Patterns, Frameworks, & Middleware:
Their Synergistic Relationships

Frontiers of Software Practice 2003

Douglas C. Schmidt
f.schmidt@uanderhilt.edu

.

VANDERBILT UNIVERSITY

Professor of EEGS
Vanderhilt University
Nashuille, Tennessee

DG

\ NN
M \\\\\\ \\\&\

IR
AR \\\\\\\ N

AR

INSTITUTE FOR SOFTWARE
INTEGRATED SYSTEMS

) Technology Trends (1/3)

(SECURITY, EVENT NOTIFICATION, TRANSACTIONS, PERSISTENCE, LOAD BALANCING, . . .y m
AULT TOLERANCE, AV STREAMING, DYNAMIC RESOURCE MANAGEMENT, scHEDULING, || IS being commoditized
*i.e., hardware & software

NAMING, TRADING, LOGGING, ETC...)
O— Home @ are getting cheaper, faster,

CLIENT _operation() , | & (generally) better at a
COMPONENT @ fairly predictable rate
EXECUTOR

{ MIDDLEWARE SERVICES J Information technology
F 1

These advances stem

o—1t
- (o7 F
®5TUBS\ f“"-- | ¢mm @@ largely from standard

hardware & software APls

MIDDLEWARE |
@ @ [nrrrsnmcs osect) & protocols, e.g.:
ADAPTER]

C « Intel x86 & Power PC

MESSAGE-PASSING K] r] | chipsets
L L‘i‘) +TCP/IP, GSM, Link16

0S KERNEL GE T N - POSIX, Windows, & VMs

PROTOCOLS PROTOCOLS . M| d dl eware &
component models
§ - * Quality of service (Qo0S)

Sk aspects

Growing acceptance of a network-centric component paradigm
*i.e., distributed applications with a range of QoS needs are constructed by
integrating components & frameworks via various communication mechanisms

o= o

Process

Avionics Mission -)
=1 Automation

Hot Rolling Mills
g e B

Computing = : g
" . ™ Quality i1
[F:m] [m\["“l Sl Control &4 —

REPLICATION
\3: PUSH (EVENTS) | SERVICE
T

|
2! SENSOR PROXIES DEMARSHAL DATA

& :tl‘.JLSS IT TO EVENT CHANNEL
et e

PHYSICIAN'S PATIENT
WORKSTATION RECORDS

. \
r l]
ol
o |

REMOTE EXPERTS

METROPOLITAN by
AREA T
. NETWORK

)
i
Modalities
e.g., MRI, CT, CR,
Ultrasound, etc.

e R
23 :)C - , 1
(=

Software
Defined
Radio

MODELING

Technology Trends (3/3)

Component middleware is
’ maturing & becoming pervasive
-
@ - Components encapsulate application
'_:> “business” logic
\%j «Components interact via ports
*Provided interfaces, e.g.,facets
O ® *Required connection points, e.q.,
- a receptacles
}L_J%-.:L_;\@\\ @ *Event sinks & sources
‘o oy Atributes
Container « Containers provide execution
: environment for components with
Container

common operating requirements

«Components/containers can also

| « Communicate via a middleware bus
Notification and

* Reuse common middleware services

Middleware Bus

Security Persistence

Replication

A/V Streaming Scheduling Load Balancing

The Evolution of Middleware

Applications

Domain-Specific
Services

J\

\(

Common
Middleware Services

AN

Distribution
Middleware

)

Middleware

Host Infrastructure]

Operating Systems
& Protocols

[

Hardware

|

There are multiple COTS
middleware layers &
research/business
opportunities

Historically, mission-critical apps were
built directly atop hardware & OS
* Tedious, error-prone, & costly over lifecycles

There are layers of middleware,
just like there are layers of
networking protocols

Standards-based COTS middleware
helps:
 Control end-to-end resources & QoS
*Leverage hardware & software
technology advances
*Evolve to new environments &
requirements
*Provide a wide array of reuseable, off-
the-shelf developer-oriented services

*Operating systems & protocols provide mechanisms to manage endsystem
resources, e.g.,

*CPU scheduling & dispatching

*Virtual memory management

*Secondary storage, persistence, & file systems

*Local & remove interprocess communication (IPC)
*OS examples

* UNIX/Linux, Windows, VxWorks, QNX, etc.
*Protocol examples

«TCP, UDP, IP, SCTP, RTP, etc.

