buyer

process in the previous interaction, it must be initiated as shown in Table 5.32.

The follow-up request sent by the Buyer process to the Seller process specifies both

Section 5.3 Tool evaluations 315

Figure 257: Responder process: Seller

Table 5.30: Correlation set used by the Seller process for processing the initiation request

<receive partnerLink="Buyer" portType="seller:Seller"

operation="AsyncPurchase" variable="input" createInstance="yes"

name="ReceiveInitRequest">

<correlations>

<correlation set="PurchaseOrder" initiate="yes"/>

</correlations>

</receive>

316 Chapter 5 Service Interaction Patterns

Table 5.31: Correlation sets specified by the Seller process in the initiation response

<invoke partnerLink="Buyer" portType="seller:Buyer"

operation="AsyncPurchaseResponse" inputVariable="output"

name="SendInitResponse">

<correlations>

<correlation set="PurchaseOrder" initiate="no" pattern="out"/>

<correlation set="Invoice" initiate="yes" pattern="out"/>

</correlations>

</invoke>

Table 5.32: Correlation sets used by the Buyer process for processing of the initiation response

<receive partnerLink="Seller" portType="seller:Buyer"

operation="AsyncPurchaseResponse" variable="output"

createInstance="no" name="ReceiveInitResponse">

<correlations>

<correlation set="PurchaseOrder" initiate="no"/>

<correlation set="Invoice" initiate="yes"/>

</correlations>

</receive>

correlation sets as shown in Table 5.33.

Table 5.33: Correlation sets used by the Buyer process in the follow-up request

<invoke name="FollowUpRequest" partnerLink="Seller"

portType="seller:Seller"

operation="AsyncNextPurchase" inputVariable="nextinput">

<correlations>

<correlation initiate="no" set="PurchaseOrder"/>

<correlation initiate="no" set="Invoice"/>

</correlations>

</invoke>

Realizing pattern variants, where only part of the correlation information required
by the message receiver is specified by the message sender is possible by excluding the
corresponding correlation set from the correlation sets included for the invocation activity.
To deal with such a situation, the receiver must have a separate inbound message activity
whose correlation sets matches with the one specified by the message sender. In general,
such messages would not be processed, thus the corresponding conversation would not be
identified.

Using the support for message correlation via WS-Addressing, where message infor-
mation headers contain information both about the message sender in the From field and
the message receiver in the To field, it should be possible to realize pattern variants where
the message sender underspecifies its credentials. If in general, the absence of the message
sender credentials makes it impossible to deliver the response message to the right destina-
tion, in WS-Addressing message information headers may contain additional information
about a message id or relationship of this message to another message. By analyzing this

Section 5.4 Related work 317

information, the corresponding process instance to which the response message has to be
sent can be identified.

In order to define which other pattern variants can be realized in Oracle BPEL PM, we
analyze each of the configuration parameters in more detail below:

• Responder credentials in the initial response: All correlation sets specified by the
requestor process in a message initiating a conversation with the responder process
must be initiated, i.e. the initiate attribute of every correlation set must be set to
“yes”. Once initiated by the requestor, this correlation set should be used by the
responder process in the follow-up responses. However, in addition to the correlation
set provided by the requestor, the responder may initiate another correlation set that
should be used in follow-up messages issued by the requestor. This new correlation
set represents the provider credentials. However in order to correlate a message in
which this correlation set is specified, the receiver process must have a corresponding
inbound message activity sharing the same correlation set.

• Responder credentials in the follow-up request : Depending on the context of the con-
versation, the requestor may choose to use its own correlation set or the one provided
by the responder. In order for the follow-up request issued by the requestor to be suc-
cessfully processed, the responder process must have a pending activity whose correla-
tion sets match, otherwise such a message will raise the bpel:correlationViolation
fault. In general, the correlation set specified by the responder may be combined with
a new or already existing correlation set initiated by the requestor.

• Requestor credentials in the follow-up request : The correlation set specified by
the responder process in the initiation response must be used by the requestor
in the follow-up request. It may be omitted only if the responder has a pend-
ing activity whose correlation sets match, otherwise such a message will raise the
bpel:correlationViolation fault.

The combination of WS-Addressing and correlation sets of BPEL allow all pattern vari-
ants of the Bipartite Conversation Correlation pattern family to be implemented in Oracle
BPEL PM. However, if one is restricted to native BPEL support, then the pattern variants
where a party uses only a subset of credentials provided by another party as correlation
information specified in the follow-up messages or where a party specifies additional infor-
mation in addition to that requested by the other party would not be possible to realize
in Oracle BPEL PM due to the limitations imposed by correlation sets (as described in
Section 5.3.1).

5.4 Related work

The service interaction patterns documented by Barros et al. [37,38] describe a collection of
scenarios, where a number of parties, each with its own internal processes, need to interact
with one another according to a set of pre-agreed rules. These scenarios are consolidated
into 13 patterns and classified based on the maximal number of parties involved in an ex-
change, the maximum number of exchanges between two parties involved in an interaction
and whether the receiver of a response was necessarily the same as the sender of a request.
Based on this classification, four groups were identified: (1) single transmission bilateral
interactions (i.e. one-way and round-trip bilateral interactions where a party sends and/or
receives a message to/from another party); (2) single transmission multilateral non-routed
interactions (i.e. a party sends/receives multiple messages to/from different parties); (3)

318 Chapter 5 Service Interaction Patterns

multi transmission bilateral interaction (i.e. a party sends/receives more than one message
to/from the same party); and (4) routed interactions.

Since the service interaction patterns [37] lacked formal semantics, their formalization
by means of the π-calculus has been proposed in [73]. The majority of these patterns
can be interpreted in various ways. Decker and Puhlmann formalize the patterns based
on the pattern descriptions and make some additional assumptions about the value of
various variable pattern attributes, however they do not specify the whole range of values
the selected pattern attributes may take. Thus, they show the possibility of formalizing
certain aspects of service interaction, but in fact do not make the definition of patterns less
ambiguous. For example, the Racing Incoming Messages pattern specifies: A party expects
to receive one among a set of messages. These messages may be structurally different (i.e.
different types) and may come from different categories of partners. The way a message
is processed depends on its type and/or the category of partner from which it comes. This
pattern does not specify what happens if the party receives multiple messages at once, i.e.
it is not clear how many of the received messages will be consumed and whether the rest
of the messages will be discarded.

In [235], Zaha et al. formulated requirements for a service interaction modeling language,
in addition to the requirements covered by Barros et al. in [38]. The authors used these
requirements for modeling behavioral dependencies between service interactions.

In [36], Barros et al. introduced five correlation mechanisms, five conversation patterns,
and eight process instance to conversation relationships that were subsequently used for
evaluation of the WS-addressing and BPEL standards. However, the framework presented
by the authors does not cover relationships between different process instances. In this
chapter, we addressed this issue by analyzing correlation at both a higher and a lower level
of abstraction.

Aldred et al. [24] performed a detailed analysis of the notion of coupling/decoupling
in communication middleware using three dimensions of decoupling, i.e. synchronization,
time and space, and documented coupling integration patterns .

In [64], Cooney et al. proposed a programming language for service interaction, which
has been used to describe the implementations of two service interaction patterns, i.e.
One-to-Many Send-Receive and Contingent Requests [37].

This work is also related to contracting workflows and the protocol patterns of van
Dijk [76], who proposed a number of protocol patterns for the negotiation phase of a
transaction.

Barros et al. [39] have proposed a compositional framework for service interaction pat-
terns and interaction flows. They provided high-level models for eight service interaction
scenarios using ASM, illustrating the need to distinguish between different interpretations
of the patterns.

The work of Hohpe and Woolf on Enterprise Application Integration [125] covers various
messaging aspects that may be encountered during application integration. Some of the
enterprise application integration patterns relate to the problems addressed in this chapter,
however they do not address all aspects of these problems explicitly and lack a formal
semantics. Based on implicit assumptions, the related enterprise integration patterns can
be mapped to pattern variants from one or more pattern families we have presented. An
example of entreprise integration patterns, Scatter-Gather, concerning the overall message
flow when a message must be sent to multiple recipients, each of whom may send a reply,
is presented in Figure 258(a).

This notation specifies, that a message (e.g., a quote request) is broadcast to multiple

Section 5.5 Summary 319

All

FIFO

1

3

?

?

1

a) b)

Figure 258: Mapping of Scatter-Gather pattern to the notation of the Multi-party Multi-message
Request-Reply Conversation pattern family

recipients and the responses are aggregated into a single message. Although many issues
related to in-time consumption of messages, selection of the “best quote” from of them, etc.
are raised in the description of the Scatter-Gather pattern, not all of them are explicitly
addressed. This pattern with a set of implicit assumptions, can be mapped to one of
the pattern variants of the Multi-party Multi-message Request-Reply Conversation pattern
family, whose configuration is presented in Figure 258(b). This configuration reflects the
broadcast of a single message to a list of three parties, responses from whom are not
guaranteed. Furthermore, it specifies how messages received are to be sorted (based on
order of their arrival), what is the enabling condition (in this case, the timeout is used
to avoid deadlock if no responses are received) for consumption, how many messages are
consumed (i.e. C = All), and how many of them are utilized (U = 1).

5.5 Summary

This chapter has identified a series of the requirements encountered in service interaction
and described them in the form of service interaction patterns. It provides more compre-
hensive coverage of various aspects of interactions of bilateral and multilateral nature than
previous work [37, 38] where 13 basic imprecisely-specified patterns were identified.

Due to the large number of patterns identified (i.e. in total 1602 new patterns), an
approach to describing the patterns in the form of a configurable framework has been
adopted. For this, two new concepts have been introduced: a pattern variant and a pattern
family. Although these concepts have not been explicitly employed in Chapters 3 and 4, we
can define the following correspondence. Patterns which represent specializations of a more
generic pattern in terms of the manner in which they address a certain problem, can be
considered as pattern variants. For instance, the FIFO Queue (cf. page 78), LIFO Queue
(cf. page 79) and Priority Queue (cf. page 81) CPN patterns can be considered as pattern
variants of a more generic pattern Queue (cf. page 75). The Blocking Discriminator WCF-
pattern and the Canceling Discriminator WCF-pattern can be considered as variants of
the more generic discriminator type. In both catalogs of CPN patterns and control-flow
patterns, patterns addressing (structurally) similar problems and solutions are combined
into groups which can be associated with pattern families. Although the pattern groups
consist of similar patterns, they do not have a single pattern core from which the different
pattern configurations can be derived.

320 Chapter 5 Service Interaction Patterns

The focus of this chapter is on service interaction. To remove any potential ambiguity
and possibility for misinterpretation, a precise definition of pattern operation using the
formalism of CPNs has been provided. To visualize different pattern variants, an intuitive
graphical notation corresponding to a pattern configuration has been introduced. A pattern
configuration is a set of pattern attributes that are set to specific values in order for a
specific pattern variant to be obtained. Since the number of configuration parameters is
quite large and varies for each pattern family, the graphical notation provides a convenient
way to depict and distinguish distinct pattern variants.

For each of the pattern families we analyzed the meaningful pattern configurations, and
calculated the total number of pattern variants per family. As such, 1072 pattern variants
were identified as belonging to the Multi-party Multi-message Request-Reply Conversation
pattern family, 20 pattern variants belong to the Renewable Subscription pattern family,
100 pattern variants belong to the Message Correlation pattern family, 392 pattern variants
belong to the Message Mediation pattern family, and 18 pattern variants belong to the
Bipartite Conversation Correlation pattern family.

The large number of pattern variants identified demonstrates the heterogenous nature of
requirements in service interaction. The service interaction patterns identified are beneficial
for:

• Reusing accumulated knowledge;

• Precise, light-weight description of SOA scenarios;

• Benchmarking SOA offerings; and

• Common SOA vocabulary.

We describe each of these facets in detail below.

Given the popularity of SOA and lack of understanding requirements associated with
service interaction, the service interaction patterns facilitate the understanding of these
requirements by explicitly delineating problems that need to be solved, and describing
possible solutions to them. As a consequence of investigating various approaches in the
service-oriented domain, we identified a comprehensive set of patterns, and systematically
documented them in the form of a configurable framework in order to facilitate the reuse
of accumulated knowledge in the field.

Different aspects of complex service-interaction scenarios can be characterized by means
of applying corresponding pattern families. Given a set of pattern families, it is unclear
how to perform classification of a service-interaction under consideration, which pattern
families are relevant and in which order they should be applied. Therefore, in order to
assist users in classifying service-interaction scenarios, we have defined a pattern-based
service interaction design method. Depending on the goal of the classification and the
degree of details required, this method defines what pattern families have to be used for
classification, how they can be configured, and which pattern families can be combined.
As a consequence, a precise, light-weight description of SOA scenarios is achieved.

In addition, benchmarking of SOA offerings can be performed in order to identify the
support for different aspects of service interaction. For this, configuration parameters can
be mapped to features offered by the systems, and support for realizing different values for
each of the configuration parameters can be identified. Note that original patterns have
been successfully used in pattern-based evaluations [38] and influenced the development of
languages and standards such as Let’s Dance [235], [236], [74] and GPSL [64].

Considering that standardization in the web-services domain is a central topic at the
moment, the insight into the requirements of services interaction provided in this chapter

Section 5.5 Summary 321

can be used as a source of suggestions for improving already existing standards in the field.
For instance, the BPEL standard does not have concepts able to capture the meaning of
all configuration parameters or these concepts are not explicitly defined. By definition,
in BPEL all inbound message activities are executed as soon as a suitable message ar-
rives. Selection of such a behavior results in quite limited capabilities to support different
variants of message handling. Since BPEL intentionally does not specify a mechanism for
handling of the race conditions, systems supporting BPEL-processes may employ different
implementations and thus support distinct pattern variants. In this case, the configuration
parameters can be used as an instrument for selection of an appropriate system. When se-
lecting an appropriate middleware technology, in addition to identifying the required service
interaction scenarios, an analysis of the (de-)coupling requirements can also be performed
based on the framework identified in [23]. This framework describes three dimensions of
decoupling, i.e. space, time, and synchronization, which characterize interaction by defin-
ing whether the sender uses a direct address to send the message to, whether the endpoint
is concurrently operational, and whether the sender’s thread of control is blocked after a
message has been sent respectively.

The pattern language also serves as a source of reference for design and development of
SOA-based tools. The pattern configurations of each pattern family can be included in the
user interface of a particular tool to simplify the specification of all relevant attributes of
service interactions. Besides, the concepts in the configurable framework precisely define
commonly used SOA terms and approaches, thus providing the basis for a common SOA
vocabulary. Usage of this vocabulary helps to improve communication of problems and
solutions in the domain. This becomes evident from earlier experiences in the control-flow
domain, where pattern names are increasingly being used for referring to common process
modeling constructs.

The ability to interact with external services is only one of many important aspects
contemporary PAISs are required to address. Organizations seeking for success require
their processes to be flexible, i.e. it should be possible to include foreseen and unforeseen
behavior in the process definition, thus allowing the process to adapt to requirements
imposed by quickly changing environment. The next chapter is devoted to investigation of
requirements of PAISs from the process flexibility perspective.

322 Chapter 5 Service Interaction Patterns

Chapter 6

Process Flexibility Patterns

In Chapter 4, we described fundamental constructs for describing the structure of a process
model in the form of control-flow patterns. The manner in which desired and/or possible
behavior is captured in the process definition, greatly influences the flexibility given to a
user in selecting a suitable execution path during process execution. As a consequence of
changes in the operating environment, the execution of a process may need to be steered in
the right direction in order to achieve the desired execution order of tasks. This becomes
possible when multiple alternative paths have been foreseen during design-time. In situ-
ations, where the required execution path cannot be found, the need to deviate from the
prescribed execution path may arise, necessitating changes to be made to process definition
on the spot. In this chapter, we focus on the aspect of process flexibility. We distinguish
different types of process flexibility and present them in the form of a taxonomy. For
each of the flexibility types identified, we systematically analyze the requirements for pro-
cess flexibility and describe them in a language-independent and precise manner using a
pattern-based approach. We then utilize the process flexibility patterns identified in order
to evaluate the functionality of selected PAISs.

This chapter is organized as follows. Section 6.1 presents a taxonomy for process flexibility.
In Section 6.2, we describe 34 process flexibility patterns that have been identified. In
Section 6.3, we use these patterns to evaluate the support for process flexibility in a selection
of contemporary PAISs. In Section 6.4, we discuss related work. Finally, Section 6.5
concludes this chapter.

6.1 Taxonomy of process flexibility

In this section, we present a comprehensive description of five distinct approaches that can
be taken to facilitate flexibility within a process. This is a variant of our earlier taxonomy
presented in [200]. Figure 259 shows five types of flexibility: flexibility by design, flexibility
by deviation, flexibility by underspecification, and two types of flexibility by change, i.e.
flexibility by momentary change and flexibility by permanent change. The flexibility types
identified represent orthogonal dimensions and are intended to operate independently of
each other. Note however that it mainly concentrates on the control-flow perspective, and
does not address issues related to other perspectives such as data handling and resource
assignment.

324 Chapter 6 Process Flexibility Patterns

The taxonomy is applicable to both classical (imperative) and constraint-based (declar-
ative) process specifications1. An imperative approach focuses on the precise definition of
how a given set of tasks has to be performed (i.e. the task order is explicitly defined). In
imperative languages, constraints on the execution order are typically described either via
links (or connectors) between tasks and/or data conditions associated with them. Thus
for imperative languages, the process description generally takes the form of a directed
graph. Although there are notable exceptions such as BPEL [164]. A declarative approach
focuses on what should be done instead of how it should be done. It uses constraints to
restrict possible task execution options. By default, all execution paths are allowed except
executions that violate the constraints. In declarative languages, constraints are defined
as relationships between tasks. Mandatory constraints have to be strictly enforced, while
optional constraints can be violated, if needed. Thus for declarative languages, the process
description consists of a set of tasks and the set of relationships between them.

Figure 259: Flexibility types

Each of the five flexibility types aim at improving the ability of business processes to re-
spond to changes in their operating environment without necessitating a complete redesign
of the underlying process definition, however they differ in the timing and manner in which
they are applied. Figure 260 shows how the flexibility types identified can be classified
in terms of the moment at which the need for a specific flexibility type is recognized, the
moment at which steps for facilitating the anticipated flexibility needs are taken, and their
relationship to actual process execution. The scope of impact associated with each of the
flexibility types is defined as follows. When a decision related to the realization of a specific
flexibility type affects only a particular process instance, we map it at the process instance
level; when all existing process instances are affected, we map the flexibility type at the
type level.

Figure 260: Recognition and realization of flexibility types: moment and scope

1We concentrated on workflow offerings employing the imperative approach when evaluating the support
for WCF and service interaction patterns in chapters 4 and 5. In this chapter, we also concentrate on
systems employing the declarative approach as they provide alternative means for process flexibility.

Section 6.1 Taxonomy of process flexibility 325

As Figure 260 shows, the need for flexibility by design is recognized at the type level
at design-time. All decisions related to the incorporation of this type of flexibility into
a process definition are both taken and realized before process initiation. Thus there
is a direct relationship between the flexibility incorporated into a process definition at
design-time and the way it influences process execution. Flexibility by underspecification
is recognized at design-time when a process definition is being created, however its complete
realization is postponed until run-time. For this flexibility type, the desired behavior is
set for a specific process instance, during the course of its execution. Note that different
instances of the same process may have distinct realizations. Flexibility by deviation is
recognized at run-time at the moment of (or shortly after) process initiation (for a specific
process instance). The same classification applies to the flexibility by momentary change.
The main difference between these two flexibility types is that flexibility by momentary
change results in the modification of the process definition associated with a given process
instance during execution, whilst realization of flexibility by deviation leaves the process
definition unaffected. Finally, flexibility by permanent change can be seen as redesign of
the process definition at the type level at run-time. This flexibility type is facilitated by
performing changes to the process definition, potentially impacting all existing process
instances.

Each of the individual flexibility types introduced above are now described in detail
using a standard format including: a motivation, definition, scope and realization options.
We start with flexibility by design.

6.1.1 Flexibility by design

Motivation When a process operates in a changing operational environment it is desir-
able to incorporate support for the various execution alternatives that may arise during
execution within the process definition. At runtime, the most appropriate execution path
can then be selected from those encoded in the design time process definition.

Definition Flexibility by Design is the ability to incorporate alternative execution paths
within a process definition at design time allowing for selection of the most appropriate
execution path to be made at runtime for each process instance depending on the circum-
stances encountered.

Scope Flexibility by design applies to any process which has multiple predefined execution
trace and the choice of these traces can be influenced at run-time.

Realization options The most common options for realization of flexibility by design,
such as parallelism, choice, iteration, etc. are thoroughly described by the control-flow
patterns in Chapter 4 and have been widely observed in a variety of imperative languages.
We argue that these concepts are equally applicable in a declarative setting which has a
much broader repertoire of constraints that allow for flexibility by design. Note that both
approaches really differ with respect to flexibility. To increase flexibility in an imperative
process, more execution paths have to be modeled explicitly, whereas increasing flexibility
in declarative processes is accomplished by reducing the number of constraints, or weak-
ening existing constraints. A declarative model is most flexible when it does not have any
constraints [171]. In this case, all of its constituent tasks can be executed in any order,
any number of times.

Describing all possible execution paths in a process definition completely at design-time
may be either undesirable from the standpoint of model complexity or impossible due to an

326 Chapter 6 Process Flexibility Patterns

unknown or unlimited number of possible execution paths. The following flexibility types
provide alternative mechanisms for process flexibility.

6.1.2 Flexibility by deviation

Motivation Some process instances need to temporarily deviate from the execution se-
quence prescribed by their associated process definition in order to accommodate changes
in the operating environment encountered at runtime. The overall process definition and
its constituent tasks remain unchanged.

Definition Flexibility by Deviation is the ability for a process instance to deviate at runtime
from the execution path prescribed by the original process without altering its associated
process definition. The deviation can only encompass changes to the execution sequence
of tasks in the process for a specific process instance, it does not allow for changes in the
process definition or the tasks that it comprises.

Scope The concept of deviation is particularly suited to the specification of process def-
initions which are intended to guide possible sequences of execution rather than restrict
the options that are available (i.e. they are descriptive rather than prescriptive). These
specifications contain the preferred execution of the process, but other scenarios are also
possible.

Realization options The manner in which deviation is achieved depends on the spec-
ification approach utilized. Deviation can be seen as varying the actual tasks that will
be executed next, from those that are implied by the current set of enabled tasks in the
process instance. In imperative languages, this can be achieved by applying deviation op-
erations such as redo, task skip, etc. For declarative approaches, deviation occurs through
the violation of (optional) constraints.

6.1.3 Flexibility by underspecification

Motivation When specifying a process definition it might be foreseen that during run-time
execution more execution paths are needed which must be incorporated within an existing
process definition. Furthermore, often only during the execution of a process instance does
it become clear what needs to be done at a specific point in a process. When all execution
paths cannot easily be defined in advance in the standard way, it is useful to be able to
execute an incomplete process definition and dynamically add process fragments expressing
missing scenarios to it.

Definition Flexibility by Underspecification is the ability to execute an incomplete process
definition at run-time, i.e. one which does not contain sufficient information to allow it to
be executed to completion. Note that this type of flexibility does not require the definition
to be changed at run-time, instead the definition is completed by providing a concrete
realization for the undefined parts as they are encountered at run-time.

Scope The concept of underspecification is mostly suited to processes where it is clearly
known in advance that the process definition will have to be adjusted or has high variability
at specific points, although the exact content at these points is not yet known (and may
not be known until the time that an instance of the process is executed). This approach
to process design and enactment is particularly useful where distinct parts of an overall
process are designed and controlled by different work groups, but the overall structure of
the process is fixed. In this situation, it allows each of the individual groups to retain some

Section 6.1 Taxonomy of process flexibility 327

degree of autonomy in regard to the tasks that are actually executed at runtime in their
respective parts of the process, whilst still complying with the overall process definition.

Realization options An underspecified process definition is deemed to be one which is
well-formed but does not have a detailed definition of the ultimate realization of every task.
An incomplete process definition contains one or more so-called placeholders. Placeholders
are nodes which are marked as underspecified (i.e. their content is unknown or is specified
outside of the process model) and whose content is specified when they are encountered at
run-time. We distinguish two types of placeholder enactment :

• Late binding: where the realization of a placeholder is selected from a set of available
process fragments. Note that to realize a placeholder one process fragment has to be
selected from an existing set of predefined process fragments or defined via ripple-
down rules (RDR)2. This approach is limited to selection, and does not allow a new
process fragment to be constructed.

• Late modeling: where a new process fragment is constructed in order to realize a given
placeholder. Not only can a process fragment be constructed from a set of currently
available process fragments, but also a new process fragment can be developed from
scratch. Therefore late binding is complemented by late modeling. Some approaches
[196] limit the construction of new definitions by (declarative) constraints.

For both approaches, the realization of a placeholder can occur at a number of distinct
times during process execution. Here, two distinct moments of realization are recognized:

• before placeholder execution: the placeholder is realized at the commencement of a
process instance or during execution before the placeholder has been executed for the
first time.

• at placeholder execution: the placeholder is realized when it is executed.

Placeholders can be either realized once, or for every execution of the placeholder. We
distinguish two distinct realization types:

• static realization, where the process fragment chosen to realize the placeholder during
the first execution is used to realize the placeholder for every subsequent execution.

• dynamic realization, where the realization of a placeholder can be chosen for each
execution of the placeholder.

The following two types of flexibility facilitate the incorporation of execution behaviors at
run-time that have not been anticipated at design-time. Depending on the extent to which
the realization of flexibility by change applies, we can distinguish flexibility by momentary
change and flexibility by permanent change. These two types of flexibility by change are
described in detail below.

6.1.4 Flexibility by momentary change

Motivation In some situations, when executing a given process instance, the need to
achieve specific behavior that has not been foreseen at design-time may arise. Sometimes

2If late binding is used based on rules (cf. RDR in Worklets [19]), then one could argue that this is just
an XOR-split. In principle, this is correct, however we still consider this flexibility by underspecification.

328 Chapter 6 Process Flexibility Patterns

such behavior cannot be facilitated by temporary deviations from the existing process def-
inition, but requires the process definition for a particular process instance to be modified.

Definition Flexibility by Momentary Change is the ability to modify a process definition
at run-time such that the process definition associated with a given process instance is
amended in order to realize previously not foreseen behavior.

Scope Flexibility by change allows processes to adapt to transient changes that are iden-
tified in the operating environment. Changes are introduced at the level of the process
instance and do not affect other process instances.

Realization options
Moment of allowed change specifies the moment at which changes can be introduced in a
given process instance.

• Entry time: changes can be performed at only the moment the process instance is
created. After the process instance has been created, no further changes can be
introduced to the given process instance. Momentary changes performed at entry
time affect only a single process instance.

• On-the-fly: changes can be performed at any time during process execution. Mo-
mentary changes performed on-the-fly correspond to customization of a given process
instance during its execution.

6.1.5 Flexibility by permanent change

Motivation In some cases, events may occur during process execution that were not
foreseen during process design. Sometimes these events cannot be addressed by temporary
deviations from the existing process definition, but require the addition or removal of tasks
or links in the process definition on a permanent basis. This necessitates changing the
process definition for all currently executing instances.

Definition Flexibility by Permanent Change is the ability to modify a process definition at
run-time such that all currently executing process instances are migrated to a new process
definition and all new process instances utilize the new process definition. The process
definition constructed at design time is modified and all executing process instances need
to be transferred from the old to the new process definition.

Scope Flexibility by change allows processes to adapt to changes that are identified in the
operating environment. Changes are introduced at type level resulting in the modification
of the process definition.

Realization options
Moment of allowed change specifies the moment at which changes can be introduced in a
given process instance or a process definition.

• Entry time: changes can be performed only at the moment the process instance is
created. After the process instance has been created, no further changes can be made
to the given process instance. The result of permanent change performed at entry
time is that all new process instances have to be started after the change to the
process definition has been performed, and no existing process instances are affected
(they continue execution according to the process definition with which they are
associated).

• On-the-fly: changes can be performed at any time during process execution. Perma-
nent changes performed on-the-fly impact both existing and new process instances.

Section 6.2 Catalog of process flexibility patterns 329

The new process instances are created according to the new process definition, while
the existing process instances may need to be migrated from the existing process
definition to the new process definition.

Migration strategy defines what to do with running process instances that are impacted by
a permanent change.

• Forward recovery: affected process instances are aborted.
• Backward recovery: affected process instances are aborted (compensated if necessary)

and restarted.
• Proceed : changes introduced are ignored by the existing process instances. Existing

process instances are handled the old way, and new process instances are handled the
new way.

• Transfer : the existing process instances are transferred to a corresponding state in
the new process definition.

We have described the five flexibility types by illustrating the motivation for each of them,
giving their definition and defining the scope that each of them impact in a process. How-
ever, when it comes to the realization of these flexibility types in practice, it is unclear
what the typical constructs required for realizing particular types of flexibility are, what
the semantics of these constructs are and in which situations and domains they are ap-
plicable. In the next section, we address this issue by defining a set of process flexibility
patterns.

6.2 Catalog of process flexibility patterns

In this section, we present the set of flexibility patterns that have been identified. The
patterns are divided into eight groups (cf. Table 6.1). Each group addresses a common
problem and is intended to describe a specific aspect of process flexibility such as flexible
initiation, flexible termination, flexible reordering, flexible selection, flexible elimination,
flexible extension, flexible concurrency and flexible repetition. For instance, flexible elimi-
nation patterns aim to facilitate flexibility by avoiding the execution of a particular task.
This can be done already during design-time by incorporating a bypass path, at run-time
by skipping the execution of a currently enabled task, or by removing this task from the
process definition.

Each of the pattern groups consist of at most five patterns, and each pattern corresponds
to one of the five flexibility types: flexibility by design, flexibility by deviation, flexibility
by underspecification, flexibility by momentary change or flexibility by permanent change.
This provides an overall structure of 8 ∗ 5 possible patterns. However, not all desired
aspects of flexibility can be mapped to the notions associated with the five flexibility
types, therefore some pattern groups contain less than five patterns. When describing
each of the pattern groups, we will indicate which configurations are meaningful and which
are not. Note that the goal of the process flexibility patterns is not to fill in the process
flexibility matrix, but rather to use it as a guide to meaningful types of flexible execution
mechanisms.

330 Chapter 6 Process Flexibility Patterns

Overview of process flexibility groups

Group name Description Page

Flexible initiation
The ability to initiate a process instance from
a point other than the nominated entry-point
to the process definition

page 334

Flexible termination
The ability to terminate a business process
on a premature basis

page 348

Flexible selection
The ability to select an execution path ap-
propriate to the operational circumstances

page 358

Flexible reordering
The ability to establish alternative execution
ordering for the tasks in a process at run-time

page 369

Flexible elimination
The ability to avoid the execution of a par-
ticular task

page 377

Flexible extension

The ability to enable an execution path al-
ternative to the one prescribed by the pro-
cess definition by incorporating a task that
has not previously been foreseen

page 383

Flexible concurrency
The ability to avoid unnecessary dependen-
cies between several independent tasks by ex-
ecuting them concurrently

page 392

Flexible repetition
The ability to repeat the execution of a par-
ticular task variable number of times

page 399

Flexibility by

Design Deviation Underspecification Momentary

Change

Permanent

Change

Flexible initiation Alternative

entry points

Entrance

skip

Undefined entry Momentary

entry change

Permanent

entry change

Flexible termination Alternative

exit points

Termination

skip

Undefined exit Momentary

exit change

Permanent

exit change

Flexible selection Choice Task

substitution

Late selection Momentary

choice

insertion

Permanent

choice

insertion

Flexible reordering Interleaving Swap Momentary

reordering

Permanent

reordering

Flexible elimination Foreseen

bypass path

Task skip Momentary

task

elimination

Permanent

task

elimination

Flexible extension Task

invocation

Late creation Momentary

task insertion

Permanent

task insertion

Flexible

concurrency

Parallelism Momentary

task

parallelization

Permanent

task

parallelization

Flexible repetition Iteration Redo Momentary

loop insertion

Permanent

loop insertion

Table 6.1: The Process Flexibility Matrix used to position all patterns in this chapter

Section 6.2 Catalog of process flexibility patterns 331

6.2.1 Context assumptions

A process definition consists of a set of tasks and a set of constraints specifying the order in
which these tasks have to be executed. Figure 261 shows the graphical notation we will use
to visualize a process definition. Typically, a process definition contains a single start task,
i.e. a task from which process execution begins, and a single end task, i.e. a task whose
completion results in the termination of the process instance. Process elements that are
left underspecified at design-time are marked as placeholders. We will use a square with a
solid and dashed line to denote placeholders (cf. Figure 261). For some patterns we also
need to differentiate individual execution instances. We will use a symbol in the form of a
shaded triangle, circle or square to denote (partial) states associated with different process
instances (i.e. tokens referring to particular instances). Such a symbol preceding a task in
the process definition indicates that this task is enabled for execution.

To show the effect of applying a flexibility pattern to a particular process instance at
run-time, both the process definition before and after applying this pattern are visualized.
We depict process definitions associated with different process instances separately to show
the effect of momentary changes, i.e. changes resulting in modification of the process defini-
tion associated with a particular process instance. To denote that changes of a permanent
nature, performed at the type level, impact all existing process instances, we show a single
process definition common to all process instances before and after the permanent change
has been performed. To illustrate different execution paths within a process definition,
each task may have associated split and join connectors of XOR or AND type or may have
no split/join behavior at all.

BA C D

Exit point

Start task
End task

Entry point

Placeholder

XOR-split

XOR-join

AND-split

AND-join

Pointers to partial
states of different
process instances

 process definition

Figure 261: Process entities

To describe the context in which the flexibility patterns can be used and to explain
the operational semantics of our basic notations, we present a basic engine for executing
process instances based on the process definitions using the CPN formalism that has been
extensively described in Chapter 3. Figure 262(a) illustrates the top-level view of the
basic engine able to handle both concrete and placeholder tasks. Two substitution transi-
tions Engine and Placeholder definition interface correspond to the nets depicted
in Figure 262(c) and (b) respectively.

Process definitions for which process instances will be created are stored in the Process
definition place. In order to differentiate between distinct models, they are associated

332 Chapter 6 Process Flexibility Patterns

with identifiers of type ModelID to refer to a particular process model. The process defini-
tions are of type ProcModel, and contain information about the model id (of type ModelID),
the id of the start task, the id of the end task, a list of the tasks in the process definitions
and a list of arcs between the tasks. The execution of a process starts with the start task
specified in the process definition, and completes when no tasks are left which can still be
executed.

Each task is defined as a tuple of the Task type, specifying the id of the task, the type
of the task (i.e. whether it is concrete or underspecified), the type of the join connector
and the type of the split connector. The join connector and the split connector are of type
ConnectorType, which specify for a given task whether it needs to synchronize multiple
incoming branches and produce output to multiple outgoing branches. Where both connec-
tors have value none, the task can be characterized as sequential. The connector values XOR
and AND represent XOR/AND-splits and XOR/AND-joins explained earlier on page 122
and page 131 respectively. The definition of the main data types used in Figure 262 is
visualized in Table 6.2.

To create a process instance, a user places a token of type ProcInst in the Begin

place, specifying the id for the process definition that needs to be populated (i.e. mid of
the ModelID type), and the id that has to be assigned to the process instance being created

Placeholder definition interface

PlaceholderEngine

Engine

Engine

Running
instance

I/O
ProcInstState

Process
definition

I/O
ProcModel

End

Out
ProcInstProcInst

Out

I/O

I/O

Engine

PlaceholderEngine

Begin

InIn

(a) Top view

(pid,m,st)

(pid,m,st)

Create
Create

Select
Select

Compose
Compose

complete
placeholder

[isPlaceholder(pid,m,st)]

selected
instance

ProcInstState

Repository

Repos

Running
instance

I/O
ProcInstState

I/O

Create ComposeSelect

(b) Placeholder engine

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,st)

[match(mid,m)] [not(existsEnabledTask(pid,m,st))]

ProcInst

ProcModel

Running
instance

I/O
ProcInstState ProcInst

I/O

Create
process
instance

Begin

InIn

Complete
process
instance

End

OutOut

Execute
task

(pid,m,ns(pid,m,st))

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Process
definition

I/OI/O

(c) Execution engine

Figure 262: Basic engine

Section 6.2 Catalog of process flexibility patterns 333

(i.e. pid of the piID type).

A process instance is created by the engine based on the input (mid,pid) provided by
the user and the matching model m. The Create process instance transition matches
mid, (the id of the model provided by the user), with the id associated with the process
definition m available in the Process definition place using the match(mid,m) function.
Where these match, the createinst(pid,m) function creates a process instance of type
ProcInstState. The process instance contains the id for the specific process instance pid,
a replica of the process definition m, and the current state st indicating which task is
currently enabled. Note that this does not imply that we assume an implementation where
the process model is replicated for every instance, i.e. the model could also be passed by
reference.

A task in an activated process instance, information about which is stored in the
Running instance place, can be executed only if the task is concrete (i.e. the content
of the task has explicitly been defined at design-time). If the task has been left underspec-
ified (i.e. it has the placeholder type), first the definition of this task has to be completed
by the placeholder engine illustrated in Figure 262(b). The placeholder may be completed
by creating a new process fragment, by selecting an element from the repository of pre-
defined process fragments or by composing a new process fragment. By executing one of
the transitions Create, Select or Compose, the task that previously had the placeholder
type is replaced with the desired content and its task type is set to concrete. From this
moment on, the Execute task transition in the basic engine (cf. Figure 262(c)) may fire
when the Boolean function existsEnabledTask(pid,m,st) evaluates to True, indicating
that there exist enabled tasks which can be executed.

The task to be executed next is selected non-deterministically from the set of enabled
tasks (note that we abstract from work distribution, etc. and hence can consider this
choice to be non-deterministic). The set of enabled tasks is formed by tasks whose enabling
conditions are satisfied. A task without a join connector is enabled if the task preceding it
has been executed and the arc connecting these two tasks is present in the state associated

Table 6.2: Data types used in Figure 262

colset ModelID = string;
colset piID = int;
colset ProcInst = product ModelID * piID;
colset TaskID = smallstr;
colset TaskType = with concrete|placeholder;
colset ConnectorType = with XOR|AND|none;
colset Task = product TaskID * TaskType * ConnectorType3 * ConnectorType4 ;
colset Tasks = list Task;
colset Link = product TaskID * TaskID;
colset Arcs = list Link;
colset ProcModel = product ModelID*TaskID5 *TaskID6 *Tasks*Arcs;
colset State = Arcs;
colset ProcInstState = product piID * ProcModel * State;

3Task split
4Task join
5Start task
6End task

334 Chapter 6 Process Flexibility Patterns

with the given process instance (as indicated by attribute st of type State). If a task
has a join connector of XOR type, the process instance state must contain at least one
enabled arc; otherwise, if the task has a join connector of AND type, all incoming arcs
must be enabled and thus be present in the state st. After the task has been executed,
the ns(pid,m,st) function determines the new state for the process instance. If the split
connector associated with the executed task is of type XOR, one of its output arcs is
selected non-deterministically and added to the state. If the split connector is of type
AND, then all outgoing arcs are added to the state. The execution of the process instance
completes when no enabled tasks are left, i.e. the existsEnabledTask(pid,m,st) function
evaluates to False.

We will use the graphical notation described in Figure 261 to depict the flexibility
options that are characterized by the flexibility patterns. To describe the operational
semantics of the patterns, we illustrate the basic engine depicted in Figure 262 that is
enhanced with flexibility extensions specific to the pattern being considered, thus focusing
only on the differences between the basic and the enhanced engines in each case.

We will describe each of the process flexibility patterns using the same pattern format
that was used in Chapter 4 for describing the control-flow patterns (cf. page 118):

- description: a summary of its functionality;
- examples : illustrative examples of its usage;
- motivation: the rationale for the use of the pattern;
- overview : a graphical notation illustrating the pattern and an explanation of its

operation;
- context : a detailed operational definition of the pattern in terms of CPNs, illustrated

as an enhancement of the basic process engine;
- implementation: how the pattern is typically realized in practice 7;
- issues: problems potentially encountered when using the pattern;
- solutions : how these problems can be overcome; and
- evaluation criteria: the conditions that an offering must satisfy in order to be con-

sidered to support the pattern.
We start with a description of patterns related to flexible process initiation.

6.2.2 Flexible initiation

This group of patterns aims to describe flexibility options related to the initiation of a
business process, i.e. flexibility considerations that influence the manner in which process
instances are created. Figure 263 illustrates the scope of patterns presented in this subsec-
tion and their relationship to the different types of flexibility outlined in Section 6.1. We
will traverse cells in the highlighted row from left to right and analyze the mapping of the
concept of flexible process initiation to each of these flexibility types.

Usually a process definition has a single entry point which triggers the initiation of a
new process instance. An example of such a process is shown in Figure 264. The execution
of this process starts with task A each time an instance of this process is initiated. Such
an approach to process definition forces the execution of all associated process instances
to start with the same task. In some situations, the execution of the process may need to
start from a task other than the nominated start task prescribed by the process definition.

7We describe the implementation options for Oracle BPEL PM, CIG modeling languages and four
systems illustrating different kinds of support for process flexibility (ADEPT1, FLOWer, YAWL, and
Declare.)

