
Patterns, Frameworks, & Middleware:Patterns, Frameworks, & Middleware:

Their Synergistic Relationships Their Synergistic Relationships

Douglas C. Schmidt

d.schmidt@vanderbilt.edu

Professor of EECS

Vanderbilt University

Nashville, Tennessee

Frontiers of Software Practice 2003

2

Technology Trends (1/3)

Information technology

is being commoditized
� i.e., hardware & software

are getting cheaper, faster,

& (generally) better at a

fairly predictable rate

These advances stem
largely from standard
hardware & software APIs
& protocols, e.g.:

� TCP/IP, GSM, Link16

� POSIX, Windows, & VMs

� Middleware &
component models

� Intel x86 & Power PC
chipsets

� Quality of service (QoS)
aspects

3

Technology Trends (2/3)

Process

Automation

Quality

Control

Avionics Mission

Computing

Modalities

e.g., MRI, CT, CR,

Ultrasound, etc.

Electronic Medical Imaging

Software

Defined

Radio

Hot Rolling Mills

Growing acceptance of a network-centric component paradigm
� i.e., distributed applications with a range of QoS needs are constructed by

integrating components & frameworks via various communication mechanisms

4

Technology Trends (3/3)

�Components encapsulate application

“business” logic

�Components interact via ports

�Provided interfaces, e.g.,facets

�Required connection points, e.g.,

receptacles

�Event sinks & sources

�Attributes

�Containers provide execution

environment for components with

common operating requirements

�Components/containers can also

�Communicate via a middleware bus

and

�Reuse common middleware services

Component middleware is

maturing & becoming pervasive

SecurityReplication NotificationPersistence

SchedulingA/V Streaming Load Balancing

…

Container

… …

Middleware Bus

Container

…

5

The Evolution of Middleware

There are multiple COTS
middleware layers &
research/business

opportunities

Historically, mission-critical apps were
built directly atop hardware

�Tedious, error-prone, & costly over lifecycles

Standards-based COTS middleware

helps:

�Control end-to-end resources & QoS

�Leverage hardware & software

technology advances

�Evolve to new environments &

requirements

�Provide a wide array of reuseable, off-

the-shelf developer-oriented services

There are layers of middleware,
just like there are layers of
networking protocols

Hardware

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

& OS

Operating Systems
& Protocols

Applications

6

Operating System & Protocols

�Operating systems & protocols provide mechanisms to manage endsystem

resources, e.g.,

�CPU scheduling & dispatching

�Virtual memory management

�Secondary storage, persistence, & file systems

�Local & remove interprocess communication (IPC)

�OS examples

�UNIX/Linux, Windows, VxWorks, QNX, etc.

�Protocol examples

�TCP, UDP, IP, SCTP, RTP, etc.

RTP

DNS

HTTP

UDP TCP

IP

TELNET

Ethernet ATM FDDI

Fibre Channel

FTP

INTERNETWORKING ARCH

TFTP

20th Century

Win2K Linux LynxOS

Solaris VxWorks

Middleware

Middleware
Services

Middleware
Applications

MIDDLEWARE ARCH

21st Century

7
www.cs.wustl.edu/~schmidt/ACE.html

Host Infrastructure Middleware

�Host infrastructure middleware encapsulates & enhances

native OS mechanisms to create reusable network

programming components
�These components abstract away many tedious & error-prone

aspects of low-level OS APIs

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Synchronization

Memory

Management

Physical

Memory

Access

Asynchronous

Event Handling

Scheduling

Asynchronous

Transfer of

Control

www.rtj.org

�Examples

�Java Virtual Machine (JVM), Common Language Runtime

(CLR), ADAPTIVE Communication Environment (ACE)

8

Distribution Middleware

�Distribution middleware defines higher-level distributed

programming models whose reusable APIs & components

automate & extend native OS capabilities

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

�Distribution middleware

avoids hard-coding client

& server application

dependencies on object

location, language, OS,

protocols, & hardware

Interface

Repository

IDL

Compiler

Implementation

Repository

Client
OBJ

REF

Object

(Servant)
in args

operation()

out args +

return

DII
IDL

STUBS

ORB

INTERFACE

IDL

SKEL
DSI

Object Adapter

ORB CORE GIOP/IIOP/ESIOPS

�Examples

�OMG CORBA, Sun’s Remote Method Invocation (RMI),

Microsoft’s Distributed Component Object Model (DCOM)