INTERNETWORKING ARCH MIDDLEWARE ARCH
RTP | TFTP | | FTP | HTTP Middleware
Applications
DNS TELNET Middleware

UDP TCP > Services
“ Middleware

Fibre Channel Solaris VxWorks

Ethernet ATM || FDDI Win2K [| Linux || LynxOS

3 20" Century 215t Century

Host Infrastructure Middleware

*Host infrastructure middleware encapsulates & enhances [Domain-Specific J
native OS mechanisms to create reusable network Services

. | Common I
prog rammmg Components Middleware Services

- These components abstract away many tedious & error-prone Distribution
aspects of low-level OS APls Middleware

«Java Virtual Machine (JVM), Common Language Runtime
(CLR), ADAPTIVE Communication Environment (ACE)

) L) U & = FRAMEWORK e ACCEPTOR 0 OR S
' ! | é é g COMPONENTS
Asynchronous || > »>= ¥
Event Handling || Asynchronous Ces |PROCESS/ w
Transfer of — LOG R SHARED
Physical Control FACADES _imwmvaae OR o o
Memory SYNCH] SPIPE i OCK_SAP i = T
Access Synchronization WRAPPERS [sAP 7] TLI SAP /| SAP [
. . . OS ADAPTATION LAYER
C rocessesf| sTREAM || sockeTs/|| NAMED || SELECT/ [{DYNAMIC || MEMORY || sysTEM
CLITTTT Pls | threaps [pees 4 TLI | PiEs |10 comp /| LINKING [MAPPING [V IPC
CLITTT
[(TITTTI PRO READ 0 ATIO RTUA OR
Memory
Management Scheduling GENERAL POSIX, Win32, AND RTOS OPERATING SYSTEM SERVICES
www.rtj.org www.cs.wustl.edu/~schmidt/ACE.html

7

Distribution Middleware

Distribution middleware defines higher-level distributed [Domain-Specific J
programming models whose reusable APls & components B
automate & extend native OS capabilities Middle O s

Examples Distribution

«OMG CORBA, Sun’s Remote Method Invocation (RMI), Hiddleware

Microsoft’s Distributed Component Object Model (DCOM) | " Middionara

Interface IDL Implementation
Repository Compiler Repository

*Distribution middleware
avoids hard-coding client

. i Object H H
Client on; o—mags (Sorvant) & server application
REF out args +

dependencies on object
location, language, OS,
protocols, & hardware

return

DIl IDL ORB
STUBS INTERFACE [Object Adapter

GIOP/IIOP/ESIOPS

Common Middleware Services

-Common middleware services augment distribution Domain-Specific
middleware by defining higher-level domain-independent S
services that focus on programming “business logic”

Examples Distribution

«CORBA Component Model & Object Services, Sun’s J2EE, Middleware
Microsoft's .NET [Host Infrastructure]

NOTIFICATION AV STREAMING FT-CORBA & DYNAMIC/STATIC
SERVICE] Eom BALANCING] [SCHEDULING] . .
«Common middleware services

o support many recurring

i ares e— distributed system capabilities,
CLIENT operation() °7|| =xecutor _&L e.dg.,
_____________ (SERVANT) |Backs

bkt e e - Transactional behavior
/ CONTAINER | oo YANT | * Authentication & authorization,
ID

IO % « Database connection pooling &
Im:;:ncs ADAPTER concurrency control

* Active replication

ORB CORE - Dynamic resource management
S

Examples

Domain-Specific Middleware

 Domain-specific middleware services are tailored to the
requirements of particular domains, such as telecom, e-
commerce, health care, process automation, or aerospace

4:
3: PUSH (EVENTS)

EVENT
CHANNEL 3 PUSH (EVENT

— A

& PASS IT TO EVENT

PULL (DATA)

REPLICATION
S) SE RVICE

2: SENSOR PROXIES DEMARSHAL DATA

CHANNEL

FLIR

Domain-Specific
Services

Common
Middleware Services
Distribution
Middleware

. C_om_mon software platform for [Host Infrastructure]
distributed electronic medical Middleware
systems

Siemens MED Syngo

*Used by all ~13 Siemens MED
business units worldwide

PHYSICIAN'S
WORKSTATION

PATIENT
RECORDS

REAL-TIME CORBA ORB

1: SENSORS GENERATE DATA y,

)/ Boeing Bold Stroke X
BOARD 1 « Common software

OO 10)
platform for Boeing
avionics mission

1553

METROPOLITAN
AREA
NETWORK

computing systems

Modalities

Ultrasound, etc.

e.g., MRI, CT, CR,

10

PHYSIOLOGICAL
MODELING

Why We are Succeeding

The past decade has yielded significant progress in QoS-enabled middleware,
stemming in large part from the following trends:

* Years of iteration,
refinement, & successful

use
Real-time CCM

Web Services O

CORBA Component

Model (CcCM) (D
Component O

Models (EJB)
Real-time

Year 2005

e The maturation

of middleware
standards

Applications

Domain-Specific
Services

Common
Services

—
Distribution
Middleware

Host Infrastructure
Middleware
Operating Systems
& Protocols
| Hardware |

*NET, J2EE, CCM

* Real-time CORBA

* Real-time Java

*« SOAP & Web Services

N\
AN

» The maturation of
component middleware
frameworks & patterns

CORBA
SERVICES

EAT-TIME
@ORTABLE OBJECT ADAPTER

_______ COMPONENT
o || (SERVANT)

| IDL SKELETON

CONTAINER

ﬂﬂﬂﬂﬂﬂ OBSERVER

EEEEEE

COMPONENT
CONFIGURATOR |
EXTENSION

INTERFACE INTERCEPTOR
- l—[: ADAPTER
E - ACTIVATOR

STRATEGY [

EVICTOR

E PROXY
SERIALIZER

= THREAD-
|L2BECT_J| sToRAGE

Y WRAPPER FACADES

el

—
rorwasoer SN <excror |
| RECEIVER _|= — /

WRAFFER FACADES

HALF-sYNC/
HALF-ASYNC

EEEEEE

*Present solutions

to common
software problems

arising within a
certain context

« Capture recurring structures &

dynamics among software

participants to facilitate reuse of

successful designs

AbstractService
service
Client [}
| |
Proxy Service
service 1 1 service
The Proxy Pattern

12

*Help resolve Flexibility

key software -Extensibility

design mmmm)p °Dependability

forces *Predictability
*Scalability
«Efficiency

* Generally codify expert
knowledge of design strategies,
constraints & “best practices”

1), Mna o o
Design Patterns ==
Elements of Reusable : .
Object-Oriented Software

Erich Gammia
Richard Helm

o] 1 : PATTERN-ORIENTED
- | i " ISOFTWARE
" |ARCHITECTURE J2EE PArTERNS

LCITTEER Patterns far Concarrent Best Practices and Design Strategies

and Hetwerk: e
w5 - ‘

core

T

@ lun

Overview of Pattern Languages

: . Oo— ACTIVE OBSERVER
Motivation |] == 5~ | Loseeer 1 j
. REMOTE COMPONENT
*Individual patterns & pattern orerarion | L evicTor | |CONFIGURATOR
catalogs are insufficient [) [roesenes onren | [TERCEPTOR |
PROXY —
« Software modeling methods |: rons (Cacrvaror |
LEADER/

THREAD- STRATEGY

& tools largely just illustrate
how — not why — systems
are designed

FOLLOWERS

ACCEPTOR-
MONITOR I speciFic || coNNECTOR
OBJECT STORAGE FORWARDER-

ASYNCHRONOUS RECEIVER

WRAPPER FACADES [COMPLETION TOKEN

BROKER

REACTOR

WRAPPER FACADES

HALF=-sYNC/
HALF-ASYNC

Benefits of Pattern Languages

 Define a vocabulary for talking about software
development problems

* Provide a process for the orderly resolution of
these problems

» Help to generate & reuse software architectures

13

‘\\

o

"C[_{_}'_'?
. N
i A\
s al
= F-éﬁ &
7 ~/
b/ s

Taxonomy of Patterns & Idioms

Type Description Examples
Idioms Restricted to a particular language, Scoped locking
system, or tool
Design Capture the static & dynamic roles & Active Object,
patterns relationships in solutions that occur Bridge, Proxy,
repeatedly Wrapper Facade,
& Visitor
Architectural | Express a fundamental structural Half-Sync/Half-
patterns organization for software systems that | Async, Layers,
provide a set of predefined subsystems, | Proactor,
specify their relationships, & include the | Publisher-
rules and guidelines for organizing the | Subscriber, &
relationships between them Reactor
Optimization Document rules for avoiding common Optimize for
principle design & implementation mistakes that | common case,
patterns degrade performance pass information
between layers

14

Example: Boeing Bold Stroke
Nav Sensors | | Vehicle | I Mission | Data Links K

L Weapons

/ /
Bold == f —f —

\ \ Mission C;)m;uting S“ervi‘ces‘] ‘
Stroke

. [Middleware Infrastructure] 7
Architecture * y/
7[Operating System J | 2 //
[Networking Interfaces) : //
[Hardware (CPU, Memory, 1/0) | 4
- Avionics mission computing product-line - Based on COTS hardware, networks,

architecture for Boeing military aircraft, e.g., operating systems, & middleware
F-18 E/F, 15E, Harrier, UCAV - Used as Open Experimention
- DRE system with 100+ developers, 3,000+ Platform (OEP) for DARPA IXO

software components, 3-5 million lines of PCES, MoBIES, SEC, MICA
C++ code programs