Section 6.2 Catalog of process flexibility patterns 335

Flexibility by

Design Deviation Underspecification Momentary
Change

Permanent
Change

Flexible initiation Alternative
entry points

Entrance
skip

Undefined entry Momentary
entry change

Permanent
entry change

Flexible termination
Flexible selection
Flexible reordering
Flexible elimination
Flexible extension
Flexible concurrency
Flexible repetition

Figure 263: Process Flexibility Matrix: flexible initiation

For rigid process definitions with a single start task this is impossible, thus the start task
must be executed even if it is not required.

BA C D

Figure 264: Example of a process definition

Depending on the moment at which the need for an alternative entry-point to a process
definition is recognized and the manner in which it is facilitated, we distinguish the following
five patterns: Alternative Entry-Points, Entrance Skip, Undefined Entry, Momentary Entry
Change and Permanent Entry Change.

Although the goal of all of these five patterns is to allow a user to start execution of a
process instance from a task different to the nominated start task, these patterns differ in
the moment at which the need for flexibility is anticipated. The Alternative Entry-Points
pattern is associated with a process at design-time (i.e. all decisions allowing for flexible
process initiation are defined before a process instance has been created), while the other
four patterns are associated with its run-time execution. In the Entrance Skip pattern, the
need to deviate from the nominated start task is only anticipated at the moment a process
instance is created. In the Undefined Entry pattern, the need for flexible process initiation
is anticipated at design-time, however its realization is accomplished at run-time. In the
Momentary Entry Change and Permanent Entry Change patterns, the need for flexible
process initiation is anticipated and realized at run-time by changing the process definition
at the instance or type level.

Pattern PF-1 ALTERNATIVE ENTRY-POINTS

Description A process definition contains more than one start task, each of which
represents an alternative entry point for the process definition. Any of the start tasks
can be selected by a knowledgable user at run-time when creating a new process instance
causing the process instance to commence from that task. This pattern characterizes a
need for flexible process initiation that is anticipated at design-time, thus it corresponds
to the flexibility by design type.

336 Chapter 6 Process Flexibility Patterns

Examples
– The medical processes for handling patients in a hospital are defined in such a way that

a patient may commence at any stage of the treatment process depending on their needs
and their current state of health.

– In order to be admitted to the driving exam, candidates first have to pass a verbal
theory exam. However, a candidate who already possesses a certificate for the theoretical
examination may advance to the practical examination directly.

Motivation The majority of structured-workflow systems prescribe a single start task as
the entry point to a process definition. Despite differences in the context in which distinct
process instances have to operate, the process definition created in such workflow systems
enforces that the same start task has to be executed by each of the process instances.
In some situations, it is necessary to skip the beginning of the process and commence
execution from another task contained in the process definition. The Alternative Entry-
Points pattern applies to situations when different execution paths, each having a distinct
start task, are foreseen during the design of a process definition.

Overview Figure 265 illustrates two process notations: the top one corresponds to a
rigid process with a single entry point, and the bottom one corresponds to a process with
two alternative entry points, either of which can be selected to initiate the process from
the associated start task.

BA C D

BA C D

Figure 265: Alternative Entry-Points pattern

Context Figure 266 illustrates the process engine expressed using the CPN formalism
extended to support the Alternative Entry-Points pattern.

(mid,pid,tid)

m

createinst'(m,pid,tid) (mID(m),pid)(pid,m,st)Create
process
instance

[match(mid,m) andalso
isStartTask(tid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Begin

In
ProcInst'

Process
definition

I/O
ProcModel'

Running
instances

I/O
ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

(pid,m,st)

Execute
task

(pid,m,ns(pid,m,st))

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

ProcModel' contains a list of start tasks
rather than a single start task. Any of the
start tasks can be selected for process
instance creation

A process instance is created
for a process model whose
identifier mid matches with the
id of existing process definitions,
providing that the id of the start task (tid)
supplied by a user is in the
list of the alternative start tasks
defined in the process definition m

Figure 266: Engine enhanced with the Alternative Entry-Points pattern

To allow for process initiation from different start tasks, multiple start tasks have to

Section 6.2 Catalog of process flexibility patterns 337

be included in the process definition and are stored in the Process definition place.
For this, the ProcModel type is modified to ProcModel’ as shown below (note that this is
different from the original process definition which contains only a single start task).

colset TaskIDs = list TaskID;

colset ProcModel’ = product ModelID * TaskIDs * TaskID * Tasks * Arcs;

In order to create a process instance, a knowledgable user supplies information in the
form (mid,pid,tid), where mid identifies the process definition based on which a process
instance needs to be created, pid identifies the process instance to be created, and tid

identifies the desired start task from which the given process needs to be initiated. For
this, the ProcInst type is modified to ProcInst’ in order to include the identifier of the
start task:

colset ProcInst’ = product ModelID * piID * TaskID;

The information provided by the user is used in the guard for the Create process

instance transition, which, based on the input provided, identifies the process definition
with the corresponding identifier and creates a process instance with the indicated start
task tid. The isStartTask(tid,m) function is used to check whether the task identifier
tid provided by the user corresponds to one of the start tasks defined for the indicated
process definition. If the guard conditions are satisfied, the createinst’(m,pid,tid)

function creates a process instance which can be executed until the nominated completion
conditions are met. Note that the createinst’(m,pid,tid) function is different from the
original createinst(m,pid) function in terms of the parameters it requires, and in order
to create a process instance, a start task must be provided by the user.

Implementation Imperative systems intended for modeling structured workflows typ-
ically do not support this pattern directly, since they require a single entry point to the
process definition that must be executed for all populated process instances. This applies
to YAWL, FLOWer and ADEPT1. To realize multiple entry points in such systems, one
has to introduce a dummy choice construct that allows one of the tasks associated with
the choice branches to be selected.

In contrast, declarative systems such as Declare allow any task, independent of the
completion status of other tasks in the process definition, to be selected as a start task.
CIG modeling languages such as EON and GLIF also allow multiple tasks to be marked as
start tasks and depending on the patient’s state an appropriate task can be selected from
which a new process instance can commence. PROforma combines both imperative and
declarative approaches and allows any unconstrained task to be selected as a start task. In
Oracle BPEL PM, different <receive> activities can initiate a process instance by setting
the createInstance attribute to yes.

Issues If, during run-time, a required start task cannot be found because the correspond-
ing execution path has not been foreseen at design-time, a user may need to choose the
most suitable of the foreseen execution paths, and execute a set of tasks, which normally
would not need to be executed, in order to reach the required starting point in the process.
By “jumping” into the process semantic problems, e.g., deadlocks and missing data, may
occur.

Solutions One could solve this issue by applying the Entrance Skip pattern (cf. page 338)
in order to deviate from the executing tasks prescribed by the selected execution path.
Alternatively, the Undefined Entry pattern (cf. page 340) could be applied in order to
determine the beginning of the process at run-time. Finally, the Momentary Entry-Point

338 Chapter 6 Process Flexibility Patterns

Change pattern (cf. page 343) or the Permanent Entry-Point Change pattern (cf. page 345)
could be applied to change the entry-point prescribed by the process definition.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows several alternative tasks to be nominated for a process definition each of which
may play the role of the start task when a process instance is initiated.

Pattern PF-2 ENTRANCE SKIP

Description At process initiation, there is the possibility of deviating from the execu-
tion path prescribed by the process definition by ignoring the nominated start task. The
execution of a process instance may start from any subsequent task specified in the process
definition. The pattern assumes that the act of skipping the beginning of the process is a
deviation that has no effect on the process definition. This pattern characterizes a need for
flexible process initiation that is anticipated at the moment of process instance creation,
thus it corresponds to the flexibility by deviation type.

Examples
– Treatment of patients at a hospital starts with the registration of a patient. Patients

who have been registered or are already being treated may immediately proceed to the
required health unit.

– A housing agency identifies tenants to whom available accommodation will be allocated
based on the length of time that they have waited. The normal selection process is
skipped if a new client has requested accommodation under urgent conditions.

Motivation In the Alternative Entry-Points pattern (described on page 335), flexi-
bility in process initiation is achieved by specifying alternative entry-points for a process
definition at design-time. In some situations, where no alternative entry-points have been
nominated at design-time or where no suitable entry-point can be found at run-time, the
desired start task can only be reached by actually executing all tasks preceding it. This
necessitates the execution of a number of tasks, which normally would be omitted. The
Entrance Skip pattern allows the execution of a given process instance to start with the
commencement of a desired task, by skipping all tasks on the path leading to it.

Overview Figure 267 illustrates the graphical notation for the Entrance Skip pattern.
The top view illustrates an initiated process instance before applying the pattern. In this
process instance, the thread of control, which is visualized by the filled triangle, indicates
the task that is currently enabled (in this case, the start task A is enabled).

The bottom view, illustrates the process instance after the Entrance Skip pattern has
been applied. The process definition associated with the created process instance remains
the same, however instead of enabling the start task A, the thread of control is moved to a
subsequent task C. Thus the tasks A and B are skipped in order to commence the process
instance at task C.

BA C D

BA C D

Figure 267: Entrance Skip pattern

Section 6.2 Catalog of process flexibility patterns 339

Context Figure 268 illustrates the process engine expressed using the CPN formalism
and shows how the Entrance Skip pattern should be realized.

In order to allow for process initiation from a task different to the nominated start
task, a user needs to supply the identifier of the desired start task tid. For this, the
information provided by a user at process initiation (which is of type ProcInst) is modified
to ProcInst’ type as follows:

colset ProcInst’ = product ModelID * piID * TaskID;

When the identifier for the desired start task tid together with the corresponding
model identifier and the identifier for the process instance to be created are made available
by a user in the Begin place, this data is used by the Create process instance transi-
tion to create a process instance with the nominated start task or by the Entrance Skip

transition to create a process instance without a nominated start task. As described for
the Alternative Entry-Point pattern, in this engine the isStartTask(tid,m) function
is introduced to check whether the identifier tid provided by the user corresponds to a
nominated start task in the model m. Furthermore, the createinst(m,pid,tid) function
is used to create a process instance, where the start task identifier is tid.

createinst(m,pid,tid)

m

(mid,pid,tid)

(mid,pid,null)

m

createinst(m,pid,tid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st))
(pid,m,st)

Entrance Skip

[match(mid,m),
not(isStartTask(tid,m))]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst'

Process
definition

I/O
ProcModel

Running
instances

I/O
ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

An arbitrary task with the specified identifier tid could be
specified as a start task. Eventually, all tasks
preceding it are skipped, and a new process instance
is created with tid playing the role of the start task.
If instead of a task identified, null value is provided,
then a process instance is initiated from the default start task.

Figure 268: Engine enhanced with the Entrance Skip pattern

Implementation Of the wide range of contemporary offerings investigated, only
FLOWer and Declare provide support for the Entrance Skip pattern. In Declare, a set of
tasks including the start task can be skipped by ignoring optional constraints. Although in
FLOWer it is not possible to advance to a desired start task directly, the same effect can be
achieved by executing a series of skip operations. In ADEPT1 and YAWL, it is not possible
to skip start tasks at process initiation, neither is this possible in Oracle BPEL PM. How-
ever, in Declare if none of the tasks has been marked as a start task, the process execution
may start from any of the tasks defined for a process model. The decision-support systems
used for enactment of clinical guidelines such as PROforma provide recommendations in
the form of decisions where zero, one or more options can be selected. These can be used
to encode decisions related to the execution of a certain task in the process, thus they are
also applicable for describing optional start tasks. In Asbru, EON and GLIF, configuration
with respect to a desired start task cannot be done at process initiation.

Issues When the execution of a specific task needs to be skipped, and a subsequent task
needs to be enabled, problems related to data dependencies between these tasks may arise.

340 Chapter 6 Process Flexibility Patterns

Often in order to be enabled, a task requires input data which is provided by the previous
task. When a task is skipped, the required data may not be available to the subsequent
task.

Solutions In order to avoid the problem of required data elements from preceding tasks
not being available at task enablement, it is possible to define a default value for data
elements and use this instead.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that provides an explicit operation to skip one or more tasks, including the start task, at
process initiation.

Pattern PF-3 UNDEFINED ENTRY

Description A process definition contains a placeholder, associated with the beginning
of the process, that is intentionally left underspecified. During process initiation there
is the possibility of completing the specification of this placeholder with an appropriate
start task. This pattern characterizes the need for flexible process initiation recognized at
design-time, but whose actual realization is performed at run-time, thus it corresponds to
the flexibility by underspecification type.

Examples
– The accounting program developed to calculate financial metrics which track the per-

formance of a business can be supplied to and used in any organization. Depending on
the context in which the program is to be used, the initial information which needs to
be provided when initiating the accounting program may vary, thus allowing it to be
tailored to a specific customer.

– An IDEAL-application, providing on-request access to bank accounts via Internet, can
be used at various corporate web-sites in order to complete the process of purchasing a
product ordered by clients via Internet. An interface for launching this application needs
to be configured by organizations depending on their needs.

Motivation Often in situations where the need for flexible process initiation is rec-
ognized at design-time, a set of possible start tasks is defined, each corresponding to an
alternative execution path. The Alternative Entry-Points pattern (described on page 335)
allows different entry-points to a process to be specified by explicitly defining distinct start
tasks at design-time. In some situations, it is not always clear at design-time which of the
tasks may need to play the role of the start task or it may be impractical to specify all
possible start tasks explicitly. The Undefined Entry-Point pattern allows the specification
of the beginning of the process, including the start task, to be postponed until process
initiation when more information related to the operational context becomes available.

Overview Figure 269 illustrates the graphical notation for the Undefined Entry pat-
tern. The top view illustrates a process instance that has been populated from the process
definition where the beginning of the process is left underspecified and marked as a place-
holder. The static part of the process which consists of tasks C and D has been predefined
at design time, and thus cannot be executed until the beginning of the process is defined.

The bottom view visualizes the completion of the placeholder performed at runtime after
applying the pattern. After process instance creation, the placeholder becomes enabled as
illustrated by the execution thread preceding it. Once the placeholder is enabled, it needs
to be completed. Once the content of the placeholder has been defined, the thread of
control is moved to the specified start task. In this case, task B is chosen as a start task,

Section 6.2 Catalog of process flexibility patterns 341

however a process fragment consisting of tasks A and B could have been used instead. Note
that the mechanism for completing the placeholder associated with the beginning of the
process is the same as that for any other placeholder in the process definition.

 C D

 C D

B

Figure 269: Undefined Entry pattern

Context In this section, we illustrate how flexibility in process initiation as promoted
by the Undefined Entry pattern can be incorporated in the process engine. In order for
the definition of a start task to be completed at run-time, the start task needs to be left
underspecified in the design-time process definition and the type of this start task has to
be set to placeholder.

(pid,m,st)

(pid,m,st)

Create
Create

Select
Select

Compose
Compose

complete
placeholder

[isPlaceholder(pid,m,st)]

selected
instance

ProcInstState

Repository

Repos

Running
instance

I/O
ProcInstState

I/O

Create ComposeSelect

Figure 270: Placeholder engine: top view

After a process has been initiated by the basic process engine presented in Figure 262(c)
no tasks may be executed until the definition of the underspecified start task is completed
by the placeholder engine whose main view is presented in Figure 270. In the placeholder
engine, a placeholder for a given process instance can be completed either by creating a
new task (e.g., the Create substitution transition), selecting a process fragment from a set
of process fragments defined at design-time (e.g., the Select substitution transition), or
by composing a new process fragment from existing and/or new tasks (e.g., the Compose

substitution transition).
In order for a new task to be created, the substitution transition Create, whose func-

tionality is presented in Figure 271(a), needs to be executed. The new task created by
the createnewtask() function is added to the repository of process fragments by the
addtasktorepos() function. The content of the selected placeholder selp is replaced by

342 Chapter 6 Process Flexibility Patterns

the newly created task. In particular, the update create() function modifies both the
process definition, and also updates the state of the process instance so that the created
task can be executed.

(pid,m,st)

lrep

Create

[t = createnewtask(),
 selp = selectp(pid,m,st)]

selected
instance

In
ProcInstState

Running
instances

Out
ProcInstState

Repository

I/O
Repos

I/O

OutIn

addtasktorepos(tID(t),lrep)

update_create(pid,m,st,t,selp)

(a) Create

(pid,m,st)

lrep

Select

[lrep<>[],
tp = pick(lrep) ,
selp = selectp(pid,m,st)]

selected
instance

In
ProcInstState

Repository

I/O
Repos

Running
instances

Out
ProcInstState
Out

I/O

In

update_select(pid,m,st,selp,tp)

(b) Select

([],[])

(tasks,arcs)

addtask(t,tasks,arcs)

(tasks,arcs)

updatedfragm(lrep,tasks,arcs,slp)

lrep

(pid,m,st)(pid,m,st)

update_compose(pid,newtasks, newarcs, m,st)

(pid,m,st)

CreateSelect

[slp= pick(lrep)]

End
composition

Start
 composition

process
fragment

ProcFragment

ready

ProcInstState

ProcInstState

Repository

I/O
Repos

ProcInstState

I/O

[t = createnewtask()]

(newtasks,newarcs)

Running
instances

OutOut

selected
instance

InIn

(c) Compose

Figure 271: Placeholder engine

When the placeholder needs to be completed with one of the previously defined process
fragments, the Select substitution transition needs to be executed. The behavior corre-
sponding to this transition is presented in Figure 271(b). A process element tp can be
selected from the repository of process fragments lrep available in the Repository place
on the assumption that the repository is non-empty. A process fragment, that has been
randomly selected from the repository, is used to substitute the given placeholder in the
process definition and in the process instance state. The update of the process definition
and process instance state is performed via the update select() function.

Finally, the content of a placeholder can be defined by composing a process fragment
from new tasks and process fragments available in the Repository place. In order to com-
pose a process fragment, the Compose transition, whose behavior is shown in Figure 271(c),
needs to be executed. A process fragment that will be used for completion of the selected
placeholder is formed by the Select and Create transitions, and stored in the process

fragment place. The functionality of these transitions corresponds to the ones described
earlier for task creation and process fragment selection. The created and selected ele-
ments are coupled to each other in sequential order. The content of the placeholder is
then replaced by the process fragment obtained and the process state is updated by the

Section 6.2 Catalog of process flexibility patterns 343

update compose() function in such a way that the first task in this fragment becomes
enabled.

Implementation From the set of workflow offerings analyzed, only YAWL supports
this pattern through its worklets extension [19]. A worklet is a reusable process fragment
consisting of one or more tasks that can be included in the process at run-time. None
of the other systems investigated, i.e. ADEPT1, Declare, FLOWer or Oracle BPEL PM,
provide any means of realizing of the Underfined Entry pattern. Among CIG modeling
languages, only PROforma provides a similar concept, where at design-time a keystone
construct representing a generic task can be used. However, before deploying the process
definition the keystone has to be specified explicitly. Thus the moment of specification is
postponed not until run-time but until the latest possible moment at design-time.

Issues The repository of fragments used to determine the start task for a given process
instance at run-time should not be empty, i.e. it must contain at least one process fragment
if the placeholder is to be completed by selecting a fragment from the repository rather
than by creating a new process fragment. An empty repository may potentially lead to
process instances blocking.

Solutions When the definition of a placeholder at runtime cannot be completed because
the repository of process fragments is empty, it should be possible to select a process
fragment with empty content. The execution of a placeholder with empty content can be
treated as if this placeholder would not exist or its completion would be skipped.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows an incomplete process definition to be enacted. An underspecified process-
entry fragment must be explicitly marked as a placeholder at design-time, and it should
be possible to complete its definition at run-time either before or when the placeholder is
enabled.

Pattern PF-4 MOMENTARY ENTRY-POINT CHANGE

Description At process initiation, i.e. before the start task prescribed by the process
definition has commenced, there is the possibility to change the entry-point for the process
by modifying the process definition associated with the particular process instance being
created. This pattern characterizes a change to the given process instance and has no
effect on other (current or future) process instances, thus it corresponds to the flexibility
by momentary change type.

Examples
– A patient transported from one hospital to another is accompanied by his/her X-ray

photos. For this patient the X-ray examination should not be performed, and he/she
should immediately proceed to surgery.

– A typical boarding procedure for clients at an airport is modified for premium clients
according to their personal requirements (e.g., the issuing of the boarding pass and visa
arrangement can be omitted to allow the client to proceed to the gate immediately).

Motivation In situations, where at process initiation no suitable start task can be
found in the set of foreseen start tasks and it is not possible to deviate from the prescribed
execution path by ignoring the nominated start task, the prescribed start task and any
subsequent tasks have to be executed until the desired task is reached. The Momentary
Entry-Point Change pattern allows the process definition associated with the given process

344 Chapter 6 Process Flexibility Patterns

instance to be modified in such a way that its execution may start with any task in the
prescribed execution path.

Overview Figure 272 illustrates the graphical notation for the Momentary Entry-Point
Change pattern. The top view depicts two distinct process instances populated from the
same process definition. Each instance has a process definition associated with it that is
used to determine the next task to be executed. The thread of control in each of the process
definitions is illustrated by the shaded triangle and circle respectively. The pattern is to be
applied to a process instance whose execution thread is depicted by the shaded triangle.

BA C D

C D

BA C D

BA C D

Figure 272: Momentary Entry-Point Change pattern

The momentary entry-point change that is performed for one of the process instances,
does not affect the process definition associated with other process instances. The bottom
view illustrates that after task A and task B have been removed from one process instance,
the thread of control associated with this instance is moved to the subsequent task, whilst
other process instances are unaffected.

Context Figure 273 illustrates how the process engine expressed using the CPN for-
malism needs to be extended in order for flexibility for process initiation as demonstrated
by the Momentary Entry-Point Change.

In order to incorporate the functionality for supporting flexibility by momentary change,
we will extend the basic process engine as shown in the Figure 273. For context purposes, we
will modify the name of transition performing the modification of the particular process
instance, however the names of functions used will remain unchanged. Note that the
structure of the engine allowing for momentary changes is uniform for all patterns enhancing
the flexibility by momentary change. The main difference between the realization of these
patterns is the functionality associated with the change possible() and update pi()

functions. In order for the process definition associated with the given process instance to
be changed, a set of conditions incorporated into the change possible() function have
to be satisfied. The update pi() function makes the actual modifications in the process
definition, and whenever necessary also updates the state of the process instance.

In the Momentary Entry-Point Change pattern, the process definition associated with
the process instance stored in the Running instance place which has not commenced yet
can be modified in order to start execution from a task other than the nominated start
task. The change possible() function checks whether there are enabled tasks that can be
executed and whether the task enabled is the nominated start task. This function would
evaluate to False if the execution of the process instance has commenced and the start
task has already been executed.

When the guard associated with the Momentary entry change transition is satisfied, it
can be executed. The update pi() function updates the process instance in the following

Section 6.2 Catalog of process flexibility patterns 345

For a given process instance
a start task that has not yet been executed
can be changed to any subsequent task.

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st)) (pid,m,st)

[change_possible(pid,m,st)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

ProcModel

Running
instance

I/O
ProcInstState

End

Out
ProcInst

OutI/OIn

(pid,m,st)update_pi(pid,m,st)

Momentary
entry change

Process
definition

I/OI/O

Figure 273: Engine enhanced with the Momentary Entry-Point Change pattern

way. First, an arbitrary task from the set of tasks associated with the given process
definition m is selected. This task will be set as the new start task in the original process
definition. All tasks preceding the newly selected start task will not be executed any
more, therefore these tasks and all branches associated with them are removed from the
process model. Then the process instance state is updated, i.e. the newly selected start
task becomes enabled.

Note that this engine is realized based on the assumption that momentary changes are
performed on-the-fly, i.e. after the process instance has been created.

Implementation ADEPT1 and Declare allow the Momentary Entry-Point Change
pattern to be applied after a process instance have been created and before the start
task prescribed by the process definition has been enacted. In ADEPT1, a desired task
cannot be initiated directly and requires a number of delete operations to be performed.
In Declare, a start task can be deleted and execution may start from another task. None
of FLOWer, Oracle BPEL PM, YAWL or the clinical guideline languages allow for changes
to be performed at run-time at the process instance level.

Issues When the beginning of a process is being removed from the process definition
in order for process execution to commence from another task, the problem may arise
that data elements are missing that were previously provided by the tasks that have been
removed.

Solutions In order to allow the beginning of a process to be inconsequentially removed,
each of the tasks in a process definition that may play the role of a start task must be
associated with a default value which could be used for enabling the execution of the given
task if no other input has been or can be provided.

Evaluation Criteria Full support for this pattern is demonstrated by an offering that
allows any task (including the start task) to be deleted from the process model associated
with a given process instance at run-time. It should be possible to mark a task other than
the dedicated start task as the entry point to the process definition.

Pattern PF-5 PERMANENT ENTRY-POINT CHANGE

Description At run-time, the possibility exists to permanently change the entry point
for a process by modifying the process definition. This pattern characterizes a change

346 Chapter 6 Process Flexibility Patterns

that affects all future process instances directly and requires existing process instances to
migrate from the old to the new process definition, thus it corresponds to the flexibility by
permanent change type.

Examples
– Visitors traveling to Eastern Europe are expected to acquire a visa before making ticket

reservations. For countries that joined the European Union, the visa requirement is
abolished. Visitors already possessing a visa continue traveling as usual. For new visitors
however, the travel organization may start directly with ticket reservation.

– The masters program for international students used to start with a half-year quali-
fication period. Due to financial reasons, the reorganization of a school is performed
requiring canceling the half-year qualification program for new generations of students.
This change aims at increasing the level of accepted applicants, and does not affect the
students who already follow the homologation program.

Motivation When the start task identifying the entry point to a process definition
needs to be removed for all future process executions, there may arise the need to per-
manently modify the process definition by removing the nominated start task. Such an
adjustment may be more efficient than applying the Momentary Entry-Point Change pat-
tern (described on page 343) to each newly created process instance. The Permanent
Entry-Point Change pattern allows the process definition to be modified at a type level
and the execution of process instances to start from a task subsequent to the nominated
start task.

Overview Figure 274 illustrates the graphical notation for the Permanent Entry-Point
Change pattern. The top view depicts the execution state of several process instances
(based on the same process definition) before applying the pattern.

BA C D

C D

Figure 274: Permanent Entry-Point Change pattern

The bottom view illustrates that for all process instances the process definition has
been modified by removing task A and task B. The thread of control associated with the
process instances where these tasks have not been executed yet is moved to the subsequent
task C. The process instance visualized by the square that has already passed this point is
not affected by the change.

Context Figure 275 illustrates how the process engine expressed using the CPN for-
malism needs to be extended in order to cater for the Permanent Entry-Point Change
pattern.

In order to incorporate the functionality for supporting flexibility by permanent change,
we will extend the basic process engine as shown in the Figure 275. For context purposes,
we will modify the name of transition performing the modification of the particular process
instance, however the names of the functions used will remain unchanged. Note that the
structure of the engine allowing for changes at the type level is uniform for all patterns

Section 6.2 Catalog of process flexibility patterns 347

enhancing the flexibility by permanent change. The main difference between the realization
of these patterns is the functionality associated with the change possible(), modify m(),
transferposisble() and migrate() functions. In order for the process definition to be
changed on the type level, a set of conditions incorporated into the change possible()

function have to be satisfied. The modify m() function makes the actual modifications in
the process definition. After the process definition has been modified, the migration of
existing process instances may need to be performed. The transfer possible function
checks whether the migration can be performed, and if it can, then the migrate() function
updates the process definition and process state associated with a given process instance.

In the Permanent Entry-Point Change pattern, the possibility to modify the start
task associated with the process definition at run-time. The Permanent entry change

transition associated with this functionality can be executed only if there exist a task that
can be selected as a new start task. This realization assumes that the process definition
must contain at least two tasks, including the start task and the end task. The modify m()

function changes the original start task to the new start task that has been selected on a
random basis from the set of available tasks. The original start task, all tasks preceding
the newly selected start task as well as any related branches are removed from the process
definition.

The migration of existing process instances in the Running instance place to the new
process definition can be performed only if there are enabled tasks in the process instance.
For the process instances that have been initiated already, this change is inconsequential,
however for process instances that have not yet commenced the change performed may
impact the process execution. The actual migration strategy defining the mapping of ex-
isting process instances to the new process definition is encoded in the migrate() function.
Process instances whose original process definition m differs from the new process definition
newm may either proceed with execution, be aborted, restarted or transferred to the new
definition.

An entry change is performed
on the type level.

newm

modify_m(m)

m

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st)) (pid,m,st)

[change_possible(m)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O
ProcModel

Running
instance

I/O

End

Out
ProcInst

OutI/O

I/O

In

newm

(pid,m,st) migrate(pid,m,newm,st)

Migrate

[transfer_possible(m,newm)]

Permanent
entry change

ProcInstState

All non-complying
to the new process definition
process instances are migrated.

Figure 275: Engine enhanced with the Permanent Entry-Point Change pattern

Implementation ADEPT1 and Declare allow the Permanent Entry-Point Change

348 Chapter 6 Process Flexibility Patterns

pattern to be applied at run-time in order to adjust a process description. Such a change
implies the need for process instance migration, which applies both to existing process
instances that have not yet commenced and to all future process instances. Existing process
instances ignore the change introduced and continue to execute. In ADEPT1, it is not
possible to change the entry point for a process in one step, but tasks must be removed
one-by-one until the desired start task is reached. Definition of a new process in YAWL via
worklets means that this worklet is available to all existing and future process instances via
a shared repository. FLOWer, Oracle BPEL PM, and the CIG modeling languages offer
no support for permanent changes to process during execution.

Issues When existing process instances need to be migrated to a new process definition,
a problem known as the ‘dynamic change bug’ may occur [6]. The dynamic change bug
is characterized by errors that may occur when transferring an old process definition to a
new one (e.g., tasks may be duplicated, omitted, or even deadlock situations may arise).

Solutions In order to address the dynamic change bug problem, an approach proposed
in [6,10,86,187] can be used. For a given process definition the change region, i.e. the part
of the process definition that is affected by the change, is calculated. Each process instance
is analyzed in regard to the identified change region. If the thread of control in a process
instance is outside of this region, the transfer to the new process definition can be safely
performed, otherwise the transfer is postponed until the thread of control in the process
instance leaves this region.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows a task (including the start task) to be deleted from the process definition at
run-time, and provides migration facilities for mapping existing process instances from the
old to the new process definition. It should be possible to mark a task other than the
nominated start task as the new entry point to the process definition.

6.2.3 Flexible termination

This group of patterns aims to describe flexibility options when terminating a business
process on a premature basis. Figure 276 illustrates the scope of patterns presented in this
subsection and their relationship to different types of flexibility. We will traverse cells in
the emphasized row from left to right and analyze the mapping of the concept of flexible
process termination for each of the flexibility types.

Flexibility by

Design Deviation Underspecification Momentary

Change

Permanent

Change

Flexible initiation Alternative

entry points

Entrance

skip

Undefined entry Momentary

entry change

Permanent

entry change

Flexible termination Alternative

exit points

Termination

skip

Undefined exit Momentary

exit change

Permanent

exit change

Flexible selection

Flexible reordering

Flexible elimination

Flexible extension

Flexible

concurrency

Flexible repetition

Figure 276: Process Flexibility Matrix: flexible termination

Section 6.2 Catalog of process flexibility patterns 349

Usually a process definition has an explicit end task, which needs to be executed for a
process instance to complete. Such single-exit processes force the execution of all process
instances to follow all of the steps prescribed by the process definition until the end task
is reached. In some situations, the execution of the end task may no longer be needed at
run-time or the execution of the process may need to complete before the specified end task
has been reached. Depending on the moment at which the need for an alternative process
termination point is recognized and the manner in which it is achieved, we distinguish
the following five patterns: Alternative Exit Points, Termination Skip, Undefined Exit,
Momentary Exit Change and Permanent Exit Change.

Although these patterns all describe means of achieving premature process termination,
they differ in terms of the moment at which the need for such flexibility is anticipated. Of
these five patterns, the Alternative Exit Points pattern is relevant at design-time. In this
pattern, the need for premature process termination is recognized during process design and
all possible options for its realization are incorporated in the process definition. The other
four patterns are characterized by the fact that the actual decision in regard to the selection
of the process termination point is taken at run-time. In the Termination Skip pattern,
the need to deviate from the nominated end-task is identified after process initiation.
In the Undefined Exit pattern, the need for flexible process termination is recognized at
design-time, however the actual realization of this decision is postponed until the latest
possible moment at run-time. In the Momentary Exit Change and Permanent Exit Change
patterns, the need for flexible process termination is anticipated and realized at run-time
by modifying the process definition at the instance and type levels respectively.

Pattern PF-6 ALTERNATIVE EXIT-POINTS

Description A process definition specified contains more than one end task, execution
of any of which at run-time results in the termination of a given process instance. The
availability of alternative exit points in a process definition gives flexibility in terminating
the process execution on the premature basis. This pattern characterizes a need for flexible
process termination that is anticipated at design-time, thus it corresponds to the flexibility
by design type.

Examples
– The 6-year education program can be terminated after four, five or six years of study

corresponding to attainment of the bachelor, engineer and masters levels respectively.
– The treatment of the cancer consists of several steps: where a patient has to undergo a set

of chemotherapies, followed by ablation. A patient may undergo as many chemotherapies
as he/she chooses and may stop the treatment at any point if the side-effects become un-
bearable. For patients who have recovered from the disease after several chemotherapies
the treatment process stops immediately.

Motivation Typical process definitions contain a single end task. Once initiated such
processes may complete only after the nominated end task has been completed. Under
conditions which are different from the normal flow of tasks, it might be necessary to pre-
maturely terminate process execution. The Alternative Exit-Points pattern allows several
end-tasks to be incorporated in the process definition at design-time, thus providing alter-
native exit points for process instances. The completion of an end task from the specified
set of nominated end-tasks results in the process instance terminating.

Overview Figure 277 illustrates the graphical notation for the Alternative Exit-Points
pattern. The top view corresponds to a rigid process with a single exit point, before

350 Chapter 6 Process Flexibility Patterns

applying the pattern. The bottom view illustrates the process definition after applying the
pattern. Several alternative exit points are now defined, any of which can be selected to
terminate the process via the related end task. The process definition in the bottom view
contains a static part (i.e. task A), which is fixed and must be executed for any process
instance, while a dynamic part consisting of tasks B and B, C, D defines an alternative way
of terminating the process instance.

BA C D

BA C D

Figure 277: Alternative Exit-Points pattern

Context Figure 278 illustrates the process engine expressed using the CPN formal-
ism and how the Alternative Exit-Points pattern can be realized in order to provide for
flexibility in process termination. To incorporate alternative end tasks into the process
definition, the original ProcModel type needs to be changed to the ProcModel’ type in
order to include a set of end-tasks rather than a single end-task, as shown below:

colset ProcModel’ = product ModelID * TaskID * TaskIDs * Tasks * Arcs;

In the basic process engine, a process instance stored at the Running instance place can
be terminated when no enabled tasks remain. When one of the alternative end tasks
has been selected for execution, no tasks can be executed afterwards, and the execution
of the process instance can be completed by executing the Complete process instance

transition.

If during process execution
one of the alternative end-tasks
has been executed, no tasks may
execute any more and the
process instance can be considered
completed.

To incorporate multiple end-points
the ProcModel' includes a set of
end-tasks rather than a single end-task:
colset ProcModel' = product ModelID * TaskID * TaskIDs * Tasks * Arcs;

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st))
(pid,m,st)

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O

ProcModel'

Running
instance

I/O

ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

Figure 278: Engine enhanced with the Alternative Exit-Points pattern

Implementation None of the systems analyzed except for Declare allow multiple
tasks in a model to be marked as end tasks. YAWL explicitly forces all end tasks to be
synchronized into a single exit point. Oracle BPEL PM, ADEPT1 and FLOWer operate
with structured models, which are characterized by a single start task and a single end
task, however in Oracle BPEL PM it is also possible to introduce a <terminate> activity

Section 6.2 Catalog of process flexibility patterns 351

in order to terminate process execution earlier. In Declare, different tasks can be associated
with a process termination condition. After executing a task whose process termination
condition is satisfied, no further tasks in the process definition can be executed. Amongst
the considered CIG modeling languages, only PROforma allows process termination condi-
tions to be associated with several tasks in a process. After executing a task whose process
termination condition has been satisfied, the process terminates.

Issues When a decision to terminate a process instance by selecting one of the nominated
end tasks is taken, there may exist tasks that are currently executing or which are enabled
and may execute later. Early termination of tasks that have commenced but not yet
completed may result in loss of data.

Solutions Depending on whether the data is produced by tasks executed at the moment
of process instance termination, the decision may be taken either to allow these tasks to
complete or to abort their execution and loose the data.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows several tasks to play the role of an end task, the execution of any of which
causes a corresponding process instance to terminate.

Pattern PF-7 TERMINATION SKIP

Description During execution, i.e. after a process instance has been created, there is
the possibility of deviating from the execution path prescribed by the process definition by
ignoring all subsequent tasks. The act of skipping the execution of the currently enabled
and in future to-be-enabled tasks results in the premature termination of a process instance.
This has no effect on the process definition, thus this pattern corresponds to the flexibility
by deviation type.

Examples
– In the middle of the investigation, the patient’s complaint disappeared, therefore the

patient decided to stop the treatment process. All prescribed tests have been skipped.
– The recruitment process for a candidate, who did not pass the capability test, is termi-

nated without affecting the established procedure for recruitment.

Motivation A typical process definition contains a set of tasks that have to be exe-
cuted until the end of the process is reached. In some situations, the process needs to be
terminated before the end task prescribed by the process definition has been reached. This
situation may even occur if at design-time the possibility for premature process termina-
tion has been foreseen and multiple alternative exit tasks have been defined (as described
in the Alternative Exit Points pattern on page 349), however the desired end-task has not
yet been reached. The Termination Skip pattern allows the execution of a given process
instance to end at a particular task by skipping all currently enabled and in future to be
executed tasks.

Overview Figure 279 illustrates the graphical notation for the Termination Skip pat-
tern. The top view shows the process instance before applying the pattern. The execution
thread in this process instances indicates that task C is enabled. The bottom view shows
that after applying the pattern the thread of control has been moved beyond the task
D, which corresponds to process termination. Note that the process definition remains
unchanged.

352 Chapter 6 Process Flexibility Patterns

BA C D

BA C D

Figure 279: Termination Skip pattern

Context Figure 280 illustrates the process engine expressed using the CPN formalism
and shows how the Termination Skip pattern needs to be realized in order to support
flexible process termination.

At any point in time during run-time
the termination skip can
be performed, resulting in the state in
which no tasks may be executed any more
(termination of the process instance)

tid::tids

tids

tids

tids

update_dev(pid,m,st)

(pid,m,st)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

update_exec(tid,pid,m,st) (pid,m,st)

Termination
skip

[deviation_possible(pid,m,st)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st),
tid=exectask(pid,m,st)]

Log

[]

TaskIDs

Begin

In
ProcInst

Process
definition

I/O

ProcModel

Running
instance

I/O

ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

Figure 280: Engine enhanced with the Termination Skip pattern

In order to realize the functionality associated with flexibility by deviation, the model
of the process engine is extended with a transition performing the deviation operation and
the Log place which illustrates which tasks have been executed (thus providing a means for
tracking the deviations from the prescribed execution order). When describing the behavior
of patterns facilitating flexibility by deviation, we will use a set of functions with uniform
names, and will adjust the content of these functions in order to incorporate the desired
behavior. As such, the deviation possible() function incorporates a set of conditions
that have to be satisfied in order to allow for deviation operations. The update dev()

function updates the process instance state but has no impact on the process definition
associated with the given process instance.

Due to the introduction of the Log place, the structure of the functions associated with
enabling and execution of the Execute task transition have been slightly modified. A new
function exectask() has been introduced, which non-deterministically selects a task from
the set of currently enabled tasks for the execution. The update exec() function updates
the process instance state after the selected enabled task has been executed.

Unlike other extensions to the process engine to support momentary and permanent
changes, the extension of the process model presented in Figure 280 represents a mix of
the engine functionality and the environmental/user choice causing the deviation from the
normal execution sequence. Depending on the engine realization, these extensions can be

Section 6.2 Catalog of process flexibility patterns 353

incorporated as explicit functionality options or supported implicitly.
In the Termination Skip pattern, for running process instances whose process defini-

tions and current states are stored in the Running instance place, there is the possibility
either to execute a currently enabled task or to skip all current and future tasks by exe-
cuting the Termination Skip transition. The execution of this transition is equivalent to
completion of the process instance on a premature basis. The guard for the Termination

Skip transition specifies that it can only be enabled if there are tasks enabled in the cur-
rent state. By executing this transition, it is possible to jump from any execution state
to the process instance termination state in which no further tasks can be executed. The
termination state is calculated using the update dev() function. In particular, the state of
a given process instance is set to empty (i.e. no tasks can be executed any more), therefore
transition Complete process instance becomes enabled.

Implementation Support for the Termination Skip pattern is provided by Oracle
BPEL PM, FLOWer, and Declare. In FLOWer, a process instance can be terminated
by executing a skip operation at the level of the root plan. In Oracle BPEL PM, an
event handler can be defined at the outer scope of the process to perform the Terminate

activity once a particular event occurs. In Declare, the process can be terminated after all
mandatory constraints have been satisfied. The CIG modeling languages offer no support
for this pattern.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that provides an explicit operation to skip several tasks at once, resulting in the thread of
control being moved to the end of the process.

