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Patterns in 3D Vertically Oscillated Granular Layers: Simulation and Experiment
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Numerical simulations and laboratory experiments are conducted for thin layers of particles in a
vertically oscillated container as a function of the frequencyf, amplitude A, and depthH. The
same standing wave patterns (stripes, squares, or hexagons oscillating atfy2 or fy4) and wavelengths
are obtained in the simulations and experiments for a wide range ofs f , Ad and two layer depths.
Two model parameters are determined by fits at just two pointss f , A, Hd. Simulation results
lead to heuristic arguments for the onset of patterns and the crossover from squares to stripes
[S0031-9007(97)04971-5]

PACS numbers: 46.10.+z, 47.54.+r, 83.10.Pp, 83.70.Fn
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Spatial patterns are often observed in systems driv
away from thermal equilibrium [1]; a thin layer of ver-
tically oscillated granular material constitutes such a pa
tern forming system [2,3]. For granular media, continuum
equations analogous to the Navier-Stokes equations
fluids are not known; hence many of the methods th
have been applied to the study of other pattern formin
systems cannot yet be applied to granular media. Wh
phenomenological models may be constructed [4], the
connection to the real system must remain unclear un
the physics of granular media is understood at a more m
croscopic level. This state of affairs has driven modele
to simulate directly the motions and interactions of larg
collections of particles [5,6]. However, these simulation
have been limited to two dimensions (2D), where the va
riety of spatial patterns is absent.

We report on the first 3D simulations of patterns in
vertically oscillated granular media. In our simulation
and experiments, we consider layers ofP particles of
average diameterD in an evacuated square containe
of side lengthL ­ 100D. The container is oscillated
sinusoidally in the vertical direction with frequencyf
and amplitudeA. The layer depthH is defined by
H ­ Pspy6d sD3yL2dyf, where the packing fractionf
was experimentally measured to be0.58. We express the
depth nondimensionally asN ­ HyD. We setP in our
experiments and simulations to either 30 000 or 60 00
so that our layers have depthN ­ 2.71 or N ­ 5.42.
We nondimensionalize the frequency and accelerati
amplitude using the acceleration due to gravityg and the
layer depthH [7]: fp ­ f

p
Hyg (varied here in the range

0.1 , fp , 2) and G ­ 4p2f2Ayg (varied in the range
2 # G # 7). In the simulations the particle diameters
are distributed uniformly between0.99D and 1.01D; in
most experiments we use lead particles sieved betwe
0.5 and 0.6 mm. The laboratory system is otherwise lik
that described in [3].

Our results from simulation and experiment are remar
ably similar over the entire range ofs fp, Gd examined, as
Fig. 1 illustrates, with patterns obtained at seven valu
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of s fp, Gd. We will first discuss the simulations and the
we will compare the wavelengths and patterns obtained
simulation and experiment.

Simulations.—In our event driven algorithm, particles
interact only through instantaneous binary collisions a
move only under the influence of gravity between col
sions. Linear and angular momentum are conserved
collisions, while energy is dissipated. The interaction b
tween particles is described by the coefficient of res
tution e, the coefficient of sliding frictionm, and the
rotational coefficient of restitutionb; we will discuss each
parameter in turn.

The value of the relative normal velocityyn of colliding
particles after a collision is calculated by multiplyin
the precollision value ofyn by 2esynd. The precise
functional form ofesynd is unknown, but measurement
show thatesynd decreases from unity asyn increases
from zero [8]. The simplest models use a constante,
but this disagrees with experiment and also leads
inelastic collapse, in which particles undergo an infini
number of collisions within a finite amount of time
[9]. We assume thatesynd ­ 1 2 Bya

n for yn less than
a crossover velocityy0, and esynd ­ e for yn . y0,
where B ­ s1 2 ed sy0d2a and e is a constant. The
increase ine for low yn avoids inelastic collapse [6,9],
while constante at higher yn is more computationally
efficient. The precise way in whiche decreases from
unity to e is unimportant. Simulations fora ­ 0.5, 0.75,
and 1.0 yield the same patterns and wavelengths; in t
present study we arbitrarily choosea ­ 0.75. Similarly,
simulations fory0 ­

p
gDy3,

p
gD, and3

p
gD yield the

same patterns and wavelengths; we usey0 ­
p

gD. This
does not imply that material properties are depend
upon g or D, simply that the unit of velocity for our
simulation is

p
gD.