9

Common Middleware Services

�Common middleware services augment distribution

middleware by defining higher-level domain-independent

services that focus on programming “business logic”

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

�Common middleware services

support many recurring

distributed system capabilities,

e.g.,

�Transactional behavior

�Authentication & authorization,

�Database connection pooling &

concurrency control

�Active replication

�Dynamic resource management

�Examples

�CORBA Component Model & Object Services, Sun’s J2EE,

Microsoft’s .NET

10

Domain-Specific Middleware

Modalities
e.g., MRI, CT, CR,

Ultrasound, etc.

Siemens MED Syngo

�Common software platform for

distributed electronic medical

systems

�Used by all ~13 Siemens MED

business units worldwide

�Domain-specific middleware services are tailored to the

requirements of particular domains, such as telecom, e-

commerce, health care, process automation, or aerospace

Domain-Specific
Services

Common
Middleware Services

Distribution
Middleware

Host Infrastructure
Middleware

Boeing Bold Stroke

� Common software

platform for Boeing

avionics mission

computing systems

�Examples

11

Why We are Succeeding

The past decade has yielded significant progress in QoS-enabled middleware,

stemming in large part from the following trends:

� NET, J2EE, CCM

� Real-time CORBA

� Real-time Java

� SOAP & Web Services

�The maturation

of middleware

standards

Hardware

Domain-Specific
Services

Common
Services

Distribution
Middleware

Host Infrastructure
Middleware

Operating Systems
& Protocols

Applications

�Years of iteration,

refinement, & successful

use

Year1970 2005

ARPAnet

RPC

Micro-kernels

CORBA & DCOM

Real-time

CORBA

Component

Models (EJB)

CORBA Component

Model (CCM)

Real-time CCM

DCE

Web Services

�The maturation of

component middleware

frameworks & patterns

12

�Present solutions

to common

software problems

arising within a

certain context

Overview of Patterns

�Capture recurring structures &

dynamics among software

participants to facilitate reuse of

successful designs

The Proxy Pattern

1 1
Proxy

service

Service

service

AbstractService

service

Client

�Help resolve

key software

design

forces

�Flexibility

�Extensibility

�Dependability

�Predictability

�Scalability

�Efficiency

�Generally codify expert

knowledge of design strategies,

constraints & “best practices”

13

Overview of Pattern Languages

Benefits of Pattern Languages

� Define a vocabulary for talking about software

development problems

� Provide a process for the orderly resolution of

these problems

� Help to generate & reuse software architectures

Motivation

�Individual patterns & pattern

catalogs are insufficient

�Software modeling methods

& tools largely just illustrate

how – not why – systems

are designed

14

Taxonomy of Patterns & Idioms

Active Object,

Bridge, Proxy,

Wrapper Façade,

& Visitor

Capture the static & dynamic roles &

relationships in solutions that occur

repeatedly

Design

patterns

Half-Sync/Half-

Async, Layers,

Proactor,

Publisher-

Subscriber, &

Reactor

Express a fundamental structural

organization for software systems that

provide a set of predefined subsystems,

specify their relationships, & include the

rules and guidelines for organizing the

relationships between them

Architectural

patterns

Optimize for

common case,

pass information

between layers

Document rules for avoiding common

design & implementation mistakes that

degrade performance

Optimization

principle

patterns

Scoped lockingRestricted to a particular language,

system, or tool

Idioms

ExamplesDescriptionType

15

Example: Boeing Bold Stroke

Nav Sensors

Weapon
Management

Data LinksMission
Computer

Vehicle
Mgmt

Weapons

� Avionics mission computing product-line

architecture for Boeing military aircraft, e.g.,

F-18 E/F, 15E, Harrier, UCAV

� DRE system with 100+ developers, 3,000+

software components, 3-5 million lines of

C++ code

� Based on COTS hardware, networks,

operating systems, & middleware

� Used as Open Experimention

Platform (OEP) for DARPA IXO

PCES, MoBIES, SEC, MICA

programs

Bold

Stroke

Architecture

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Radar

16

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Example: Boeing Bold Stroke

COTS & Standards-based Middleware
Infrastructure, OS, Network, & Hardware
Platform