Pattern PF-8 UNDEFINED EXIT

Description A process definition contains a placeholder, associated with the end of
the process, that is intentionally left underspecified. During process initiation there is the
possibility to complete the specification of this placeholder with an appropriate end task.
This pattern characterizes the need for flexible process termination recognized at design-
time, but whose actual realization occurs at run-time, thus it corresponds to the flexibility
by underspecification type.

Examples
– Students starting a high-school education are obliged to follow a basic set of courses.

They may select additional elective subjects when their individual academic goals become
clear.

– For patients arriving at the emergency center only the admittance procedure is defined:
the patient’s insurance is checked and a questionnaire is filled in. The subsequent inves-
tigative or treatment steps depend on the state of the patient and are defined next.

Motivation In many situations, it is not practical to explicitly specify how the process
execution must end. This may either be because the actual end of the process is unknown or
because it may vary for individual process instances. The Undefined Exit pattern allows the
specification of the end of a process to be postponed until run-time, when more information
related to the operational context becomes available.

Overview Figure 281 illustrates the graphical notation for the Undefined Exit pattern.
The top view shows a process instance where the end of the process represented by a

354 Chapter 6 Process Flexibility Patterns

placeholder is enabled. In order to complete the process, the placeholder needs to be
defined. The bottom view shows that after applying the pattern, task C defining the
content of the placeholder becomes enabled. Note that tasks A and B represent the static
part of the process, which are to be executed for each process instance. The content of
the placeholder may however vary for different process instances, e.g., instead of task C a
process fragment consisting of tasks C and D could be used.

BA

BA

C

Figure 281: Undefined Exit pattern

Context The semantics of completing the placeholder representing the end of the process
is the same as for any other placeholder. Once the placeholder is enabled, its definition
needs to be completed by the placeholder engine depicted on Figure 262(b) in a similar
manner to how it has been described in the Undefined Entry pattern (cf. page 340). In
order to allow the process end to be defined at run-time, the end-task associated with the
process definition has to be underspecified at design-time (its task type must be set to the
placeholder value).

Implementation Of the set of workflow offerings analyzed only YAWL supports this
pattern by means of worklets [19]. None of other systems investigated, i.e. ADEPT1,
Declare, FLOWer or Oracle BPEL PM provide means for realization of the Undefined Exit
pattern. Among CIG modeling languages, only PROforma provides a similar concept,
where at design-time a keystone construct representing a generic task can be used. However,
before deploying the process definition the keystone has to be specified explicitly. Thus
the moment of specification is postponed not until run-time but until the latest possible
moment at design-time.

Issues The same issues as identified for the Undefined Entry pattern (cf. page 340)
apply here also.

Solutions See solutions identified for the Undefined Entry pattern.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows incomplete process definitions to be enacted. An underspecified process-end
fragment must be explicitly marked by a placeholder at design-time, and it should be
possible to complete its definition at run-time either before or at the time that the thread
of control reaches once the placeholder.

Pattern PF-9 MOMENTARY EXIT-POINT CHANGE

Description During execution, i.e. after process initiation, there is the possibility
of changing the exit-point for a process by temporarily modifying the process definition
associated with the given process instance. In this pattern, the change applies only to a
specific process instance and has no effect on other (existing and future) process instances,
thus it corresponds to the flexibility by momentary change type.

Examples

Section 6.2 Catalog of process flexibility patterns 355

– For a patient who developed signs of high blood-pressure an appointment made for an
operation has to be canceled and the medication previously prescribed by the doctor has
to be terminated immediately.

– The employment of a PhD student who has been ill for more than two years is termi-
nated. As a consequence of this all subscriptions for new courses has to be stopped and
involvement of all ongoing courses for the given student is terminated.

Motivation A typical process definition contains a single exit task, which needs to be
executed in order for the process to terminate. Although it is possible to include several
alternative exit-points in a process definition at design-time (as the Alternative Exit-Points
pattern on page 349 describes), there exists the possibility that the desired exit-point will
not be found in the set of exit tasks defined. When no suitable exit task for a terminating
process instance can be found at run-time, and it is not possible to deviate from the
execution path prescribed by applying the Termination Skip pattern (cf. page 351), it
may be necessary to temporarily modify the process definition in order to allow the given
process instance to terminate prematurely. The Momentary Exit-Point Change pattern
allows the execution of a process instance to be instantly completed at any point during
process execution by modifying the nominated end task.

Overview Figure 272 illustrates the graphical notation for the Momentary Entry-Point
Change pattern. The top view depicts two distinct process instances populated from the
same process definition before applying the pattern. The pattern is applied to the process
instance whose execution thread is depicted by the shaded triangle. The bottom view
shows that for the given process instance tasks C and D have been removed from the
process definition, and the thread of control has been to moved to the end of the process.
This change does not affect the other process instance.

BA C D

BA C D

BA

BA C D

Figure 282: Momentary Exit-Point Change pattern

Context Figure 283 expresses the process engine using the CPN formalism and shows
how the Momentary Exit-Point Change pattern is realized.

In order to incorporate the flexibility facilitated by the Momentary Exit-Point Change
pattern, the basic engine is extended as has been described earlier for the Momentary
Entry-Point Change pattern on page 343. The Momentary exit change transition can be
executed for an initiated process instance that is stored in the Running instance place
and which has not yet reached the end task yet.

Any currently enabled task that is different to the nominated end task can be selected as
a new end-task. By executing the Momentary exit change transition, the original process
definition associated with the given process instance is modified. The update pi() function
sets the currently enabled task to be a new end-task, ensuring that all follow-up tasks and

356 Chapter 6 Process Flexibility Patterns

Any task that has not yet been executed
and which preceeds the nominated exit task
can be marked as the new end task.

update_pi(pid,m,st) (pid,m,st)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st)) (pid,m,st)

Momentary
exit change

[change_possible(pid,m,st)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O
ProcModel

Running
instance

I/O
ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

Figure 283: Engine enhanced with the Momentary Exit-Point Change pattern

arcs are removed from the process definition associated with the given process instance.
The process instance state does not change in this case and therefore is not modified.

Implementation ADEPT1 and Declare allow the Momentary Exit-Point Change
pattern to be applied after process initiation. In ADEPT1, all tasks subsequent to a
particular point in the process definition have to be removed one-by-one. The removal
in ADEPT1 corresponds to disabling of tasks, i.e. after deleting a task a user still sees
where the deleted task resided but cannot execute it. In Declare, either all unnecessary
tasks have to be removed or a condition associated with the desired end task needs to be
modified such that it becomes the process instance termination condition. In YAWL, when
a desired point in the process has been reached, an exlet [21] can be called which will result
in the termination of the given process instance. In FLOWer, Oracle BPEL PM and CIG
modeling languages, no changes to the process definition can be performed at run-time on
a temporary basis.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows any group of tasks (including the end task) to be deleted from the process
definition associated with a given process instance at run-time in a single step. It should
be possible to mark any task other than the nominated end task as an exit point from the
process definition.

Pattern PF-10 PERMANENT EXIT-POINT CHANGE

Description At run-time, there is the possibility to permanently change the exit point
for a process by modifying the process definition. In this pattern, the change performed
directly affects all future process instances, while existing process instances may require
migration from the old to the new process definition, thus it corresponds to the flexibility
by permanent change type.

Examples
– The procedure of obtaining a visa has been modified for all applicants. Since the intro-

duction of electronic applications, all documents are handled by an external organization,
and no interviews at the embassy are required. All appointments made for interviews
are canceled and no new appointments will be made from this point.

Section 6.2 Catalog of process flexibility patterns 357

– In order to save costs, a company producing products on demand decided to eliminate
the number of final tests of the product functionality. This change affects all ongoing
and future product production lines.

Motivation Due to changes in the operational environment, there may arise the need to
modify the end of a process when completing the execution of current and future process
instances earlier than originally defined. Although the Momentary Exit-Point Change
pattern can be used for modifying an exit-point for a specific process instance, it requires
the changes to be made for each process instance separately. The Permanent Exit-Point
Change pattern offers a more efficient way of modifying the exit-point associated with the
process definition by changing it at the type level.

Overview Figure 284 illustrates the graphical notation for the Permanent Exit-Point
Change pattern. The top view depicts the execution state of several process instances
populated based on the same process definition before applying the pattern. The perma-
nent entry change performed at the type level (eliminating tasks C and D) affects process
definition associated with all existing process instances, as shown on the bottom view.

BA C D

BA

Figure 284: Permanent Exit-Point Change pattern

Context Figure 285 illustrates an engine extended with the Permanent Exit Change
pattern, which enhances flexibility in process termination, using the CPN formalism. The
process engine has been extended using the structure described earlier for the Permanent
Entry-Point Change pattern on page 345.

The content of the change possible() function defines that the Permanent exit

change transition is enabled only when the process model contains more than two tasks
(including the start and end tasks). The modify m() function picks an arbitrary task from
the set of the tasks associated with the process definition being modified, sets it as the new
end task, and removes all succeeding tasks and related branches.

The process definition m associated with a process instance stored in the Running

instance place can be replaced by the migrate() function with the new process defi-
nition newm if the change performed does not course enabling problems afterwards. If a
task that has not been yet executed has been selected as the new start task, then the
migration can be performed directly. However, if this task has been executed already, the
change either will be inconsequential or will require the process instance to be restarted.
This highly depends on the migration strategy chosen for the realization of the migrate()

function.

Implementation ADEPT1 and Declare are the only systems of those analyzed which
allow the Permanent Exit-Point Change pattern to be applied at run-time in order to
modify the end task in the process description. This change implies the need for process
instance migration. Process instances which have not yet commenced or which have not
reached the new exit task are migrated directly to the new process definition, while the
process instances that have passed this execution point are terminated. In YAWL, an exlet

358 Chapter 6 Process Flexibility Patterns

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st)) (pid,m,st)

Permanent exit change

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O
ProcModel

Running
instance

I/O
ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

[transfer_possible(m,newm)]

Migrate

[change_possible(m)]
newm

migrate(pid,m,newm,st)(pid,m,st)

modify_m(m)

m

newm

Any task preceding the exit task which
has not yet been executed can be marked
as the end task. The change made
is reflected in the process definition, and
all existing process instances are migrated
according to the migrating strategy utilized.

Figure 285: Engine enhanced with the Permanent Exit Change pattern

can be called that allows all existing process instances to be terminated. In FLOWer,
Oracle BPEL PM and the CIG modeling languages there is no possibility of changing the
end task in a process definition on a permanent basis at run-time.

Issues Identical to the issues identified for the Permanent Entry-Point Change pattern
(cf. page 345).

Solutions See the solutions identified for the Permanent Entry-Point Change pattern.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows several tasks in a process (including the nominated end task) to be deleted
from the process definition in a single step, and which provides support for process instance
migration.

6.2.4 Flexible selection

This group of patterns aims to provide flexibility when selecting an execution path ap-
propriate to the operational circumstances. Figure 286 illustrates the scope of patterns
presented in this subsection and their relationship to different types of flexibility.

In sequential processes, all tasks have to be executed in a predefined order. Such
processes are very rigid and offer no possibility for deviating from the default execution path
and selecting an appropriate alternative to it. In some situations, different execution paths
may need to be incorporated in the process definition in order to allow a knowledgable user
to select a suitable execution alternative during process execution. The flexible selection
patterns address different ways of realizing choices between several alternative tasks, each
of which corresponds to an alternative execution path. The main purpose of these patterns
is to promote the availability of multiple alternatives and the ability to make a choice
between them, rather than to specify the exact semantics of such a choice. In order to
specify the type of choice explicitly, one has to consider different variants of branching
control-flow patterns described in Chapter 4.

Depending on the moment at which the need for realizing the choice between alterna-
tive tasks is recognized and the manner in which it is achieved, we distinguish the following

Section 6.2 Catalog of process flexibility patterns 359

Flexibility by

Design Deviation Underspecification Momentary

Change

Permanent

Change

Flexible initiation Alternative

entry points

Entrance

skip

Undefined entry Momentary

entry change

Permanent

entry change

Flexible termination Alternative

exit points

Termination

skip

Undefined exit Momentary

exit change

Permanent

exit change

Flexible selection Choice Task

substitution

Late selection Momentary

choice

insertion

Permanent

choice

insertion

Flexible reordering

Flexible elimination

Flexible extension

Flexible

concurrency

Flexible repetition

 Figure 286: Process Flexibility Matrix: flexible selection

five patterns: Choice, Task Substitution, Late Selection, Momentary Choice Insertion, and
Permanent Choice Insertion. Of these five patterns, the Choice pattern corresponds to
the design-time choice. In this pattern, the need for several alternative execution paths
is recognized and incorporated into the process definition at design-time. The Task Sub-
stitution pattern relates to situations when the need for an alternative execution path is
recognized at run-time, i.e. after the process instance creation, and is realized by deviating
from the prescribed execution path rather than by modifying the corresponding process
definition. In the Late Selection pattern, the need for alternative execution paths is recog-
nized at design-time, however the actual realization of the chosen execution alternative is
postponed until the latest possible moment at run-time. The Momentary Choice Insertion
and Permanent Choice Insertion patterns correspond to the realization of future decisions
related to the selection of an appropriate execution path by introducing a choice construct
into the process definition at run-time at the instance and type levels respectively.

Pattern PF-11 CHOICE

Description A process definition specified at design-time contains a choice construct
whose execution at run-time results in the selection of one out of several possible tasks.
Such a decision may depend, for example, on the evaluation of a particular data expression
or the availability of an external trigger. This pattern characterizes the need for flexible
selection of an execution path which is anticipated at design-time, thus it corresponds to
the flexibility by design type.

Examples
– When enrolling in a driving course a student has to decide what course of education

he/she wants to follow: in-class lectures or self-study.
– A patient visiting a doctor may choose their preferred method of treatment: conventional

medical treatment or homeopathic.

Motivation In order to allow for the flexible selection of an execution path from a
set of possible alternatives, the decision points associated with the selection of the task
to be executed next can be incorporated in the process definition at design-time. By
selecting electing a task from the set of available options at run-time, a corresponding
execution path becomes enabled. Such choices are common in practice as has already been

360 Chapter 6 Process Flexibility Patterns

illustrated earlier by the branching class of the control-flow patterns (cf. page 122) and the
(Deterministic XOR-Split and Non-deterministic XOR-split CPN patterns (cf. page 35).
The decision-making may be either non-deterministic or based on the status of a data
condition associated with a particular branch. Although multiple options may potentially
be selected by a user, in this pattern we assume that a user makes an exclusive choice (cf. the
Exclusive Choice WCF-pattern on page 125). The Choice pattern facilitates flexibility
in selecting an appropriate execution path by defining a decision point in the process,
associating a corresponding XOR-split construct with it and defining a set of alternative
tasks which may be selected from.

Overview Figure 287 illustrates the graphical notation for the Choice pattern. The top
view illustrates the original process definition. Before applying the pattern, in this process
definition after task B has completed task C always needs to be executed. The bottom
view shows the process definition after applying the pattern. In this process definition, an
alternative to task C, i.e. task E, is incorporated. After completing task B, a user has to
decide which task to execute next, thus selecting either task C or task E.

BA C D

BA C D

E

Figure 287: Choice pattern

Context Figure 288 illustrates the basic process engine which incorporates the function-
ality for supporting the Choice pattern. In order realize this pattern, the process definition
used as the basis for process initiation has to include a task after whose execution of which
a choice of one out several alternative branches needs to be performed. For instance, in a
process where after task B either task C or task E needs to be executed, the process model
needs to be defined as follows: the type of the split-connector associated with task B has to
be set to “XOR” (i.e. the task definition should be defined as (‘B’,generic,none,XOR)),
and two arcs representing alternative branches have to be added to the list of arcs asso-
ciated with the process definition (i.e.(B,C),(B,E)). The Execute task transition after
executing the currently enabled task (B) calculates the new process instance state by means
of the ns() function. For this, the type of the split-connector of the currently executed
task is evaluated, and if it corresponds to the XOR-split, one of the subsequent tasks is
chosen. Since we abstract from the data perspective, in this realization a task is selected
on a random basis.

Implementation All of the systems analyzed allow the Choice pattern to be realized.
In YAWL, the type of the split is associated with a task, and evaluated after it has com-
pleted. For an exclusive choice it has to be set to ‘XOR’ in order for an exclusive choice to
be realized. In ADEPT1, in order for such choice to be defined, a dedicated construct needs
to be inserted and in each of the branches a task from a predefined set of templates needs
to be selected. The number of alternatives can be increased by adding extra branches. In
Oracle BPEL PM, a task cannot be associated with a connector type, therefore in order to
represent the XOR-split, a task must be followed by the <switch> construct with multiple
cases, each representing an alternative branch (cf. Section 4.3.2). In FLOWer, a choice can

Section 6.2 Catalog of process flexibility patterns 361

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,st)

[match(mid,m)] [not(existsEnabledTask(pid,m,st))]

ProcInst

ProcModel

Running
instance

I/O
ProcInstState ProcInst

I/O

Create
process
instance

Begin

InIn

Complete
process
instance

End

OutOut

Execute
task

(pid,m,ns(pid,m,st))

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Process
definition

I/OI/O

Figure 288: Basic process engine: support for Choice

be specified either by means of a plan of the user-decision type or the system-decision type.
In Declare, both deterministic and non-deterministic choices can be realized by means of
constraints. Having multiple unconstrained tasks enables a non-deterministic choice, while
by defining constraints for each of the tasks, a choice between them becomes enabled. In
CIG modeling languages (cf. Section 4.3.3) GLIF and EON, there are dedicated constructs
that can be used to denote an exclusive choice in the process definition. Asbru achieves
such behavior by means of the If-then-else plan. In PROforma, there is a dedicated
decision construct that allows one or more options to be selected at run-time.

Issues Depending on the number of options available and the conditions for defining the
number of options which will execute at the same time, different types of choice constructs
are possible. Having only one, several or all options selected, may require the completion
of the selected options to be synchronized.

Solutions In order to know when to synchronize execution options offered by the choice
construct, one has to keep track of the branches selected by means of Boolean variables as
described in the Structured Synchronizing Merge and Local Synchronizing Merge control-
flow patterns (cf. page 148 and page 150 respectively).

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that provides a decision construct which allows the selection of one of several alternative
tasks to be included in the process definition at design-time.

Pattern PF-12 TASK SUBSTITUTION

Description During execution, i.e. after a process instance has been created, there
is the possibility to deviate from the execution path prescribed by the process definition
by substituting the currently enabled task with another task contained in the process
definition. Consequently, the enabled task is ignored and another task is executed instead.
This has no effect on the process definition and other process instances, thus this pattern
corresponds to the flexibility by deviation type.

Examples
– A student following a course at the driving school is unable to attend a lecture. Instead,

he/she studies the lecture material at home using the material provided for self-education
or for e-distance learning.

– For a patient who develops an allergy to penicillin, an alternative antibiotic treatment
can be made available.

362 Chapter 6 Process Flexibility Patterns

Motivation The Choice pattern allows execution alternatives that have been foreseen
to be included in the process definition at design-time. However, it is possible that not all
execution options have been foreseen. Therefore, at run-time there may arise the need to
execute a task that is not currently enabled but which is included in the process definition.
The Task Substitution pattern promotes flexibility by deviation by allowing a currently
enabled task to be substituted with another task in the process definition. Note that such
a deviation only affects the execution order of tasks and does not result in the process
definition being modified.

Overview Figure 289 illustrates the graphical notation for the Task Substitution pat-
tern. The top view shows that a process instance, in which task C is enabled, before
applying the pattern. The bottom view shows that instead of executing task C, a decision
to execute another task E has been taken by moving the thread of control from task C to
task E. Task E is a generic representation of any task contained in the process definition.
After executing this task the thread of control progresses to the task D.

BA C D

BA C D

E

Figure 289: Task Substitution pattern

Context Figure 290 illustrates the basic engine, which is enhanced with the Task Substi-
tution pattern, using the CPN formalism. In this diagram, the Substitute task transition
is added in order to execute a different task to the currently enabled task. The tid variable
represents the task to be executed, which is selected non-deterministically by means of the
dev action() function. After executing this task, the new state of the process instance is
calculated by means of the update dev() function. In this state, task(s) subsequent to the
originally enabled task are enabled. Note that since task substitution does not affect the
process definition, the only way to track the effect of its operation is to record tasks that
have been executed. For this purpose, the Log place is added. Whenever a task has been
completed, a record containing the id of the task is added to the log.

Implementation Of all of the systems analyzed only FLOWer and Oracle BPEL PM
offer some support for this pattern. In FLOWer, this pattern is not supported directly,
but a similar result can be achieved by invoking a required task and performing a skip
operation for moving the thread of control to a subsequent task. In Oracle BPEL PM,
when a task becomes enabled, an exception needs to be raised, which can be handled by
executing an alternative task.

Issues When substituting the currently enabled task with another task contained in the
process definition, a problem may arise where the substitute task blocks as a consequence of
specific input data elements that it requires which should have been provided by preceding
tasks but being as a consequence of the fact that these tasks have not yet run.

Solutions In order to avoid blocking of a task caused by the absence of required input
data, a default data value needs to be defined allowing this task to be enabled and executed
when necessary.

Section 6.2 Catalog of process flexibility patterns 363

tids

tid::tidstids

tid::tids

update_dev(tid,pid,m,st)

(pid,m,st)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

update_exec(tid,pid,m,st)

(pid,m,st)

Substitute
task

[deviation_possible(pid,m,st),
tid=dev_action(pid,m,st)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st),
tid= exectask(pid,m,st)]

Log

[]

TaskIDs

Begin

In
ProcInst

Running
instance

I/O ProcInstState

End

Out
ProcInst

OutI/OIn

**
A task which has not yet been executed is selected from the process definition
non-deterministacally. The execution of the Substitute task transition corresponds to
execution of the selected task, which can be tracked only based on the log.
**

ProcModel

Process
definition

I/OI/O

Figure 290: Engine enhanced with the Task Substitution pattern

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that offers a means of substituting a currently enabled task with another task contained in
the process definition, such that the process definition remains unchanged, and after the
completion of the invoked task the thread of control can move forward as if no substitution
has taken place.

Pattern PF-13 LATE SELECTION

Description A process definition created at design-time contains a placeholder which
may be completed at run-time in order to allow an alternative execution path that has not
been foreseen at design-time to be taken. The completion of the placeholder is optional
and is performed only if an execution path different from the default one needs to be taken
at run-time. The need for flexible execution path selection in this pattern is recognized at
design-time, although its actual realization is performed at run-time. It corresponds to the
flexibility by underspecification type.

Examples
– The procedure of acquiring travel insurance via the Internet assumes that by default

only one product is requested by a client. However, the client may decide to take this
insurance as one part of a substitute part for a bigger package of products offered by the
insurance company.

– When requesting a new credit card the client may choose a standard design, or create
their own design before submitting their request.

Motivation When different execution paths are foreseen at design-time, they can be
included explicitly into the process definition by applying the Choice pattern (cf. page 359).
However, in some situations not all execution options can be foreseen or it may be imprac-
tical to specify them all explicitly in the process definition. The Late Selection pattern
offers the possibility of selecting between a particular task in the process definition or an
alternative for it that has intentionally been left underspecified at design-time.

Overview Figure 291 illustrates the graphical notation for the Late Selection pattern.
The top view shows the process instance where after executing task B a decision to take

364 Chapter 6 Process Flexibility Patterns

an alternative path has been taken. This is visualized by the enabled placeholder. The
bottom view illustrates that at run-time the content of the placeholder has been completed
with task E, to which the thread of control has been moved.

BA C D

BA C D

E

Figure 291: Late Selection pattern

Context Figure 292 illustrates the basic process engine enhanced with the flexibility fa-
cilitated by the Late Selection pattern. The realization of this pattern is similar to that
described for the Choice pattern with the only difference being that when including an al-
ternative task E in the model, the type of this alternative task has to be set to placeholder.
Because in the basic process engine no tasks can be executed when an underspecified task is
encountered in the set of enabled tasks, in the extended process engine the enabling condi-
tion associated with the Execute task transition has to be weakened. For this purpose, the
isConcrete(pid,m,st) function is replaced with the existsConcrete(pid,m,st) func-
tion which evaluates to True if a task of the concrete type is available in the set of enabled
tasks. Thus, when both a concrete and an underspecified task are enabled, a user may
decide whether to execute the concrete task or take an alternative path and define the
content of the underspecified task.

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,st)

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

[existsEnabledTask(pid,m,st),
 existsConcrete(pid,m,st)]

Begin

In
ProcInst

ProcModel

Running
instance

I/O
ProcInstState

End

Out
ProcInst

OutI/OIn

Process
definition

I/OI/O

When both a concrete task and a placeholder task
are enabled, one of which needs to
be selected, the decision to choose the
placeholder task and define its content
can be made, otherwise the concrete task
is executed without having the definiton of the
placeholder task completed.

Execute
task

(pid,m,ns(pid,m,st))

Figure 292: Engine enhanced with the Late Selection pattern (note the guard of the Execute

task transition)

Implementation To realize this pattern, a system must support both the Choice
pattern and also allow a task to be left underspecified at design-time. Of all of the systems
examined, only YAWL supports this pattern via the worklet service and its ability to
associate the XOR-type (i.e. exclusive choice) behavior with a task split construct.

Section 6.2 Catalog of process flexibility patterns 365

Issues The issues discussed for the Undefined Entry pattern (cf. page 340) and the
Choice pattern (cf. page 359) apply here also.

Solutions See the corresponding solutions identified for the Undefined Entry and the
Choice pattern.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows a decision in regard to selecting a task or an underspecified alternative to be
included in the process definition at design-time, such that the content of the task which
has been left underspecified, can be completed when required at run-time.

Pattern PF-14 MOMENTARY CHOICE INSERTION

Description During execution, the process definition associated with a particular pro-
cess instance can be modified to include a choice between a task predefined in the design-
time process definition and an alternative task that previously has not been foreseen. The
change applies only to the given process instance and has no effect on other (current or
future) process instances. It corresponds to the flexibility by momentary change type.

Examples
– A standard education trajectory for students assumes attendance at lectures for all

courses. For a handicapped student a modification to the education program can be
made. Attendance at lectures can be replaced with study of the lecture material at
home.

– For a passenger who did not confirm their departure date, no place on the flight could be
found. The passenger has been offered the option of waiting until all passengers complete
the check-in in order to find out whether any free places remain or to be booked on the
next connecting flight.

Motivation In situations, where no alternative execution paths have been foreseen
and/or incorporated in to the process definition at design-time, there may arise the need
to introduce an additional execution path for a given process instance. The Momentary
Choice Insertion pattern anticipates the need to allow for the selection of an appropriate
execution path at a later point in time. The need for flexible execution path selection in
this pattern is facilitated by identifying a task for which an alternative task needs to be
inserted and associating a choice construct (as described in the Choice pattern on page 359)
with it.

Overview Figure 293 illustrates the graphical notation for the Momentary Choice
Insertion pattern. The top view illustrates two distinct process instances populated from
the same process definition. The execution threads indicate that task B is enabled in each
of the process instances. For one of the process instances at this point of time an optional
path has been foreseen where instead of task C another task E may be selected.

The bottom view illustrates the process instances after the pattern has been applied to
the given process instance. As the result of change, the modified process instance includes
a choice construct with two alternative tasks C and E, while the other process instance
remains unaffected.

Context Figure 294 illustrates the basic engine enhanced with the Momentary Choice
Insertion pattern using the CPN formalism. The engine extension is of the same form
as for all of the patterns facilitating flexibility by momentary change, the first of which
was described earlier on page 343. The change possible() function specified that a
choice construct can be inserted into the given process instance only if it is associated

366 Chapter 6 Process Flexibility Patterns

BA C D

BA C D

E

BA C D

BA C D

E

Figure 293: Momentary Choice Insertion pattern

with a sequential task with no split and joins which has not yet been executed. If there are
several tasks that meet this condition, then one task is randomly selected. The update pi()

function creates a bypass path for the selected task, modifies the type of the split-connector
of the task at which the choice needs to made to an XOR-split, modifies the join-connector
of a subsequent synchronization task to an XOR-join, and inserts a new task into the created
bypass path. When during subsequent execution of the process instance the task associated
with the choice is executed, either the default path or the newly created alternative path
is taken.

For a task that has not yet been executed
an alternative task can be inserted.
For the given task a by-pass path is
created and a new task is inserted in this path.

update_pi(pid,m,st) (pid,m,st)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st))
(pid,m,st)

Momentary
choice insertion

[change_possible(pid,m,st)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O
ProcModel

Running
instances

I/O ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

Figure 294: Engine enhanced with the Momentary Choice Insertion pattern

Implementation Of all of the systems analyzed, only Declare allows a choice to be
inserted in a process definition at run-time. By inserting a task and associating a particular
constraint with it, an alternative execution path can be inserted. In ADEPT1, although
it is possible to add and remove tasks at run-time, there is no functionality for inserting
a choice (in one of the versions of ADEPT1, it is possible to associate a code region with
outgoing arcs in order to obtain the data-based routing). It is also not possible to add an
alternative branch and to modify the type of a task split construct.

Issues This pattern is similar to the Foreseen Bypass Path pattern (cf. page 378), where
the ability to omit the execution of a particular task by taking a bypass is foreseen at

Section 6.2 Catalog of process flexibility patterns 367

design-time. To implement an optional bypass path for a given task, either no task or an
empty task need to be inserted into the alternative path created by the Momentary Choice
Insertion pattern.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows an alternative execution path, containing a task that has not previously been
foreseen, to be inserted in the process definition associated with a given process instance
at run-time.

Pattern PF-15 PERMANENT CHOICE INSERTION

Description During execution, there is the possibility to permanently add a choice con-
struct between a task defined in the design-time process definition and an alternative task
that previously has not been foreseen. This adds flexibility when selecting an appropriate
execution path. The change performed affects all future process instances, while existing
process instances may require migration from the old to the new process definition, thus it
corresponds to the flexibility by permanent change type.

Examples
– The product offerings of a software house are extended with a new product. All ongoing

product development is unaffected, however for future orders a client can be offered a
broader selection of product offerings to address their requirements.

– Due to an increased number of patients, not all patients can undergo blood tests on
the same day. To distribute the load, the medical center has signed an agreement with
a laboratory, to which the tests can be delivered for the required analysis. Since this
contract has been signed, patients are free to choose where their blood will be analyzed.

Motivation As a result of extensions to services/products within a particular process,
there may arise the need to include a variety of choices (and thus alternative execution
paths) in the original process definition. Although this change can be incorporated in each
of the process instances by applying the Momentary Choice Insertion pattern (cf. page 365),
this approach is less efficient than performing the same change at the type level. The
Permanent Choice Insertion pattern allows a process definition to be extended with an
alternative execution path at run-time by identifying a decision point in the process and
associating a new task with it.

Overview Figure 295 illustrates the graphical notation for the Permanent Choice In-
sertion pattern. The top view depicts the execution state of several process instances
populated on the basis of the same process definition before applying the pattern. For
this process definition, a decision has been taken to include task E which represents an
alternative to task C.

The bottom view shows that the process definition associated with all process instances
has been affected by inserting the choice construct preceding with these two tasks. For
the process instance that has passed task C, this change is inconsequential, while for the
other two process instances the ability to choose from several execution paths has become
possible.

Context Figure 296 illustrates the basic engine enhanced with the Permanent Choice
Insertion pattern using the CPN formalism. This model adopts the structure described
earlier for the Permanent Entry-Point Change pattern. The execution of the Permanent

368 Chapter 6 Process Flexibility Patterns

BA C D

BA C D

E

E

Figure 295: Permanent Choice Insertion pattern

choice insertion transition allows for the inclusion of an alternative path with a task
that has not been foreseen during design-time into the process definition at the type level.
The change possible() function specifies that the choice can be inserted only if a task
with no splits and joins (other than the start and end tasks) is available in the model. The
modify m() function picks an arbitrary task of the sequential type, adds a bypass path,
creates a new task and inserts it in the bypass path introduced, and modifies the splits
and joins of related synchronization tasks to the XOR-type. The Migrate transition can be
enabled only if process instances associated with the process model with the same identifier
as the model recently changed is available at the Running instance place. Furthermore,
the transfer possible() function checks whether the migration is possible, e.g., there
must be no changes impacting the enabling of the currently enabled tasks. The migrate()
function defines the strategy for migrating the existing process instances to the new process
definitions.

newm

migrate(pid,m,newm,st)(pid,m,st)

newm

m

modify_m(m)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st))
(pid,m,st)

Migrate

[transfer_possible(m,newm,st)]

Permanent
choice insertion

[change_possible(m)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O

ProcModel

Running
instances

I/O ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

For a task that has not yet been executed
an alternative task can be inserted.
A new branch is added in which the new
task is inserted.

Figure 296: Engine enhanced with the Permanent Choice Insertion pattern

Implementation Of the systems examined, only Declare and YAWL allow an alterna-
tive execution path to be inserted by adding a new task and defining scheduling constraints
for it. Declare also ensures that all instances are migrated (if possible). In YAWL, an exlet
can be called allowing a new worklet to be defined which is associated with a choice be-

Section 6.2 Catalog of process flexibility patterns 369

tween several alternatives tasks. The worklet defined becomes available for other process
instances and can be used for the same purpose.

Issues Similar issues apply to those identified for the Permanent Entry-Point Change
pattern (cf. page 345).

Solutions See solutions identified for the Permanent Entry-Point Change pattern.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows a new task representing an execution alternative to an existing task to be added
to the process definition, such that only one of these tasks can be selected at run-time. In
addition to this, there must be support for process instance migration.

6.2.5 Flexible reordering

This group of patterns aims at achieving flexibility by establishing alternative execution
ordering for the tasks in a process at run-time. Figure 297 illustrates the scope of patterns
presented in this subsection and their relationship to different types of flexibility.

Flexibility by

Design Deviation Underspecification Momentary

Change

Permanent

Change

Flexible initiation Alternative

entry points

Entrance

skip

Undefined entry Momentary

entry change

Permanent

entry change

Flexible termination Alternative

exit points

Termination

skip

Undefined exit Momentary

exit change

Permanent

exit change

Flexible selection Choice Task

substitution

Late selection Momentary

choice

insertion

Permanent

choice

insertion

Flexible reordering Interleaving Swap Momentary

reordering

Permanent

reordering

Flexible elimination

Flexible extension

Flexible

concurrency

Flexible repetition

Figure 297: Process Flexibility Matrix: flexible reordering

In situations, where a set of predefined tasks need to be executed is available, but whose
eventual execution order may vary for different process instances, it may be desirable to
allow for flexible reordering of the tasks in the process in order for a suitable execution
path to be selected. This group consists of four patterns: Interleaving, Swap, Momentary
Reordering and Permanent Reordering. The Interleaving pattern allows different task
orders to be included in the process definition at design-time such that, i.e. only one of
them will be selected at run-time. The other three patterns are characterized by the
fact that the need for an alternate execution order is identified only at run-time. In the
Swap pattern, the possibility of deviating from the prescribed execution order can be
accomplished by swapping the execution order of two tasks. The Momentary Reordering
and Permanent Reordering patterns allow the desired execution order to be achieved by
moving a particular task to a desired location in the process definition, thus modifying the
process definition both at the instance and type level respectively.

Note that this pattern group has no pattern related to flexibility by underspecification.
The reason for this is that if at design-time the need for alternative execution paths is
foreseen, they can be either explicitly incorporated into the process definition at that

370 Chapter 6 Process Flexibility Patterns

time (which corresponds to the Interleaving pattern), or the (re-)definition of the ordering
relations between the tasks can be postponed until run-time as described by the Late
Selection pattern. Effectively, any placeholder associated with a set of predefined tasks
can be replaced by an ordered sequence of the tasks from the given set.

Pattern PF-16 INTERLEAVING

Description A process definition specified at design-time contains two execution paths,
each representing alternate execution sequences for two tasks allowing them to be executed
in either order but not concurrently. The need for flexible tasks ordering in this pattern is
recognized at design-time, and corresponds to the flexibility by design type.

Examples
– When diagnosing patients both a blood test and an MRI scan have to be performed.

The order in which the tests are undertaken is not important, however they cannot be
conducted concurrently.

– When interacting with another party, a receiver may both send and receive messages,
however these operations cannot be done concurrently.

Motivation In situations, where a specific execution ordering of two tasks needs to be
relaxed in order to allow their execution sequence to vary for different process instances,
it may be necessary to incorporate alternate execution sequences for these two tasks in
the process definition at design-time. The Interleaving pattern allows two execution paths
representing alternate sequences for the given tasks to be included in the process definition
at design-time such that only of these sequences can be selected at runtime for a given
process instance.

Overview Figure 298 illustrates the graphical notation for the Interleaving pattern.
The top view illustrates the process definition before applying the pattern. In this process
definition, tasks B and C have been identified, as tasks which may execute in either order.

BA C D

B

A

C

D

C B

Figure 298: Interleaving pattern

The bottom view illustrates the process definition after applying the pattern. To allow
for alternate orderings of these two tasks, a choice construct has been associated with task
A. After executing this task a decision needs to be taken in regard to selecting the desired
execution order of tasks B and C.

Context The basic process engine incorporates functionality for handling the Interleav-
ing pattern. In fact, the same functions which are used to support the Choice pattern also
provide support for the Interleaving pattern. The alternate order of tasks that need to
be interleaved must be specified in the process definition. For instance, the process model
with id m1, the start task A and the end task D, and two alternate sequences of tasks, B, C

and C, B, have to be defined as follows:

Section 6.2 Catalog of process flexibility patterns 371

("m1", A, D, {("A",concrete,XOR,none),("B",concrete,none,none),

("C",concrete,none,none),("D",concrete,none,XOR)},

{(A,B),(A,D),(B,C),(C,B),(C,D),(B,D)}

In this definition, the types of split and join connectors associated with tasks A and
D are set to the XOR-type, indicating that only one of the branches B,C or C,B would be
taken.

Implementation Oracle BPEL PM supports this pattern by means of serializable
scopes or by defining alternative branches for the <switch> construct. In YAWL, ADEPT1
and FLOWer, this pattern can be realized by explicitly defining branches with alternative
execution sequences, one of which needs to be selected using the means of the Choice

pattern (cf. page 359). In Declare, this pattern is also supported by associating exclusive
choice constraints with the tasks whose execution order needs to be interleaved. In Asbru,
this pattern is supported by means of the Any-Order plan. PROforma, GLIF and EON
require the alternative execution sequences to be explicitly defined as branches associated
with a choice construct.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows a decision in regard to the selection of an execution order for two or more
sequential tasks (each of which has to be executed) to be explicitly included in the process
definition at design-time.

Pattern PF-17 SWAP

Description During execution, at any time after a process instance has been created,
there is the possibility to deviate from the execution path prescribed by the process defini-
tion by swapping the execution order of the currently enabled task and its successor. This
has no effect on the process definition and corresponds to the flexibility by deviation type.

Examples
– In an emergency situation, it may necessary to swap the order of the register patient and

perform triage tasks.
– Before preparing a patient for medical treatment at a private hospital, an examination

by a doctor and preparation of a patient file have to be performed. Depending on the
availability of the doctor, the execution order of these tasks may be swapped.

Motivation Where the execution order of two sequential tasks needs to be reversed at
run-time and it is not possible to include an alternate path in the process definition, there
is a need to deviate from the prescribed execution order by swapping the currently enabled
task with its successor task. The Swap pattern allows the the execution of the currently
enabled task to be postponed until the moment when the execution of the subsequent task
completes.

Overview Figure 299 illustrates the graphical notation for the Swap pattern. The top
view shows a process instance in which task B is enabled. For the given process instance
task C needs to be executed first. The bottom view shows that after applying the pattern,
instead of task B task C is enabled. Note that by executing task C it is not guaranteed
that task B will be the task selected for execution. Deviation allows to make local decision
related to execution of a currently enabled task, e.g. after executing task C any other

372 Chapter 6 Process Flexibility Patterns

deviation operation could be applied. Hence, Figure 299 illustrates an example of possible
execution sequence.

BA C D

BA C D

C B

Figure 299: Swap pattern

Context Figure 300 illustrates the basic engine enhanced with the Swap pattern using
the CPN formalism. To support flexibility in task reordering this engine is extended using
a generic structure for deviations described earlier for the Termination Skip pattern on
page 351. In addition to modifying the content of the functions, in this model the infor-
mation about the initiated process instances stored in the Running instances place has
been extended with further state information:

colset ProcInstStSt = product piID * ProcModel * State *State;

tid::tids

tids

tid::tids

tids

update_dev(tid, pid,m,st,negst)

(pid,m,st,negst)
update_exec(tid, pid,m,st,negst)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st,negst)

(pid,m,st,negst)

Deviate

[deviation_possible(pid,m,st),
tid= dev_action(pid,m,st)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
isConcrete(pid,m,st),
tid = exectask(pid,m,st,negst)]

Log

[]

TaskIDs

Begin

In
ProcInst

Process
definition

I/O

ProcModel

Running
instance

I/O ProcInstStSt

End

Out
ProcInst

OutI/O

I/O

In

Figure 300: Engine enhanced with the Swap pattern

This information is required in order to keep track of tasks that had to be executed but
the execution of which has been postponed because another task has been executed instead
(as a consequence of a task swap). The Deviate transition allows a task that has not yet
been executed and which is not currently enabled to be executed, thus deviating from the
normal flow of control. The deviation possible() function specifies that the Deviate

transition can be only executed if there is an enabled task that needs to be executed, the
process end task has not yet been reached and there is a task other than currently enabled
task which can be executed instead. The dev action() function selects an arbitrary task
from the set of tasks that have not yet been executed and which are not enabled. After
executing the selected task tid, the record about its execution is added to the Log place.