15

16

| | Mission Computing Services :l‘

[Middleware Infrastructure]
ay J: o) i %%stem J
/Networ 'ng/ln‘terfaces]

[Hardware (CPU, Memory, 1/0)]

COTS & Standards-based Middleware
/ / / Infrastructure, OS, Network, & Hardware
| u u u Platform
T B i * Real-time CORBA middleware services

* VxWorks operating system

*VME, 1553, & Link16
* PowerPC

Boeing Bold Stroke

Reusable Object-Oriented Application Domain-
specific Middleware Framework

 Configurable to variable infrastructure
configurations

» Supports systematic reuse of mission computing
functionality

y i/ A—

\/ — > : z =
\

| ,

| | Mission Computing Services :l‘

Middleware Infrastructure

Networking Interfaces

[)
/J; Operating System J
[)
E)

Hardware (CPU, Memory, 1/0O)

17

Example: Boeing Bold Stroke

Product Line Component Model

» Configurable for product-specific functionality
& execution environment

 Single component development policies

« Standard component packaging mechanisms

-

[[i ufl I I =
| | Mission Computing Services] ‘

Middleware Infrastructure]

(

/J; Operating System J
[Networking Interfaces]
f)

Hardware (CPU, Memory, 1/0O)

18

Example: Boeing Bold Stroke

Mission Computing Serwces \|

[Middleware Infrastructure
7 /[Operating System_g_:j
. [Networking Interfaces—] -
[Hardware V(CPU, Memow, IIO)_]
L] Operator
Component Integration Model p —A—

« Configurable for product-specific gy it
component assembly & deployment £ /f i I
environments S| oo | Avionics Interfaces

« Model-based component integration ‘% —

policies

Infrastructure Services

19

Legacy Avionics Architectures

Key System Chara_cteristic§ / o o \ 4: Mission
*Hard & soft real-time deadlines Avionics Mission functions
«~20-40 Hz Computing Functions perform

. T *Weapons targeting avionics
It;OW (Ijatency & jitter between systems (WTS) operations
oaras *Airframe & navigation 3: Sensor
*~100 usecs N ' :

. (aV) proxies
*Periodic & aperiodic processing «Sensor control (GPS, process data
« Complex dependencies IFF, FLIR) & pass to
« Continuous platform upgrades ‘?Heﬁgi-up display o

KAuto-pilot (AP) /
2: 1/0 via
interrupts

1: Sensors
generate
data

20

Key System Characteristics
*Hard & soft real-time deadlines
«~20-40 Hz
*Low latency & jitter between
boards
*~100 usecs
*Periodic & aperiodic processing
«Complex dependencies
« Continuous platform upgrades

Limitations with Legacy Avionics
Architectures

» Stovepiped

*Proprietary

*Expensive

*Vulnerable

* Tightly coupled

*Hard to schedule

* Brittle & non-adaptive

21

Legacy Avionics Architectures

/ Nav

AP

Air
Frame

WTS \

FLIR

IFF

4: Mission

functions
perform
avionics
operations

: Sensor

proxies
process data
& pass to
missions
functions

: 1/0 via

interrupts

: Sensors

generate
data

: Decoupling Avionics Components

Context Problems Solution
- |/O driven DRE - Tightly coupled - Apply the Publisher-
application components Subscriber architectural pattern
dependencies) _ ata from a single point o
Reali traint Expensive to evolve source to a collection of
eal-time constraints SOETEIRE
Structure Dynamics
Publisher — Event Channel [_ s : Publisher : Event Channel : Subscriber
attachPublisher .
oroduce detachPublisher consume <attach8ubscrlber
attachSubscriber produce > Event
i detachSubscriber O oushEvent - =vent
| Lpushevent] [event] |
i i i pushEvent |
creates | i . | receives g consum
\ i \Vi IA
Event Filter
filterEvent <detachSubscriber

22

Bold Stroke uses the Publisher-
Subscriber pattern to decouple
sensor processing from mission
computing operations
* Anonymous publisher & subscriber
relationships
» Group communication

* Asynchrony

Considerations for implementing the
Publisher-Subscriber pattern for
mission computing applications includ
» Event notification model
* Push control vs. pull data interactions
» Scheduling & synchronization
strategies
*e.g., priority-based dispatching &
preemption
» Event dependency management

Applying the Publisher-Subscriber
Pattern to Bold Stroke

Subscribers

push\(event)
Event
Channel

[IFF]

Publishers

\£GPS)

~

e.