� Real-time CORBA middleware services

� VxWorks operating system

� VME, 1553, & Link16

� PowerPC

17

Example: Boeing Bold Stroke

Reusable Object-Oriented Application Domain-
specific Middleware Framework
� Configurable to variable infrastructure

configurations

� Supports systematic reuse of mission computing

functionality

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

18

Example: Boeing Bold Stroke

Product Line Component Model
� Configurable for product-specific functionality

& execution environment

� Single component development policies

� Standard component packaging mechanisms

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

19

Hardware (CPU, Memory, I/O)Hardware (CPU, Memory, I/O)

Networking InterfacesNetworking Interfaces

Operating SystemOperating System

Middleware InfrastructureMiddleware Infrastructure

Mission Computing ServicesMission Computing Services

Example: Boeing Bold Stroke

Component Integration Model
� Configurable for product-specific

component assembly & deployment

environments

� Model-based component integration

policies

Avionics Interfaces

Operator

Real World Model

Infrastructure Services

20

Legacy Avionics Architectures

Board 1

VME

1553

1: Sensors

generate

data

Board 2

2: I/O via

interrupts

3: Sensor

proxies

process data

& pass to

missions

functions

4: Mission

functions

perform

avionics

operations

Key System Characteristics
�Hard & soft real-time deadlines

�~20-40 Hz
�Low latency & jitter between
boards
�~100 usecs

�Periodic & aperiodic processing
�Complex dependencies
�Continuous platform upgrades

Avionics Mission
Computing Functions
�Weapons targeting
systems (WTS)

�Airframe & navigation
(Nav)

�Sensor control (GPS,
IFF, FLIR)

�Heads-up display
(HUD)

�Auto-pilot (AP)

21

Legacy Avionics Architectures

Board 1

VME

1553

1: Sensors

generate

data

Board 2

2: I/O via

interrupts

3: Sensor

proxies

process data

& pass to

missions

functions

4: Mission

functions

perform

avionics

operations

Air
Frame

AP

Nav WTS

GPS IFF

FLIR

Cyclic
ExecLimitations with Legacy Avionics

Architectures

�Stovepiped

�Proprietary

�Expensive

�Vulnerable

�Tightly coupled

�Hard to schedule

�Brittle & non-adaptive

Key System Characteristics
�Hard & soft real-time deadlines

�~20-40 Hz
�Low latency & jitter between
boards
�~100 usecs

�Periodic & aperiodic processing
�Complex dependencies
�Continuous platform upgrades

22

Decoupling Avionics Components

� Apply the Publisher-

Subscriber architectural pattern

to distribute periodic, I/O-driven

data from a single point of

source to a collection of

consumers

� Tightly coupled

components

� Hard to schedule

� Expensive to evolve

� I/O driven DRE

application

� Complex

dependencies

� Real-time constraints

SolutionProblemsContext

Event

*

Subscriber

consume

creates receives

Event Channel

attachPublisher

detachPublisher

attachSubscriber

detachSubscriber

pushEvent

Filter

filterEvent

Publisher

produce

Structure

attachSubscriber

produce

pushEvent
event

event

pushEvent

consume

detachSubscriber

: Event

: Subscriber: Event Channel: Publisher

Dynamics

23

Applying the Publisher-Subscriber
Pattern to Bold Stroke

Board 1

VME

1553

1: Sensors

generate

data

Board 2

2: I/O via interrupts

4: Event Channel

pushes events

to

subscribers(s)

5: Subscribers

perform

avionics

operations

GPS IFF FLIR

HUD

Nav

WTS

Air

Frame

Publishers

Subscribers

push(event)

push(event)

Event

Channel

3: Sensor

publishers

push events

to event

channel

Considerations for implementing the

Publisher-Subscriber pattern for

mission computing applications include:

� Event notification model

�Push control vs. pull data interactions

� Scheduling & synchronization

strategies

�e.g., priority-based dispatching &

preemption

� Event dependency management

�e.g.,filtering & correlation mechanisms

Bold Stroke uses the Publisher-

Subscriber pattern to decouple

sensor processing from mission

computing operations

� Anonymous publisher & subscriber

relationships

� Group communication

� Asynchrony

24

Ensuring Platform-neutral & Network-
transparent Communication

� Apply the Broker

architectural pattern to

provide platform-neutral

communication between

mission computing

boards

� Applications need capabilities to:

� Support remote communication

� Provide location transparency

� Handle faults

� Manage end-to-end QoS

� Encapsulate low-level system details

� Mission

computing

requires

remote IPC

� Stringent DRE

requirements

SolutionProblemsContext

message

exchange

message

exchange

*

marshal

unmarhal

receive_result

service_p

Client Proxy

calls*

*

call_service_p

start_task

Client

1

marshal

unmarshal

dispatch

receive_request

Server Proxy

calls*

start_up

main_loop

service_i

Server

1

1

main_loop

srv_registration

srv_lookup

xmit_message

manage_QoS

Broker1

Structure

25

Ensuring Platform-neutral & Network-
transparent Communication

operation (params)
connect

send_request
marshal

unmarshal

dispatch
operation (params)

result

marshalreceive_reply

unmarshal
result

start_upregister_service

assigned
port

Dynamics

: Broker: Client Proxy : Server Proxy: Client : Server

� Apply the Broker

architectural pattern to

provide platform-neutral

communication between

mission computing

boards

� Applications need capabilities to:

� Support remote communication

� Provide location transparency

� Handle faults

� Manage end-to-end QoS

� Encapsulate low-level system details

� Mission

computing

requires

remote IPC

� Stringent DRE

requirements

SolutionProblemsContext

26

Applying the Broker Pattern
to Bold Stroke

Board 1

VME

1553

1: Sensors

generate

data

Board 2

2: I/O via interrupts

5: Event Channel

pushes events

to

subscribers(s)

6: Subscribers

perform

avionics

operations

GPS IFF FLIR

HUD Nav WTS
Air

Frame

Publishers

Subscribers

push(event)

push(event)

Event

Channel
4: Sensor

publishers

push events

to event

channel

Bold Stroke uses the Broker

pattern to shield distributed

applications from environment

heterogeneity, e.g.,
� Programming languages

� Operating systems

� Networking protocols

� Hardware

3: Broker

handles I/O

via upcalls
Broker

A key consideration for implementing

the Broker pattern for mission

computing applications is QoS support
� e.g., latency, jitter, priority preservation,

dependability, security, etc.

Caveat

These patterns are very useful, but

having to implement them from

scratch is tedious & error-prone!!!

27

Overview of Frameworks

Framework Characteristics

Application-specific

functionality

�Frameworks exhibit

“inversion of control” at

runtime via callbacks

Networking Database

GUI

�Frameworks provide

integrated domain-specific

structures & functionality

Mission

Computing E-commerce

Scientific

Visualization

�Frameworks are

“semi-complete”

applications

28

Comparing Class Libraries,
Frameworks, & Components

Class

Libraries
Frameworks

Macro-levelMeso-levelMicro-level

Borrow caller’s

thread

Inversion of

control

Borrow caller’s

thread

Domain-specific or

Domain-independent

Domain-

specific

Domain-

independent

Stand-alone

composition

entities

“Semi-

complete”