Section 6.2 Catalog of process flexibility patterns 373

The update dev() function does not modify the model, but updates both states asso-
ciated with the process instance. The normal state contains information about subsequent
tasks that become enabled after the task execution, and the negative state keeps the
record of the task which had to be executed but whose execution has been postponed.
This information is used by the exectask() function for determining what task needs to
be executed next. If there are tasks in the negative state, one of these tasks is selected
non-deterministically. If no tasks whose execution has been postponed can be found, e.g.,
the negative state is empty, a task from the normal state is selected. The update exec()

function updates both states after the task has been executed. If the task from the nega-
tive state has been selected, this task is removed, otherwise a new state according to the
process model is calculated.

Implementation Only FLOWer and Declare offer direct support for this pattern.
In FLOWer, a task that is not currently enabled can be immediately initiated. After
completion of this task the thread of control returns back to the originally enabled task
which then can be executed.

Issues Swapping the execution order of tasks may result in data dependencies between
them being invalidated. The absence of data required for enabling the subsequent task
may result in its blocking when the decision to execute it before the preceding task is made
and the data dependencies have not been satisfied.

Solutions To loosen the dependency between tasks and allow their execution order to
be switched, input variables for each of the tasks should be set to a default value.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows the execution order of a task and its successor in a given process instance to
be reversed without modifying the process definition.

Pattern PF-18 MOMENTARY REORDERING

Description During execution, at any time after process initiation, the process defini-
tion associated with a particular process instance can be modified by changing the execution
order associated with a particular task. Having a task moved to another place in the pro-
cess definition allows the execution of the task to be postponed until a desired moment,
thus enabling an execution outcome that might not have been foreseen at design-time to
be effected. The need for task reordering in this pattern is recognized at run-time. The
change applies only to the given process instance and has no effect on other (current or
future) process instances, thus it corresponds to the flexibility by momentary change type.

Examples
– Based on a request from a client, the travel advisor changed the order of events planned

for the booked trip. Because of their late arrival, the client cannot attend the first
planned social event. The ticket for this activity has been re-booked for a later date.

– A typical procedure for car-hire starts with the recording of payment details. For repeat
clients, an exception can be made, where they can pick-up the car on an express basis
and arrange the payment afterwards.

Motivation In situations, where the execution order of two sequential tasks needs to be
reversed for a particular process instance at run-time and it is not possible to deviate from
the order prescribed by swapping these tasks (as described in the Swap pattern), there is
the need to temporarily change the order of these tasks in the process definition in order
to achieve the desired behavior. The Momentary Reordering pattern allows the currently

374 Chapter 6 Process Flexibility Patterns

enabled task to be moved later in the process definition in order to allow a subsequent task
to be executed first.

Overview Figure 321 illustrates the graphical notation for the Momentary Reordering
pattern. The top view shows two distinct process instances based on the same process
definition. For the process instance, whose execution thread is depicted by the triangle,
the need to interchange the order of the currently enabled task B with its successor task C

is recognized.

BA C D

BA C D

CA B D

BA C D

Figure 301: Momentary Reordering pattern

The bottom view illustrates that after applying the pattern the process definition as-
sociated with the given process instance has been modified by reordering these tasks. The
thread of control in this process instance has been moved to task C, whilst the other process
instance remains unaffected.

Context Figure 302 illustrates the basic process engine enhanced with the Momen-
tary Reordering pattern using the CPN formalism. To allow for momentary reordering,
the functions update pi() and change possible() have been modified as follows. The
Momentary task move transition can be only executed if there is an enabled task and if
the enabled task is not the end task. The update pi() function selects a task without
splits or joins that has not yet been executed and an arc between two other tasks which
also have not been executed, where the selected task will be moved to. The selected task
is deleted, tasks from the preset and postset of the removed task are reconnected, and the
removed task is inserted into the selected arc.

Implementation Declare supports this pattern by modifying constraints defining the
execution order of tasks. In ADEPT1, it is not possible to move tasks from one place to
another, however two tasks can be swapped by deleting these tasks first and inserting them
in the reverse order. None of the other tools investigated support this pattern.

Issues Similar issues as identified for the Swap pattern apply here too.

Solutions See solutions identified for the Swap pattern.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows the process definition associated with a given process instance to be modified
in order to reverse the execution order of two subsequent sequential tasks which have not
yet been executed.

Section 6.2 Catalog of process flexibility patterns 375

A task which has no splits and joins is selected
for moving into another arc. The selected task is
removed from the model, tasks from preset
and postset of the removed task are connected,
and the task is inserted into
the selected arc.

update_pi(pid,m,st) (pid,m,st)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st)) (pid,m,st)

Momentary
task move

[change_possible(pid,m,st)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O

ProcModel

Running
instance

I/O ProcInstState

End

Out
ProcInst
OutI/O

I/O

In

Figure 302: Engine enhanced with the Momentary Reordering pattern

Pattern PF-19 PERMANENT REORDERING

Description During execution, there is the possibility to permanently modify the
execution order associated with a particular task in the execution sequence. The task can
be moved before or after its current position in order to hasten or postpone its execution
respectively. The change performed affects all future process instances directly, while
existing process instances may require migration from the old to the new process definition,
thus it corresponds to the flexibility by permanent change type.

Examples
– In order to improve communication between students working together in projects, the

presentation and communication skills course has been moved to the beginning of the
education program. The current generation of students continues with the old program,
while new students participate in the updated program.

– The procedure for issuing residence permits to foreign visitors has been changed in
the following way: before the application for a residence permit can be accepted, the
applicant must personally visit the office and pay the fee. In the past, applicants could
submit applications at any time, which required the payment to be performed only when
the application has been accepted.

Motivation In situations, where at run-time the need to rearrange the order of tasks
in a process is anticipated, a set of actions may need to be taken in order to redesign
the original process definition and to adapt the execution sequence of current and future
process instances. The Permanent Reordering pattern allows the order of two sequential
tasks in a process to be changed by permanently moving the currently enabled task in
order to postpone its execution and let its successor task execute instead.

Overview Figure 303 illustrates the graphical notation for the Permanent Reordering
pattern. The top view shows the execution state of three distinct process instances, sharing
the same process definition. At run-time execution the need to change the order of tasks
B and C at the type level is recognized.

The bottom view illustrates the process definition after applying the pattern. The order
of tasks B and C has been swapped. For process instances where task B was enabled, the
thread of control has been moved to task C. For process instances that have passed task B,
this change is inconsequential.

376 Chapter 6 Process Flexibility Patterns

BA C D

CA B D

Figure 303: Permanent Reordering pattern

Context Figure 304 illustrates the basic process engine enhanced with the Permanent
Reordering pattern using the CPN formalism. In order to permanently change the exe-
cution order of two sequential and independent tasks, the process definition stored in the
Process definition place needs to be adjusted and all existing process instances have to
be migrated. For this, the model of the basic process engine is extended with the Permanent
task move transition, which modifies the process definition both for a given process in-
stance and the original process definition stored in the Process definition place, and
the Migrate transition which transfers the old process definition oldm associated with
each process instances stored in the Running instance place to the new process definition
newm. The mechanism for reordering tasks in a process definition is implemented using
the moveTask(tID,inarc,m) function in the same way as described for the Momentary
Reordering pattern.

newm

migrate(pid,m,newm,st)(pid,m,st)

newm

m

modify_m(m)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st))
(pid,m,st)

Migrate

[transfer_possible(m,newm,st)]

Permanent
task move

[change_possible(m)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O

ProcModel

Running
instances

I/O ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

A task that has no splits or joins is selected
for moving into another arc. First, the task is
removed from the model and its preset and
postset are reconnected, then the removed
task is inserted into the selected branch.

Figure 304: Engine enhanced with the Permanent Reordering pattern

Implementation Of all of the systems analyzed ADEPT1, Declare and YAWL support
this pattern. ADEPT1 allows the tasks to be removed and to be inserted in the reverse
order, providing that all existing process instances migrate to the new process definition.
In Declare, the execution order between tasks can be changed by modifying the constraints
associated with these tasks, and migrating all existing process instance to the updated
process definition. In YAWL, it is possible to invoke an exlet to execute tasks in an
alternate order and to skip the execution of these tasks in the original order when the

Section 6.2 Catalog of process flexibility patterns 377

execution of the exlet completes. The alternate ordering of tasks in this case is defined via
a worklet, which becomes available for other process instances to use.

Issues The same issues apply as identified for the Permanent Entry-Point Change pat-
tern (cf. page 345) and the Swap pattern (cf. page 371) apply.

Solutions See solutions identified for the above mentioned patterns.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows the process definition to be permanently modified at run-time execution in
order to reverse the execution order of two tasks which have not yet been executed. In
addition, there must be support for process instance migration.

6.2.6 Flexible elimination

This group of patterns aims to facilitate flexibility by avoiding the execution of a particular
task. Figure 305 illustrates the scope of patterns presented in this subsection and their
relationship to different types of flexibility.

Flexibility by

Design Deviation Underspecification Momentary

Change

Permanent

Change

 Flexible initiation Alternative

entry points

Entrance

skip

Undefined entry Momentary

entry change

Permanent

entry change

 Flexible

 termination

 Alternative

exit points

Termination

skip

Undefined exit Momentary

exit change

Permanent

exit change

 Flexible selection Choice Task

substitution

Late selection Momentary

choice

insertion

Permanent

choice

insertion

 Flexible reordering Interleaving Swap Momentary

reordering

Permanent

reordering

 Flexible

 elimination

 Foreseen

bypass path

Task skip Momentary

task

elimination

Permanent

task

elimination

 Flexible extension

 Flexible

 concurrency

 Flexible repetition

Figure 305: Process Flexibility Matrix: flexible elimination

In situations, where the execution of a particular task needs to be avoided, there may
arise the need to omit the execution of a task. Depending on the moment at which the
need for eliminating the execution of a particular task is realized, we distinguish four
patterns: Foreseen Bypass Path, Task Skip, Momentary Task Extraction and Permanent
Task Extraction. Of these four patterns, the Foreseen Bypass Path pattern is characterized
by anticipating and realizing an optional bypass for a task, whose execution may need to
be avoided, at design-time. In the other three patterns the need to eliminate the execution
of a given task is anticipated and realized at run-time. The Task Skip pattern allows a
currently enabled task to be skipped, which corresponds to deviation from the execution
path prescribed by the process definition. The Momentary Task Extraction and Permanent
Task Extraction patterns allow the execution of a given task to be avoided by removing it
from the process definition on a temporary or permanent basis.

Note that the idea of flexible task elimination has no straightforward mapping to flexi-
bility by underspecification. The context conditions of this pattern group assume that the
execution order and the content of the task which may need to be eliminated is known
and fixed at design-time, whilst flexibility by underspecification assumes that the content

378 Chapter 6 Process Flexibility Patterns

of particular process fragment that is marked as placeholder cannot be precisely defined
until runtime.

Pattern PF-20 FORESEEN BYPASS PATH

Description A process definition specified at design-time contains a bypass path as-
sociated with a particular task, which if taken at run-time results in the task not being
executed. This pattern recognizes the need for flexible task elimination which is anticipated
at design-time, and corresponds to the flexibility by design type.

Examples
– The composition of the education program for postgraduate students allows some of the

obligatory courses to be skipped if they have been completed during previous study.
– At the end of a course all students are offered a questionnaire to fill in investigating

possible areas for improvement. Completion of the questionnaire is optional.

Motivation A typical process definition specifies the order in which tasks need to be
executed. In some situations, it may be necessary to allow the execution of a particular
task to be executed on an optional basis. This requires flexibility in choosing whether
or not to execute a given task. The Foreseen Bypass Path pattern allows the possibility
for optionally excluding a particular task which is included into the process definition at
design-time.

Overview Figure 306 illustrates the graphical notation for the Foreseen Bypass Path
pattern. The top view shows the process definition before applying the pattern. According
to this process definition, after executing task A always task B has to be executed. In this
process, the optional execution of task B recognized at design-time.

BA C D

BA C D

Figure 306: Foreseen Bypass Path pattern

The bottom view shows the process definition after applying the pattern. In order to
offer a choice between executing task B and bypassing it, task A is associated with a choice
construct and an alternate direct path to task C is inserted.

Context The Foreseen Bypass Path pattern is supported by the basic process engine
in the similar manner as by the Choice pattern described on page 359. The realization
of a bypass is equivalent to realization of a choice construct where one of the branches
has no tasks. In order to incorporate the bypass path in the process definition, two tasks
performing the selection and synchronization of branches need to be identified and their
connectors have to be set to the XOR-type.

Implementation In Declare, it is possible to bypass a task by violating an optional
constraint. In AsbruView, the If-Then-Else plan can be used where either a desired
task or an empty task can be selected. In all other systems investigated, a bypass path
associated with a particular task can be realized the same way as for the Choice pattern,
providing that one of the branches contains no tasks.

Section 6.2 Catalog of process flexibility patterns 379

Issues Selection of a bypass path associated with a specific task may result in a subse-
quent task blocking due to missing data that should have been provided by the bypassed
task.

Solutions In order to avoid blocking of the subsequent task, mandatory input data
elements for this task should be set to have a default value.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows support for optional task execution to be included in the process definition at
design-time.

Pattern PF-21 TASK SKIP

Description During execution, at any time after a process instance has been created,
there is the possibility of deviating from the execution path prescribed by the process
definition by skipping the execution of a currently enabled task. This has no effect on
the process definition and is only reflected in the execution trace associated with a given
process instance. The need for flexible task elimination in this pattern is anticipated at
run-time. It corresponds to the flexibility by deviation type.

Examples
– The registration for an email account requires a set of questions to be answered. Some

of the questions can be skipped and filled in later after the registration of the account
has completed.

– The planning of a travel route in the navigation system offers a demo of the route that
can be viewed before the route is initialized. A user may skip this step and proceed
immediately to entering route instructions.

Motivation In some situations, after a process has been initiated, it may be necessary
to postpone the execution of a given task because the mandatory input data elements
required for processing are not available or because this task does not need to be executed
at all. When the process definition does not contain a bypass for the task (as described
in the Foreseen Bypass Path pattern) that can be taken in order to obviate the need to
execute it, other means of eliminating the currently enabled task are required. The Skip
pattern allows the execution of a given process instance to deviate from the execution path
prescribed by the process definition by skipping the currently enabled task.

Overview Figure 307 illustrates the graphical notation for the Task Skip pattern. The
top view shows a process instance before applying the pattern. For this process instance
the need to avoid the execution of the currently enabled task B is recognized.

BA C D

BA C D

Figure 307: Task Skip pattern

The bottom view shows that after applying the pattern the currently enabled task B

is skipped (without modifying the process definition), and the thread of control has been
moved to task C.

380 Chapter 6 Process Flexibility Patterns

Context Figure 308 illustrates the basic process engine enhanced with the Task Skip
pattern using the CPN formalism. In order to allow for the execution of a currently enabled
task to be ignored, the content of the functions deviation possible(), dev action(),
and update dev() have been modified as follows. The dev action() function determines
the currently enabled task tid whose execution needs to be ignored. The Skip transition
can only be executed if there are tasks enabled in the process instance state which have not
yet been executed. The update dev() function updates the state of the process instance
by moving the thread of control to a subsequent task. Note that the process definition
remains unchanged.

tid::tids

tidstids

tids

update_dev(tid,pid,m,st)

(pid,m,st)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

update_exec(tid,pid,m,st)
(pid,m,st)

Skip

[deviation_possible(pid,m,st),
tid = dev_action(pid,m,st)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st),
tid=exectask(pid,m,st)]

Log

[]

TaskIDs

Begin

In
ProcInst

Process
definition

I/O

ProcModel

Running
instances

I/O ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

Figure 308: Engine enhanced with the Task Skip pattern

Implementation In Declare, it is possible to skip a task by violating an optional
constraint. In FLOWer, there is a special operation that allows a currently enabled task
to be skipped. In PROforma, it is possible to skip the execution of the prescribed task.
All other systems investigated offer no support for this pattern.

Issues Similar issues and solutions as for the Entrance Skip pattern (cf. page 338) apply
here too.

Solutions See solutions identified for the Entrance Skip pattern.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that provides an explicit operation to skip the execution of a specific task at run-time,
without affecting the process definition associated with the given process instance.

Pattern PF-22 MOMENTARY TASK ELIMINATION

Description During execution, at any time after process initiation, the process defini-
tion associated with a particular process instance can be modified by removing a currently
enabled task. This allows for flexible elimination of a currently enabled task, should this
task no longer be required. The change applies only to the given process instance and has
no effect on other (current or future) process instances, thus it corresponds to the flexibility
by momentary change type.

Examples

Section 6.2 Catalog of process flexibility patterns 381

– For visitors to a football match who hold a European passport, no visa requirements
apply. This modification in the customs procedure is performed on a person-by-person
basis for the period of the championship competition.

– A time registration program provides a timesheet with predefined fields. A task which is
included in the timesheet (for instance, planned sick leave for a doctor’s appointment),
but which has not be been undertaken during the reporting period, can be removed from
the timesheet.

Motivation When at run-time a particular task needs to be ignored, and there is
no a bypass path defined in the process definition for skipping the given task, and it is
not possible to deviate from the prescribed execution order, there may arise the need
to temporarily modify the process definition to exclude the task. The Momentary Task
Elimination pattern allows a particular task to be removed from the process definition in
order to avoid executing the task for a given process instance.

Overview Figure 309 illustrates the graphical notation for the Momentary Task Elim-
ination pattern. The top view shows two distinct process instances based on the same
process definition before applying the pattern. For one of these process instances the need
to eliminate the currently enabled task B is recognized.

BA C D

A C D

BA C D

BA C D

v

Figure 309: Momentary Task Elimination pattern

The bottom view shows that after applying the pattern the process definition associated
with one of the process instances has been modified. In particular, task B has been removed
from the process definition, and the thread of control associated with the given process
instance has been moved forward to task C.

Context Figure 310 illustrates the basic process engine enhanced with the Momentary
Task Elimination pattern using the CPN formalism. The model adopts the structure
presented earlier in the Momentary Entry-Point Change pattern (cf. page 343), however
the content of functions change possible() and update pi() has been modified. The
Momentary task extract transition can only be executed if there are enabled tasks in the
process instance state which have not been executed and if the end of the process has not
been reached. The update pi() function selects a currently enabled task, deletes it from
the process definition, and connects the task preceding it to a subsequent task by means of
an arc. Once that task has been removed, the process instance state is also recalculated.

Implementation In Declare, it is possible to remove a specific task from the model.
ADEPT1 also allows a task to be deleted from the model, however the deleted task is
visualized as disabled rather than extracted from the process definition associated with
the given process instance. In YAWL, there is the possibility to invoke an exlet to remove
a workitem, however when the workitem has been removed, no subsequent tasks can be

382 Chapter 6 Process Flexibility Patterns

(pid,m,st)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st)) (pid,m,st)

[change_possible(pid,m,st)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O
ProcModel

Running
instances

I/O ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

update_pi(pid,m,st)
**
Aspecified task (which has not yet been executed)
is removed from the process definition associated with
a given process instance. Tasks from a preset
and a postset of the extracted task are connected
to each other.

Momentary
task extract

Figure 310: Engine enhanced with the Momentary Task Elimination pattern

executed. Instead, it is possible to force failure or completion of the given task in order
to proceed with execution of the next task. No other systems that have been investigated
offer support for this pattern.

Issues Removing a task from the process definition may trigger blocking of subsequent
tasks requiring output data provided by the task removed.

Solutions After removing a task, either all data dependencies have also to be removed
or a default value assigned to the input data elements of subsequent tasks.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows a task to be deleted from the process definition associated with a particular
process instance.

Pattern PF-23 PERMANENT TASK ELIMINATION

Description During execution, there is a possibility to permanently eliminate the
execution of a particular task in the process by removing it from the process definition at
the type level. This allows the selected task to be ignored in all future process instances
and existing process instances whose execution has not passed this point yet. The change
performed affects all future process instances directly, while existing process instances may
require migration from the old to the new process definition, thus the pattern is of the
flexibility by permanent change type.

Examples
– A template for project schedule can be updated by removing tasks which do not need to

be executed any more.
– Due to centralization of data by the city hall, tax office and insurance companies, changes

in family living arrangements do not need to be reported to the insurance company
directly. This step is removed from the predefined procedures of the insurance company.
The data is instead reported to the insurance company by the tax office.

Motivation In situations where after process initiation the need to eliminate the ex-
ecution of a particular task for current and future process instances is recognized, there
may arise a need to modify the process definition at the type level. The Permanent Task

Section 6.2 Catalog of process flexibility patterns 383

Elimination pattern allows a particular task to be permanently removed from the process
definition such that this task will never be executed again.

Overview Figure 311 illustrates the graphical notation for the Permanent Task Elim-
ination pattern. The top view shows the execution state of several process instances
populated based on the same process definition. At run-time the need to eliminate task B

at the type level is recognized.

BA C D

A C D

Figure 311: Permanent Task Elimination pattern

The bottom view shows that the process definition after applying the pattern. Task
B has been removed from the process definition. For process instances where task B was
enabled, the thread of control has been moved forward to its successor task C.

Context Figure 312 illustrates the basic process engine enhanced with the Permanent
Task Elimination pattern using the CPN formalism. The model of the engine is extended
according to the structure described earlier for the Permanent Entry-Point Change pattern
(cf. page 345). The functions used have been changed as follows. The Permanent task

extract can only be executed if the process definition contains more than two tasks (e.g.,
start and end tasks). This condition is incorporated in the change possible() function.
The modify m() function removes the selected task from the process definition m, and
reconnects the tasks preceding and following it. The Migrate transition performs migration
of existing process instances stored in the Running instance place only if the process
instance has not reached the end. For the process instance whose process model id matches
with the id of the process definition earlier modified, the migrate() function transfers
the old process definition oldm to the new process definition newm according to a desired
migration policy.

Implementation Of all systems analyzed, only Declare and ADEPT1 support this
pattern. In addition to the functionality for removing a task from the model, they also
provide a means of process instance migration.

Issues The same issues as identified for the Permanent Entry-Point Change pattern
(cf. page 345) and the Momentary Task Elimination pattern apply here too.

Solutions See solutions identified for the above mentioned patterns.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows a task to be permanently removed from the process definition, and provides
facilities for the process instance migration.

6.2.7 Flexible extension

This group of patterns aims to provide flexibility in enabling an execution path alternative
to the one prescribed by the process definition by incorporating a task that has not pre-
viously been foreseen (i.e. no reordering or selection). Figure 313 illustrates the scope of

384 Chapter 6 Process Flexibility Patterns

newm

migrate(pid,m,newm,st)(pid,m,st)

newm

m

modify_m(m)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st))
(pid,m,st)

Migrate

[transfer_possible(m,newm,st)]

Permanent
task extract

[change_possible(m)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O

ProcModel

Running
instances

I/O ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

A task (with no splits or joins) is selected
for extraction from the process model. After
the task has been removed, its preset and
postset are reconnected.

Figure 312: Engine enhanced with the Permanent Task Elimination pattern

patterns presented in this subsection and their relationship to different types of flexibility.

Flexibility by

Design Deviation Underspecification Momentary

Change

Permanent

Change

 Flexible initiation Alternative

entry points

Entrance

skip

Undefined entry Momentary

entry change

Permanent

entry change

 Flexible termination Alternative

exit points

Termination

skip

Undefined exit Momentary

exit change

Permanent

exit change

 Flexible selection Choice Task

substitution

Late selection Momentary

choice

insertion

Permanent

choice

insertion

 Flexible reordering Interleaving Swap Momentary

reordering

Permanent

reordering

 Flexible elimination Foreseen

bypass path

Task skip Momentary

task

elimination

Permanent

task

elimination

 Flexible extension Task

invocation

Late creation Momentary

task insertion

Permanent

task insertion

 Flexible

 concurrency

 Flexible repetition

Figure 313: Process Flexibility Matrix: flexible extension

In situations, where at run-time a task needs to be executed which has not been foreseen
in the process definition, it should be possible to easily incorporate the desired task in order
for desired behavior to be achieved. The need for flexible extension in this group of patterns
is recognized at run-time. The concept of flexible extension cannot be facilitated at design-
time, because all execution alternatives that are foreseen at design-time can explicitly
be included into the process definition by applying the Choice pattern (cf. page 359) as
illustrated in Figure 314.

There are four flexible extension patterns: Task Invocation, Late Creation, Momentary
Task Insertion and Permanent Task Insertion which describe four approaches to incorpo-
rating unforeseen tasks in order for a desired execution option to be obtained at run-time.

Section 6.2 Catalog of process flexibility patterns 385

BA C D

E

F

Z

...

Figure 314: Flexible extension by design

The Task Invocation pattern allows for deviation from the execution path prescribed by
invoking a task different to the one that is currently enabled without replacing any existing
task. The Late Creation pattern offers the possibility to create an alternative execution
path at a particular point in the process at the last possible moment based on the need
to introduce optional behavior that could not be foreseen at design-time. The Momentary
Task Insertion and Permanent Task Insertion patterns allow for inclusion of a task that
has not been foreseen at design-time in the process definition on a temporary or permanent
basis respectively.

Pattern PF-24 TASK INVOCATION

Description During execution, at any time after a process instance has been created,
there is the possibility to deviate from the execution path prescribed by the process def-
inition by invoking a task which has not yet been executed and completing it before the
currently enabled task is executed. This allows for flexible extension of the execution op-
tions associated with a given process instance with one of the tasks contained in the process
definition. Such a deviation does not affect the process definition, and corresponds to the
flexibility by deviation type.

Examples
– Students possessing diploma’s from European institutions do not have to pass a language

test in order to enroll into the masters program. In some cases however, the level of
English ability may need to be assessed. For this an appointment is made with an
advisor handling English tests for foreign students.

– A patient treated in the department of internal diseases has developed a skin rush. To
handle this problem a doctor from the dermatological department has been called.

Motivation In some situations, after a process has been initiated, it may be necessary to
postpone the execution of a certain task because another task that has not been previously
foreseen at design-time needs to be executed first. The Task Invocation pattern allows
for suspension of the execution of tasks prescribed by the process definition in order for
another task to be invoked and executed first. The possibility of extending the set of tasks
prescribed by the process definition in this pattern corresponds to flexibility by deviation,
which has an impact only on the manner in which the given process instance is executed,
and does not affect the original process definition.

Overview Figure 315 illustrates the graphical notation for the Task Invocation pattern.
The top view illustrates a process instance where after executing task B the need to execute
a task different to the one prescribed by the process definition is recognized.

386 Chapter 6 Process Flexibility Patterns

BA C D

BA C D

E

Figure 315: Task Invocation pattern

The bottom view shows that after applying the pattern task E has been invoked and
the thread of control from task C has been temporarily moved to task E. Note that task E

is a generic representation of a task that is contained in the process definition but which
has not been executed yet. The invocation of this task is performed without modifying the
process definition.

Context Figure 316 illustrates the basic process engine enhanced with the Task Invoca-
tion pattern using the CPN formalism. The model adopts the structure for deviation op-
erations described earlier for the Termination Skip pattern on page 351. The Invoke Task

transition can only be executed for a process instance whose execution has not completed
yet. The dev action() function selects a task that has not yet been executed and which
will be invoked before executing the currently enabled task. The invoked task is recorded
in the Log place, and the state of the process instance is updated by the update dev()

function so that the originally enabled task becomes enabled again

tid::tids

tids

tids

tid::tids

update_dev(tid,pid,m,st)

(pid,m,st)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

update_exec(tid,pid,m,st)

(pid,m,st)

Invoke
Task

[deviation_possible(pid,m,st,tids),
tid=dev_action(m,tids)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
isConcrete(pid,m,st),
tid=exectask(pid,m,st)]

Log

[]

TaskIDs

Begin

In
ProcInst

Process
definition

I/O

ProcModel

Running
instance

I/O ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

Any task in a model which has not yet been
executed can be invoked by executing
the Invoke Task transition.

Figure 316: Engine enhanced with the functionality of the Task Invocation pattern

Implementation Of all of the systems analyzed, only FLOWer, Declare, and Oracle
BPEL provide support for this pattern. In FLOWer, another task can be invoked at any
point in the process. In Oracle BPEL PM, an exception needs to be raised and in the
corresponding exception handler an invocation activity needs to be included.

Issues None identified.

Section 6.2 Catalog of process flexibility patterns 387

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows a task contained in the process definition which has not yet been executed to
be invoked. Execution of the main process must be suspended until the execution of the
invoked task completes.

Pattern PF-25 LATE CREATION

Description A process definition created at design-time contains a placeholder which
may be completed at run-time in order to allow for an extension of the process definition
with a task whose content cannot be foreseen in advance. The completion of the placeholder
is optional and is performed only if an additional task needs to be added at run-time.
The need for flexible execution path selection in this pattern is recognized at design-time,
whose actual realization is performed at run-time, thus this pattern is of the flexibility by
underspecification type.

Examples
– The process of submitting electronic photos for printing starts with the uploading of

photos into a photo application, selection of the print format and submission of the order.
The client may submit the order immediately, or order additional products offered by
the company, and only then proceed to order submission.

– The software program supplied with the navigation system offers a default voice for
route directions. When defining a route, a user may also choose to record their own
instructions and then move on to planning the route.

Motivation At design-time when creating a process definition it may be foreseen that
an additional task may need to be added at run-time, whose content is either unknown
or may vary for different process instances. The Late Creation pattern allows for the
possibility of creating an additional task at the latest possible moment to be included in
the process definition in the form of a placeholder. The definition of this placeholder may
be completed at run-time if for a given process instance a new task needs to be added.
Otherwise it can be ignored.

Overview Figure 317 illustrates the graphical notation for the Late Creation pattern.
The top view shows a process definition where after executing task B there is the possibility
of executing task C or creating another task and executing it before proceeding to task C.
The possibility for late creation of a task is incorporated into the process definition by
means of a placeholder.

The bottom view shows that after applying the pattern, a new task E is created when
completing the definition of the enabled placeholder, and the thread of control is passed
to this task.

Context The CPN semantics of the Late Creation pattern can be described in terms
of the Choice pattern (cf. page 359) and the Late Selection pattern (cf. page 363). In order
for flexibility in process extension facilitated by the Late Creation pattern to be obtained,
the process definition created at design-time has to include a choice construct with two
alternative branches: one representing the normal flow of tasks and another containing
a placeholder task whose content can be created when needed at run-time. Figure 318
pattern shows the basic process engine modified in a similar way as has been done for
the Late Selection pattern. The enabling condition for the Execute task transition has
been weakened in order to allow the user to choose whether to execute a concrete task

388 Chapter 6 Process Flexibility Patterns

BA C D

E

BA C D

Figure 317: Late Creation pattern

or to define the content of an underspecified task. This condition is incorporated in the
existsConcrete(pid,m,st) function.

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,st)

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

[existsEnabledTask(pid,m,st),
 existsConcrete(pid,m,st)]

Begin

In
ProcInst

ProcModel

Running
instance

I/O
ProcInstState

End

Out
ProcInst

OutI/OIn

Process
definition

I/OI/O

When both a concrete task and a placeholder task
are enabled, one of which needs to
be selected, the decision to choose the
placeholder task and define its content
can be made, otherwise the concrete task
is executed without having the definiton of the
placeholder task completed.

Execute
task

(pid,m,ns(pid,m,st))

Figure 318: The engine enhanced with the Late Creation pattern

Implementation Of all systems analyzed, only YAWL and Oracle BPEL PM support
this pattern. By incorporating a worklet into one of the alternative branches associated
with an exclusive choice construct (cf. the Choice pattern on page 359) it is possible to
postpone the decision for late task creation until run-time. In Oracle BPEL PM, a task
responsible for invoking a process whose implementation details are not yet known can
be defined at design-time. The implementation details can be set dynamically during the
process execution.

Issues The same issues as for the Late Selection pattern (cf. page 363) apply here also.

Solutions See solutions identified for the Late Selection pattern.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows a decision in regard to executing a task prescribed by the process definition or
creating and executing a previously unforeseen task, to be included in the process definition
at design-time.

Section 6.2 Catalog of process flexibility patterns 389

Pattern PF-26 MOMENTARY TASK INSERTION

Description During execution, at any time after process initiation, the process defini-
tion associated with a particular process instance can be modified by extending the process
definition with a task that has not been foreseen. The execution of the currently enabled
task is postponed until the newly identified task has been completed. The change applies
only to a given process instance and has no effect on other (current or future) process
instances, thus it corresponds to the flexibility by momentary change type.

Examples
– A timesheet used for recording activities performed by an employee during the day

contains a list of predefined tasks. If a non-standard task that is not included in the
list needs to be performed, the timesheet for the corresponding day can be adjusted by
inserting the new task.

– Due to the unexpected illness of an employee, the tasks of this employee are divided
amongst other members of the group. Each employee to whom an extra task has been
assigned adjust their personal planning accordingly.

Motivation When at run-time a desired task cannot be found in a process definition,
it should be possible to introduce this task on a temporary basis. The Momentary Task
Insertion pattern allows the set of tasks executed by a particular process instance to be
extended by temporarily inserting a task into the corresponding process definition.

Overview Figure 319 illustrates the graphical notation for the Momentary Task In-
sertion pattern. The top view shows two process instances populated based on the same
process definition before applying the pattern. Both process instances are in a state where
task C is enabled and needs to be executed. For one of the process instances, the need to
execute a task not contained in the process definition is recognized.

BA C D

BA C DE

E

BA C D

BA C D

Figure 319: Momentary Task Insertion pattern

The bottom view shows the process definitions associated with given process instances
after applying the pattern. The process instance where the new task was introduced has
been extended with task E, and the execution thread has been moved backward from the
previously enabled task C to task E. The other process instance remains unaffected.

Context Figure 320 illustrates the basic process engine enhanced with the Momentary
Task Insertion pattern using the CPN formalism. The process engine is extended accord-
ing to the structure adopted by all patterns facilitating flexibility by momentary change
(cf. page 343). To realize the functionality for extending the set of tasks associated with a
particular process instance the change possible() and update pi() functions have been

390 Chapter 6 Process Flexibility Patterns

updated as follows. The change possible() function specifies that a new task that pre-
viously has not been foreseen be inserted into the process definition by the Momentary

task insertion transition only if for a given process instance there are enabled tasks that
have not yet been executed. The update pi() function creates a new task, selects an arc
connecting two tasks between which the created task will be inserted, and replaces this arc
with two arcs connecting the preceding and subsequent tasks to the created task.

update_pi(pid,m,st)

(pid,m,st)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st)) (pid,m,st)

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

ProcModel

Running
instance

I/O ProcInstState

End

Out
ProcInst

OutI/OIn

[change_possible(pid,m,st)]

Momentary
task insertion

Process
definition

I/OI/O

A newly created task is inserted
in the arc between two indicated tasks.

Figure 320: Engine enhanced with the Momentary Task Insertion pattern

Implementation Of the systems analyzed, only Declare, ADEPT1 and YAWL support
this pattern. In Declare and ADEPT1, there is an explicit operation defined allowing a
new task to be inserted in a model. In YAWL, at run-time execution it is possible to invoke
an exlet in order for a process fragment (which was not earlier foreseen) to be executed
while the main process is suspended.

Issues By inserting a task between two tasks in the process, any data assumptions that
exist between these two tasks can potentially be disrupted and may cause the last task to
block.

Solutions In order to solve this problem, the visibility of data used in the process has to
be set to the process instance level, so that data produced at each step during the process
becomes visible to other tasks.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows a task to be inserted into a process definition associated with a given process
instance at run-time.

Pattern PF-27 PERMANENT TASK INSERTION

Description During execution, there is the possibility to permanently modify the
process definition by adding a new task. This allows for functionality that has not been
foreseen earlier to be incorporated in all existing and future process instances. The change
performed affects future process instances directly, whilst existing process instances require
their old process definition to be migrated to the new process definition, thus this pattern
corresponds to the flexibility by permanent change type.

Examples

Section 6.2 Catalog of process flexibility patterns 391

– The introduction of electronic identity cards requires all traveling passengers to hold a
passport with an electronic id. Passengers whose passport has not expired yet, continue
to use it during the transition period, however when this passport expires a new one
must be requested. The issuing of an electronic id is an additional step performed after
the new passport has been acquired.

– The takeover of one company by another requires product certification, which previously
has not been done. This implies that all ongoing requests have to be terminated and
redone according to the new steps dictated by the certification standard.

Motivation In situations, where at run-time the need to extend the set of tasks con-
tained in a process is anticipated, a set of actions may need to be taken in order to redesign
the original process definition and to adapt the execution of current and future process in-
stances. The Permanent Task Insertion pattern allows a task that has not previously been
foreseen to be included in the process definition on a permanent basis.

Overview Figure 321 illustrates the graphical notation for the Permanent Task In-
sertion pattern. The top view shows several process instances sharing the same process
definition. At run-time execution the need to execute task E which has not previously been
foreseen is recognized at the type level.

BA C D

BA C DE

E

Figure 321: Permanent Task Insertion pattern

The bottom view shows that after applying the pattern, the process definition has been
extended with task E. The process instance that has passed this point remains unaffected,
while for other process instances the thread of control has been migrated from previously
enabled task C to the newly inserted task E.

Context Figure 322 illustrates the process engine enhanced with the Permanent Task
Insertion pattern using the CPN formalism. The model of the process engine is extended
with the Permanent task insertion and Migrate transition according to the structure
adopted by all patterns facilitating flexibility by permanent change and described earlier
on page 345. In order to insert a task that previously has not been foreseen into the
process definition at the type level by means of the Permanent task insertion transition,
functions change possible() and modify m() have been modified as follows. A newly
created task is inserted into a selected arc by means of the modify m() function by splitting
the selected arc into two parts. Process instances corresponding to the process model which
has been recently modified, which are stored in the Running instance place, may need
to be migrated to the new process definition. The transfer possible() function checks
whether transfer is possible for the given process instance (i.e. there are enable tasks which
have not yet been executed and transfer is possible). If migration needs to be performed,
the migrate() function transfers the corresponding process instances from the old to new
process definition.

392 Chapter 6 Process Flexibility Patterns

newm

migrate(pid,m,newm,st)(pid,m,st)

newm

m

modify_m(m)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st))
(pid,m,st)

Migrate

[transfer_possible(m,newm,st)]

Permanent
task insertion

[change_possible(m)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O

ProcModel

Running
instances

I/O ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

A new task is inserted between two
sequential tasks.

Figure 322: Engine enhanced with the Permanent Task Insertion pattern

Implementation Of all of the systems analyzed, only Declare and ADEPT1 support
this pattern. They offer an operation for inserting a task into a process model and allow
existing process instances to be migrated to the new process definition.

Issues The same issues as identified for the Permanent Entry-Point Change pattern
(cf. page 345) and the Momentary Task Reordering pattern apply here also.

Solutions See solutions identified for the Permanent Entry-Point Change pattern .

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows a task to be permanently inserted into a process definition at run-time, and
provides facilities for migrating existing process instances from the old process definition
to the new one.

6.2.8 Flexible concurrency

This group of patterns aims at achieving flexibility when executing several independent
tasks concurrently, thus avoiding unnecessary dependencies between them. Although a
similar outcome can be achieved by applying patterns facilitating flexible reordering, the
focus of this group of patterns is not to change the order of tasks, but to achieve the desired
concurrency. Figure 323 illustrates the scope of patterns presented in this subsection and
their relationship to the other types of flexibility.

Often sequential processes which require that tasks be executed one after another con-
tain a set of tasks whose execution does not depend on each other. To decrease the
duration of the process and make its execution more efficient, whereas possible indepen-
dent tasks should be undertaken concurrently. The flexible concurrency patterns describe
different ways in which dependencies between independent tasks can be decreased by let-
ting them run in parallel. This group contains three patterns: Parallelism, Momentary
Task Parallelization and Permanent Task Parallelization corresponding to flexibility by
design, momentary change and permanent change respectively. Note that no mapping of
flexible concurrency to the concepts of flexibility by underspecification can be made. Flex-

Section 6.2 Catalog of process flexibility patterns 393

Flexibility by

Design Deviation Underspecification Momentary

Change

Permanent

Change

 Flexible initiation Alternative

entry points

Entrance

skip

Undefined entry Momentary

entry change

Permanent

entry change

 Flexible termination Alternative

exit points

Termination

skip

Undefined exit Momentary

exit change

Permanent

exit change

 Flexible selection Choice Task

substitution

Late selection Momentary

choice

insertion

Permanent

choice

insertion

 Flexible reordering Interleaving Swap Momentary

reordering

Permanent

reordering

 Flexible elimination Foreseen

bypass path

Task skip Momentary

task

elimination

Permanent

task

elimination

 Flexible extension Task

invocation

Late creation Momentary

task insertion

Permanent

task insertion

 Flexible

 concurrency

Parallelism Momentary

task

parallelization

Permanent

task

parallelization

 Flexible repetition

Figure 323: Process Flexibility Matrix: flexible concurrency

ibility by underspecification assumes that the content of a particular process fragment is
not foreseen at design-time and any necessary control-flow dependencies are not known,
whilst the tasks whose execution needs to be parallelized in this case are well-defined and
no dependencies between these tasks are required. The mapping to flexibility by deviation
corresponds to the Swap pattern described on page 371, which enables the deviation from
executing the currently enabled task to invoking another task to occur. In light of the
interleaving semantics of CPN Tools the same realization mechanism as used for the Swap
pattern also applies for supporting flexible concurrency. In the Parallelism pattern, the
need for concurrent task execution is recognized at design-time and is realized by means
of parallel branching. The Momentary Task Parallelization and Permanent Task Paral-
lelization allow the introduction of concurrent behavior based on parallel branching at the
instance and type levels respectively.