: Board 1

s *e.qg. filtering & correlation mechanisms

5: Subscribers
perform
avionics
operations

4: Event Channel
pushes events
to
subscribers(s)

3: Sensor
publishers
push events
to event
channel

2: I/0O via interrupts

1: Sensors
generate

u_ data

Ensuring Platform-neutral & Network-
transparent Communication

Context Problems Solution
* Mission * Applications need capabilities to: * Apply the Broker
computing « Support remote communication architectural pattern to
reCIUireS * Provide location transparency prOVide platform-neutral
remote IPC «Handle faults communication between
- Stringent DRE | +«Manage end-to-end QoS gns&don computing
requirements * Encapsulate low-level system details oards
Client Proxy Server Proxy
marshal Structure marshal
unmarhal unmarshal
receive_result dispatch
service_p x 1 Broker 1 . | receive_request
« | calls message [WEIMEL message * | calls
exchange [EAEE[E ey exchange
1 srv_lookup 1
- xmit_message Server
Client manage_QoS
: start_up
call_service p main_loop
5 start_task service |

Ensuring Platform-neutral & Network-
transparent Communication

Context Problems Solution
* Mission Applications need capabilities to: * Apply the Broker
computing « Support remote communication architectural pattern to
requires « Provide location transparency provide platform-neutral
remote IPC «Handle faults communication between
- Stringent DRE | +«Manage end-to-end QoS gnsmdon computing
- . oards
requirements * Encapsulate low-level system details
. Client : Client Proxy Server Proxy : Server
register_service <« _————
operation (params) > < °d I : > start_up
connect > assigned
port
:_| marshal . t
. sena reqgques
Dynamics = >
unmarshal
dispatch
operation (params)
> >
| result |
receive_reply marshal
unmarshal
25 result

Applying the Broker Pattern
to Bold Stroke

Bold Stroke uses the Broker Subsc”bers perform
pattern to shield distributed WTS avionics

applications from environment 5_‘;‘:’/‘:;?’&’7’:"”9’
heterogeneity, e.g., push\(event) " pushes events

* Programming languages Event to
Channel

6: Subscribers

* Operating systems subscribers(s)
* Networking protocols 4: Sensor
publishers
» Hardware push events
to event
A key consideration for implementing channel

the Broker pattern for mission
computing applications is QoS support\
*e.g., latency, jitter, priority preservation,
dependability, security, etc.

3: Broker
/ handles I/O
via upcalls

2: I/0O via interrupts

1: Sensors

Board 1

(O dw—) ‘ generate
Caveat hLﬁ [, data
These patterns are very useful, but | vme
having to implement them from S

scratch is tedious & error-prone!!!

26

Overview of Frameworks

Framework Characteristics

*Frameworks exhibit *Frameworks provide Frameworks are
“‘inversion of control” at integrated domain-specific “semi-complete”
runtime via callbacks structures & functionality = applications

Application-specific
functionality

Networking Database

27

Comparing Class Libraries,
Frameworks, & Components

Class Library Architecture Component Architecture

APPLICATION- | nvOCATIONS %)
SPECIFIC Math _ . MR
FUNCTIONALITY|—p.| ADTs O) 'f.—
i
—» | Strings
—>

GUI >
Loggin — ;
oop CODE Locks B—| 0999 - @ Locking
IPC v »1
A class is a unit of abstraction Middleware Bus

& implementation in an OO A component is an encapsulation unit
programming language with one or more interfaces that provide
clients with access to its services

1]

Framework Architecture

6’ Class Frameworks Components
ADTs NETWERKING Libraries P
Strings RIS Micro-level Meso-level Macro-level
INVOKES SPECIFIC “ .
_ J FUNGTIONALITY /CALLBACK Stand-alone Semi-) Stand-a!qne
Files language complete composition
Locks T entities applications entities
DATABASE Domain- Domain- Domain-specific or
_ _ independent specific Domain-independent
A framework is an integrated set of classes 5 o | . 3 o
that collaborate to produce a reusable orrow callers | Inversion o Orfow cafler's
. . . thread control thread
28 architecture for a family of applications

Using Frameworks Effectively

Observations
*Frameworks are powerful, but hard to develop & use effectively by
application developers
*It’s often better to use & customize COTS frameworks than to develop in-
house frameworks
«Components are easier for application developers to use, but aren’t as
powerful or flexible as frameworks