applications

Stand-alone

language

entities

Components

Class Library Architecture

ADTs

Strings

Locks
IPC

Math

LOCAL
INVOCATIONSAPPLICATION-

SPECIFIC
FUNCTIONALITY

EVENT
LOOP

GLUE
CODE

Files

GUI

A class is a unit of abstraction

& implementation in an OO

programming language

Framework Architecture

ADTs

Locks

Strings

Files

INVOKES

A framework is an integrated set of classes

that collaborate to produce a reusable

architecture for a family of applications

Reactor

GUI

DATABASE

NETWORKING

APPLICATION-

SPECIFIC

FUNCTIONALITY CALLBACKS

Middleware Bus

Component Architecture

A component is an encapsulation unit

with one or more interfaces that provide

clients with access to its services

Naming

LockingLogging

Events

29

Using Frameworks Effectively

Observations

�Frameworks are powerful, but hard to develop & use effectively by

application developers

�It’s often better to use & customize COTS frameworks than to develop in-

house frameworks

�Components are easier for application developers to use, but aren’t as

powerful or flexible as frameworks

Successful projects are

therefore often

organized using the

“funnel” model

30

Overview of the ACE Frameworks

Features
�Open-source

�6+ integrated

frameworks

�250,000+ lines of C++

�40+ person-years of

effort

�Ported to Windows,

UNIX, & real-time

operating systems
� e.g., VxWorks, pSoS,

LynxOS, Chorus, QNX

�Large user community

www.cs.wustl.edu/~schmidt/ACE.html

Acceptor

Connector Component

Configurator

Stream

Reactor Proactor

Task

Application-
specific

functionality

Local Area

Network

NYSE

NASDAQ

31

Pattern Benefits

� Preserve crucial design

information used by

applications &

middleware frameworks

& components

� Facilitate reuse of

proven software designs

& architectures

� Guide design choices

for application

developers

The POSA2 Pattern Language

32

Implementing the Broker Pattern
for Bold Stroke Avionics

�CORBA is a distribution

middleware standard

�Real-time CORBA adds

QoS to classic CORBA to

control:

www.omg.org

3. Memory Resources

�These capabilities address

some (but by no means all)

important DRE application

development & QoS-

enforcement challenges

2. Communication

Resources

Protocol

Properties

Explicit Binding

Client Propagation & Server Declared Priority Models

Portable Priorities

Thread Pools

Static Scheduling

Service

Standard

Synchonizers 1. Processor Resources
Request

Buffering

33

Applying Patterns & Framworks to Middleware:

The ACE ORB (TAO)

www.cs.wustl.edu/~schmidt/TAO.html

� TAO is an open-

source version of

Real-time CORBA

� TAO Synopsis

� > 1,000,000

SLOC

� 80+ person

years of effort

� Pioneered R&D on

DRE middleware

design, patterns,

frameworks, &

optimizations

� TAO is basis for

many middleware

R&D efforts

� Example of good

synergy between

researchers &

practitioners

34

Key Patterns Used in TAO

www.cs.wustl.edu/~schmidt/PDF/ORB-patterns.pdf

� Wrapper facades enhance

portability

� Proxies & adapters simplify

client & server applications,

respectively

� Component Configurator

dynamically configures

Factories

� Factories produce Strategies

� Strategies implement

interchangeable policies

� Concurrency strategies use

Reactor & Leader/Followers

� Acceptor-Connector decouples

connection management from

request processing

� Managers optimize request

demultiplexing

35

Enhancing ORB Flexibility
w/the Strategy Pattern

� Apply the Strategy pattern

to factory out similarity

amongst alternative ORB

algorithms & policies

� Flexible ORBs must support multiple

event & request demuxing, scheduling,

(de)marshaling, connection mgmt,

request transfer, & concurrency policies

� Multi-domain

resuable

middleware

framework

SolutionProblemContext

Hook for the

concurrency

strategy

Hook for

the request

demuxing

strategy

Hook for

marshaling

strategy

Hook for the

connection

management

strategy

Hook for the

underlying

transport

strategy

Hook for the event

demuxing strategy

36

Consolidating Strategies with
the Abstract Factory Pattern

� Apply the Abstract

Factory pattern to

consolidate multiple

ORB strategies into

semantically compatible

configurations

� Aggressive use of Strategy pattern

creates a configuration nightmare

� Managing many individual strategies is

hard

� It’s hard to ensure that groups of

semantically compatible strategies are

configured

� A heavily

strategized

framework or

application

SolutionProblemContext

Concrete factories create groups of strategies

37

Dynamically Configuring Factories
w/the Component Configurator Pattern

� Apply the Component

Configurator pattern

to assemble the

desired ORB factories

(& thus strategies)