Pattern PF-28 PARALLELISM

Description A process definition specified at design-time contains a construct that
allows two independent tasks to execute simultaneously or in any order. This allows for
more concurrency during the execution of tasks and avoids unnecessary waiting and de-
pendencies. The need for flexible process concurrency in this pattern is anticipated at
design-time, and corresponds to the flexibility by design type.

Examples
– In high-performance computing large problems are often divided into small units which

are then processed concurrently.
– Where the production of parts for car assembly involves production activities for parts

which are not dependent on each other, their individual production processes can be
undertaken in parallel.

Motivation When a set of tasks is identified at design-time which can be executed
independently, it may be necessary to specify that they can be executed concurrently or in
any order. The Parallelism pattern allows two independent tasks to execute concurrently

394 Chapter 6 Process Flexibility Patterns

by introducing two branches which can be undertaken in parallel. At run-time execution
these tasks may be executed in either order or concurrently.

Overview Figure 321 illustrates the graphical notation for the Parallelism pattern. The
top view shows the process definition where task C is executed after task B has completed.
At design-time it is recognized that tasks B and C are independent of each other, and there
is no need to enforce the execution ordering between them.

BA C D

B

A

C

D

Figure 324: Parallelism pattern

The bottom view shows the process definition after applying the pattern. In this process
definition, tasks B and C have been put in parallel, i.e. they can be executed in either order
or concurrently after the completion of task A.

Context The basic process engine (cf. Figure 325) supports the Parallelism pattern
as follows. In order to specify the parallelism between two tasks B and C, which have
been identified as independent tasks at design-time, and which need to be become enabled
concurrently after task A has completed, the split and join connectors of associated diver-
gence and synchronization tasks have to be set to AND. After executing task A by means of
the Execute task transition, the ns() function analyzes the type of split of the executed
task, and if it corresponds to the AND-split enables all outgoing subsequent arcs. Note
that although theoretically these tasks can be executed concurrently, CPN Tools assumes
an interleaving semantics which allows these tasks to be executed in any order but not
simultaneously.

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,st)

[match(mid,m)] [not(existsEnabledTask(pid,m,st))]

ProcInst

ProcModel

Running
instance

I/O
ProcInstState ProcInst

I/O

Create
process
instance

Begin

InIn

Complete
process
instance

End

OutOut

Execute
task

(pid,m,ns(pid,m,st))

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Process
definition

I/OI/O

Figure 325: Basic process engine: support for Parallelism

Implementation This pattern is supported by all of the systems analyzed. In Ora-
cle BPEL PM, this pattern is supported by means of the <flow> construct with several
concurrent branches. In GLIF and EON, a special branching block needs to be inserted
with which parallel branches have to be associated. In AsbruView, the Parallel plan can
be used for this purpose. YAWL enables parallel execution by associating the AND-split

Section 6.2 Catalog of process flexibility patterns 395

connector with a task. In PROforma, parallel execution can be enabled by incorporating
the Decision construct.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows two or more tasks to be executed concurrently at run-time, based on the parallel
execution paths specified for them in the process definition at design-time.

Pattern PF-29 MOMENTARY TASK PARALLELIZATION

Description During execution, at any time after process initiation, a process definition
associated with a particular process instance can be modified by parallelizing the execution
of two subsequent independent tasks. This gives flexibility in initiating these tasks allowing
them to execute in any order as well as concurrently. The change applies only to a given
process instance and has no effect on other (current or future) process instances, thus it
corresponds to the flexibility by momentary change type.

Examples
– Due to change in planning, all activities are required to be completed earlier than usual,

therefore in addition to the currently executing task an employee initiates another ac-
tivity that has been planned for a later time.

– The workshop program consists of a set of presentations, followed by a feedback session
where students complete evaluation forms. To shorten the workshop program, students
have been asked to fill in the evaluation form while attending one of the presentations.

Motivation When at run-time several independent tasks have been identified, which
are prescribed by the process definition to execute sequentially, it should be possible to
let them run concurrently or in any order. The Momentary Task Parallelization pattern
allows for concurrent execution of two independent tasks by temporarily parallelizing them
for a given process instance.

Overview Figure 321 illustrates the graphical notation for the Momentary Task Par-
allelization pattern. The top view shows two process instances populated from the same
process definition. For one of the process instances the need to execute enabled task B

concurrently with its successor task C is recognized.

BA C D

BA C D

B

A

C

D

BA C D

Figure 326: Momentary Task Parallelization pattern

396 Chapter 6 Process Flexibility Patterns

The bottom view shows that after applying the pattern for a given process instance
the process definition has been changed: tasks B and C have been parallelized, and an
additional execution thread has been spawned off in order to enable task C.

Context Figure 327 illustrates the basic process engine enhanced with the Momentary
Task Parallelization pattern using the CPN formalism. The model of the engine is extended
using the structure adopted by all patterns facilitating flexibility by momentary change
(cf. page 343). The Momentary parallelization transition can be executed in order to
parallelize a currently enabled (sequential) task with a subsequent task that is yet to be
executed. The change possible() function checks whether for the given process instance
stored in the Running instance place there exist an enabled task that still has to be
executed, and whether there exist two adjacent tasks with no join and split connectors
(these tasks should different from the start and end tasks). The update pi() function
selects an arbitrary arc between two sequential tasks (other than those being parallelized),
deletes the sequential dependency between them, modifies the join and split connectors of
the corresponding divergence and synchronization tasks and adds missing arcs from the
divergence and synchronization tasks to the parallelized tasks. After the change the process
instance state is updated. If the currently enabled task has been involved in the change,
then the updated state would contain two enabled tasks.

Two subsequent sequential tasks, which
are not in the beginning and not in the end of the
process, are selected for parallelization.
The split and join connectors of the
corresponding synchronization
tasks are modified. After the change, both
tasks are enabled.

update_pi(pid,m,st) (pid,m,st)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st))
(pid,m,st)

Momentary
parallelization

[change_possible(pid,m,st)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O
ProcModel

Running
instances

I/O ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

Figure 327: Engine enhanced with the Momentary Task Parallelization pattern

Implementation Of all of the systems analyzed, only Declare supports this pattern.
To allow another task to be executed concurrently with currently enabled task, the con-
strains associated with the task to be invoked have to be removed. Although ADEPT1
provides flexibility by change, it does not allow for the parallelization of sequential tasks.

Issues None identified.

Solutions N/A.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows the order of tasks in the process definition associated with a given process
instance to be modified in such a way that two independent sequential tasks are parallelized,
and may be executed concurrently.

Section 6.2 Catalog of process flexibility patterns 397

Pattern PF-30 PERMANENT TASK PARALLELIZATION

Description During execution, there is the possibility to permanently modify the
process definition by transforming the sequential ordering of previously independent tasks
into a concurrent structure, which allows these tasks to execute simultaneously or in any
order. The parallelization of tasks is performed in the process definition at the type level
on a permanent basis. The change performed affects future process instances directly,
and existing process instance require migration from the old process definition to the new
process definition, thus it corresponds to the flexibility by permanent change type.

Examples
– The education program at a school has been revised allowing students to follow in-

dependent courses in parallel. The previous version of the program allowed only for
participation in a new course only after the previous course has been completed.

– It is common practice in hospitals to solve the health problem of one patient at a time.
In order to decrease waiting times, patients in the same family are accepted together
and treated concurrently.

Motivation When at run-time the possibility for concurrent execution of independent
tasks is recognized there may arise the need to restructure the original process definition
by parallelizing the execution order of these tasks. The Permanent Task Parallelization
pattern allows two independent tasks to be parallelized on a permanent basis in order to
provide flexibility in defining the execution order for these tasks.

Overview Figure 321 illustrates the graphical notation for the Permanent Task Paral-
lelization pattern. The top view shows three distinct process instances populated from the
same process definition. At run-time execution for the given process definition the need to
relax the dependency between tasks B and C at the type level is recognized.

BA C D

B

A

C

D

c

Figure 328: Permanent Task Parallelization pattern

The bottom view shows that after applying the pattern tasks B and C have been paral-
lelized. For the process instance that has passed these tasks this change is inconsequential.
For the other two process instances, where task B has been enabled, an additional thread
of control has been spawned off in order to execute task C independently of task B. Both
tasks have to complete in order for task D to become enabled.

Context Figure 329 illustrates the basic process engine enhanced with the Permanent
Task Parallelization pattern using the CPN formalism. The model of the process engine
is extended using the structure described earlier in the Permanent Entry-Point Change
pattern on page 345.

Two sequential tasks can be put in parallel by the Permanent parallelization tran-
sition in the process definition only if conditions specified by the change possible() func-
tion are satisfied. In particular, there must be an arc between two sequential tasks (with

398 Chapter 6 Process Flexibility Patterns

no splits or joins), and these tasks must be different from the start and end tasks. The
modify m() function selects an arbitrary arc between sequential tasks (other than those
being parallelized), identifies their synchronization tasks, sets the join and split connectors
of the divergence and synchronization tasks to AND, deletes the selected arc, and adds two
other arcs connecting the synchronization tasks with the tasks recently parallelized instead.
After the change has been performed, it may be necessary to migrate existing process in-
stances stored in the Running instance place. The transfer possible() function checks
whether there mismatches between the old and new versions of the process definitions and
whether the transfer is possible. The migrate() function performs the transfer of a pro-
cess instance from the old to new process definition according to the specified migration
strategy.

Two tasks in a sequence are selected
for parallelization. The connectors of the
corresponding synchronization tasks
are modified to AND-type.

newm

migrate(pid,m,newm,st)(pid,m,st)

newm

m

modify_m(m)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st))
(pid,m,st)

Migrate

[transfer_possible(m,newm,st)]

Permanent
parallelization

[change_possible(m)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O

ProcModel

Running
instances

I/O ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

Figure 329: Engine enhanced with the Permanent Task Parallelization pattern

Implementation Of all of the systems analyzed, only ADEPT1, Declare and YAWL
offer some support for this pattern. Declare allows previously sequential tasks to be con-
currently enabled by removing the dependency constraints between them. Furthermore,
it offers the possibility to transfer existing process instances to the new process definition.
In order for two tasks to be put in parallel in ADEPT1, one of them have to be removed
and inserted back in parallel with the other task. In YAWL, an exlet needs to be called in
which given two tasks will be removed from the process model and inserted in the desired
order by defining a new worklet.

Issues The same issues as identified for the Permanent Entry-Point Change pattern
(cf. page 345) also apply here.

Solutions See solutions identified for the Permanent Entry-Point Change pattern.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows the execution order of two sequential tasks to be parallelized, providing that
existing process instances can be migrated from the old process definition to the new one.

Section 6.2 Catalog of process flexibility patterns 399

6.2.9 Flexible repetition

The last group of patterns aims at flexibility in repeating the execution of a particular task
variable number of times. Figure 330 illustrates the scope of patterns presented in this
subsection and their relationship with the other types of flexibility.

Flexibility by

Design Deviation Underspecification Momentary

Change

Permanent

Change

 Flexible initiation Alternative

entry points

Entrance

skip

Undefined entry Momentary

entry change

Permanent

entry change

 Flexible termination Alternative

exit points

Termination

skip

Undefined exit Momentary

exit change

Permanent

exit change

 Flexible selection Choice Task

substitution

Late selection Momentary

choice

insertion

Permanent

choice

insertion

 Flexible reordering Interleaving Swap Momentary

reordering

Permanent

reordering

 Flexible elimination Foreseen

bypass path

Task skip Momentary

task

elimination

Permanent

task

elimination

 Flexible extension Task

invocation

Late creation Momentary

task insertion

Permanent

task insertion

 Flexible

 concurrency

Parallelism Momentary

task

parallelization

Permanent

task

parallelization

 Flexible repetition Iteration Redo Momentary

loop insertion

Permanent

loop insertion

Figure 330: Process Flexibility Matrix: flexible repetition

In some situations, when creating a process definition it may be foreseen that a partic-
ular task may need to be executed multiple times, but the number of times it will need to
execute may vary or be unknown. The flexible repetition patterns describe different ways
of achieving the behavior allowing a certain task to be executed multiple times. Of the four
patterns identified, the Iteration pattern represents a generic form of loop introduced in
the process definition at design-time, which allows tasks residing in the body of the loop to
be executed repeatedly until the loop termination condition is satisfied. There are different
forms of iterations possible, such as those described by the control-flow repetition patterns
described on page 154. However, in the context of this research we abstract from different
forms of the loops and consider its generic form. The Redo pattern applies to situations
where after executing a particular task the decision to repeat it at some later point in time
is taken. The Momentary Loop Insertion and Permanent Loop Insertion patterns represent
variants of the Iteration pattern realized at run-time by modifying the process definition
at the instance and type levels respectively. Note that this group contains no patterns
corresponding to flexibility by underspecification. This has to do with the fact that the
content of the task and its position are known and thus do not need to be represented as
placeholders.

Pattern PF-31 ITERATION

Description A process definition specified at design-time contains a loop which allows
the execution of a given task to be repeated. Typically, the decision to enable the task
in the loop or continue with the subsequent task depends on the evaluation of a data
condition associated with this task. This gives flexibility in realizing execution sequences
where the task embedded in the loop may need to be executed multiple times. The need

400 Chapter 6 Process Flexibility Patterns

for flexible task concurrency in this pattern is anticipated at design-time and corresponds
to the flexibility by design type.

Examples
– For a driving license a candidate is required to take a theory exam. If the first attempt

is unsuccessful, a candidate may repeat the test until they finally pass it.
– The blood examination in a laboratory is repeated for a sample until all required elements

have been identified.

Motivation In situations where it is recognized (at design-time) that a certain task
may need to be executed a variable number of times, it should be possible to specify that
the execution of this task should can be repeated. The Iteration pattern provides flexibility
in repeating the execution of a certain task by embedding it in the body of a loop, which
can be iterated as many times as required.

Overview Figure 331 illustrates the graphical notation for the Iteration pattern. The
top view shows the process definition in which each tasks executes only once. At design-time
for this process definition the possibility of executing task C multiple times is recognized.

BA C D

BA C D

Figure 331: Iteration pattern

The bottom view shows that after applying the pattern task C has been modified in
such a way that it can be executed multiple times. The number of times a given task is
executed in distinct process instances may vary.

Context The Iteration pattern is supported by the basic process engine in a similar
way as for the Choice pattern (cf. page 359). The possibility of repeating the execution of
a specific task can be incorporated into the process definition at design-time by inserting a
choice construct forming a self-loop. For instance, in order to specify that after executing
task C either another instance of task C needs to be executed or task D, both the join
and split connectors of task C have to be set to XOR, and an additional arc (C,C) needs
to be added to the set of arcs associated with the process model. In Figure 332, after
executing task C by means of the Execute task transition, the ns() function calculates
a new process instance state. When the value of the split connector associated with a
task has been evaluated, for the XOR-type only one task out of several possible options is
selected non-deterministically. This means that the number of times the task will iterate
is not predefined, but is determined on a random basis.

Implementation In each of the systems analyzed, it is possible to achieve task itera-
tion by embedding a task in a loop (for this, the same support as for the Choice pattern
is required). In PROforma, there exists an option to set an iteration attribute associated
with a specific task to a value or to an expression, thus allowing the number of task itera-
tions to vary. In Oracle BPEL PM, a task needs to be inserted into a <while> loop, whose
enabling condition defines whether a task residing in the loop will be iterated again. In
FLOWer, iteration of a specific task can be achieved by inserting this task in the body of
a sequential plan.

Section 6.2 Catalog of process flexibility patterns 401

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,st)

[match(mid,m)] [not(existsEnabledTask(pid,m,st))]

ProcInst

ProcModel

Running
instance

I/O
ProcInstState ProcInst

I/O

Create
process
instance

Begin

InIn

Complete
process
instance

End

OutOut

Execute
task

(pid,m,ns(pid,m,st))

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Process
definition

I/OI/O

Figure 332: Basic CPN engine: support for Iteration

Issues In order to define whether a given task can be repeated, a data-based condition
identifying whether to repeat the task has to be defined. The number of times the execution
of the given task will be repeated depends on the moment of the data condition is evaluated.

Solutions There exist two variants of task iteration: a ’while’ loop and a ’repeat-until’
loop. In case of the ’while’ loop the condition is evaluated before executing the task, whilst
in case of the ’repeat-until’ loop the data condition is evaluated after the task has been
completed. For implementation details see the Structured Loop control-flow pattern on
page 155.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows the execution of a specific task to be repeated multiple times based on a data
condition included in the process definition at design-time.

Pattern PF-32 REDO

Description During execution, after process instance initiation, there is the possibility
of deviating from the execution path prescribed by the process definition by repeating the
execution of a task that has recently been completed. The need to execute a particular
task more often than prescribed by the process definition is anticipated at run-time. This
has no effect on the process definition, and corresponds to the flexibility by deviation type.

Examples
– Due to unexpected changes in travel plans, one of the reservations had to repeated in

order to change the flight to another date.
– The results of software testing showed some inconsistencies in the software design. This

triggered revision of the design.

Motivation When at run-time it is recognized that the execution of a particular task
did not go as well as expected, it should be possible to perform the given task again.
The Redo pattern offers flexibility in deviating from the execution path prescribed by the
process definition by allowing the execution of the currently enabled tasks to be deferred
until the execution of previous task has been repeated.

Overview Figure 333 illustrates the graphical notation for the Redo pattern. The top
view shows the process instance for which the need to repeat the previously executed task
C is recognized.

The bottom view shows that after applying the pattern the thread of control has been
moved in the given process instance from task D to task C, thus allowing its execution to
be repeated.

402 Chapter 6 Process Flexibility Patterns

BA C D

BA C D

Figure 333: Redo pattern

Context Figure 334 illustrates the basic process engine enhanced with the Redo pattern
using the CPN formalism. The Redo transition allows for deviation from the normal
prescribed execution order by executing a task that has already been completed (and
a record of which is available in the Log place). The deviation possible() function
specifies that in order to redo a task, the list of executed tasks stored in the Log place
should not be empty. The task whose execution needs to be redone is randomly selected
by the dev action() function. Note that the execution state of the given process instance
and the process definition remain unchanged.

tid::tids

tids

tids

tid::tids

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

update_exec(tid,pid,m,st)
(pid,m,st)

Redo
task

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

Log

[]

TaskIDs

Begin

In
ProcInst

Process
definition

I/O
ProcModel

Running
instance

I/O ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

[existsEnabledTask(pid,m,st),
isConcrete(pid,m,st),
tid=exectask(pid,m,st)]

(pid,m,st)

[deviation_possible(pid,m,st,tids),
tid=dev_action(pid,m,st,tids)]

During process instance execution
a task that has been
executed can be redone. Tracking
of executed tasks performed based on a log.

Figure 334: Engine enhanced with the Redo pattern

Implementation Of all systems analyzed only FLOWer and Oracle BPEL PM support
this pattern. FLOWer offers a special operation to redo the execution of a previously
executed task. In Oracle BPEL PM the only possible way to redo a task is to raise an
exception or trigger an event upon which a previously executed task will become enabled
again.

Issues When the execution of a specific task needs to be redone, the problem of over-
writing data obtained during the first execution can occur.

Solutions Depending on whether there are data dependencies between the task that
needs to be repeated and its subsequent task(s), it may be necessary to roll back the exe-
cution of these (subsequent) tasks. In order to avoid overwriting data, the values provided
for data elements when executing the task to be redone can be marked as ‘unconfirmed’
rather than being discarded [114].

Evaluation Criteria Full support for this pattern is demonstrated by any offering

Section 6.2 Catalog of process flexibility patterns 403

that allows the execution of a previously executed task to be redone.

Pattern PF-33 MOMENTARY LOOP INSERTION

Description During execution, at any time after process initiation, a process definition
associated with a particular process instance can be temporarily modified by inserting a
particular task in a loop. This allows the selected task to be executed more often than
originally prescribed by the process definition. The need for momentary task repetition
is recognized at run-time. This change applies only to the given process instance and
has no effect on other (current or future) process instances, thus it is of the flexibility by
momentary change type.

Examples
– A patient who arrived at the emergency care center has been given an injection in the

stomach for a dog bite. The injection is required to be repeated daily for 10 days.
– During process execution there arose a need to repeat a particular task over a specific

period of time. The task planning section of the configuration window has no option to
repeat a particular task. To make this possible the advanced settings of the configuration
window have been changed by marking the “task repetition” field.

Motivation When at run-time a task has been identified which needs to be executed
more often than prescribed by the process definition, it should be possible to adjust the
process definition in order to allow the execution of the given task to be repeated multiple
times. The Momentary Loop Insertion pattern allows a sequential task to be incorporated
into a loop in a given process instance in order for multiple subsequent executions of the
given task to be achieved.

Overview Figure 335 illustrates the graphical notation for the Momentary Loop Inser-
tion pattern. The top view shows two distinct process instances based on the same process
definition. At run-time execution, the need for iteration of the currently enabled task C is
recognized in one of these process instances.

BA C D

BA C D

BA C D

BA C D

Figure 335: Momentary Loop Insertion pattern

The bottom view shows that after applying the pattern the process definition associated
with the given process instance has been modified by transforming task C into a repetitive
task. Note that the other process instance remains unaffected.

Context Figure 336 illustrates the basic process engine enhanced with the Momentary
Loop Insertion pattern using the CPN formalism. The model of the engine adopts the
structure for momentary changes described earlier in the Momentary Entry-Point Change

404 Chapter 6 Process Flexibility Patterns

pattern on page 343. In order to allow the execution of the currently enabled task to be
repeated, it needs to be inserted in the loop by executing the Momentary loop insertion

transition. The change possible() function specifies that a loop can only be inserted in
a given process instance if there exists an enabled task that still needs to be executed, and
if the currently enabled task has no split or join connectors of AND type. The update pi()

function modifies the split and join connectors of the selected task to XOR, and adds an arc
representing a self-loop to the set of arcs associated with the given process instance. Note
that the update pi() function can be changed in such a way that not only the currently
enabled task but any other task that still needs to be executed can be inserted in the loop.

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st)) (pid,m,st)

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
isConcrete(pid,m,st)]

Begin

In
ProcInst

ProcModel

Running
instance

I/O ProcInstState

End

Out
ProcInst

OutI/OIn

update_pi(pid,m,st) (pid,m,st)

[change_possible(pid,m,st)]

A currently enabled task of sequential
type can be inserted in the loop.

Momentary
loop insertion

Process
definition

I/OI/O

Figure 336: Engine enhanced with the Momentary Loop Insertion pattern

Implementation Of all of the systems analyzed, only Declare supports this pattern.
Declare allows the execution of a task to be repeated by changing its cardinality constraint.
In YAWL, an exlet needs to be called, which requires a new worklet containing a loop to be
defined. Once the defined worklet has been defined, it becomes available to other process
instances (this considered to be a change of permanent nature rather than momentary).

Issues Depending on the moment when the decision to repeat the execution of a partic-
ular task is made (i.e. before or immediately after it has been executed), different forms of
a loop may need to be used.

Solutions Having completed a specific task, the only possibility to repeat its execution
is to insert it in a loop of the ‘repeat-until’ type. The condition associated with this loop
will be evaluated at its conclusion, allowing the execution of this task to be repeated if the
loop termination condition has not been satisfied. When the need to repeat the execution
of a particular task is recognized prior to task execution, both the ‘repeat-until’ and ‘while’
forms of a loop are possible. In the ‘while-do’ loop, the decision about executing the task is
taken before entering the loop (cf. the Structured Loop control-flow pattern on page 155).

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows a specific task in a process definition associated with a given process instance
to be inserted into a loop in order to allow this task to be executed multiple times.

Pattern PF-34 PERMANENT LOOP INSERTION

Description At run-time, a process definition can be permanently modified by inserting
a particular task in a loop. This allows the number of times the selected task will be

Section 6.2 Catalog of process flexibility patterns 405

executed may vary for different process instances. The need for task repetition is recognized
at run-time. The change performed affects future process instances directly, and existing
process instances may require migration from the old process definition to the new process
definition, thus this pattern is of the flexibility by permanent change type.

Examples
– According to changes in the medicine prescription policy, patients do not need to visit

a doctor each time a repeat prescription is required, but can pick up their medicine at
their preferred pharmacy. The repeat prescription request is processed automatically by
a new system installed at the drugstore.

– As a result of a reorganization an electronic time-registration system has been introduced.
Employees of this company involved in reorganization have to register their time working
hours weekly using the system installed.

Motivation In situations, where at run-time execution the need to execute a certain
task multiple times is identified, it should be possible to modify the number of times
the given task is required to execute. The Permanent Loop Insertion pattern allows the
execution of a sequential task to be repeated multiple times by embedding this task into a
loop.

Overview Figure 337 illustrates the graphical notation for the Permanent Loop Inser-
tion pattern. The top view shows three distinct process instances populated from the same
process definition. At run-time execution, the need to iterate task C is recognized at the
type level.

BA C D

BA C D

c

c

Figure 337: Permanent Loop Insertion pattern

The bottom view shows that after applying the pattern, the process definition has been
modified by transforming task C into an iterative task and all existing process instances
have been affected.

Context Figure 338 illustrates the basic process engine enhanced with the Permanent
Loop Insertion pattern using the CPN formalism. The model of the engine has been ex-
tended using the structure adopted by all patterns facilitating the flexibility by permanent
change (as described in the Permanent Entry-Point Change pattern on page 345). The
execution of the Permanent loop insertion transition inserts a selected task in a loop.
This transition can only be executed if the process description m, stored in the Process

definition place, contains more than two tasks and if there is a task that has no split
and join connectors of AND-type. The modify m() function selects an arbitrary task of the
sequential type and modifies its split and join connectors to XOR value. The migration of
existing process instances from the old process definition m to the new process definition
newm is performed using the migrate() function.

Implementation Of all of the systems analyzed, only Declare offers support for this
pattern by allowing the cardinality constraints associated with a specific task to be modified
and migration of existing process instances to the new process definition to be performed.
In YAWL, an exlet needs to be called, which requires a new worklet containing a loop to be

406 Chapter 6 Process Flexibility Patterns

A task that has no splits or joins
is selected for insertion in the loop.
********************************newm

migrate(pid,m,newm,st)(pid,m,st)

newm

m

modify_m(m)

(mid,pid)

m

createinst(m,pid) (mID(m),pid)(pid,m,st)

(pid,m,ns(pid,m,st))
(pid,m,st)

Migrate

[transfer_possible(m,newm,st)]

Permanent
loop insertion

[change_possible(m)]

Create
process
instance

[match(mid,m)]

Complete
process
instance

[not(existsEnabledTask(pid,m,st))]

Execute
task

[existsEnabledTask(pid,m,st),
 isConcrete(pid,m,st)]

Begin

In
ProcInst

Process
definition

I/O

ProcModel

Running
instances

I/O ProcInstState

End

Out
ProcInst

OutI/O

I/O

In

Figure 338: Permanent Loop Insertion pattern

defined. Once the defined worklet has been defined, it becomes available to other process
instances.

Issues The same issues as identified for the Permanent Entry-Point Change pattern
(cf. page 345) also apply here.

Solutions See solutions identified for the Permanent Entry-Point Change pattern.

Evaluation Criteria Full support for this pattern is demonstrated by any offering
that allows a process definition to be modified by permanently inserting a specific task into
a loop. In addition, there must be support for process instance migration.

6.2.10 Discussion

In this subsection, we give an overview of the flexibility patterns identified and examine
the relationships between them. Figure 339 depicts the process flexibility matrix with 34
patterns that have been identified. Some of the cells in this matrix are empty, indicating
that the mapping of the process flexibility aspect to the specific flexibility type cannot be
made or is not meaningful. In particular, there is no pattern providing flexibility by exten-
sion that can be mapped to flexibility by design. The reason for this is that all alternative
execution paths that have been foreseen at design-time, can be included into the process
definition using the Choice pattern. In the column for flexibility by underspecification,
there are no patterns providing flexibility in task reordering, bypassing a task, task con-
currency and task repetition. This has to do with the fact that these operations apply to
tasks which are known at design-time (i.e. there is no need to underspecify their content).

Amongst the seven patterns characterizing flexibility by design, only the Alternative
entry points and Choice patterns require direct support in order for flexibility in process
initiation and flexibility in execution path selection to be achieved. The other five patterns
if not directly supported can be expressed in terms of the Choice pattern. For instance, to

Section 6.2 Catalog of process flexibility patterns 407

realize the Parallelism pattern the condition for selecting one of several available branches
defined for the Choice pattern needs to be relaxed, allowing all branches to be selected.
The Foreseen Bypass Path pattern represents a choice between executing a specific task or
not executing it at all, thus this can be implemented using the Choice pattern also. The
Interleaving pattern can be expressed using the Choice pattern by explicitly defining all
possible ordering sequences, and selecting only one of them. The Iteration pattern can
be seen as a special kind of choice where a decision to iterate a loop or to continue with
subsequent activities needs to be taken.

Flexibility by

Design Deviation Underspecification Momentary

Change

Permanent

Change

Flexible initiation Alternative

entry points

Entrance

skip

Undefined entry Momentary

entry change

Permanent

entry change

Flexible termination Alternative

exit points

Termination

skip

Undefined exit Momentary

exit change

Permanent

exit change

Flexible selection Choice Task

substitution

Late selection Momentary

choice

insertion

Permanent

choice

insertion

Flexible reordering Interleaving Swap Momentary

reordering

Permanent

reordering

Flexible elimination Foreseen

bypass path

Task skip Momentary

task

elimination

Permanent

task

elimination

Flexible extension Task

invocation

Late creation Momentary

task insertion

Permanent

task insertion

Flexible

concurrency

Parallelism Momentary

task

parallelization

Permanent

task

parallelization

Flexible repetition Iteration Redo Momentary

loop insertion

Permanent

loop insertion

Figure 339: Process Flexibility Matrix: patterns identified

Patterns related to flexibility by deviation have a corresponding mapping to each of the
eight aspects of process flexibility identified. In this group of patterns, direct support for
the Task Skip pattern and the Task Invocation pattern is required in order for the flexibility
features offered by the other six patterns to be realized. In particular, the Entrance Skip
pattern can be considered as a special variant of the Task Skip pattern. In order to start the
execution of a process from a task other than the nominated one, the Task Skip pattern
can be iteratively applied until the desired point in the process has been reached. The
Termination Skip pattern can be also seen as a variant of the Task Skip pattern. The
difference between them is that the effect of the Termination Skip pattern can be achieved
by iteratively applying the Task Skip pattern, which moves the execution thread to a
subsequent task rather than to the end of the process immediately. Having support for
the Task Invocation pattern available, a task that is not currently enabled can be invoked
in order to substitute the currently enabled task (i.e. the Task Substitution pattern), or to
repeat a previously executed task (i.e. the Redo pattern). Combinations of the Task Skip
and Task Invocation pattern are required in order for the Swap pattern to be realized.

The group of patterns supporting flexibility by underspecification consists of four pat-
terns. To realize these patterns, support for placeholders is required. The completion of
placeholders in each of these patterns can be done according to the late modeling and late
binding strategies, introduced earlier on page 326.

Patterns characterized by flexibility by momentary change and flexibility by perma-
nent change can be mapped to each of the eight process flexibility aspects. Support for the
Momentary Entry Change can be accomplished by applying the Momentary Task Elim-
ination pattern until the desired entry-point is reached. The support for this pattern is

408 Chapter 6 Process Flexibility Patterns

also required in order for flexibility in process termination offered by the Momentary Exit
Change pattern to be achieved. The Momentary Loop Insertion pattern requires support
for the Momentary Choice Insertion pattern, whereas the Momentary Reordering can be
achieved via the Momentary Task Insertion and the Momentary Task Elimination pat-
terns. The same relationships apply to the group of patterns supporting flexibility by
permanent change.

This concludes the discussion of requirements for PAISs from the process flexibility per-
spective. We now move on to a comprehensive evaluation of flexibility pattern support in
the selected PAISs.

6.3 Tool evaluations

In this section, we show how the process flexibility patterns can be used for assessing and
comparing process modeling languages and enactment mechanisms employed by a wide
range of PAISs. We concentrate on ADEPT1, FLOWer, YAWL and Declare because they
provide support for different types of flexibility. Furthermore, we analyze the capabilities
of Oracle BPEL PM that is often used for the realization of interactive processes. Changes
in one of the interacting processes may impact other processes involved in the interaction,
thus it is interesting to see up to which extent this tool is capable to adapt to changes
in the operating environment. In the health-care environment, unpredictable situations
often occur, which require a very sensitive mechanism for adapting to changes. In such
dynamic and unpredictable environment flexibility is an important issue. To check the
degree of flexibility offered by CIG modeling languages used in the health-care domain for
encoding medical guidelines we evaluate PROforma, EON, GLIF, and Asbru8. We will
define the degree of support offered by these languages by analyzing them against subsets
of the flexibility patterns identified.

Table 6.3 summarizes the results of evaluating the selected PAISs. The full support
(marked in Table 6.3 as “+”) for each of the patterns is defined on the basis of the evaluation
criteria associated with them. Typically, there must be an explicit operation available that
allows the effect of the flexibility approach identified by a pattern to be easily achieved.
Partial support (marked in Table 6.3 as “+/-”) indicates that there is no direct way of
realizing the desired behavior, however it can be achieved by executing a number of other
steps. The absence of support (marked in Table 6.3 as “-”) indicates that either the desired
behavior cannot be achieved or that a workaround solution requires significant effort and
is hard to realize. In addition to the overview of supported patterns, Table 6.4 illustrates
the support of patterns related to each of the five flexibility types.

Oracle BPEL PM offers good support for flexibility by design. By setting the
createInstance attribute to “yes” different <receive> activities in a process model
can serve as alternative start tasks. The ability to put the <Terminate> activity in dif-
ferent places in a process model allows the process to be terminated once any of these
activities has been executed. Support for flexible selection, flexible reordering and flexible

8Of these four modeling languages only PROforma can be evaluated from the perspective of five flexibil-
ity types identified: the Tallis tool is based on PROforma semantics and provides functionality for process
execution. The other three languages are analyzed only from the perspective of flexibility by design. The
run-time behavior associated with flexibility by deviation, flexibility by underspecification, flexibility by
momentary and permanent change cannot be assessed due to non-availability of enactment engines for
these languages.

Section 6.3 Tool evaluations 409

Table 6.3: Support for the process flexibility patterns in (1) Oracle BPEL PM,(2) ADEPT1, (3)
FLOWer, (4) Declare, (5) YAWL, (6) PROforma, (7) EON, (8) GLIF, and (9) Asbru

ID Pattern name 1 2 3 4 5 6 7 8 9

Flexible Initiation

FP-1 Alt. Entry-Points + - - + - + - + -
FP-2 Entrance Skip - - +/- + - -
FP-3 Undefined Entry - - - - + -
FP-4 Mom. Entry Change - +/- - + - -
FP-5 Perm. Entry Change - +/- - + - -

Flexible Termination

FP-6 Alt. Exit-Points + - - + - + - - -
FP-7 Termination Skip + - + + - -
FP-8 Undefined Exit - - - - + -
FP-9 Mom. Exit Change - +/- - + + -
FP-10 Perm. Exit Change - +/- - + + -

Flexible Selection

FP-11 Choice + + + + + + + + +
FP-12 Task Substitution + - +/- - - -
FP-13 Late Selection - - - - + -
FP-14 Mom. Choice Insertion - +/- - + - -
FP-15 Perm. Choice Insertion - +/- - + + -

Flexible Reordering

FP-16 Interleaving + + + + + + + + +
FP-17 Swap - - + + - -
FP-18 Mom. Reordering - +/- - + - -
FP-19 Perm. Reordering - +/- - + + -

Flexible Elimination

FP-20 Foreseen Bypass Path + + + + + + + + +
FP-21 Task Skip - - + + - +
FP-22 Mom. Task Elimination - + - + + -
FP-23 Perm. Task Elimination - + - + - -

Flexible Extension

FP-24 Task Invocation + - + - - -
FP-25 Late Creation + - - - + -

FP-26 Mom. Task Insertion - + - + - -
FP-27 Perm. Task Insertion - + - + + -

Flexible Concurrency

FP-28 Parallelism + + + + + + + + +
FP-29 Mom. Task Parallelization - +/- - + - -
FP-30 Perm. Task Parallelization - +/- - + + -

Flexible Repetition

FP-31 Iteration + + + + + + + + +

FP-32 Redo + - + - - -

FP-33 Mom. Loop Insertion - - - + - -

FP-34 Perm. Loop Insertion - - - + + -

410 Chapter 6 Process Flexibility Patterns

Table 6.4: Support for the process flexibility patterns in (1) Oracle BPEL PM, (2) ADEPT1,
(3) FLOWer, (4) Declare, (5) YAWL, (6) PROforma, (7) EON, (8) GLIF, and (9) Asbru

ID Pattern name 1 2 3 4 5 6 7 8 9

Flexibility by Design

FP-1 Alt. Entry-Points + - - + - + - + -
FP-6 Alt. Exit-Points + - - + - + - - -
FP-11 Choice + + + + + + + + +
FP-16 Interleaving + + + + + + + + +
FP-20 Foreseen Bypass Path + + + + + + + + +
FP-28 Parallelism + + + + + + + + +
FP-31 Iteration + + + + + + + + +

Flexibility by Deviation

FP-2 Entrance Skip - - +/- + - -
FP-7 Termination Skip + - + + - -
FP-12 Task Substitution + - +/- - - -
FP-17 Swap - - + + - -
FP-21 Task Skip - - + + - +
FP-24 Task Invocation + - + - - -
FP-32 Redo + - + - - -

Flexibility by Underspecification

FP-3 Undefined Entry - - - - + -
FP-8 Undefined Exit - - - - + -
FP-13 Late Selection - - - - + -
FP-25 Late Creation + - - - + -

Flexibility by Mom.Change

FP-4 Mom. Entry Change - +/- - + - -
FP-9 Mom. Exit Change - +/- - + + -
FP-14 Mom. Choice Insertion - +/- - + - -
FP-18 Mom. Reordering - +/- - + - -
FP-22 Mom. Task Elimination - + - + + -
FP-26 Mom. Task Insertion - + - + - -
FP-29 Mom. Task Parallelization - +/- - + - -
FP-33 Mom. Loop Insertion - - - + - -

Flexibility by Perm.Change

FP-5 Perm. Entry Change - +/- - + - -

FP-10 Perm. Exit Change - +/- - + + -
FP-15 Perm. Choice Insertion - +/- - + + -
FP-19 Perm. Reordering - +/- - + + -
FP-23 Perm. Task Elimination - + - + - -
FP-27 Perm. Task Insertion - + - + + -
FP-30 Perm. Task Parallelization - +/- - + + -
FP-34 Perm. Loop Insertion - - - + + -

Section 6.3 Tool evaluations 411

elimination can be accomplished in Oracle BPEL PM using the <switch> construct, where
alternative tasks, sequences of tasks or empty tasks can be defined in each of the branches.
Support for flexible concurrency is provided by the <flow> activity, whilst flexible rep-
etition can be obtained by using the <while>-loop construct. The ability to throw an
exception in the scope of a specific task, allows a compensation action to be performed. In
this way, the execution of one task can be substituted with another, a previously executed
task can be redone, a process instance can be terminated or another task or process can
be invoked, thus providing support for four deviation patterns. Although Oracle BPEL
PM does not support the concept of a placeholder, it allows the definition of credentials
of a process that needs to be invoked to be postponed until run-time. These can be
set dynamically based on the input provided, thus corresponding to the Late Creation

pattern. This system provides no means of support for flexibility by momentary change or
flexibility by permanent change, because the process definition cannot be modified at an
instance nor at a type level.

ADEPT1 is characterized by its support for structured workflows with a single entry
and a single exit point. This feature is used for checking soundness when defining process
models and migrating process instances from an old process definition to a new process def-
inition, obtained as the result of change. This systems scores well in supporting flexibility
by design, flexibility by momentary change and flexibility by permanent change. ADEPT1
allows the process definition to be modified at run-time in order to facilitate adaptation
to changes in the operating environment. The basic operations that are directly supported
are adding and deleting a task, these correspond to direct support for flexibility in process
extension and flexibility in task elimination. Patterns such as Momentary Entry Change,
Momentary Exit Change, Momentary Choice Insertion, Momentary Reordering and Mo-
mentary Parallelization cannot be realized directly, however the effect of the flexibility
mechanisms they facilitate can be achieved by applying the insert and delete task opera-
tions. The desired start task in a process can be achieved by deleting tasks in the beginning
of the process one-by-one. Similar steps can be performed in order for a process to be ter-
minated earlier. To reorder two tasks, they need to be removed and re-inserted in the
correct order. The same holds for task parallelization. It is however not possible to insert
a task in a loop, therefore the only patterns not supported in the group of momentary
and permanent change patterns are the Momentary Loop Insertion and Permanent Loop
Insertion. A notable feature supported by ADEPT1 is the migration of process instances
to a new process definition. This explains why patterns in the group of permanent change
are supported as well as those in the group of momentary change.