29

PROJECT APPLICATION

COMPONENTS, SCRIPTING, & MODELING TECHNOL OGIES DEVELOPERS
COMPONENT MIDDLEWARE
TECHNOLOGIES PROJECT

INFRASTRUCTURE

CUSTOMIZED FRAMEWORK DEVELOPERS

Successful projects are
TECHNOLOGIES

therefore often
organized using the
“funnel” model

COTS FRAMEWORK
TECHNOLOGIES

COTS FRAMEWORK
DEVELOPERS

E Overview of the ACE Frameworks

Features

= +Open-source

6+ integrated
frameworks

«250,000+ lines of C++

*40+ person-years of
effort

*Ported to Windows,
UNIX, & real-time

d operating systems
*e.g., VxWorks, pSoS,
LynxOS, Chorus, QNX

-Large user community

|
|M|:||

specific
functionality

Component

Reactor Proactor

www.cs.wustl.edu/~schmidt/ACE.html

30

The POSA2 Pattern Language

Half-Sync/ SEyris EayRT Reactor & Pattern Benefits
Hfﬂlf-ﬂﬂj.ﬂ_'lt i mplementatlnn Proactor [Asynchronous) .
Completion * Preserve crucial design
lll gnéISFlgDﬁln ﬁ/ %\ TDHE" . .
surdnnlzer pBpeilion " information used by
i an <. . .
Leader/ | Wrapper Tgs e e itan appllcatlons &
Followers Eaiaile e middleware frameworks
¥ threlad encalpflaulatic-n ¥ sty & COmpOnentS
safety o
Active - service handler SEEENDTI b FaC|I|tate reuse Of
Ohject CONCUITEncy onnector Wi F d)
X apper Facade proven software designs
copppepert 1 & architectures
Component locking n'nelgthanism . . .)
read cu“ﬁgumm Spdheltetion Guide d.eS|gn choices
g g rce s T Stn[};Ed fOI' apphcatlon
Locking
ImEmEmm developers
role-specific] :
e = Sggﬂéﬁrpgpg]!rer ir?tlgr%stp?gr‘i' lock mcquisition
3 Evtansion and relessea oo
¥ : el demi® | Interface
EXtENsion | .- o i e E.ﬂ‘ategmﬁd
Interface . Monit or Object Thread-Safe r Lm:akmg
i “by-pass locking mrechmnism Interface k= 4 PATTERN-ORIENTED
| interfaces encapsulation - o I SOFTWARE
TE-object i i et ARCHITECTURE
E"TESS Wrapper Facade i T etert avcts
e o Double-Checked 0
Thresat['i]r?;imﬁc el o e SrSiion N Locking Optimization

Implementing the Broker Pattern
for Bold Stroke Avionics

Client Propagation & Server Declared Priority Models *CORBA is a distribution

in args

o . middleware standard
operation()

OBJECT

out args + return valus (SERVANT) | * Real-time CORBA adds
~° QoS to classic CORBA to
Static Scheduling Standard control:
Service Synchonizers 1. Processor Resources

Request
Buffering 2. Communication
STUBS SKELETON
ORB OBJECT Resources
ADAPTER

Explicit Binding | "T*RFA°€ | (Thread Pools 3. Memory Resources
COORRBE Portable Priorities m - These capabilities address
some (but by no means all)
———\{ 4

0S KERNEL y— important DRE application
development & QoS-

e
0s /0 SUBSYSTEM Properties 0S 1/0_SUBSYSTEM enforcement challenges

NETWORK INTERFACES

NETWORK

www.omg.org

32

Applying Patterns & Framworks to

The ACE ORB (TAO

Middleware:

STATIC & DYNAMIC * TAO is an open-
SCHEDULING % source version of
END-TO-END PRIORITY © Real-time CORBA
| PRESERVATION | .
oL, : presenrarion® TAQ Synopsis
CLIENT operation() OBJECT ———— LAYER «>1.000.000
out args + return value {SERVANT) ’ ’
<O SLOC

DATA COPYING

MA

l

ORB

— & MEMORY * 80+ person
ALLOCATION years of effort
— pemuxing &« Pioneered R&D on

INTERFACE

IDL
KELETON
J
STUBS (

OBJECT E
ADAPTER

DISPATCHING

DRE middleware
concurrency design, patterns,

ORB

MODELS frameworks, &

CORE

0S KERNEL OS KERNEL

| CONNECTION _T

optimizations
* TAO is basis for

L TRANSPORT
PROTOCOLS

www.cs.wustl.edu/~schmidt/TAO.html

33

MANAGEMENT os /o suesysTem J & — I/0 many middleware
susysTeEM R&D efforts
<——NEWORK le of g
NETWORK ADAPTER Xampie or goo

synergy between
researchers &
practitioners

Key Patterns Used in TAO

www.cs.wustl.edu/~schmidt/PDF/ORB-patterns.pdf

OBJECT/SERVANT « Wrapper facades enhance

~,

A

-,

CLIENT
I‘r e —
STUB | ADAPTER | SKEL | (
PROXY [MANAGER
-
ORB CORE
CSCREATES HANDLERS>> . CLCREATES HANDLERS>>
i >| Leaper/ [
FOLLOWERS
(:C}ﬂfﬂhEt:Tt}F? ‘(]___ J&E:E:E#:TIJFE