dynamically

� Prematurely commiting to a particular ORB

configuration is inflexible & inefficient

�Certain decisions can’t be made until

runtime

�Forcing users to pay for components

that don’t use is undesirable

� Resource

constrained

& highly

dynamic

environments

SolutionProblemContext

� ORB strategies are

decoupled from when the

strategy implementations

are configured into an

ORB

� This pattern can reduce

the memory footprint of an

ORB

38

ACE Frameworks Used in TAO

� Reactor drives the ORB event

loop

� Implements the Reactor &

Leader/Followers patterns

� Acceptor-Connector

decouples passive/active

connection roles from GIOP

request processing

� Implements the Acceptor-

Connector & Strategy

patterns

� Service Configurator

dynamically configures ORB

strategies

� Implements the

Component Configurator

& Abstract Factory

patterns

39

Summary of Pattern, Framework,
& Middleware Synergies

The technologies codify expertise of experienced researchers & developers

� Patterns codify expertise in

the form of reusable

architecture design themes &

styles, which can be reused

event when algorithms,

components implementations,

or frameworks cannot

� Frameworks codify

expertise in the form of

reusable algorithms,

component

implementations, &

extensible architectures

Application-specific

functionality

Acceptor

Connecto

r

Component

Configurator

Stream

Reactor

Proactor

Task

� Middleware codifies

expertise in the form of

standard interfaces &

components that provide

applications with a simpler

façade to access the

powerful (& complex)

capabilities of frameworks

There are now powerful feedback loops advancing these technologies

40

Middleware

Middleware
Services

DRE Applications

Operating Sys
& Protocols

Hardware &
Networks

�There is a limit to how much

application functionality can be

factored into broadly reusable

standard COTS middleware

�Middleware has become extremely

complicated to use, configure, &

provision statically & dynamically

�There are now (& will always be)

multiple middleware technologies

to choose from

IntServ + Diffserv

RTOS + RT Java

RT/DP CORBA + DRTSJ

Load Balancer
FT CORBA

Network latency
& bandwidth

Workload &
Replicas

CPU & memory

Connections &
priority bands

CORBA

CORBA
Services

CORBA
Apps

J2EE

J2EE
Services

J2EE
Apps

.NET

.NET
Services

.NET
Apps

The Road Ahead (1/2)

Key Challenges

41

Distributed

system

The Road Ahead (2/2)

Solution approach: Integrate model-based software

technologies with QoS-enabled component middleware

<CONFIGURATION_PASS>

<HOME> <…>

<COMPONENT>

<ID> <…></ID>

<EVENT_SUPPLIER>

<…events this component supplies…>

</EVENT_SUPPLIER>

</COMPONENT>

</HOME>

</CONFIGURATION_PASS>

<CONFIGURATION_PASS>

<HOME> <…>

<COMPONENT>

<ID> <…></ID>

<EVENT_SUPPLIER>

<…events this component supplies…>

</EVENT_SUPPLIER>

</COMPONENT>

</HOME>

</CONFIGURATION_PASS>

�e.g., standard technologies are

emerging that can:

1. Model

2. Analyze

3. Synthesize &

4. Provision

multiple layers of QoS-enabled

middleware

�These technologies are guided

by patterns & implemented by

component frameworks

QoS-enabled Middleware Bus

… …

Container

… …

Container

42

�Prior R&D efforts have

address some, but by no

means all, of the challenging

DOC middleware research

topics

Concluding Remarks
�Researchers & developers of distributed
systems face common challenges, e.g.:

R&D Synergies

�Pattern languages, frameworks, &
component middleware work together
to help resolve these challenges

�connection management
�service initialization
�error handling
� flow & congestion control
�event demultiplexing
�distribution
�concurrency & synchronization
� fault tolerance
�scheduling &
�persistence

� Layered QoS specification &
enforcement

� Separating policies &
mechanisms across layers

� Time/space optimizations for
middleware & apps

� Multi-level global
resource mgmt. &
optimization

� High confidence
� Stable & robust
adaptive systems

Key open R&D challenges include:

Standard

COTS

R&D

User

Needs

R&D

43

�Patterns & frameworks for concurrent & networked objects
�www.cs.wustl.edu/~schmidt/POSA/

�www.cs.wustl.edu/~schmidt/ACE/

�ACE & TAO open-source middleware

�www.cs.wustl.edu/~schmidt/ACE.html

�www.cs.wustl.edu/~schmidt/TAO.html

�Research papers

�www.cs.wustl.edu/~schmidt/research.html

�Tutorial on patterns, frameworks, & middleware

�UCLA extension, July 9-11, 2003

�www.cs.wustl.edu/~schmidt/UCLA.html

�Conferences on patterns, frameworks, & middleware

� DOA, ECOOP, ICDCS, ICSE, Middleware, OOPSLA, PLoP(s), RTAS,

Additional Information