FLOWer is a case-handling system offering a lot of support for deviating from the
execution order prescribed by the process definition. Similar to ADEPT1, FLOWer allows
only a single entry to and single exit from the process model. This explains, why the
Alternative Entry Points and the Alternative Exit Points patterns are not supported. The
availability of various types of plans (i.e. sequential, dynamic) provide good support for the
other six patterns in the flexibility by design group. The majority of patterns facilitating
flexibility by deviation are supported by FLOWer directly. It is possible to start the
execution of a non-enabled task directly, skip a task, invoke a non-enabled task concurrently
with a currently enabled task or rollback and repeat a previously executed task. There is
the possibility to perform a termination skip by executing a skip operation at the level of a
root plan. The only two deviation patterns that are supported indirectly are the Entrance
Skip pattern and the Task Substitution pattern. In order to skip all tasks preceding a
desired start task, a skip operation has to be applied for each of the tasks individually. In

412 Chapter 6 Process Flexibility Patterns

order to execute a task different to the currently enabled one, the task needs to be invoked
and the skip operation needs to be applied to the originally enabled task. FLOWer offers no
support for flexibility by underspecification, flexibility by momentary change and flexibility
by permanent change.

Declare is a system based on the declarative approach to process specification. It offers
full support for flexibility by design-time, flexibility by momentary change and flexibility by
permanent change. Furthermore, it supports the majority of patterns facilitating flexibility
by deviation. From this group, the Task Substitution pattern and the Redo pattern are
not supported. Such a broad range of patterns are supported by means of inserting and
deleting tasks and/or constraints defining the execution order of these tasks. Support for
process instance migration allows process instances to be transferred from an old process
definition to a newly defined one, thus facilitating flexibility by momentary and permanent
change.

The CIG modeling languages analyzed offer support for almost all patterns related to
flexibility by design. Of all these languages, only PROforma allows a process to be started
from and ended with alternative tasks (this is possible because of its combined imperative
and declarative approaches). In GLIF, various start tasks can be defined allowing a patient
to enter a process at any suitable stage. The rest of the patterns facilitating flexibility by
design can be directly expressed in each of the languages examined.

Based on the results of the analysis, we can conclude that the intent of the sys-
tem/language analyzed influences the types of flexibility supported. Systems based on
declarative approaches (i.e. Declare) score well from the perspective of flexibility by de-
viation, because various types of behaviors may be achieved by simply adding, removing
or modifying constraints associated with tasks. Case-handling systems such as FLOWer
offer an explicit set of deviation operations in order for the desired behavior to be easily
achieved at run-time, without requiring an underlying process definition to be modified.
Support for flexibility by momentary and permanent change is facilitated in systems where
the possibility of reacting to unforeseen events has been incorporated in the system de-
sign (i.e. migration mechanisms of ADEPT1, YAWL and Declare). The ability to leave
a process definition underspecified, such that it can be completed at run-time is clearly
an aspect of process flexibility that is less widely supported. The fact that Oracle BPEL
PM and YAWL’s worklets extension accommodate service-based approaches illustrates the
applicability of concepts related to flexibility by underspecification in the service-oriented
domain. From the perspective of the health-care domain, where more flexibility is required
due to unpredictable nature of events, CIG modeling languages score slightly better than
traditional workflow systems. In particular, their the ability to initiate a process at an
arbitrary point and terminate it “on spot” are typical operations in this domain.

Tables 6.5 and 6.6 summarize the results of evaluating the offerings against the process
flexibility groups and process flexibility types respectively. In these tables, the rating
(+++) is given to an offering that support more than half of the patterns per a given group
or flexibility type; the rating (++) is given to an offering supporting at least half of the
patterns; the rating (+) is given to an offering if it supports one pattern; the rating (+/-)

is given to an offering that offers no direct support for patterns; finally, the rating (-)

indicates that no patterns are supported by the offering.

Section 6.4 Related work 413

Table 6.5: Support for the Process Flexibility groups in (1) Oracle BPEL PM, (2) ADEPT1, (3)
FLOWer, (4) Declare, (5) YAWL, (6) PROforma, (7) EON, (8) GLIF, and (9) Asbru

Pattern group 1 2 3 4 5 6 7 8 9

Flexible Initiation + +/- +/- +++ + + - + -

Flexible Termination ++ +/- + +++ +++ + - - -

Flexible Selection ++ + + +++ +++ + + + +

Flexible Reordering + + ++ +++ ++ + + + +

Flexible Elimination + +++ ++ +++ ++ + + + +

Flexible Extension ++ ++ + ++ ++ +

Flexible Concurrency + + ++ +++ ++ + + + +

Flexible Repetition ++ + ++ +++ ++ + + +

Table 6.6: Support for the Process Flexibility types in (1) Oracle BPEL PM, (2) ADEPT1, (3)
FLOWer, (4) Declare, (5) YAWL, (6) PROforma, (7) EON, (8) GLIF, and (9) Asbru

Flexibility by 1 2 3 4 5 6 7 8 9

Design +++ +++ +++ +++ +++ +++ +++ +++ +++

Deviation ++ - +++ +++ - + - - -

Underspecification + - - - +++ - - - -

Mom.Change - ++ - +++ + - - - -

Perm.Change - ++ - +++ +++ - - - -

6.4 Related work

The need for process flexibility has been acknowledged in the workflow and process tech-
nology communities as a critical quality of effective business processes in order for organi-
zations to adapt to changing business circumstances [121,180,184]. The notion of flexibility
is often viewed in terms of the ability of an organization’s processes and supporting tech-
nologies to adapt to these changes [70, 203]. An alternate view advanced by Regev and
Wegmann [178] is that flexibility should be considered from the opposite perspective, i.e. in
terms of what stays the same not what changes. Indeed, a process can only be considered
to be flexible if it is possible to change it without needing to replace it completely [179].
Hence flexibility is effectively a balance between change and stability that ensures that the
identity of the process is retained [178,181].

A series of proposals have been made to classify process flexibility based on factors
which motivate it and the ways in which it can be achieved within business processes.
Snowdon et al. [203] identify three causal factors: type flexibility (arising from the diversity
of information being handled), volume flexibility (arising from the amount of information
types) and structural flexibility (arising from the need to operate in different ways. Soffer
[204] differentiates between short-term flexibility, which involves a temporary deviation
from the standard way of working, and long-term flexibility, which involves changes to the
usual way of working. Kumar and Narasipuram [145] distinguish pre-designed flexibility
which is anticipated by the designer and forms part of the process definition and just-in-
time responsive flexibility which requires an “intelligent process manager” to deal with the
variation as it arises at runtime. Carlsen et al. [54] identify a series of desirable flexibility
features for workflow systems based on an examination of five workflow offerings using a
quality evaluation framework.

Heinl et al. [121] propose a classification scheme with distinct approaches – flexibility

414 Chapter 6 Process Flexibility Patterns

by selection, where a variety of alternative execution paths are designed into a process,
and flexibility by adaption, where a workflow is “adapted” (i.e. modified) to meet with
the new requirements. Two distinct approaches to achieving each of these approaches are
recognized: flexibility by selection can be implemented either by advanced modeling (before
execution time) or late modeling (during execution time) whereas flexibility by adaption can
be handled either by type adaption (where the process definition is changed but individual
process instances currently running are unaffected) or instance adaption where selected (or
all) process instances are changed to meet with new operational requirements. Van der
Aalst and Jablonski [13] adopt a similar strategy for supporting flexibility. Moreover they
propose a scheme for classifying workflow changes in detail based on six criteria: (1) reason
for change, (2) effect of change, (3) perspectives affected, (4) kind of change, (5) when are
changes allowed and (6) what to do with existing process instances. In [200], Schonenberg
et al. presented a preliminary version of the taxonomy of process flexibility, covering four
types of flexibility: design, deviation, underspecification and change. This work has been
elaborated in a more detail in this chapter, and for each flexibility type a set of process
flexibility patterns have been defined that allow evaluation of offerings in a more precise
way.

Regev et al. [179] made an initial attempt to define a taxonomy of concepts that are
relevant to business process flexibility. This taxonomy has three orthogonal dimensions:
the abstraction level of the change, the subject of the change and the properties of the
change. Whilst it incorporates elements of the research initiatives described above, it is
not comprehensive in form and does not describes the relationships that exist between
these concepts or link them to possible realization approaches.

There are a variety of approaches to incorporating flexibility within a design-time pro-
cess definition. Traditional process design methods [43,146,184] have centered on the sepa-
ration of business logic from the actual application processing and utilizing constructs such
as hierarchy, conditional elements and business rules within the process definition to explic-
itly cater for various execution scenarios that might be encountered. Whilst effective, these
strategies require that all possible situations be captured a priori at design-time, an assump-
tion that proves to be unrealistic in practice [121]. The use of exceptions [84,195,207] pro-
vides one means of handling expected but infrequently occurring processing errors without
requiring their explicit inclusion in the process definition. Various techniques to implement-
ing exception handling strategies in workflow systems have been demonstrated by offerings
including WAMO [83], ConTracts [186], Exotica [27], OPERA [115,116], TREX [206] and
WIDE [55].

Another approach that has been investigated for embedding flexible constructs in busi-
ness processes involve the augmentation of control-flow routing constructs operators based
on fuzzy logic [17]. Indeed one area that offers significant opportunity for increasing the
potential flexibility of a business process is the replacement of the strict graph-based struc-
tures that are generally used to describe control-flow dependencies between the tasks in a
process with other means of describing these dependencies. ConDec [14, 168, 170, 171] is
a declarative language that specifies control-flow dependencies using linear temporal logic
expressions. Other research initiatives in this area have investigated a variety of other
means of defining control-flow including the use of process grammars to specify dependen-
cies between tasks and documents (i.e. data elements) in a process [103], the introduction of
the notion of “anticipation” [110] which allows the execution of sequential tasks to overlap
at the discretion of workflow users where there are not specific data dependencies between
them, the inclusion of flexible elements in process definitions that describe alternate execu-

Section 6.4 Related work 415

tion options, alternate task orderings and optional tasks [141] and basing control-flow on
rule-based invariants that must hold during process execution [178] or constraints based
on task pre and postconditions [218] that determine when individual tasks can start and
complete.

The potential for increasing process flexibility by allowing deviations from the specified
process definition at runtime is supported in PROSYT [68] which allows a deviation policy
to be specified for a process, identifying which forms of deviation are tolerated, together
with a consistency handling policy, which ensures any allowed deviations do not impact
the overall correctness of the system. In the context of the WASA system, Weske [68]
nominates three user-initiated operations – SkipActivity, StopActivity and RepeatActivity
– that allow for deviations from normal workflow execution.

Several approaches have been proposed that support the underspecification of processes
thus allowing for greater flexibility in the actual tasks initiated at runtime. Noll [160]
advocates the use of low fidelity models which specify the major tasks and main sequence
in a process, but leave the actual sequence of execution at the discretion of the user. This
essentially corresponds to a more general notion of the case handling paradigm [16] as it
allows distinct tasks in a given process instance to be undertaken by differing users. In
a similar vein, Herrmann and Loser [122] advocate the inclusion of “vagueness” in socio-
technical process definitions allowing concepts such as arc conditions and task ordering to
be deliberately omitted from models and also supporting the inclusion of specific modeling
constructs to identify aspects of the model that are incomplete or unspecified. Van der Aalst
advances the notion of generic process definitions [3, 5] which allow placeholders elements
(termed generic processes) to be specified in models which correspond to fragments of the
overall process whose actual composition is determined at runtime. Mangan and Sadiq [149]
propose an analogous scheme where a process is partially specified as a set of fragments and
the actual format of the process definition undertaken for a given instance of the process
is deferred to runtime at the discretion of individual users. In a subsequent paper [196],
Sadiq et al. describe a flexible workflow modeling language which incorporates “pockets
of flexibility” which denote regions of the process whose actual content is determined at
runtime based on workflow fragments (tasks or subprocesses) and composition rules that
are associated with them. The OPENflow system [117] is an example of an actual system
that supports this approach to process flexibility. The issue of managing dynamic change
to executing processes has been widely researched in the fields of adaptive and evolutionary
workflow [57, 61, 85, 131, 134, 202, 222]. A number of significant research prototypes have
been developed in this area including ADEPTflex [182], ADOME [59], CBRFlow [221],
DYNAMITE [120], WASA2 [222], Declare [200] and YAWL worklets [20].

When during process execution, the process needs to be changed on an ad-hoc basis,
such that all existing process instances are migrated, various kind of errors can occur,
e.g., introduction of duplicate tasks, deadlocks or livelocks. This problem is known as the
‘dynamic change bug’. One of the first steps towards resolving this problem was made
by Ellis et al. [86], who introduced a mathematical formalism for modeling and analyzing
dynamic changes in workflow. This work was not complete, and was addressed by a number
of subsequent investigations. In [10], van der Aalst et al. propose the use of inheritance-
preserving transformation rules in order to prevent the occurrence of the dynamic change
bug. The authors define a set of transformation rules that can be used to restrict changes
in process definitions such that new process model inherits desirable properties of the old
workflow process. In [6], van der Aalst describes an approach for calculating a safe change
region. If a process instance is in such a change region, the transfer of the process instance

416 Chapter 6 Process Flexibility Patterns

from the old process definition to the new one is postponed. A comprehensive evaluation
of various approaches (both conceptual and implementation-based) to managing dynamic
changes to workflow processes is presented by Rinderle et al. in [187].

As a means of comparing various approaches to process change, Weber et al. [219,220]
have proposed a set of 18 change patterns and 7 change support features, which have been
gathered by empirically analyzing a selection of process models. The authors divide the 18
change patterns into adaptation patterns and patterns for changes in predefined regions.
They indicate that process flexibility can be achieved either through structural process
adaptations or by allowing for loosely specified models (which may be refined during process
execution). Process adaptations defined at the type and instance level correspond to two
types of flexibility defined in this chapter, i.e. flexibility by permanent change and flexibility
by momentary change. The other approach, identified by Weber et al. is termed ‘built-in
flexibility’. This approach assumes that some part of a process model are left unspecified
during design-time, however they are refined at run-time when more information becomes
available. This approach corresponds to the flexibility by underspecification type identified
in this chapter. Weber et al. focus on changes to the control-flow perspective, whereas in
this chapter we systematically define five flexibility types, two of which (i.e. flexibility by
design and flexibility by deviation) are not covered in [219]. Furthermore, there is a large
distinction in the approaches used for pattern identification between the work of Weber
et al. and the work presented in this chapter. The change patterns of Weber et al. were
identified based on an empirical analysis of models from the healthcare and automotive
domains, and are limited to flexibility by underspecification and flexibility by momentary
and permanent changes types. Not only were process flexibility patterns presented in this
chapter derived in a more structured way, they also cover the broader scope. In fact, the
majority of the change patterns by Weber et al. can be mapped onto the process flexibility
patterns presented in this chapter.

Reijers et al [183] present yet another view on flexibility. The authors categorize ex-
ceptions as expected and unexpected. Expected exceptions are addressable if they are
technologically solvable. They authors describe how each type of addressable exception
should be handled, i.e. either by executing the main workflow in a specific way; or by
executing a separate workflow. To increase the flexibility of WFMSs the authors propose
extending the functionality of WFMS with case variables and preconditions, providing di-
rect access to the workflow execution status and jump facilities (this suggestion has been
implemented by Staffware).

De Moor and Jeusfeld [72] propose the ‘legitimate user-driven approach’ which enhances
the acceptability of workflow changes in the context of virtual communities. Chun and
Atluri in [205] propose an approach for workflows in the context of eGovernment to adapt to
run-time changes. The authors classify different types of run-time changes and propose an
ontology-based framework for dynamic workflow change management system which adopts
the changes based on profile change, exceptions and rule change using migration rules. Van
der Aalst [6] discusses the problem of case migration caused by workflow change leading
to task duplication, skipping of tasks, deadlocks, and livelocks. To address this problem,
the author proposes an approach for calculating a safe change region. Several approaches
for adaptive process management have been proposed in [187]. Adaptive processes enable
users to evolve process definitions, so that they meet new requirements [113].

In several contemporary offerings, process flexibility has played a significant role in
defining the manner in which each of these offerings were developed. Staffware Process
Orchestrator [101] has been developed with an approach to assign process components

Section 6.5 Summary 417

(that are not known at design-time) dynamically at run-time, when sufficient amount of
information becomes available. This feature is especially useful in service-oriented environ-
ment, where the selection of a service needs to be based on an event or a response from an
external system. InConcert [77] allows the task structure of a process instance to be modi-
fied dynamically by a user with appropriate authorization using operations such as adding
and deleting tasks, adding and deleting dependencies, and specifying task properties such
as durations and conditional execution.

6.5 Summary

In this chapter, we have focused on the issue of process flexibility and defined a taxonomy
consisting of five flexibility types: flexibility by design, flexibility by deviation, flexibility
by underspecification, flexibility by momentary change and flexibility by permanent change.
This classification shows that there are different approaches to facilitating flexibility for a
user when selecting a desired execution outcome. The need for flexibility may be recog-
nized during design-time when creating a process definition or at run-time. However, the
actual decision regarding which execution path will be taken is made at run-time execution
depending on the constraints posed by the operating environment. Since it is very hard
to foresee all possible behaviors in advance, contemporary PAISs must be able to adapt to
continuously-changing requirements. In terms of the functionality offered by PAISs, it is
important to clearly identify which type of flexibility the system supports:

• Does a system allow for enactment of incomplete process definitions?

• Is it possible to deviate from the steps prescribed by the process definition?

• Is it possible to change the behavior of a specific process instance?

• Is it possible to redesign the process definition in such a way that the changes made
directly become available in current and future process instances?

Since the taxonomy of process flexibility does not give sufficient details about how each
of the flexibility types can be operationalized, we have defined a set of process flexibility
patterns, each addressing a specific aspect of flexibility and corresponding to one of the five
flexibility types. The 34 patterns reason about flexibility in process initiation, flexibility
in process termination, flexibility in execution path selection, flexibility in task reordering,
flexibility in task elimination, flexibility in process extension, flexibility in task concurrency
and flexibility in task repetition.

The process flexibility patterns identified have a wide range of potential application
areas including:

• Facilitating a better understanding of process flexibility requirements;

• Providing a precise, systematic description of flexibility aspects;

• Benchmarking of PAISs; and

• Establishing a common process flexibility vocabulary.

Process flexibility is a topic that has been attracting a lot of attention both from
research and commercial observers. A clear understanding of the requirements for process
flexibility is important for process designers who need to deal with non-typical behavior
whilst designing process definitions; for architects and developers of information systems to
define the degree of flexibility a system needs to offer and how these needs will be realized;
and for users who need to have sufficient knowledge of the system and its capabilities

418 Chapter 6 Process Flexibility Patterns

from the process flexibility perspective in order to make correct decisions when adapting
a process to changes in the operating environment.

Process flexibility patterns provide a precise and systematic description of wide variety
of flexibility aspects. We defined a map of process flexibility requirements, where for each
of eight process flexibility aspects a set of patterns corresponding to a specific flexibility
type are defined. In order to distinguish between patterns, for each of them we defined
a graphical notation. The purpose of this notation is to show the effect of a pattern by
visualizing the process definition on the type/instance level before and after applying the
pattern. In order to avoid ambiguous interpretation, for each of the patterns identified we
designed a CPN diagram illustrating the behavior of a pattern in the context of a basic
process engine.

As we showed in Section 6.3, the patterns identified can be used as a means of bench-
marking the degree of process flexibility support in PAISs. It is interesting to note that
none of the offerings analyzed provide support for all flexibility types. Patterns can be
used as a tool for selecting a system supporting desired types of flexibility.

Finally, the systematic approach used for identifying process flexibility patterns helps
to structure knowledge accumulated in the domain. Concepts defined in the taxonomy of
process flexibility, i.e. flexibility types, flexibility groups and pattern names can enrich the
domain vocabulary, and be used for improving communication between process designers,
system developers, and end users.

The scope of the topic addressed in this chapter is limited to process control-flow flexibil-
ity. In order to achieve a holistic understanding of requirement for process flexibility, other
relevant perspectives (such as data and resources) have to be investigated. Nevertheless,
the information presented in this chapter can be seen as a first step towards a universal flex-
ibility model (for example, this could be done using a meta- or ontological-format). There
are many other possible applications of flexibility patterns. For example, issues related to
process mining of patterns applied during run-time execution can be investigated.

Chapter 7

Epilogue

The goal of this thesis was to facilitate the understanding of the requirements for PAISs
by describing the control-flow, service-interaction and process flexibility perspectives in a
precise and systematic manner. The workflow control-flow patterns, service-interaction
patterns and process flexibility patterns address the requirements for each of these per-
spectives. The patterns defined provide a reference point for evaluation and improvement
of contemporary offerings, bring new insights to the definition of new languages and stan-
dards in the domain, and provide a language-independent manner for sharing knowledge
accumulated in the domain. In addition to contributing to the conceptual foundations of
PAISs, this thesis also provides a knowledge-base of proven solutions used in CPN model-
ing. In this chapter we describe contributions, limitations and future work (cf. Section 7.1).
Furthermore, we present generic insights and observations related to the pattern research
presented in this thesis (cf. Section 7.2).

7.1 Contributions, limitations, and future work

This section summarizes the contributions. Moreover, limitations and directions for future
work are given.

7.1.1 Colored Petri Nets

Contributions In Chapter 3 of this thesis, we presented 33 CPN patterns which address
problems that are commonly encountered when modeling dynamic systems which require
the flow of control and data to be specified explicitly. There are a number of important
characteristics of this work:

• Classification: in order to assist users in selecting an appropriate pattern, the CPN
patterns identified were divided into several clusters. By mapping a problem that
needs to be solved to a suitable cluster, a desired pattern can be selected.

• Catalog-navigation: the relationships identified between patterns are presented
in the form of a relationship diagram which can be used as a means of navigation
through the pattern catalog. If a chosen pattern does not fit the problem needing
to be solved, based on problem similarity or problem specialization relationships to
more suitable patterns may be identified.

420 Chapter 7 Epilogue

• Complex problems: given that each of the patterns addresses a specific problem
and in practice such isolated problems are very rare, problems of a more complex
nature are decomposed into smaller parts. In order to solve the original problem, a
solution of the core problem may need to be combined with other relevant solutions.
The ‘can be combined with’ relationship identified between the CPN patterns specifies
patterns that can be combined in order to solve a complex problem.

• Shared knowledge-base: in order to facilitate sharing of accumulated knowledge,
the implementations of the CPN patterns have been made publicly available at http:
//is.tm.tue.nl/staff/nmulyar/Repository/index.html.

Limitations

• Catalog-completeness: the CPN patterns have been gathered using an empirical
approach based on an analysis of literature, models and expert knowledge in the field.
The limited range of the source material, and the nature of the empirical approach
adopted do not guarantee the completeness of the catalog. On the contrary, this
collection should be considered as starting point for a broader initiative to motivate
designers to share solutions that are proven in practice. As part of such a scheme,
the pattern catalog would be extended with new patterns when new solutions are
encountered.

• Language-dependence: although CPN patterns describe problems where control-
flow and data interplay and the solutions can be applied when modeling a diverse
range of systems, the applicability of CPN patterns is limited to the CPN community
because the implementation of the patterns is CPN-language dependent. Further-
more, for the purpose of illustrating the realization of these patterns, we selected a
specific tool: CPN Tools. Although as far as possible we abstract from the function-
ality offered by CPN Tools, the implementation of patterns in alternative CPN tools
may necessitate that some adjustments are made.

Future directions

• Automatic pattern discovery: to date the identification of the patterns used in a
CPN model has been performed manually. This requires a deep understanding of the
core assumptions and details of implementing the CPN patterns and is consequently a
difficult and errorprone process. In order to define pattern usability in a more precise
way, tool support providing automatic pattern identification is required. Although
each CPN pattern is supplied with a corresponding implementation diagram created
in CPN Tools, for automated pattern identification the pattern definitions have to
be formally defined (for example, using an ontological approach as in [214]) both
syntactically and semantically.

• User-interface support One of the promising applications for the CPN patterns
is to extend user-interfaces of CPN modeling tools with templates allowing a desired
CPN pattern to be inserted into a model automatically.

7.1.2 Workflow control-flow

Contributions In Chapter 4, we analyzed the requirements for PAISs from the control-
flow perspective and identified the fundamental constructs for describing the structure of

Section 7.1 Contributions, limitations, and future work 421

a process model, presenting them in the form of control-flow patterns. There are a number
of important characteristics of this work:

• Pattern collection: the fundamental requirements for the control-flow perspective
in PAISs have been described by 43 control-flow patterns. The definition of the
original 20 patterns has been revisited: some of the definitions has been revised,
some of the patterns have been decomposed into several pattern variants, and several
new patterns have been added.

• Precise definition: the problem of ambiguity in the pattern definitions has been
resolved by revising the definitions and by specifying their formal semantics using
CPNs.

• Evaluation criteria: in order to provide an objective means of evaluating workflow
offerings, for each of the patterns a set of evaluation criteria has been defined, on
the basis of which a full, partial or no support rating can be determined for a given
offering.

• Reclassification: revision of the original 20 patterns and introduction of new pat-
terns triggered the need to reclassify the 43 patterns. Because some new patterns did
not fit very well into the previous classification, the patterns have been reclassified
based on their purpose rather than the manner in which they are realized. Such
a classification identifies groups of similar patterns and assists users in selecting a
pattern based on their intended usage.

• Operationalization: the control-flow patterns operate at a conceptual level, i.e.
they specify recurring generic constructs relevant to process structure and enactment
in an abstract sense, consequently they do not provide much guidance in regard to
their actual realization. In order to describe how the control-flow constructs work, we
proposed the CPC-ML modeling language which defines the operational semantics of
selected patterns in a precise way.

• Graphical notation: CPC-ML offers a graphical notation in order to visualize and
distinguish different approaches to the operationalization of the control-flow patterns.
This notation can be used not only for expressing the operational semantics of the
patterns, but also for illustrating the capabilities of workflow offerings at the level of
individual process constructs.

Limitations

• Completeness: the majority of the control-flow patterns have been gathered using
an empirical approach. In contrast to CPC-ML, which systematically describes vari-
ous process constructs and possible behavioral variants, the pattern identification was
not a structured process. Although the set of patterns identified may be incomplete,
by configuring attributes of CPC-ML various pattern variants can be obtained.

• Restricted scope of CPC-ML: due to the fact that CPC-ML concentrates only on
the basic functionality that can be encountered in the majority of workflow systems,
it captures only a limited set of patterns variants. In order to allow for all possible
pattern variants, this language would need to be extended with elements related to
external triggers, multiple instances and task compositionality.

422 Chapter 7 Epilogue

Future directions

• User-interface support: in order to simplify the process of creating a process def-
inition, the user interfaces of process modeling tools can be extended with templates
corresponding to the control-flow patterns.

• Assessment tool: the wide range of process constructs identified by the control-
flow patterns can be used as an objective means of assessing current standards and
systems, leading to revision or extension of the functionality associated with the
control-flow perspective in these offerings. The control-flow patterns can also be
used as a reference for designing an architecture for new PAISs.

• Meaningful combinations: of the wide range of pattern variants identified it may
be helpful to identify which pattern variants can be combined in order for problems
of more complex nature to be addressed than those which a specific pattern can solve.

• Pattern discovery: by means of process mining [78], an event log describing the
execution of a specific process can be analyzed in order to identify which control-flow
patterns have actually been used during execution, and how often they have been
used [35]. This information could be used in order to define whether original process
definition contains all patterns identified and whether it needs to be adjusted. Fur-
thermore, the quantitative characteristics such as frequency of use can be identified.

• Minimal set: one of the challenging tasks related to the control-flow patterns is to
identify the minimal set of patterns that have to be supported by a tool. This issue
requires a balance to be found between suitability and expressiveness of the process
modeling facilities offered by a given tool.

7.1.3 Service interaction

Contributions In Chapter 5, we analyzed the requirements for PAISs from the service-
interaction perspective and presented them in the form of a configurable framework. This
included service-interaction scenarios of a bilateral and multilateral nature, involving one
or more messages and characterized by short and long-running conversations. There are
several aspects characterizing this work:

• Configurable framework: a systematic and compact form of presenting service-
interaction requirements in the form of five pattern families, each describing possible
pattern configurations, allows the broad range of requirements in service interaction
to be distinguished. The five pattern families identified contain 1602 pattern variants.

• Meaningful combinations: since each pattern configuration is characterized by
a set of parameters that may take different values, many pattern variants can be
obtained by setting the parameters to different values. Of these combinations, only
meaningful pattern variants have been identified by analyzing possible combinations
of values assigned to different parameters and the meaning of such combinations.

• Graphical notation: for each pattern family a graphical notation has been defined
that can be configured in order to depict a specific pattern variant. Considering the
large number of pattern variants contained in a pattern family, this graphical notation
offers an intuitive means of distinguishing different pattern variants graphically.

• Precise definition: in order to avoid ambiguous interpretation of pattern defini-
tions, their semantics are defined in terms of CPN diagrams.

Section 7.1 Contributions, limitations, and future work 423

• Pattern-based service interaction design method: in order to assist users in
classifying service-interaction scenarios by means of pattern families, we have defined
a pattern-based service interaction design method. Depending on the goal of the
classification and the degree of detail required, this method defines which pattern
families have to be used for the classification, how they should be configured, and
which pattern families can be combined.

Limitations

• Restricted scope: the service interaction patterns concentrate mainly on the behav-
ioral aspects of interactions between several parties from the control-flow perspective.
The data used in interaction scenarios is necessary in order to describe the routing
aspects rather than to define types of messages, possible content and other message-
handling issues. In order to understand requirements in service interaction in more
detail, the data and resource perspectives have to be considered.

• Limited empirical validation: unlike the control-flow, data, and resource patterns,
it is less clear what systems should be evaluated.

Future directions

• Benchmarking tool: the patterns identified can be used to identify the support
for different aspects of service interaction in SOA offerings. For this, configuration
parameters defined in each of the pattern families can be mapped to features offered
by specific systems, and the support for realizing different values for each of the
configuration parameters can be identified. The requirements for service interaction
described in the configurable framework can be used to assess and improve web-based
standards.

• Configurable templates: in order to support users in modeling interactive pro-
cesses, the user interfaces of the process modeling tools could be extended with tem-
plates that can be configured to allow desired pattern variants to be included in the
process definition.

• Process change impact: the service interaction patterns concentrate only on inter-
process communication, however the need for interacting with external processes is
usually triggered on the basis of an internal process definition. Changes performed
in the process definition such as modification of control-flow or data parameters
may have an impact on interactions with external parties. Therefore it is important
to investigate relationships between these perspectives and analyze how changes in
processes involved in the interaction influence the overall interaction.

7.1.4 Process flexibility

Contributions In Chapter 6, we analyzed requirements for PAISs from a process flexibil-
ity perspective and systematically described them in the form of process flexibility patterns.
There are several aspects characterizing this work:

• Taxonomy of process flexibility: five approaches to achieving process flexibility
have been identified and presented in the form of a taxonomy. Such a classification
can be used as a reference for describing the support for process flexibility by PAISs
at a generic level.

424 Chapter 7 Epilogue

• Pattern catalog: in order to determine patterns with similar intents across five flex-
ibility types, we identified eight flexibility aspects (such as flexible process initiation,
termination, etc.). Of the 34 patterns identified, a desired pattern can be selected by
identifying a desired approach to process flexibility and the behavior that needs to
be achieved.

• Graphical notation: for each pattern identified, a graphical notation illustrating
the behavioral aspect of process flexibility has been defined. This notation illustrates
the type and the scope of flexibility operation facilitated by the pattern.

• Flexible process engine: in order to illustrate the dynamic nature of the patterns,
we defined a generic process engine using the CPN formalism, and for each of the
patterns we showed how the given process engine needs to be extended or modified
in order to allow for the desired flexibility behavior. The combination of realizations
of all flexibility patterns ultimately represents a maximally flexible process engine.
The use of the CPN formalism ensures precise interpretation of each of the pattern
definitions.

• Assessment tool: the patterns identified can be used as an assessment tool for
evaluating the degree of support for process flexibility aspects, and in general for
classifying approaches to process flexibility adopted by specific PAISs.

Limitations

• Restricted scope: the process flexibility patterns identified concentrate only on
the control-flow perspective. In order to get a complete understanding of flexibility
issues, the data and resource perspectives must also be considered.

Future directions

• Tool development: the operations allowing for flexible behavior which are described
in the process flexibility patterns could be used as a reference for extending the
functionality of existing tools and, development of new tools.

• Data and resource flexibility: as the current set of process flexibility patterns
concentrates only on the control-flow perspective, flexibility in data manipulation
and resource assignment also needs to be investigated.

• Universal model of flexibility: having investigated flexibility issues in all perspec-
tives relevant to PAISs and clearly described them, a universal model of flexibility
could be obtained. One possible means to specify such a model is by applying an
ontological approach.

7.2 Reflection

In this thesis, we have described requirements for PAISs from the control-flow, service
interaction and process flexibility perspectives in the form of patterns. The patterns
identified have one thing in common: they are associated with the dynamic behavior. In
case of the control-flow perspective, it is the flow of control from one task to another;
in case of service-interaction, it is the flow of control between processes; and in case of
process flexibility, it is the ability to react to changes in external environment by choosing
an appropriate execution path. Additional research may need to be performed in order

Section 7.2 Reflection 425

to understand the interrelation between these perspectives and to identify how changes of
process definition on the inter- and intra-process level influence other perspectives relevant
to PAISs.

There are a number of generic insights and observations related to the pattern research
presented in this thesis:

• Pattern format : the selection of a pattern format is an important step in system-
atization of knowledge in the field and describing it systematically in the form of
patterns. In this thesis, we used different formats to document the various patterns
identified. The major differences between formats used for describing the CPN pat-
terns and patterns related to PAISs are caused by the intent of the patterns and the
audience the patterns are aimed at. Unlike the patterns related to PAISs, which aim
to provide a generic and language-independent manner of describing requirements for
PAISs, the CPN patterns are intended to support users experiencing problems while
using a specific modeling language (e.g., CPNs). In order to describe problems that
are experienced by CPN modelers and how these can be solved, language-specific
concepts and terms have been utilized. Moreover, the CPN patterns require a more
extensive pattern format which allows various solution alternatives and implementa-
tion variants to be systematically described. The control-flow patterns and process
flexibility patterns adopt almost identical pattern formats, with the only exception
being that the service interaction patterns are presented in form of a configurable
framework in order to describe numerous pattern variants identified in a compact
manner.

• Relation ‘context’-‘pattern’-‘pattern variant’ : since a pattern expresses a relation be-
tween a problem and a solution applied in a particular context, the context conditions
play an important role in identifying a correct solution for a given problem. When
comparing the series of patterns identified, one can notice that multiple CPN pat-
terns offer several solutions corresponding to a particular problem. The selection of
a solution or even the selection of an implementation alternative is determined by
the context conditions that have to be fulfilled. For example, the Capacity Bounding
pattern (cf. page 71) offers means for bounding the capacity of a particular place.
When objects stored in this place need to be represented as a single collection, Solu-
tion 3 needs to applied, whereas for objects distinguished as separate entities either
Solution 1 or Solution 2 is applicable.
In Section 2.2, we mentioned that no agreement on the use of a common pattern
format for describing patterns has been reached. Some practitioners represent a
problem that is encountered in different contexts as being separate patterns, whereas
others consider them as being variants of a single pattern. The standpoint related
to the role of context conditions in a pattern influences the pattern format used for
documenting patterns. Unlike the service interaction patterns, where we defined a
number of attributes that can be configured in order for a pattern variant related to
a particular pattern family to be obtained, the control-flow patterns separately list
pattern variants (such as the Blocking Discriminator and Canceling Discriminator
patterns, described on pages 137 and 138). Although the process flexibility patterns
identified have been presented as separate patterns, it is also possible to consider
patterns belonging to a common group (e.g., flexible repetition, flexible selection,
etc.) as variants of one pattern, whose context conditions depend on the moment at
which the need for flexibility has been anticipated and the manner in which needs to

426 Chapter 7 Epilogue

be realized.
• Degree of problem granularity: patterns described in this thesis differ in terms of

problem granularity. For example, when we consider the service interaction patterns,
the scope of problems addressed by them is much broader than the scope of the
problems associated with the control-flow patterns. In case of the service interac-
tion patterns, we concentrate on interaction between several processes, whereas the
control-flow patterns concentrate on internal behavior of a single process. The CPN
patterns are even more specialized as they concentrate on particular aspects of CPN
concepts. Differences between levels of problem granularity are directly related with
differences in pattern evaluations. In particular, when analyzing the extent to which
the control-flow patterns are supported, we mainly evaluated a modeling language
provided by an examined offering; in case of the process flexibility patterns, we ana-
lyzed the whole system (i.e. both the process modeling languages and capabilities of
enactment engines); whereas in case of the service interaction patterns, we evaluated
functionality available for expressing interactions between several systems.

• Role of classification in a pattern language: when describing patterns, we identified
corresponding relationships between patterns. Together with relationships identified,
patterns form a part of a pattern language. Patterns in isolation only document
recurring solutions to a particular problem, whilst a pattern language can be used
in order to solve problems of a more complex nature than the ones addressed by
individual patterns. Patterns classification helps in selecting solutions that may need
to be combined in order for a particular problem to be solved. As patterns languages
are not fixed, they can be extended with new practices, providing that corresponding
relationships to other patterns are clearly identified.

• Preciseness of pattern definitions : in order to avoid ambiguous interpretations, the
semantics of all patterns is described by means of CPNs. The CPNs formalism
significantly reduces the ambiguity in pattern interpretations. In case of the control-
flow patterns, service interaction patterns and process flexibility patterns, the CPN
diagrams are aimed at describing the semantics of patterns without dictating the
particular way (e.g., language) in which these patterns need to be realized. Further-
more, as has been mentioned in Chapter 4, the control-flow patterns describe various
control-flow constructs, however they do not provide sufficient details regarding their
operationalization. For this purpose, we defined a formal language CPC-ML which
resolves the ambiguities related to the realization of the control-flow patterns by
precisely describing their behavior in a language independent manner.

• Subjectivity of empirical evaluations: the process of pattern identification is at some
degree subjective because there is no a uniform way to define whether a particular so-
lution corresponds to a pattern or not. Subjective elements are present in the process
of empirically evaluating the support of a pattern by a particular offering. Although
for the majority of patterns a set of evaluation criteria have been identified, the use
of these criteria as a reference for evaluating a particular system may still result in
different interpretations. This may become problematic when the semantics of the
evaluated constructs have not been completely defined and implicit assumptions have
been made during the system design.
In case of CPN patterns, we performed an empirical analysis of CPN models in order
to identify how often these patterns are used in practice. In order to perform such
analysis, both the knowledge of patterns and context conditions associated with the
model analyzed are required. The process of pattern identification can be made

Section 7.2 Reflection 427

more precise by performing it automatically using a pattern discovery tool. Such
automatic pattern identification requires explicit differentiation between fixed and
variable elements of a pattern. Every pattern has a set of fixed attributes, defining
the core of a pattern and a set of attributes with variable values, which are context-
dependent.

• Technological support : in order to increase the applicability of patterns in practice,
patterns could be stored in a pattern repository. There has been an attempt to design
a pattern repository by Norta et al. [161], however this repository had a very limited
usability. The main limitations of this repository is inability to incorporate different
pattern formats, i.e. the pattern repository should provide a means for selecting
an appropriate format for describing patterns of descriptive nature, and also the
possibility to describe the configurable patterns of more generative nature (such as
the service interaction patterns presented in Chapter 5).
Furthermore, patterns can be supported by tools of two different types: pattern dis-
covery tools allow a (process) model to be analyzed in order to identify what patterns
it comprises, and process modeling tools can include solutions or their implementa-
tions in form of templates directly accessible via a user interface for assisting users
in modeling. Note that a selection of the most frequently occurring control-flow
patterns has been used to extend the commercial modeling tool IBM WebSphere
Business Modeler [111]. In this tool, in addition to the ability to drag-and-drop a
pattern template from the editor panel, the soundness of a model is checked and tool
feedback is provided to prevent users from modeling errors.

• Approach for pattern generation: the pattern-based approach can be successfully
used to describe requirements in a particular domain. In this thesis, we used two
approaches for pattern identification. The ‘bottom-up’ approach is based on empiri-
cal analysis of various sources of information. It results in identification of recurring
solutions, however it does not guarantee that all possible patterns within a partic-
ular scope have been discovered. We applied this approach for identification of the
CPN patterns and for revision of the control-flow patterns that have previously been
gathered using the empirical approach.
In order to describe requirements for PAISs in a more systematic manner, we adopted
another ‘top-down’ approach that allows various pattern variants to be derived from
a generic core pattern. In particular, we analyzed the problem domain and identified
a set of important (orthogonal) dimensions. For each of the dimensions identified, we
determined a set of fixed and variable parameters, each associated with a set of possi-
ble values. By assigning each of the parameters to a particular value a large number
of combinations can be generated. We applied this approach for specifying various
options to realization of the control-flow patterns by means of CPC-ML. Further-
more, this approach was used in the configurable framework for service interaction
patterns and during identification of the process flexibility patterns. Because not all
pattern variants generated using this approach may appear to be meaningful, it is
important to identify only meaningful combinations. Where it not possible to ana-
lytically define which of combinations are meaningful, one has to test the occurrence
of each combination in practice in order to claim that they are applicable.