1

b

T REACTOR |<<pispatcuEs>> T
<<CONTAINS>> 1"

STRATEGY <<CONTAINED>

L ABSTRACT < COMPONENT
SSCREATES>> |) ~rORY <<iLinks>> |CONFIGURATOR

0S KERNEL :

34

WRAPPER FACADES

A

<<ENCAPSULATES>>

portability
* Proxies & adapters simplify

client & server applications,
respectively

« Component Configurator
dynamically configures
Factories

* Factories produce Strategies

 Strategies implement
interchangeable policies

« Concurrency strategies use
Reactor & Leader/Followers

» Acceptor-Connector decouples
connection management from
request processing

] 0S KERNEL * Managers optimize request

demultiplexing

* Multi-domain
resuable
middleware
framework

Problem

* Flexible ORBs must support multiple
event & request demuxing, scheduling,
(de)marshaling, connection mgmt,
request transfer, & concurrency policies

Enhancing ORB Flexibility
w/the Strategy Pattern

Solution

* Apply the Strategy pattern
to factory out similarity
amongst alternative ORB
algorithms & policies

Hook for
marshaling
strategy

Hook for the
connection

management
strategy

35

in args

Oo0—
operation()

out args + return value
+-—O0

OBJECT
(SERVANT)

CLIENT

Hook for the event
emuxing strategy

d
IDL
d~ TUBS s

OBJECT
ADAPTER

Hook for
the request
demuxing
strategy

(Hook for the
concurrency

O0S KERNEL 0S8 KERNEL

NETWORK INTERFACES NETWORK INTERFACES

NETWORK

strategy

Hook for the
underlying
transport
strategy

Consolidating Strategies with
the Abstract Factory Pattern

Problem Solution
* A heavily * Aggressive use of Strategy pattern * Apply the Abstract
strategized creates a configuration nightmare Factory pattern to
framework or « Managing many individual strategies is consolidate multiple
application hard ORB strategies into
* It's hard to ensure that groups of semantically compatible
semantically compatible strategies are configurations
configured
T:r;?d- s Cosrnf;:r;:cy 9| ﬂ;r::d- CLIENT T Outc::slerra:ul:Ta(L (SERVANT)
/COnnection Priority

ORB |,

Medical &

. Server Avionics
Imaging Abstract — Concrete IDL IDL
Concrete FIFO Factory Perfect Fact STUBS SKELETON
aclo
Factory Dispatching Hashing ry ORB OBJECT
INTERFACE

\Q ADAPTER

Dispatching Demuxing ORB
Strate Strate
X ; :> o - d

Active Rate-based OS KERNEL KERNEL

Demuxing Dispatching

: :
Concrete factories create groups of strategies NETWORK

36

Y Dynamically Configuring Factories
4 w/the Com qurator Pattern

Context Problem Solution
* Resource * Prematurely commiting to a particular ORB | « Apply the Component
constrained configuration is inflexible & inefficient Configurator pattern
& highly - Certain decisions can’t be made until to assemble the
dynamic runtime desired ORB factories
environments | «Forcing users to pay for components (& thus strategies)
that don’t use is undesirable dynamically
Medical
TAO Priority-based Imaging | p; (s
PROCESS | Dispatching Concrete
o Factory - ORB strategies are
Thread-per Hfsh‘?ﬁ; _ / N decoupled from when the
Rate Active ~ FIFO strategy implementations
ST L / Demuxing | ||Dispatching| 56 configured into an
Avionics ORB
Service B Conctete Thread-per _
Repository Factory Connection This pattern can reduce
Concurrency the memory footprint of an
ORB

svc.conf |dynamic ORB Service_Object *
FILE avionics_orb:make_orb() "-ORBport 2001"

37

e

ACE Frameworks Used in TAO

CLIENT OBJECT/SERVANT
A 3: run()
ae (s
C :
7 ™
4: operation) ORB CORE 9: DISPATCH()
GIOP
GIOP
HAngs Handle€ GloP
\ Connection|_ - Handler
< -—
GIOP Handler 8: REQUEST/ Conne Connd)
Handler A - RESPONSE Hang e C?{nnectlon
andler
L
Cached 7: cREATE & ACTIVATE
Connect |9: connect() 6: accept()
Strategy
- S _,_i Strategy
R .t Acceptor
Strategy
Connector
Reactor
Service 1: process svc.conf file
Configurator | 2: configure ORBs accordingly
" 4
svc.conf | dynamic ORB Service_Object *
FILE tao.dll:make_rtorb() "-ORBport 2001"