• Strengths and weaknesses of the pattern-based approach: overall, the pattern-based
approach proved to be a good design choice as it allows the requirements for PAISs
to be described in a language-independent way, thus making patterns accessible to
the large audience without requiring any domain-specific knowledge. The problem-

428 Chapter 7 Epilogue

solution-context structure works well for positioning a specific problem that can be
encountered in a certain context and a corresponding solution. The possibility to
adjust a pattern format helps in including (domain or purpose-specific) information,
whereas maintaining a uniform structure throughout a pattern language.
While we formalized the behavior associated with a pattern using CPNs, the pattern
descriptions appear to be not precise enough when it comes to translating them
directly in a language supported by a tool offering the functionality for discovering
patterns in existing models. This deficiency could be solved by describing the pattern
definitions using a specific language, i.e. applying an ontological approach [214].
The static and dynamic aspects of behavior associated with each of the concepts
identified in a pattern language is unambiguously described using the syntax of a
chosen language [71, 108]. The language-dependent description can be used directly
in tools supporting this language, whereas a big drawback of this approach is that it
narrows the domain of users to whom these descriptions are easy understandable.

7.3 Summary

In this thesis, we presented requirements for PAISs from the control-flow, service inter-
action and process flexibility perspectives by means of patterns. As mentioned earlier,
this research complements the set of patterns identified by N. Russell [194] in order to
get a generic understanding of requirements for PAISs, however it leaves room for future
research. In particular, process flexibility needs to be further investigated in relation to
data and resource perspectives. Furthermore, adaptability of processes is closely related
to the concept of configurability of process models. On a more generic level, one could
incorporate details of all perspectives addressed so far and define workflow architecture
patterns, incorporating both service interaction and process flexibility dimensions. We
hope that this thesis will facilitate the understanding of various perspectives of PAISs as
well as bring new insights in the development of new systems and standards in the domain.

Appendix A

Workflow Reference Model

In this appendix, we describe the Workflow Reference Model defined by the WfMC. This
model identifies five categories of interoperability and communication standards allowing
workflow products to coexist and interoperate within a user’s environment [62], is illus-
trated in Figure 340. The model consists of workflow enactment service and five types of
interfaces with external tools and applications. The workflow enactment service represents
the core of the workflow management system and may consist of one or more workflow
engines. It communicates with external tools and applications through various workflow
application programming interfaces (APIs). In this model, each interface is described in
terms of an abstract specification. The functionality provided by each of interfaces is as
follows:

Figure 340: WfMC Workflow Reference Model (from [62])

• Interface 1 (Process definition tools) provides a generic process definition format
which describes common process elements and the relationships between them. Var-

Appendix A Workflow Reference Model

ious process definition tools can be used in order to create a process definition which
can be interpreted at runtime by the workflow engine(s) within the workflow enact-
ment service.

• Interface 2 (Workflow client applications) describes communication between a work-
flow engine and client applications (e.g., a worklist handler through which users
interact with workflow management system).

• Interface 3 (Invoked applications) describes an interface for invoking external appli-
cations. These could be standardized or special-purpose software tools (e.g., editors,
spreadsheet programs, etc.).

• Interface 4 (Other workflow enactment services) provides an interface for specify-
ing process-to-process interaction with another workflow engine. This enables both
environments to share a single view of the process definition objects and their at-
tributes [62]. However, there may be compatibility issues as a consequence of differ-
ences in encoding and data formats utilized by individual applications, which must be
resolved outside of the facilities provided by the interface (for instance, by exporting
data from one format to another or by using a suitable mapping between process
definition formats).

• Interface 5 (Administration and monitoring tools) specifies an interface allowing
administration and monitoring tools utilized by different applications to share func-
tions for analyzing certain process parameters characterizing the run-time execution.
Audit trails recording the process-relevant information can be used as performance
indicators for workflow executions.

Note that not all of the interfaces specified have been utilized in practice. Although
interface 1 provides a good overview of process elements common in workflow management
systems, it is perceived to be without practical relevance [239]. XPDL (XML-based Process
Definition Language) is a language proposed by the WfMC for exchanging process defi-
nitions, is used by over 80 products nowadays, however the practical demand for reusing
workflow models is rather small [239] and different vendors tend to interpret XPDL in
different ways. Interfaces 2 and 3 have been implemented by a number of vendors [239]
for interacting with client and invoked applications. Interface 4, offering a description of
interoperability functions, has been implemented by a number of workflow vendors. How-
ever, the majority of aspects introduced by the WfMC to support this interface are also
covered by competing standards such as BPML [47], WS-BPEL [164] and WS-CDL [217].

Appendix B

Web-services stack

In this appendix, we illustrate a Web-services stack which specifies standards for estab-
lishing, managing and processing messages exchanged between services. The Web-services
stack, presented in Figure 341, consists of three layers: Messaging, Service, and SOA [150].
The Messaging layer serves as a backbone on which the other two layers reside. It spec-
ifies how messages are being defined and transported. The Service layer defines the core
of a service and how it can be accessed. Finally, the SOA layer addresses both service
orchestration and choreography. Many important issues such as reliability, security and
quality of service are also addressed in this Web-services stack, however we focus only on
the key Web services standards (e.g., XML, WSDL, and SOAP) that are necessary for
understanding the research presented in this thesis.

Business agreement languages (ebXML)

Choreography& Coordination Languages

 (WS-CDL)

User Interaction (WS-RP)

Orchestration& Composition Languages

(WS-BPEL 2.0)

Discovery (UDDI)

Description

WSDL
Context

Transaction

Reliable messaging

(WS-RM)
Routing, Addressing

(WS-Addressing)

Protocol (SOAP 1.2)

Packaging Syntax (XML, XSD, URI etc.)

Runtime Design time

Transport (HTTP, SMTP, etc.)

M
a

n
a
g

e
m

e
n
t

S
e
c
u
ri

ty
 (

W
S

-T
ru

s
t,

 W
S

-F
e
d

e
ra

ti
o

n
,

e
tc

.)

Integration

Application

S
O

A

S
e

rv
ic

e
s

in
 S

O
A

S
e

rv
ic

e

 f
a
b

ri
c

S
e
rv

ic
e

M

e
s
s
a
g
in

g

S
e

m
a

n
ti
c
 W

e
b
 (

R
D

F
,O

W
L

)

A
c
c
e

s
s
ib

ili
ty

Figure 341: Web-services stack (from [82])

Appendix B Web-services stack

XML (eXtensible Markup Language) is a standard introduced by the World Wide
Web Consortium (W3C) for exchanging structured documents and data [50]. By means
of this standard the content of messages to be exchanged can be easily defined. WSDL
(Web-Services Description Language) is a standard based on XML used to create an XML
document which describes a Web service and how to access it [60]. WSDL has been designed
in order to separate the abstract definition of an interface from the invocation details. It
mainly describes operations which need to be called in order for a message sent to be
processed, defines types of messages that can be sent and received, and if necessary can be
used to describe the message body using the XML Schema specification. SOAP (Simple
Object Access Protocol) is a standard used to enable the exchange of XML information
between interacting parties [45]. SOAP is a transport-independent protocol which can be
bound to an existing transport (for instance, HTTP (HyperText Transfer Protocol used to
transfer web pages on the World Wide Web)).

The discovery layer residing between the Service and the SOA layers focuses on the
definition of a service directory which can be used as a search engine in order to find a suit-
able service amongst those that have already been published. Universal Data Description
Interface (UDDI) used for this purpose provides all necessary information for accessing a
desired service. Such registries can be defined for private or public use.

Two more layers that merit further discussion are Orchestration& Composition layer re-
lated to application of services in the SOA, and Choreography& Coordination layer related
to business integration. The main difference between these layers is in their view on ser-
vices in an SOA: Business Process Execution Language for Web Services (WS-BPEL) [164]
describes an interaction from the perspective of a single participant, whilst Web-Services
Choreography Definition Language (WS-CDL) [217] defines information formats being ex-
changed by all participants in an interaction.

In the service-oriented domain, it has been recognized that in order to help organizations
function effectively their processes may need to be reused in the form of business services
which can be freely acquired and used by other business partners. In order to enable
interaction between services, their interfaces should be defined according to a commonly
recognized standard. In the last decade, multiple standards proposals have been proposed,
some of which have been discontinued ((XLANG, BPML and WSCI) [33, 47, 167, 209])
and some of which have gained broader acceptance (BPEL4WS, WS-BPEL, BPMN) and
currently serve as the basis for ongoing standardization initiatives.

Appendix C

Glossary

Active task A task whose execution changes the state of the modeled system.

Asynchronous interaction An interaction between two parties, where one party sends a request
message to another party, and expects a reply message to be received back in response to
the first message (note that the requestor party is not blocked and can continue processing).

Atomic task A task that cannot de decomposed into smaller parts and described in terms of
other tasks.

Blocking mode A parameter associated with output ports of a task, specifying whether output
ports are allowed to send messages to the corresponding output channels when their maximal
capacity has been reached.

Bounded channel A channel with limited maximal capacity.

Business process A special type of process that can be defined as a set of tasks that need to be
executed in a specific order by dedicated employees or other kinds of resources, processing
supplied input data and producing output data, with the aim of realizing one or more
business goals.

Business Process Management (BPM) A methodology that aims at continuous improve-
ment of processes by defining, measuring and improving various process performance indi-
cators.

Cancelation set A set of locations from which all messages are to be removed upon the task
termination.

Channel A path connecting two or more tasks, used to convey messages.

Choreography A sequence of dependencies between interactions of multiple parties defined in
order to implement a business process comprising multiple services.

Composite task A task execution of which results in an initiation of a sub-process.

Conversation Communication of a set of contextually related messages between two or more
parties.

Configuration parameters Parameters that have to be set to a specific value from the defined
range in order to for a specific pattern variant to be configured.

Control-flow pattern A three-part rule expressing a relation between a certain context (the
lifecycle of a single process instance), a problem (addressing the behavioral aspects of task
routing), and a solution (expressed in terms of structural entities).

Core Process Constructs Modeling Language (CPC-ML) A formally defined language
which offers a graphical notation to depict individual variants of process constructs encoun-
tered in every PAIS.

Appendix C Glossary

Correlation A mechanism used by a party to identify a process instance for processing of a
received message in the context of a particular conversation.

Customer A party, the recipient of a service or a product, which may be represented by various
people and processes in different roles (e.g., user, buyer, payer, etc.).

Discrete system A system that is characterized by a certain state at each moment in time.

Dynamic attribute A pattern attribute, whose value is derived from other pattern attributes.

External channel A channel providing messages for shared access between several tasks.

External input port An input port mapped to an external channel.

Information System A particular type of a work system that processes information by per-
forming various combinations of six types of operations: capturing, transmitting, storing,
retrieving, manipulating, and displaying information.

Input port A port consuming messages from a corresponding channel.

Input selection mode A parameter defining which set of enabled input ports associated with
a given task is to be selected from the input sets for message consumption.

Input sets All possible sets of input ports associated with a given task, which must be enabled
for task commencement.

Interaction An act of interacting between two or more parties by means of sending/receiving of
messages.

Flexibility The ability of a process to deal changes in operating environment, by varying or
adapting those parts of the business process that are affected by them, whilst retaining the
essential format of those parts that are not impacted by the variations.

Flexibility by design The ability to incorporate alternative execution paths within a process
definition at design time allowing for selection of the most appropriate execution path to be
made at runtime for each process instance depending on the circumstances encountered.

Flexibility by deviation The ability for a process instance to deviate at runtime from the
execution path prescribed by the original process without altering its associated process
definition. The deviation can only encompass changes to the execution sequence of tasks
in the process for a specific process instance, it does not allow for changes in the process
definition or the tasks that it comprises.

Flexibility by underspecification The ability to execute an incomplete process definition at
run-time, i.e. one which does not contain sufficient information to allow it to be executed to
completion. Note that this type of flexibility does not require the definition to be changed
at run-time, instead the definition is completed by providing a concrete realization for the
undefined parts as they are encountered at run-time.

Flexibility by momentary change The ability to modify a process definition at run-time such
that the process definition associated with a given process instance is amended in order to
realize previously not foreseen behavior.

Flexibility by permanent change The ability to modify a process definition at run-time such
that all currently executing process instances are migrated to a new process definition and
all new process instances utilize the new process definition.

Generic Workflow Net (GWF-net) A language-independent representation of a workflow
model, which can be created using process entities encountered in any PAIS, expressed in
terms of CPC-ML constructs.

Local channel A channel conveying messages between two specific tasks.

Local input port An input port mapped on a local channel associated with a given task.

435

Mandatory input port A port which must be enabled before the task associated with it may
commence.

Mandatory output port A port which always produces a message to an output port once the
corresponding task has terminated.

Mediator A party who acts as a link between two parties involved in a conversation.

Maximal capacity of a channel A parameter that defines how many messages the channel
may hold at once.

Message A unit of information associated with the task input/output, which is expressed in
terms of basic or complex data structure.

Message consumption mode A parameter that defines how many messages are to be consumed
from the channels attached to the input ports selected for message consumption.

Migration The systematic movement of process instances from to the old process definition to
the new process definition.

Minimal capacity of a channel A parameter that defines at least how many messages a chan-
nel must contain in order to make a port, consuming messages from this channel, enabled.

Momentary change An action of modifying a process definition associated with a particular
process instance.

Multiple-instance task A task, execution of which results in initiation of one or more distinct
task instances that run concurrently and independently of each other within the same process
instance.

Optional output port A port that produces a message to an output channel if and only if a
data-based condition associated with this port has been satisfied.

Orchestration The control and data flow between business services that are necessary to achieve
a business process, from the viewpoint of one participant.

Output port A port producing messages to the corresponding output channel.

Output sets A set of output ports associated with a given task, each of which will produce one
message at the moment of task termination.

Party An entity involved in communication with other entities by means of sending/receiving
messages (e.g., a process, a service, a business unit, etc.).

Permanent change An action of modifying a process definition at a type level, potentially
impacting all existing and future process instances.

Pattern A solution for a recurring problem encountered in a certain context. Conceptually
similar patterns that share a set of common pattern attributes and differ only by values
these pattern attributes take are also termed as pattern variants.

Pattern catalog A set of patterns addressing problems in a particular domain, listed in the form
of a catalog.

Pattern configuration A set of pattern attributes defined for a given pattern family to differ-
entiate between different pattern variants. By setting pattern attributes to different values
from the defined range various different pattern variants can be generated.

Pattern variant An instance of a pattern configuration for a particular pattern family whose
configuration parameters are set to a specific value from the defined range.

Pattern family A set of pattern variants, sharing the same concepts, grouped together.

Pattern format A format selected for documenting of patterns, typically including the pattern
name, problem description, solution, and consequences sections.

Port A gate through which messages are sent and received by a task.

Appendix C Glossary

Process Cf. Business Process.

Process-Aware Information System (PAIS) A software system that manages and executes
operational processes involving people, applications, and/or information sources on the basis
of process models.

Process definition The representation of a business process in a form which supports modeling
and/or enactment by a process execution engine.

Process instance An executing instance of the process definition.

Process fragment A set of one or more tasks contained in a process definition.

Process mining A technique that allows to mine a process model representing the actual order
of events on the basis of a data log.

Process model A representation of a business process (i.e. process entities and relationships
between them) using some kind of (graphical) notation.

Provider A party that provides services/products to a customer.

Product A good or a service that is produced.

Reply A reply, answer, or additional message that is returned to a requestor.

Renew policy A policy specifying who from the involved two parties in a subscription is respon-
sible for renewing the subscription.

Request A message sent by a requestor party to another party.

Requestor A party issuing request messages to a (set of) other parties involved in the conversa-
tion.

Responder A party producing a reply message to respond on the request message received.

Response period A period of time within which a reply on the request sent is expected.

Safe channel A channel that is able to hold at most one message at a time.

Static attribute A pattern attribute whose value is fixed for all pattern variants derived from
the pattern configuration.

Subscription A special kind of a conversation between two parties, a provider and a customer,
who are both capable of initiating and renewing the process of subscription aiming at the
delivery of a certain product under accepted subscription terms.

Subprocess A process within another process that may be executed on its own right.

Subscription initiation A conversation held for the purpose of establishing a subscription.

Subscription renewal A conversation held for the purpose of renewing of the established sub-
scription.

Subscription terms A set of rules or constraints characterizing a given subscription, which
includes a subscription period, a renew policy and a product of subscription.

Synchronous interaction An interaction between two parties, where one party sends a request
message to another party, and expects a reply message to be received back in response to
the first message, providing that the requestor party is blocked until the response message
is received.

Task An abstraction of an activity, characterized by a set of inputs and outputs, assigned to a
certain resource.

Unbounded channel A channel with unlimited maximal capacity.

Web-service Any business application that has been defined using standard Web interfaces and
deployed in order to communicate with other applications over a network.

Workflow A set of interdependent tasks that occur in a specific sequence.

Work System A system in which human participants and/or machines perform a business pro-
cess using information, technology, and other resources to produce products (and/or ser-
vices) for internal or external customers.

Bibliography

[1] W.M.P. an der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design and Imple-
mentation of the YAWL System. In A. Persson and J. Stirna, editors, Proceedings of the
16th International Conference on Advanced Information Systems Engineering (CAiSE’04),
pages 142–159, Riga, Latvia, 2004. Springer-Verlag.

[2] W.M.P. van der Aalst. Three Good Reasons for Using a Petri-net-based Workflow Manage-
ment System. In S. Navathe and T. Wakayama, editors, Proceedings of the International
Working Confrence on Information and Process Integration in Enterprises (IPIC’96), pages
179–201, Cambridge, MA, USA, 1996. Kluwer Academic Publishers.

[3] W.M.P. van der Aalst. Flexible Workflow Management Systems: An Approach Based on
Generic Process Models. In T. Bench-Capon, G. Soda, and A.M. Tjoa, editors, Proceedings of
the 10th International Conference on Database and Expert Systems Applications (DEXA’99),
volume 1677 of Lecture Notes in Computer Science, pages 186–195, London, UK, 1999.
Springer-Verlag.

[4] W.M.P. van der Aalst. Formalization and Verification of Event-driven Process Chains.
Information & Software Technology, 41(10):639–650, 1999.

[5] W.M.P. van der Aalst. Generic Workflow Models: How to Handle Dynamic Change and
Capture Management Information? In Proceedings of the Fourth IECIS International Con-
ference on Cooperative Information Systems (CoopIS’99), pages 115–126, Washington, DC,
USA, 1999. IEEE Computer Society.

[6] W.M.P. van der Aalst. Exterminating the Dynamic Change Bug: A Concrete Approach to
Support Workflow Change. Information Systems Frontiers, 3(3):297–317, 2001.

[7] W.M.P. van der Aalst. Process Modeling, Lecture Notes. Eindhoven University of Technology,
Eindhoven, The Netherlands, 2003.

[8] W.M.P. van der Aalst. Business Process Management Demystified: A Tutorial on Models,
Systems and Standards for Workflow Management. In J. Desel, W. Reisig, and G. Rozenberg,
editors, Lectures on Concurrency and Petri Nets, volume 3098, pages 1–65. Springer-Verlag,
2004.

[9] W.M.P. van der Aalst, A.P. Barros, A.H.M. ter Hofstede, and B. Kiepuszewski. Advanced
Workflow Patterns. In O. Etzion and P. Scheuermann, editors, Proceedings of the Fifth
IFCIS International Conference on Cooperative Information Systems (CoopIS’00), volume
1901 of Lecture Notes in Computer Science, pages 18–29, Eilat, Israel, 2000. Springer-Verlag.

[10] W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science, 270(1-2):125–203, 2002.

[11] W.M.P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A Vicious Circle.
In M. Nüttgens and F.J. Rump, editors, Proceedings of Business Process Management using
EPCs (EPK’02), pages 71–80, Trier, Germany, 2002. Gesellschaft für Informatik, Bonn.

438 Bibliography

[12] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[13] W.M.P. van der Aalst and S. Jablonski. Dealing with Workflow Change: Identification of
Issues and Solutions. International Journal of Computer Systems, Science, and Engineering,
15(5):267–276, 2000.

[14] W.M.P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative Service Flow
Language. In M. Bravetti, M. Nunez, and G. Zavattaro, editors, International Conference
on Web Services and Formal Methods (WS-FM’2006), volume 4184 of Lecture Notes in
Computer Science, pages 1–23. Springer-Verlag, 2006.

[15] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, 2005.

[16] W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New Paradigm for
Business Process Support. Data and Knowledge Engineering, 53(2):129–162, 2005.

[17] O. Adam and O. Thomas. A Fuzzy Based Approach to the Improvement of Business Pro-
cesses. In C. Bussler and A. Haller, editors, Proceedings of the 1st International Workshop
on Business Process Intelligence (BPI’2005), volume 3812 of Lecture Notes in Computer
Science, pages 183–189, Nancy, France, 2005. Springer-Verlag.

[18] J. Adams, S. Koushik, G. Vasudeva, and G. Galambos. Patterns for e-Business. A Strategy
for Reuse. IBM Press, 2001.

[19] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Worklets: A
Service-Oriented Implementation of Dynamic Flexibility in Workflows. In R. Meersman
and Z. Tari, editors, On the Move to Meaningful Internet Systems 2006 (Proceedings of the
OTM Confederated International Conferences), volume 4275 of Lecture Notes in Computer
Science, pages 291–308, Montpellier, France, 2006. Springer-Verlag.

[20] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Facilitating
Flexibility and Dynamic Exception Handling in Workflows through Worklets. In O. Belo,
J. Eder, O. Pastor, and J. Falcão e Cunha, editors, Proceedings of the 17th Conference on
Advanced Information Systems Engineering (CAiSE’05), volume 161 of CEUR Workshop
Proceedings, pages 45–50, Porto, Portugal, 2005. CEUR-WS.org.

[21] M. Adams, A.H.M. ter Hofstede, W.M.P. van der Aalst, and D. Edmond. Dynamic, Ex-
tensible and Context-Aware Exception Handling for Workflows. In R. Meersman and Z.
Tari, editor, On the Move to Meaningful Internet Systems 2007 (Proceedings of the OTM
Confederated International Conferences: CoopIS’07). Part I, volume 4803 of Lecture Notes
in Computer Science, pages 95–112, Vilamoura, Portugal, 2007. Springer-Verlag.

[22] W. Aigner and S. Miksch. CareVis: Integrated Visualization of Computerized Protocols and
Temproal Patient Data. Artificial Intelligence in Medicine, 37(3):203–218, 2006.

[23] L. Aldred, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. On the Notion of
Coupling in Communication Middleware. In R. Meersman and Z. Tari, editor, On the Move
to Meaningful Internet Systems 2005 (Proceedings of the OTM Confederated International
Conferences), volume 3761 of Lecture Notes in Computer Science, pages 1015–1033, Agia
Napa, Cyprus, 2005. Springer-Verlag.

[24] L. Aldred, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Understanding the
Challenges in Getting Together: The Semantics of Decoupling in Middleware. Technical
Report BPM Center Report BPM-06-19, BPMcenter.org, 2006.

[25] C. Alexander. A Pattern Language: Towns, Building and Construction. Oxford University
Press, 1977.

[26] C. Alexander. Timeless Way of Building. Oxford University Press, 1979.

439

[27] G. Alonso, D. Agrawal, A.El. Abbadi, M. Kamath, G. Gunthor, and C. Mohan. Advanced
Transaction Models in Workflow Contexts. In S.Y.W. Su, editor, Proceedings of the 12th
International Conference on Data Engineering, pages 574–581, New Orleans, USA, 1996.
IEEE Computer Society.

[28] S.R. Alpert, K. Brown, and B. Woolf. The Design Patterns Smalltalk Companion. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

[29] S. Alter. A General, Yet Useful Theory of Information Systems. Communications of the
AIS, 1:3, 1999.

[30] S. Alter. Information Systems: Foundation of E-Business. Prentice Hall PTR, 2002.

[31] S.W. Ambler. Process Patterns: Building Large-Scale Systems Using Object Technology.
Cambridge University Press, 1998.

[32] AP. Antipatterns Home Page. http://www.antipatterns.com.

[33] A. Arkin, S. Askary, S. Fordin, and W. Jekel. Web Service Choreography Interface (WSCI)
1.0. Standards proposal by BEA Systems, Intalio, SAP, and Sun Microsystems, 2002.

[34] AsbruView. The ASGAARD Project. http://www.asgaard.tuwien.ac.at/asbruview.

[35] K. Bäına, W. Gaaloul, R.E. Khattabi, and A. Mouhou. WorkflowMiner: a New Workflow
Patterns and Performance Analysis tool. In Forum Proceedings of the 18th Conference on
Advanced Information Systems Engineering (CAiSE’06), , volume 231 of CEUR Workshop
Proceedings, Luxembourg, 2006. CEUR-WS.org.

[36] A. Barros, G. Decker, M. Dumas, and F. Weber. Correlation Patterns in Service-Oriented Ar-
chitectures. In Proceedings of the 9th International Conference on Fundamental Approaches
to Software Engineering (FASE), volume 4422 of Lecture Notes in Computer Science, pages
245–259, Braga, Portugal, 2007. Springer-Verlag.

[37] A. Barros, M. Dumas, and A.H.M. ter Hofstede. Service Interaction Patterns: Towards a
Reference Framework for Service-based Business Process Interconnection. QUT Technical
report, FIT-TR-2005-02, Queensland University of Technology, Brisbane, Australia, 2005.

[38] A. Barros, M. Dumas, and A.H.M. ter Hofstede. Service Interaction Patterns. In W.M P.
van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Proceedings of the 3rd
International Conference on Business Process Management (BPM’05), volume 3649, pages
302–318, Nancy, France, 2005. Springer-Verlag.

[39] A.P. Barros and E. Borger. A Compositional Framework for Service Interaction Patterns
and Interaction Flows. In K. Lau and R. Banach, editors, Proceedings of the Formal Methods
and Software Engineering (ICFEM’05), volume 3785 of Lecture Notes in Computer Science,
pages 5–35, Manchester, UK, 2005. Springer-Verlag.

[40] A.P. Barros, M. Dumas, and P. Oaks. Standards for Web Service Choreography and Or-
chestration: Status and Perspectives. In C. Bussler and A. Haller, editor, Proceedings of
the Business Process Management Workshops, BPM 2005 International Workshops, volume
3812, pages 61–74, Nancy, France, 2005.

[41] K. Beck and R. Johnson. Patterns Generate Architectures. In Proceedings of the 8th Eu-
ropean Conference on Object-Oriented Programming (ECOOP’94), volume 821 of Lecture
Notes In Computer Science, pages 139–149, London, UK, 1994. Springer-Verlag.

[42] J.A. Bergstra. Handbook of Process Algebra. Elsevier Science Inc., New York, NY, USA,
2001.

[43] J.M. Bhat and N. Deshmukh. Methods for Modeling Flexibility in Business Processes. In O.
Pastor and J. Falcão e Cunha, editor, Workshop on Business Process Modeling, Design and
Support (BPMDS’05), Proceedings of CAiSE’05 Workshops, volume 3520 of Lecture Notes
in Computer Science, Porto, Portugal, 2005. Springer-Verlag.

440 Bibliography

[44] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison Wesley, Reading, MA, USA, 1998.

[45] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S. Thatte,
and D. Winer. Simple Object Access Protocol (SOAP) 1.1. World Wide Web Consortium
(W3C). Availbale via http://www.w3.org/TR/soap, 2000.

[46] A.A. Boxwala, M. Peleg, S. Tu, O. Oqunyemi, Q. Zeng, and D. Wang. GLIF3: a Representa-
tion Format for Sharable Computer-Interpretable Clinical Practive Guidelines. Biomedical
Informatics, 37(3):147–161, 2004.

[47] BPML. Business Process Modeling Language, Version 1.0. BPMI.org, 2002.

[48] K. Braghetto, J.E. Ferreira, and C. Pu. Using Control-Flow Patterns for Specifying Business
Processes in Cooperative Environments. In Proceedings of the 2007 ACM symposium on
Applied computing (SAC’07), pages 1234–1241, New York, NY, USA, 2007. ACM.

[49] M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu. Process Modeling in Web applica-
tions. ACM Transactions on Software Engineering and Methodology (TOSEM), 15(4):360–
409, 2006.

[50] T. Bray, J. Paoli, C.M. Sperberg-McQueen, and E. Maler. eXtensible Markup Language
(XML) 1.0 (Second Edition). World Wide Web Consortium (W3C). Available via http:

//www.w3.org/TR/REC-xml, 2000.

[51] J. Cardoso. Complexity Analysis of BPEL Web Processes. Software Process: Improvement
and Practice, 12:35–49, 2007.

[52] CareVis. Interactive Visualization Methods to Support Protocol-Based Care. http://ieg.

ifs.tuwien.ac.at/projects/carevis.

[53] J. Carey and B. Carlson. Framework Process Patterns. Addison Wesley Longman, 2002.

[54] S. Carlsen, J. Krogstie, A. Slvberg, and O.I. Lindland. Evaluating Flexible Workflow Sys-
tems. In Proceedings of the Thirtieth Hawaii International Conference on System Sciences
(HICSS-30), Washington, DC, USA, 1997. IEEE Computer Society Press.

[55] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and Implementation of
Exceptions in Workflow Management Systems. ACM Transactions on Database Systems,
24(3):405–451, 1999.

[56] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual Modeling of Workflows. In
M.P. Papazoglou, editor, Proceedings of the 14th International Object-Oriented and Entity-
Relationship Modelling Conference (OOER’95), volume 1021, pages 341–354, London, UK,
1995. Springer-Verlag.

[57] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow Evolution. In B. Thalheim, editor,
Proceedings of 15th International Conference on Conceptual Modeling (ER’96), volume 1157
of Lecture Notes in Computer Science, pages 438–455. Springer-Verlag, Cottbus, Germany,
1996.

[58] J. Chen and Y. Yang. Key Research Issues in Grid Workflow Verification and Validation. In
Proceedings of the 2006 Australasian workshops on Grid computing and e-research (ACSW
Frontiers’06), pages 97–104, Darlinghurst, Australia, 2006. Australian Computer Society,
Inc.

[59] D.K.W. Chiu, Q. Li, and K. Karlapalem. ADOME-WFMS: Towards Cooperative Handling
of Workflow Exceptions. In Advances in Exception Handling Techniques, pages 271–288.
Springer-Verlag, New York, NY, USA, 2001.

[60] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. World Wide Web Consortium (W3C). Available via http://www.

w3.org/TR/wsdl, 2001.

441

[61] V. Christophides, R. Hull, A. Kumar, and J. Simeon. Workflow Mediation using VorteXML.
IEEE Data Engineering Bulletin, 24(1):40–45, 2001.

[62] Workflow Management Coalition. WFMC Home Page. http://www.wfmc.org.

[63] Workflow Management Coalition. Reference Model - The Workflow Reference Model. http:
//www.wfmc.org/standards/docs/tc003v11.pdf, 1995.

[64] D. Cooney, M. Dumas, and P. Roe. GPSL: A Programming Language for Service Implemen-
tation. In Fundamental Approaches to Software Engineering, 9th International Conference,
FASE 2006, Held as Part of the Joint European Conferences on Theory and Practice of
Software, volume 3922 of Lecture Notes in Computer Science, pages 3–17, Vienna, Austria,
2006. Springer-Verlag.

[65] J. Coplien. Organizational Patterns: Beyond Technology to People. In Databases and
Information Systems Integration (ICEIS(1)), volume 1, pages IS–15, Porto, Portugal, 2004.

[66] Denmark CPN Group, University of Aarhus. CPN Tools Home Page. http://wiki.daimi.
au.dk/cpntools.

[67] Denmark CPN Group, University of Aarhus. Design/CPN Tool Home Page. Computer Tool
for Coloured Petri Nets. http://www.daimi.au.dk/designCPN.

[68] G. Cugola. Tolerating Deviations in Process Support Systems via Flexible Enactment of
Process Models. IEEE Transactions of Software Engineering, 24(11):982–1001, 1998.

[69] D. Cybok. A Grid Workflow Infrastructure: Research Articles. Concurrency and Computa-
tion: Practice and Experience Archive, 18(10):1243–1254, 2006.

[70] F. Daoudi and S. Nurcan. A Benchmarking Framework for Methods to Design Flexible
Business Processes. Software Process Improvement and Practice, 12:51–63, 2007.

[71] I. Davies, P. Green, S. Milton, and M. Rosemann. Analyzing and Comparing Ontologies
with Meta-Models. In J. Krogs, T. Halpin, and K. Siau, editors, Information Modeling
Methods and Methodologies, pages 1–16. Idea Group, 2005.

[72] A. de Moor and M.A. Jeusfeld. Making Workflow Change Acceptable. Requirements Engi-
neering, 6(2):75–96, 2001.

[73] G. Decker, F. Puhlmann, and M. Weske. Formalizing Service Interactions. In S. Dustdar, J.L.
Fiadeiro, and A. Sheth, editors, Proceedings of the 4th International Conference on Business
Process Management (BPM’06), volume 4102 of Lecture Notes in Computer Science, pages
414–419, Vienna, Austria, 2006. Springer-Verlag.

[74] G. Decker, J.M. Zaha, and M. Dumas. Execution Semantics for Service Choreographies. In
Web Services and Formal Methods, Third International Workshop, WS-FM’2006, volume
4184 of Lecture Notes in Computer Science, pages 163–177, Vienna, Austria, 2006. Springer-
Verlag.

[75] DELTA. The DELT/A Project: Document Exploration and Linking Tool/ Addons. http:

//ieg.ifs.tuwien.ac.at/projects/delta.

[76] A. van Dijk. Contracting Workflows and Protocol Patterns. In Business Process Manage-
ment, International Conference, BPM 2003, volume 2678 of Lecture Notes in Computer
Science, pages 152–167, Eindhoven, the Netherlands, 2003. Springer-Verlag.

[77] K.R. Dittrich and A. Geppert. Object-Oriented DBMS and Beyond. In Proceedings of
the 24th Seminar on Current Trends in Theory and Practice of Informatics (SOFSEM’97),
pages 275–294, London, UK, 1997. Springer-Verlag.

[78] B. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and W.M.P.
van der Aalst. The ProM framework: A New Era in Process Mining Tool Support. In
G. Ciardo and P. Darondeau, editors, Application and Theory of Petri Nets 2005, volume
3536 of Lecture Notes in Computer Science, pages 444–454. Springer-Verlag, 2005.

442 Bibliography

[79] C. Dufourd, A. Finkel, and P. Schnoebelen. Reset Nets Between Decidability and Unde-
cidability. In K.G. Larsen, S. Skyum, and G. Winskel, editors, Proceedings of the 25th
International Colloquium on Automata, Languages and Programming (ICALP’98), volume
1443 of Lecture Notes in Computer Science, pages 103–115, London, UK, 1998. Springer-
Verlag.

[80] M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Information
Systems. Wiley, 2005.

[81] M. Dumas and A.H.M. ter Hofstede. UML Activity Diagrams as a Workflow Specification
Language. In M. Gogolla and C. Kobryn, editors, Proceedings of the Fourth International
Conference on the Unified Modeling Language (UML’2001), volume 2185 of Lecture Notes
in Computer Science, pages 76–90, Toronto, Canada, 2001. Springer-Verlag.

[82] ebPML. Web-services stack. Available via http://www.ebpml.org/webservices.htm.

[83] J. Eder and W. Liebhart. The Workflow Activity Model (WAMO). In S. Laufmann, S. Spac-
capietra, and T. Yokoi, editors, Proceedings of the Third International Conference on Co-
operative Information Systems (CoopIS’95), pages 87–98, Vienna, Austria, 1995. University
of Toronto Press.

[84] J. Eder and W. Liebhart. Workflow Recovery. In Proceedings of the First IFCIS International
Conference on Cooperative Information Systems (CoopIS’96), pages 124–134, Brussels, Bel-
gium, 1996. IEEE Computer Society.

[85] C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems. In
Proceedings of conference on Organizational computing systems (COCS’95), pages 10–21,
New York, USA, 1995. ACM.

[86] C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic Change within Workflow Systems. In
N. Comstock and C. Ellis and R. Kling and J. Mylopoulos and S. Kaplan, editor, Proceedings
of the Conference on Organizational Computing Systems, pages 10 – 21, Milpitas, CA, USA,
1995. ACM SIGOIS, ACM Press, New York.

[87] H. Eriksson and M. Penker. Business Modeling with UML. Business Patterns at Work.
Wiley, John and Sons, 2000.

[88] P. Evitts. A UML Pattern Language. New Riders Publishing, Thousand Oaks, CA, USA,
2000.

[89] M. Fabian and B. Lennartson. Petri Net Constructs for High Level Operations Lists. In
INCOM’95: IFAC Symposium on Information Control Problems in Manufacturings, Beijing,
China, 1995.

[90] L. Fischer, editor. Workflow Handbook 2003. Future Strategies Inc., 2003.

[91] G. Fortino, A. Garro, and W. Russo. From Modeling to Enactment of Distributed Work-
flows: an Agent-Based Approach. In Proceedings of the 2006 ACM symposium on Applied
computing (SAC’06), pages 128–129, New York, NY, USA, 2006. ACM.

[92] M. Fowler. Analysis Patterns: Reusable Object Models. Addison-Wesley, 1997.

[93] J. Fox, N. Johns, and A. Rahmanzadeh. Disseminating Medical Knowledge: The PROforma
Approach. Artificial Intelligence in Medicine, 14(1):157–182, 1998.

[94] Wikipedia. The free encyclopedia. BPEL. http://en.wikipedia.org/wiki/BPEL.

[95] Wikipedia. The free encyclopedia. Business Process Management. http://en.wikipedia.

org/wiki/Business_Process_Management.

[96] Wikipedia. The free encyclopedia. Pattern Language. http://en.wikipedia.org/wiki/

Pattern_language.

[97] Wikipedia. The free encyclopedia. Service Oriented Architecure. http://en.wikipedia.

org/wiki/Service-oriented_architecture.

443

[98] W. Gaaloul, S. Alaoui, K. Baa, and C. Godart. Mining Workflow Patterns through Event-
Data Analysis. The 2005 Symposium on Applications and the Internet Workshops, 2005.
Saint Workshops 2005, 0:226–229, 2005.

[99] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing Series. Addison Wesley, Reading, MA,
USA, 1995.

[100] A. Gao, D. Yang, S. Tang, and M. Zhang. Mining Models of Composite Web Services for
Performance Analysis. In M.L. Lee, K.L. Tan, and V. Wuwongse, editors, Database Systems
for Advanced Applications, 11th International Conference (DASFAA’2006), volume 3882 of
Lecture Notes in Computer Science, pages 828–837, Singapore, 2006. Springer-Verlag.

[101] M. Georgeff and J. Pyke. Dynamic Process Orchestration: Leading the Way in Business
Agility. http://about.reuters.com/partnerships/tibco/material/Staffware.pdf.

[102] G. Girault and R. Valk. Petri Nets for Systems Engineering: A Guide to Modeling, Verifi-
cation, and Applications. Springer-Verlag, 2003.

[103] N.S. Glance, D.S. Pagani, and R. Pareschi. Generalized Process Structure Grammars GPSG
for Flexible Representations of Work. In Proceedings of the 1996 ACM conference on Com-
puter supported cooperative work (CSCW’96), pages 180–189, New York, NY, USA, 1996.
ACM.

[104] M.C. Gomes. Pattern Operators for Grid Environments. PhD Thesis. PhD thesis, Univer-
sidade Nova de Lisboa, 11 2007.

[105] M.C. Gomes, O. Rana, and J.C. Cunha. Pattern Operators for Grid Environments. Scientific
Programming, 11(3):237–261, 2003.

[106] M.C. Gomes, O. Rana, and J.C. Cunha. Extending Grid-Based Workflow Tools with Pat-
terns/Operators. The International Journal of High Performance Computing Applications,
22(3):301–318, 2008.

[107] G. Greco, A. Guzzo, G. Manco, and D. Sacci. Mining Unconnected Patterns in Workflows.
Information Systems, 32(5):685–712, 2007.

[108] P. Green and M. Rosemann. Applying Ontologies to Business and Systems Modeling Tech-
niques and Perspectives: Lessons Learned. Journal of Database Management, 15(2):105–117,
2004.

[109] M. Gries, J.W. Janneck, and M. Naedele. Reusing Design Experience for Petri Nets Through
Patterns. In Proceedings of High Performance Computing (HPC’99), pages 453–458, San
Diego, CA, USA, 1999.

[110] D. Grigori, F. Charoy, and C. Godart. Anticipation to Enhance Flexibility of Workflow
Execution. In C.M. Heinrich, J. Lazanský, G. Quirchmayr, and P. Vogel, editors, Proceedings
of the Database and Expert Systems Applications, 12th International Conference DEXA ’01,
volume 2113 of Lecture Notes in Computer Science, pages 264–273, Munich, Germany, 2001.
Springer-Verlag.

[111] T. Gschwind, J. Koehler, and J. Wong. Applying Patterns during Business Process Model-
ing. In M. Dumas, M. Reichert, and M. Shan, editors, Business Process Management, 6th
International Conference, (BPM 2008), volume 5240 of Lecture Notes in Computer Science,
pages 4–19, Milan, Italy, 2008. Springer-Verlag.

[112] T. Gubala, M. Bubak, M. Malawski, and K. Rycerz. Semantic-Based Grid Workflow Com-
position. In Roman Wyrzykowski, Jack Dongarra, Norbert Meyer, and Jerzy Wasniewski,
editors, Parallel Processing and Applied Mathematics, 6th International Conference (PPAM
2005), volume 3911 of Lecture Notes in Computer Science, pages 651–658, Poznan, Poland,
2005. Springer-Verlag.

444 Bibliography

[113] C.W. Günther, S. Rinderle, M. Reichert, and W.M.P. van der Aalst. Change Mining in
Adaptive Process Management Systems. In On the Move to Meaningful Internet Systems
2006 (Proceedings of the OTM Confederated International Conferences), pages 309–326,
Berlin, 2006. Springer-Verlag.

[114] C.W. Günther and W.M.P. van der Aalst. Modeling the Case Handling Principles with
Colored Petri Nets. In Proceedings of the CPN Workshop’2005, Aarhus, Denmark, 2005.

[115] C. Hagen and G. Alonso. Flexible Exception Handling in the OPERA Process Support
System. In Proceedings of the 18th International Conference on Distributed Computing
Systems (ICDCS’98), pages 526–533, Amsterdam, The Netherlands, 1998. IEEE Computer
Society.

[116] C. Hagen and G. Alonso. Exception Handling in Workflow Management Systems. IEEE
Transactions on Software Engineering, 26(10):943–958, 2000.

[117] J.J. Halliday, S.K. Shrivastava, and S.M. Wheater. Flexible Workflow Management in the
OPENflow System. In Proceedings of the 5th IEEE International Conference on Enterprise
Distributed Object Computing (EDOC ’01), pages 82–98, Washington, DC, USA, 2001. IEEE
Computer Society.

[118] S. Hasso and C.R. Carlson. Linguistics-based Software Design Patterns Classification. In
Proceedings of the Thirty-Seventh Annual Hawaii International Conference on System Sci-
ence (HICSS-37), Honolulu, HI, 2004. IEEE Computer Society Press.

[119] K.M. van Hee. Information System Engineering: a Formal Approach. Cambridge University
Press, 1994.

[120] P. Heimann, G. Joeris, C. Krapp, and B. Westfechtel. DYNAMITE: Dynamic Task Nets
for Software Process Management. In Proceedings of the 18th International Conference on
Software Engineering (ICSE 18), pages 331–341, Berlin, Germany, 1996. IEEE Press.

[121] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke. A Comprehensive Ap-
proach to Flexibility in Workflow Management Systems. In Proceedings of the international
joint conference on Work activities coordination and collaboration: WACC’99, pages 79–88,
New York, NY, USA, 1999. ACM.

[122] T. Herrmann and K.U. Loser. Vagueness in models of socio-technical systems. Behaviour
& Information Technology, 18(5):313–323, 1999.

[123] C.A. Heuser and G. Richter. Constructs for Modeling Information Systems with Petri
Nets. In Book Application and Theory of Petri Nets, volume 616/1992 of Lecture Notes in
Computer Science, pages 224–243, Sheffield, UK, 2006. Springer-Verlag.

[124] A.H.M. ter Hofstede and E.R. Nieuwland. Task structure semantics through process algebra.
Software Engineering Journal, 8(1):14–20, 1993.

[125] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley Professional,
Reading, MA, 2003.

[126] D. Hollingsworth. The Workflow Reference Model: 10 Years On. Technical Committee,
WfMC, 2005.

[127] J. Hurwitz, R. Bloor, C. Baroudi, and M. Kaufman. Service Oriented Architecture For
Dummies. For Dummies, 2006.

[128] S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architecture and
Implementation. Thomson Computer Press, 1996.

[129] J. Janneck and M. Naedele. Introducing Design Patterns for Petri Nets. Technical report,
Computer Engineering and Networks Lab. TIK-Report Nr.39, Swiss Federal Institute of
Technology Zurich, 1998.

445

[130] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, vol-
ume 1 of EATCS monographs on Theoretical Computer Science. Springer-Verlag, 1997.

[131] G. Joeris. Defining Flexible Workflow Execution Behaviors. In P. Dadam and M. Reichert,
editors, Workshop Informatik ’99: Enterprise-wide and Cross-enterprise Workflow Manage-
ment: Concepts, Systems, Applications, volume 24 of CEUR Workshop Proceedings, pages
49–55, Paderborn, Germany, 1999. CEUR-WS.org.

[132] R.E. Johnson. Documenting frameworks using patterns. In A. Paepcke, editor, Proceedings
of the Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), volume 27, pages 63–72, New York, NY, 1992. ACM Press.

[133] N. Joncheere, W. Vanderperren, and R. van der Straeten. Requirements for a Workflow
System for Grid Service Composition. In J. Eder and S. Dustdar, editors, Business Process
Management Workshops, volume 4103 of Lecture Notes in Computer Science, pages 365–374.
Springer-Verlag, 2006.

[134] P.J. Kammer, G.A. Bolcer, R.N. Taylor, A.S. Hitomi, and M. Bergman. Techniques for
Supporting Dynamic and Adaptive Workflow. Computer Supported Cooperative Work,
9(3/4):269–292, 2000.

[135] B. Kiepuszewski. Expressiveness and Suitability of Languages for Control Flow Modelling
in Workflows. PhD thesis, Queensland University of Technology, Brisbane, Australia, 2003.
Available via http://www.workflowpatterns.com.

[136] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On Structured Workflow Modelling.
In B. Wangler and L. Bergman, editors, Proceedings of the 12th International Conference
on Advanced Information Systems Engineering CAiSE’00, volume 1789 of Lecture Notes in
Computer Science, Stockholm, Sweden, 2000. Springer-Verlag.

[137] B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals of Control
Flow in Workflows. Acta Informatica, 39(3):143–209, 2003.

[138] E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious Circle (Ex-
tended Abstract). In M. Nüttgens and F.J. Rump, editors, Proceedings of the GI-Workshop
EPK’03: Business Process Management using EPCs, pages 7–18, Bamberg, Germany, 2003.
Gesellschaft für Informatik, Bonn.

[139] E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious Circle. In
J. Desel, B. Pernici, and M. Weske, editors, International Conference on Business Process
Management (BPM’04), volume 3080 of Lecture Notes in Computer Science, pages 82–97.
Springer-Verlag, 2004.

[140] E. Kindler. On the Semantics of EPCs: Resolving the Vicious Circle. Data and Knowledge
Engineering, 56(1):23–40, 2006.

[141] J. Klingemann. Controlled Flexibility in Workflow Management. In B. Wangler and
L. Bergman, editors, Proceedings of the 12th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE’00), volume 1789 of Lecture Notes in Computer Science,
Stockholm, Sweden, 2000. Springer-Verlag.

[142] R. Kosara and S. Miksch. Metaphors of Movement: A Visualization and User Interface for
Time-Oriented Skeletal plans. Artificial Intelligence in Medicine, 22(2):111–131, 2001.

[143] M. Kradolfer and A. Geppert. Dynamic Workflow Schema Evolution Based on Workflow
Type Versioning and Workflow Migration. In Proceedings of the Fourth IECIS International
Conference on Cooperative Information Systems (CoopIS’99), page 104, Washington, DC,
USA, 1999. IEEE Computer Society.

[144] L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to Coloured Petri
Nets. International Journal on Software Tools for Technology Transfer, 2(2):98–132, 1998.

446 Bibliography

[145] K. Kumar and M.M. Narasipuram. Defining Requirements for Business Process Flexibility.
In G. Regev, P. Soffer, and R. Schmidt, editors, Workshop on Business Process Model-
ing, Design and Support (BPMDS’06), Proceedings of CAiSE’06 Workshops, volume 236 of
CEUR Workshop Proceedings, pages 137–148. CEUR-WS.org, 2006.

[146] F. Leymann and D. Roller. Workflow-based Applications. IBM Systems Journal, 36(1):102–
123, 1997.

[147] J. Lonchamp. Process Model Patterns for Collaborative Work. In Proceedings of the 15th
IFIP World Computer Congress, Telecooperation Conference, Telecoop’98, Vienna, Austria,
1998.

[148] S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik, S. Bromling, and K. Tan. Generative
Design Patterns. In Generative Design Patterns, 17th IEEE International Conference on
Automated Software Engineering (ASE), pages 23–34, Edinburgh, Scotland, UK, 2002. IEEE
Computer Society.

[149] P. Mangan and S. Sadiq. On Building Workflow Models for Flexible Processes. In Proceedings
of the 13th Australasian database conference (ADC’02), pages 103–109, Darlinghurst, NSW,
Australia, 2002. Australian Computer Society, Inc.

[150] M.Champion, C.Ferris, E.Newcomer, and D.Orchard. Web Services Architecture Working
Draft 14 November 2002. World Wide Web Consortium (W3C). Available via http://www.

w3.org/TR/2002/WD-ws-arch-20021114, 2002.

[151] J. Mendling, B.F. van Dongen, and W.M.P. van der Aalst. Getting Rid of the OR-Join in
Business Process Models. In Proceedings of the 11th IEEE International Enterprise Dis-
tributed Object Computing Conference (EDOC’07), page 3, Washington, DC, USA, 2007.
IEEE Computer Society.

[152] G. Meszaros and K. Brown. A Pattern Language for Workflow Systems. In Proceedings of
the 4th Pattern Languages of Programming Conference (PLoP’97), Washington University
Technical Report 97-34 (WUCS-97-34), 1997.

[153] G. Meszaros and J. Doble. Metapatterns: A pattern language for pattern writing. In 3rd
Pattern Languages of Programming conference, Monticello, Illinois, 1996.

[154] Microsoft. Patterns and practices. http://msdn.microsoft.com/en-us/practices/

default.aspx.

[155] N. Mulyar. Empirical Evaluation of Colored Petri Nets Patterns. BETA Working Paper
Series, WP 258, Eindhoven University of Technology, Eindhoven, The Netherlands, 2008.

[156] N. Mulyar, W.M.P. van der Aalst, A.H.M. ter Hofstede, and N. Russell. Towards a WPSL:
A Critical Analysis of the 20 Classical Workflow Control-flow Patterns. Technical Report
BPM Center Report BPM-06-18, BPMcenter.org, 2006.

[157] N. Mulyar, L. Aldred, W.M.P. van der Aalst, and N. Russell. Service Interaction Patterns:
A Configurable Framework. BPM Center Report BPM-07-07, BPMcenter.org, 2007.

[158] N. Mulyar. CPN Patterns Home Page. http://is.tm.tue.nl/staff/nmulyar/research.

html.

[159] M. Naedele and J. Janneck. Design Patterns in Petri Net System Modeling. In Proceedings of
4th International Conference on Engineering of Complex Computer Systems (ICECCS’98),
pages 47–54, Monterey, CA, USA, 1998. IEEE Computer Society.

[160] J. Noll. Flexible Process Enactment Using Low-Fidelity Models. In Proceedings of the
International Conference on Software Engineering and Applications (SEA03), Marina Del
Rey, CA, USA, 2003.

[161] A. Norta and P. Greffen. A Pattern Repository for Establishing Inter-Organizational Busi-
ness Processes. Technical Report BETA Working Paper Series, WP 163, Eindhoven Univer-
sity of Technology, Eindhoven, 2006.

447

[162] N.F. Noy, R. Fergerson, and M. Musen. The Knowledge Model of Protégé-2000: Combining
Interoperability and Flexibility. In R. Dieng and O. Corby, editors, Proceedings of the 12th
European Workshop on Knowledge Acquisition, Modeling and Management (EKAW ’00),
volume 1937 of Lecture Notes in Computer Science, pages 17–32, Juan-les-Pins, France,
2000. Springer-Verlag.

[163] OASIS. UDDI Version 3.0. Available via http://www.uddi.org, 2000.

[164] OASIS. Web Services Business Process Execution Language, Version 2.0. Available via
http://www.oasis-open.org, 2007.

[165] OMG. Business Process Modeling Notation (BPMN), Version 1.1. BPMI.org, 2004.

[166] Oracle. BPEL Process Manager Developers Guide 10g Release 2 (10.1.2). http://download.
oracle.com/otndocs/products/bpel/bpeldev.pdf, 2005.

[167] C. Peltz. Web Services Orchestration: a Review of Emerging Technologies, Tools and Stan-
dards. Hewlett Packard, Co., 2003.

[168] M. Pesic. Constraint-Based Workflow Management Systems. PhD thesis, Technical Univer-
sity of Eindhoven, 2008.

[169] M. Pesic and W.M.P. van der Aalst. Modeling Work Distribution Mechanisms using Colored
Petri Nets. BETA Working Paper Series, Eindhoven University of Technology, Eindhoven,
2005.

[170] M. Pesic and W.M.P. van der Aalst. A Declarative Approach for Flexible Business Processes
Management. In J. Eder and S. Dustdar, editor, Business Process Management Workshops,
volume 4103 of Lecture Notes in Computer Science, pages 169–180, Vienna, Austria, 2006.
Springer-Verlag.

[171] M. Pesic, H. Schonenberg, and W.M.P. van der Aalst. DECLARE: Full Support for Loosely-
Structured Processes. In Proceedings of the 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC’07), page 287, Washington, DC, USA, 2007. IEEE
Computer Society.

[172] R.G. Pettit and H. Gomaa. Modeling Behavioral Patterns of Concurrent Software Archi-
tectures Using Petri Nets. In Proceedings of the Fourth Working IEEE/IFIP Conference
on Software Architecture (WICSA’04), pages 57–66, Washington, DC, USA, 2004. IEEE
Computer Society.

[173] S. Philippi and H.J. Hill. Communication support for systems engineering - process modelling
and animation with APRIL. Journal of Systems and Software, 80(8):1305–1316, 2007.

[174] PM. Process Mining Home Page. http://www.processmining.org.

[175] S.K. Prasad and J. Balasooriya. Fundamental Capabilities of Web Coordination Bonds:
Modeling Petri Nets and Expressing Workflow and Communication Patterns over Web Ser-
vices. In Proceedings of the Proceedings of the 38th Annual Hawaii International Conference
on System Sciences (HICSS’05) - Track 7, pages 165–167, Big Island, HI, USA, 2005. IEEE
Computer Society.

[176] W. Pree. Framework patterns. SIGS Books, 1996.

[177] F. Puhlmann and M. Weske. Using the pi-calculus for Formalizing Workflow Patterns.
In W.M.P. van der Aalst, B. Benatallah, F. Casati, and volume = F. Curbera, editors,
Proceedings of the 3rd International Conference Business Process Management (BPM’05),
pages 153–168, 2005.

[178] G. Regev, I. Bider, and A. Wegmann. Defining Business Process Flexibility with the Help
of Invariants. Software Process Improvement and Practice, 12:65–79, 2007.

448 Bibliography

[179] G. Regev, P. Soffer, and R. Schmidt. Taxonomy of Flexibility in Business Processes. In
G. Regev, P. Soffer, and R. Schmidt, editors, Proceedings of the 7th Workshop on Business
Process Modelling, Development and Support (BPMDS’06), volume 236 of CEUR Workshop
Proceedings, Luxemburg, 2006. CEUR-WS.org.

[180] G. Regev and A. Wegmann. A Regulation-Based View on Business Process and Supporting
System Flexibility. In O. Pastor and J. Falcão e Cunha, editor, Workshop on Business
Process Modeling, Design and Support (BPMDS ’05) Proceedings of CAiSE ’05 Workshops,
volume 3520 of Lecture Notes in Computer Science, pages 35–42. Springer-Verlag, 2005.

[181] G. Regev and A. Wegmann. Business Process Flexibility: Weick’s Organizational Theory to
the Rescue. In Proceedings of the 7th Workshop on Business Process Modelling, Development
and Support(BPMDS ’06), volume 236 of CEUR Workshop Proceedings. CEUR-WS.org,
2006.

[182] M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of Workflow without
Loosing Control. Journal of Intelligent Information Systems, 10(2):93–129, 1998.

[183] H. Reijers, J. Rigter, and W.M.P. van der Aalst. The Case Handling Case. International
Journal of Cooperative Information Systems, 12(3):365–391, 2003.

[184] H.A. Reijers. Workflow Flexibility: The Forlorn Promise. Enabling Technologies, IEEE
International Workshops on, 0:271–272, 2006.

[185] W. Reisig. Elements Of Distributed Algorithms: Modeling and Analysis with Petri Nets.
Springer-Verlag, 1998.

[186] A. Reuter and F. Schwenkreis. ConTracts – A Low-Level Mechanism for Building General-
Purpose Workflow Management-Systems. Data Engineering Bulletin, 18(1):4–10, 1995.

[187] S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria For Dynamic Changes in
Workflow Systems: A Survey. Data and Knowledge Engineering, 50(1):9–34, 2004.

[188] L. Rising. Design Patterns in Communication Software. Cambridge University Press, 2000.

[189] P. Rittgen. From Process Model to Electronic Business Process. In D. Avison, E. Christi-
aanse, and C. Ciborra, editors, Proceedings of the 7th European Conference on Information
Systems (ECIS). Copenhagen Business School, Denmark, 1999.

[190] N. Russell, W.M.P van der Aalst, and A.H.M. ter Hofstede. Workflow Exception Patterns.
In E. Dubois and K. Pohl, editors, Proceedings of the 18th International Conference on
Advanced Information Systems Engineering (CAiSE’06), volume 4001 of Lecture Notes in
Computer Science, pages 288–302, Luxembourg, Luxembourg, 2006. Springer-Verlag.

[191] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow Data
Patterns: Identification, Representation and Tool Support. In publisher = L.M.L. Delcambre
and C. Kop and H.C. Mayr and J. Mylopoulos and O. Pastor, editor, Proceedings of the
24th International Conference on Conceptual Modeling (ER’05), volume 3716/2005, pages
353–368, 2005.

[192] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow Resource
Patterns: Identification, Representation and Tool Support. In O. Pastor and J. Falcão e
Cunha, editor, Proceedings of the 17th Conference on Advanced Information Systems En-
gineering (CAiSE’05), volume 3520 of Lecture Notes in Computer Science, pages 216–232,
Porto, Portugal, 2005. Springer-Verlag.

[193] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar. Workflow Control-
Flow Patterns: A Revised View. Technical Report BPM Center Report BPM-06-22, BPM-
center.org, 2006.

[194] N.C. Russell. Foundations of Process-Aware Information Systems. PhD Thesis, Queens-
land University of Technology, 2007. Available at http://www.yawl-system.com/theory/

publications.php.

449

[195] H. Saastamoinen and G.M. White. On Handling Exceptions. In N. Comstock and C. Ellis, ed-
itors, Proceedings of the ACM Conference on Organizational Computing Systems (COCS’95),
pages 302–310, Milpitas, CA, USA, 1995. ACM Press.

[196] S.W. Sadiq and M.E. Orlowska. Pockets of Flexibility in Workflow Specification. In series =
H.S. Kunii and S. Jajodia and A. Solvberg, editor, Proceedings of the 20th International
Conference on Conceptual Modeling (ER’01), pages 513–526, London, UK, 2001. Springer-
Verlag.

[197] B.T.R. Savarimuthu, M. Purvis, and M. Fleurke. Monitoring and controlling of a multi-
agent based workflow system. In Proceedings of the second workshop on Australasian in-
formation security, Data Mining and Web Intelligence, and Software Internationalisation
(ACSW Frontiers ’04), pages 127–132, Darlinghurst, Australia, 2004. Australian Computer
Society, Inc.

[198] V. Savikko. Design Patterns in Python. In The Sixth International Python Conference, San
Jose, CA, USA, 1997.

[199] A.-W. Scheer. ARIS - Business Process Modelling. Springer-Verlag, 2000.

[200] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W.M.P. van der Aalst. Towards a
Taxonomy of Process Flexibility. In Z. Bellahsene and C. Woo and E. Hunt and X. Franch
and R. Coletta, editor, Proceedings of the Forum at the CAiSE’08 Conference, volume 344
of CEUR Workshop Proceedings, pages 81–84, Montpellier, France, 2008. CEUR-WS.org.

[201] A. Seyfang, R. Kosara, and S. Miksch. Asbrus Reference Manual, Version 7.3. Technical Re-
port Asgaard-TR-2002-1, Vienna University of Technology, Institute of Software Technology,
Vienna, 2002.

[202] A. Sheth. From Contemporary Workflow Process Automation to Adaptive and Dynamic
Work Activity Coordination and Collaboration. In Proceedings of the 8th International
Workshop on Database and Expert Systems Applications (DEXA’97), page 24, Washington,
DC, USA, 1997. IEEE Computer Society.

[203] R.A. Snowdon, B.C. Warboys, R.M. Greenwood, C.P. Holland, P.J. Kawalek, and D.R.
Shaw. On the Architecture and Form of Flexible Process Support. Software Process Im-
provement and Practice, 12:21–34, 2007.

[204] P. Soffer. On the Notion of Flexibility in Business Processes. In O. Pastor and J. Fal-
cao e Cunha, editors, Workshop on Business Process Modeling, Design and Support (BP-
MDS’05), Proceedings of CAiSE05 Workshops, volume 12 of Lecture Notes in Computer
Science, pages 35–42, Porto, Portugal, 2005. Springer-Verlag.

[205] A.C. Soon and A. Vijayalakshmi. Ontology-based Workflow Change Management for Flexi-
ble eGovernment Service Delivery. In Proceedings of the Fourth National Conference on Dig-
ital Government, pages 131–134, Boston, MA, 2001. Digital Government Society of North
America.

[206] R. van Stiphout, T.D. Meijler, A. Aerts, D. Hammer, and R.Le. Comte. TREX: Workflow
Transaction by Means of Exceptions. In H.-J. Schek, F. Saltor, I. Ramos, and G. Alonso,
editors, Proceedings of the Sixth International Conference on Extending Database Technology
(EDBT’98), pages 21–26, Valencia, Spain, 1998.

[207] D.M. Strong and S.M. Miller. Exceptions and Exception Handling in Computerized Infor-
mation Processes. ACM Transactions on Information Systems, 13(2):206–233, 1995.

[208] A. Sutcliffe. Patterns for Knowledge and Software Reuse. Lawrence Erlbaum Associates
Inc., 2002.

[209] S. Thatte. XLANG Web Services for Business Process Design. Available via http://www.

ebpml.org/xlang.htm, 2001.

450 Bibliography

[210] S.W. Tu. The EON Guideline Model. Available via http://smi.stanford.edu/projects/

eon, 2006.

[211] S.W. Tu and M.A. Musen. A Flexible Approach to Guideline Modeling. In Proceesdings of
the AMIA Annual Symposium, pages 420–424. Hanley & Belfus, 1999.

[212] S.W. Tu and M.A. Musen. From Guideline Modeling to Guideline Execution: Defining
Guideline-Based Decision-Support Services. In Proceedings of the AMIA Annual Symposium,
pages 863–867. Hanley & Belfus, 2000.

[213] F.B. Vernadat. Enterprise Modeling and Integration. Chapman and Hall, 1996.

[214] J.C. Vidal, M. Lama, and A. Bugarin. A High-Level Petri Net Ontology Compatible with
PNML. Petri Net Newsletter, 71:14, 2006.

[215] P. Votruba, S. Miksch, and R. Kosara. Facilitating Knowledge Maintenance of Clinical
Guidelines and Protocols. Studies in Health Technology and Informatics, 107:57–61, 2004.

[216] W3C. Web Services Addressing. Available via http://www.w3.org/Submission/

ws-addressing, 2004.

[217] W3C. Web Services Choreography Description Language, Version 1.0. Available via http:

//www.w3.org/TR/2004/WD-ws-cdl-10-20041217, 2007.

[218] J. Wainer and F. de Lima Bezerra. Constraint-Based Flexible Workflows. In J. Favela and
D. Decouchant, editor, Groupware: Design, Implementation, and Use, 9th International
Workshop, CRIWG 2003, volume 2806 of Lecture Notes in Computer Science, pages 151–
158, Autrans, France, 2003. Springer-Verlag.

[219] B. Weber, M. Reichert, and S. Rinderle-Ma. Change Patterns and Change Support Fea-
tures - Enhancing Flexibility in Process-Aware Information Systems. Data and Knowledge
Engineering, 66(3):438–466, 2008.

[220] B. Weber, S. Rinderle, and M. Reichert. Change Patterns and Change Support Features in
Process-Aware Information Systems. In J. Krogstie, A.L. Opdahl, and G. Sindre, editors,
Advanced Information Systems Engineering, 19th International Conference (CAiSE’07), vol-
ume 4495 of Lecture Notes in Computer Science, pages 574–588, Trondheim, Norway, 2007.
Springer-Verlag.

[221] B. Weber, W. Wild, and R. Breu. CBRFlow: Enabling Adaptive Workflow Management
Through Conversational Case-Based Reasoning. In P. Funk and P.A. González-Calero,
editors, ECCBR: Advances in Case-Based Reasoning, 7th European Conference, volume
3155 of Lecture Notes in Computer Science, pages 434–448, Madrid, Spain, 2004. Springer-
Verlag.

[222] M. Weske. Formal Foundation and Conceptual Design of Dynamic Adaptations in a Work-
flow Management System. In R. Sprague, editor, Proceedings of the Thirty-Fourth Annual
Hawaii International Conference on System Science (HICSS-34), Los Alamitos, CA, USA,
2001. IEEE Computer Society Press.

[223] M. Weske. Business Process Management: Concepts, Languages, Architectures. Springer-
Verlag, 2007.

[224] D. Wodtke and G. Weikum. A Formal Foundation for Distributed Workflow Execution Based
on State Charts. In F.N. Afrati and P.G. Kolaitis, editors, Database Theory - ICDT’97, 6th
International Conference, Delphi, volume 1186 of Lecture Notes in Computer Science, pages
230–246, London, UK, 1997. Springer-Verlag.

[225] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of Web
Services Composition Languages: The Case of BPEL4WS. In I.Y. Song, S.W. Liddle, T.W.
Ling, and P. Scheuermann, editors, Proceedings of the 22nd International Conference on
Conceptual Modeling (ER’2003), volume 2813 of Lecture Notes in Computer Science, pages
200–215, Chicago, IL, USA, 2003. Springer-Verlag.

451

[226] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and N. Russell. On
the Suitability of BPMN for Business Process Modelling. In S. Dustdar and J.L. Fiadeiro
and A.P. Sheth, editor, Business Process Management, volume 4102 of Lecture Notes in
Computer Science, pages 161–176, Vienna, Austria, 2006. Springer-Verlag.

[227] P. Wohed, E. Perjons, M. Dumas, and A.H.M. ter Hofstede. Pattern Based Analysis of EAI
Languages - The Case of the Business Modeling Language. In O. Camp and M. Piattini,
editors, Proceedings of the 5th International Conference on Enterprise Information Systems
(ICEIS’2003), volume 3, pages 174–184, Angers, France, 2003. Escola Superior de Tecnologia
do Instituto Politecnico de Setubal.

[228] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and N. Russell. Pattern-
Based Analysis of UML Activity Diagrams. In L. Delcambre, C. Kop, H.C. Mayr, J. My-
lopoulos, and O. Pastor, editors, Proceedings of the 25th International Conference on Con-
ceptual Modeling (ER’05), volume 3716 of Lecture Notes in Computer Science, pages 63–78,
Klagenfurt, Austria, 2005. Springer-Verlag.

[229] P.T. Wood. On the Equivalence of XML Patterns. In Proceedings of the First International
Conference on Computational Logic (CL’00), volume 1861 of Lecture Notes in Computer
Science, pages 1152–1166, London, UK, 2000. Springer-Verlag.

[230] WP. Workflow Patterns Home Page. http://www.workflowpatterns.com.

[231] M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Achieving a
General, Formal and Decidable Approach to the OR-join in Workflow using Reset nets.
QUT Technical report, FIT-TR-2004-02, Queensland University of Technology, Brisbane,
Australia, 2004.

[232] M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Achieving a
General, Formal and Decidable Approach to the OR-join in Workflow using Reset nets. In
G. Ciardo and P. Darondeau, editors, Proceedings of the 26th International Conference on
Application and Theory of Petri nets and Other Models of Concurrency (Petri Nets’05),
volume 3536 of Lecture Notes in Computer Science, pages 423–443, Miami, USA, 2005.
Springer-Verlag.

[233] K. Xu, L. Liu, and C. Wu. A Three-layered Method for Business Processes Discovery and Its
Application in Manufacturing industry. Computers & Industrial Engineering, 58(3):265–278,
2007.

[234] J.A. Zachman. A Framework for Information Systems Architecture. IBM Systems Journal,
26(3):276–292, 1987.

[235] J.M. Zaha, A.P. Barros, M. Dumas, and A.H.M. ter Hofstede. Let’s Dance: A Language for
Service Behavior Modeling. In On the Move to Meaningful Internet Systems 2006 (Proceed-
ings of the OTM Confederated International Conferences), Montpellier, France.

[236] J.M. Zaha, M. Dumas, A.H.M. ter Hofstede, A.P. Barros, and G. Decker. Service Interaction
Modeling: Bridging Global and Local Views. In Proceedings of the 10th IEEE International
Enterprise Distributed Object Computing Conference (EDOC’06), pages 45–55, Hong Kong,
China, 2006. IEEE Computer Society.

[237] Z. Zhao, D. Van Albada, and P. Sloot. Agent-Based Flow Control for HLA Components.
Simulation, 81(7):487–501, 2005.

[238] W. Zimmer. Relationships Between Design Patterns. In J.O. Coplien and D.C. Schmidt,
editor, Pattern Languages of Program Design, pages 345–364, New York, NY, USA, 1995.
ACM Press/Addison-Wesley Publishing Co.

[239] M. zur Muehlen. Workflow-based Process Controlling - Or: What You Can Measure You
Can Control. In L. Fischer, editor, Workflow Handbook 2001, pages 61–77. Future Strategies,
2001.

452 Bibliography

Summary

Patterns for Process-Aware Information Systems:
An Approach Based on Colored Petri Nets

Organizations are continuously seeking ways to improve the efficiency and effectiveness of their
operations. To assist in meeting these objectives, it is increasingly recognized that they require a
range of techniques and technologies for managing their organizational business processes. With
this need in mind, the Business Process Management (BPM) discipline has been established with
the aim of developing approaches to the operationalization of business processes based on software
technology. Systems which manage business processes in conjunction with a process model (either
explicitly or implicitly) are typically termed Process-Aware Information Systems (or PAISs). The
increasing demands of the modern business environment mean that PAISs need to be capable
of supporting dynamic organizations in deploying flexible business processes that are subject to
ongoing change and evolution and involve the integration of external parties, organizations and
software applications.

Numerous PAIS offerings have been developed over the past decade resulting in an increasingly
diverse range of approaches to modeling and enacting business process concepts. This diversity of
techniques has triggered a number of initiatives aimed at establishing common standards in the
BPM field. However none of the resultant standards proposals has met with widespread adoptance.
In an effort to develop a rigorous conceptual foundation for the domain, the Workflow Patterns
Initiative adopted a pattern-based approach to identifying and describing the fundamental require-
ments for PAISs. The work presented in this thesis contributes to this initiative by refining the
conceptual foundation for PAIS, specifically concentrating on the control-flow, service-interaction,
and process flexibility perspectives. This thesis addresses these perspectives as follows.

The requirements for PAISs from the control-flow perspective are described by (1) a com-
prehensive set of 43 workflow control-flow patterns, which identify recurring generic constructs
relevant to process structure and enactment, and (2) the Core Process Constructs Specification
Language that allows different approaches to the operationalization of process constructs to be
explicitly described in a language-independent way.

The requirements in service interaction are described in the form of a configurable framework,
consisting of five pattern families, in total combining 1602 Service Interaction pattern variants. A
graphical notation has been developed that encompasses each of the pattern families. It visualizes
configuration parameters and their settings, thus providing a means to illustrate and distinguish
distinct pattern variants.

The requirements for process flexibility are described by means of 34 process flexibility patterns
based on five distinct flexibility types. These flexibility types distinguish the moment and the
manner in which both foreseen and unforeseen behavior can be introduced into a process.

In order to avoid potential ambiguities in regard to pattern interpretation, the semantics of
all patterns are formally described in the terms of Colored Petri Nets (CPNs). This modeling

454 Summary

technique is widely used throughout the thesis. In doing so, a set of commonly-used and recurrent
constructs have been identified during the modeling of CPN diagrams. These constructs form the
basis for a comprehensive CPN pattern language.

Samenvatting

Patterns for Process-Aware Information Systems:
An Approach Based on Colored Petri Nets

Bedrijven zijn continue op zoek naar manieren om de efficiëntie en de effectiviteit van hun
organisatiestructuur te verbeteren. Om deze doelen te halen, is het gebruikelijk om verschillende
technieken en technologieën voor beheersing van bedrijfsprocessen toe te passen. Business Proces
Management (BPM) is een discipline die verschillende aanpakken voor ondersteuning van bedri-
jfsprocessen met behulp van informatiesystemen biedt. De systemen die de bedrijfsprocessen met
behulp van een procesmodel ondersteunen worden ook wel Procesgerichte Informatiesystemen (of
PAISs) genoemd. Door de toenemende vraag naar de beheersing van bedrijfsprocessen met be-
hulp van IT worden in de moderne zakelijke omgeving veel eisen gesteld aan de PAISs. Omdat
de bedrijfsprocessen vaak door de veranderingen in een operationele omgeving worden bëınvloed,
wordt er van PAISs verwacht dat ze in staat zijn om dynamische organisaties te ondersteunen met
de middelen die het mogelijk maken om de bedrijfsprocessen te wijzigen en verbeteren.

In het afgelopen decennium zijn er veel informatiesystemen beschikbaar gekomen die bedrijf-
sprocessen ondersteunen. Deze systemen gebruiken verschillende technieken voor de specificatie en
de uitvoering van bedrijfsprocessen. Daarnaast interpreteren ze de basisconcepten op verschillende
manieren, waardoor er vaak misverstanden ontstaan. Dit brede scala van technieken bracht ver-
schillende initiatieven voor de standaardisatie van het BPM gebied teweeg. Helaas is er tot heden
geen enkel standaardvoorstel gedaan dat wereldwijd geaccepteerd is. Om een sterke conceptuele
grondslag in dit gebied te bouwen, heeft het Workflow Patronen Initiatief een patroongerichte
aanpak geadopteerd als een manier om de fundamentele eisen voor PAISs te identificeren en te
beschrijven. Het werk dat in dit proefschrift gepresenteerd wordt, voegt aan dit initiatief een aan-
tal aspecten toe. In dit proefschrift zijn de volgende belangrijke perspectieven van PAISs verfijnd:
besturing van de werkstroom, interactie tussen services, en procesflexibiliteit.

De eisen voor PAISs vanuit het besturingsperspectief worden beschreven door: (1) een uitge-
breide set van 43 werkstroompatronen. Deze patronen identificeren generieke vaak terugkomende
constructies die gerelateerd zijn aan de processtructuur; (2) de Core Process Constructs Specifica-
tion Language die in staat is om de verschillende aanpakken voor uitvoering van procesconstructies
op een taalonafhankelijke manier te beschrijven.

De eisen gerelateerd aan de service interactie zijn in de vorm van een raamwerk beschreven.
Het raamwerk bestaat uit vijf patroonfamilies. Deze patroonfamilies kunnen vervolgens worden
geconfigureerd om 1602 verschillende patroonvarianten te verkrijgen. Om de patronenvarianten te
onderscheiden wordt er een grafische notatie toegepast. Met behulp van deze notatie kunnen de
verschillende configuratieparameters duidelijk gevisualiseerd worden.

De eisen voor PAISs die aan procesflexibiliteit opgelegd zijn, worden met behulp van proces
flexibiliteit patronen beschreven. Elk van deze patronen behoort tot een van de vijf groepen, die
door het moment en de wijze van voorspeld gedrag onderscheiden kunnen worden.

456 Samenvatting

Om de ambigüiteit die tijdens de interpretatie van patronen kan ontstaan te vermijden, wordt
de semantiek van alle patronen op een formele manier beschreven met behulp van Gekleurde
Petri-netten. Deze modelleringtechniek wordt regelmatig in dit proefschrift toegepast en vormt
een grondslag voor de beschrijving van patronen. Bovendien hebben we patronen in Gekleurde
Petri-netten zelf gedefineerd. Deze patronen beschrijven vaak terugkomende constructies die door
ontwerpers tijdens het modelleren gebruikt kunnen worden.

Acknowledgements

The work presented in this thesis has been influenced by many people. First of all, I would like to
thank prof.dr.ir. Wil van der Aalst, my first supervisor, for his outstanding guidance, expertise and
knowledge he has kindly been sharing with me during the whole project. Secondly, I would like
to express my gratitude to dr. Nick Russell, who has become my daily supervisor during the last
year of the research project. Furthermore, I would like to thank each member of the Information
Systems capacity group as they made it a very pleasant environment to work. Kind memories go
back to the colleagues of the Queensland University of Technology, Australia, who welcomed me
during the one-month stay at their group. After Wil van der Aalst has moved to the Computer
Science department, his new group became almost integrated with the group of the Technology
Management department. I would like to thank the colleagues of this group for their contribution
in joint projects and cheerful attitude during social events.

My special thanks go to Harold Weffers, the project-manager of the post-master programm
OOTI, who helped me to estimate the job market needs, resulted in the correct career choice.
Business Process Management has become one of the subjects I am passionate about.

In addition, I would like to thank all members of the defense committee, i.e. prof.dr. Arthur
ter Hofstede, prof.dr. Kees van Hee, prof.dr. Marlon Dumas, prof.dr. Jan Dietz and dr. Søren
Christensen, who have been kind to accept the invitation to read and assess my doctoral thesis
and to participate in the defence ceremony.

During my research, I have closely cooperated with dr. Mor Peleg and prof.dr. John Fox on a
subject of computer-interpretable guidelines, prof.dr. Wolfgang Reisig on a subject of distributed
algorithms, and prof.dr. Kurt Jensen on a subject of Colored Petri Nets, to whom I grateful. The
work on service interaction patterns has been done with involvement of Lachlan Aldred, Marlon
Dumas, Eric Verbeek, David Shaffer, Christian Stahl and Jan Martijn van der Werf. I thank them
all for fruitful discussions. In the research on process flexibility, Ronny Mans, Helen Schonenberg,
Maja Pesic and Michael Adams were involved. This cooperation has shown that team efforts can
result in novel and promising ideas. Furthermore, I would like to thank Florian Gottschalk, Anke
Hutzschenreuter, Minseok Song and Boudewijn van Dongen for helping me out with Latex-hints,
and Olivia Oanea for providing a template for the cover design. Next, I would like to thank Maja
Pesic, Ana Karla Alves de Medeiros, Mariska Netjes, Christian Günter, Irene Vanderfeesten, and
Monique Jansen-Vullers for providing their CPN models for evaluation. Additionally, I would like
to thank Dutch-speaking friends and colleagues who helped me to check the translation of the
thesis summary.

Last but not least, I thank to my current and former friends and family members spread all over
the world (Ukraine, Russia, Netherlands and USA) for their continuous support, understanding
and believe in me. This book is the reward for your love and care.

Nataliya Mulyar
Eindhoven, March 2009

458 Acknowledgements

Curriculum Vitae

Nataliya Alexandrovna Mulyar was born on November 11, 1978 in Bratsk, Russian Federation.
After moving to Ukraine, she studied at Vinnitsa secondary school N33. Having graduated from
the high-school with honors, Nataliya chose Vinnitsa State Technical University as the next step in
her education path. In 1995, Nataliya enrolled in the education at the Automatics and Computer
Control Systems faculty. There she obtained the Bachelor’s degree (1999), soon followed by the
Master’s degree (2000). Her thesis was dedicated to the research and development of means for
information protection. This project Nataliya carried out under the supervision of prof. I.Ya.
Haimzon. Nataliya continued the post-graduate study in this direction under the supervision of
prof. A.S. Vasyura, however it had to be discontinued due to moving to the Netherlands in July
2001.

Soon after arriving to the Netherlands, Nataliya decided to deepen the knowledge of software
technology, and therefore she enrolled in the 2-year postmaster programm Ontwerpers Opleiding
Technische Informatica (OOTI) at Stan Ackermans Institute (Technical University of Eindhoven).
There she has gained practical experience in design, development, and testing of software in various
software development projects. After following a set of courses and practical assignments, Nataliya
did a traineeship at the Embedded Systems Institute. During her final project, she investigated
whether systems used by Oce for modeling of software and hardware components can be linked
together in order to obtain a single simulation environment.

In September 2004, Nataliya switched her focus from embedded systems to Business Process
Management. She became a PhD candidate in the department of Technology Management of
Technical University of Eindhoven, under the supervision of prof.dr.ir. Wil van der Aalst. The
focus of her doctoral thesis was on improving standards in the BPM domain. In particular,
she analyzed requirements for Process-Aware Information Systems from the control-flow, service
interaction and process flexibility perspectives, and described them in the form of patterns.

After finishing her research at Eindhoven University of Technology, Nataliya got a position of
Integral Process Advisor at Rijkswaterstaat, the implementation organization of the Ministry of
Transport, Public Works and Water Management.

	Contents
	1. Introduction
	2. Patterns
	3. Colored Petri Nets Patterns
	4. Workflow Control-FlowPatterns
	5. Service Interaction Patterns
	6. Process Flexibility Patterns
	7. Epilogue
	Appendices
	Summary
	Samenvatting