* Reactor drives the ORB event
loop

* Implements the Reactor &
Leader/Followers patterns

* Acceptor-Connector
decouples passive/active
connection roles from GIOP
request processing

* Implements the Acceptor-
Connector & Strategy
patterns

» Service Configurator
dynamically configures ORB
strategies

* Implements the
Component Configurator
& Abstract Factory
patterns

Summary of Pattern, Framework,
& Middleware Syner

ies

The technologies codify expertise of experienced researchers & developers

* Frameworks codify
expertise in the form of
reusable algorithms,
component
implementations, &
extensible architectures

Application-specific
functionality

Reactor

Proactor

« Patterns codify expertise in
the form of reusable
architecture design themes &
styles, which can be reused
event when algorithms,

components implementations,

or frameworks cannot

Reactor &
DE/' Proactor

HaIf-SyncJ =ync
; ; i R

]

Asynchronous
Completion
Token

Acceptor/
Connector

* Middleware codifies
expertise in the form of
standard interfaces &
components that provide
applications with a simpler
facade to access the
powerful (& complex)
capabilities of frameworks

~
NOTIFICATION Al STREAMING FT-CORBA & DYNAMIC/STATIC
SERVICE SERVICE LOAD BALANCING SCHEDULING
-~

—a [m:.ﬁJ

operation() {E::R“\‘;::)

O
CALL
BACKS

—O

SEFW#N'I’

/ CONTAINER | LocaToR

[IDL J rcmmal.e

QoS gl OBJECT
INTERFACE

— ADAPTER
ORB CORE

" Glopniop! | [
_ ESIOPs |

There are now powerful feedback loops advancing these technologies

39

The Road Ahead (1/2)

Key Challenges * There is a limit to how much
application functionality can be
CORBA J2EE NET factored into broadly reusable
<UL <L SEE standard COTS middleware
*Middleware has become extremely
SORBA SO2EE seNET . complicated to use, configure, &

provision statically & dynamically

Load Balancer Workload &
CORBA J2EE FT CORBA I Replicas I
RT/DP CORBA + DRTSJ

Operating Sys RTOS + RT Java
& Protocols
IntServ + Diffserv Network latency]

& bandwidth
||

Hardware :‘ There are now (& will always be)
multiple middleware technologies
to choose from

40

The Road Ahead (2/2)

Solution approach: Integrate model-based software
technologies with QoS-enabled component middleware

*e.g., standard technologies are
emerging that can:

1. Model

2. Analyze

3. Synthesize &
4. Provision

Container multiple layers of QoS-enabled
¢ middleware

‘These technologies are guided
by patterns & implemented by

component frameworks

<CONFIGURATION_PASS>
<HOME> <.>
<COMPONENT>

<ID> <...></ID> .
<EVENT_SUPPLIER> Container

<...events this component supplies...> . .
</EVENT_SUPPLIER>
I COMPONENT Distributed

</[HOME> System

</CONFIGURATION_PASS>

R&D Synergies

Standard

COTS
igai"

*Prior R&D efforts have
address some, but by no
means all, of the challenging
DOC middleware research
topics

Concluding Remarks

*Researchers & developers of distributed
systems face common challenges, e.g.:

 connection management

* service Iinitialization

error handling

* flow & congestion control

* event demultiplexing

* distribution

 concurrency & synchronization
* fault tolerance

» scheduling &

* persistence

 Pattern languages, frameworks, &

component middleware work together
to help resolve these challenges

Key open R&D challenges include:

Layered QoS specification & < Multi-level global
enforcement resource mgmt. &

» Separating policies & optimization
mechanisms across layers < High confidence

» Time/space optimizations for «Stable & robust
middleware & apps adaptive systems

Additional Information

Patterns & frameworks for concurrent & networked objects
ewww.cs.wustl.edu/~schmidt/POSA/ s Network

Programming
Volume 1

ewww.cs.wustl.edu/~schmidt/ACE/ Mg ity C++ Network

Programming
Volume 2

*ACE & TAO open-source middleware
swww.cs.wustl.edu/~schmidt/ACE.html

ewww.cs.wustl.edu/~schmidt/TAO.html

*Research papers

PATTERN-ORIENTED

ewww.cs.wustl.edu/~schmidt/research.html i:m&g?“

ITITTEER Partterns far Gon
and Netwarked B

*Tutorial on patterns, frameworks, & middleware
UCLA extension, July 9-11, 2003
swww.cs.wustl.edu/~schmidt/UCLA.html

«Conferences on patterns, frameworks, & middleware

. *DOA, ECOOP, ICDCS, ICSE, Middleware, OOPSLA, PLoP(s), RTAS,