The tangential component of the particle collisions
modeled with the collision operator in Ref. [10]. Angula
momentum is conserved, and the tangential impulse
given by a coefficient of frictionm times the normal
impulse. A cutoff is then imposed, corresponding to th
© 1997 The American Physical Society 57
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squares,
FIG. 1. Standing wave patterns: (a) squares, (b) stripes, (c) and (d) alternating phases of hexagons, (e) flat layer, (f)
(g) stripes, and (h) hexagons. Patterns (a)–(e) oscillate at fy2, (f)–(h) at fy4. The dimensionless layer depthN is 5.42. The
brightness indicates the height of the layer. The experiments use lead spheres sieved between 0.5 and 0.6 mm.
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crossover from a sliding contact to a rolling contact: th
ratio of the relative surface velocity after the collisio
to that before the collision must always be greater th
2b0; we useb0 ­ 0.35, as suggested in [10] based o
comparison to experiments [11].

The collision operator is incorporated into an eve
driven simulation [12]. From known particle position
and velocities, the times at which given pairs of particle
will collide are calculated. Time advances from on
collision to the next, rather than with an externall
imposed time step as in soft-sphere molecular dynam
algorithms. We use a delayed states algorithm [13]
which only the particles that collide are updated on
given time step. The efficiency of this algorithm allow
us to perform all simulations discussed in this paper
Pentium Pro computers.

The side walls and bottom of the container are impen
trable, and ball-wall collisions are taken to have the sam
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values ofe, m, andb0 as ball-ball collisions. The side
walls in the simulation are stationary, while in the exper
ment the side walls are rigidly attached to the oscillatin
bottom of the container.

We determinee by comparing wavelengthsl deter-
mined from simulations and experiments at a single set
parameter values:G ­ 3.0, fp ­ 0.205, and N ­ 2.71.
(For these parameter values we cannot discern any
pendence ofl on m.) An increase ofe from 0.5 to 0.8
produces a30% decrease in the wavelength. The value o
e determined in this way, 0.7, is then used in all the simu
lations. Thise value is larger than measured values o
the restitution coefficient for lead [8], but model collisions
are instantaneous and hence binary, while experimen
collision durations are finite. In the experiment, as pa
ticles collide with the plate, energy dissipates until man
of the particles are in contact and the plate lifts the lay
as a body. Thus, many more collisions are simulated th
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experimentally occur. To preserve the total dissipation
the simulations, a smaller number of more inelastic col
sions are modeled with a larger number of less inelas
collisions.

With e in hand, we examine the dependence ofl on m

at another point in parameter space,G ­ 3.0, fp ­ 0.534,
and N ­ 5.42. We find that l is nearly constant for
m equal to 0.25, 0.5, and 0.75, but for m ­ 0, l is
decreased by nearly25%. This suggests that rotations
excited through dissipative tangential contacts, increa
the horizontal mobility of the particles. Based on thes
investigations, we setm ­ 0.5. The valuese ­ 0.7
and m ­ 0.5, derived from only the two points in the
parameter space (G, fp, N), are used forall simulations
presented here.

Wavelengths.—Figure 2 presents our results for the
dimensionless wavelengthlp ­ lyH as a function of
fp. Scaling in this way collapses these data. Th
results from our simulations and experiments are in go
quantitative agreement, even showing the same chan
in behavior atfp ø 0.5. These data are also consisten
with previously reported experimental data [2]. To tes
the dependence oflp on aspect ratio, experiments were
also conducted with bronze spheres for whichD ­ 0.165
mm andLyD ­ 982. At LyD ­ 100, the container walls
influence the orientation of the observed patterns, a
there is a tendency for peaks of the wave to exist
the walls [e.g., see Fig. 1(a)]. However, the wavelengt
measured for the two aspect ratios are in agreeme
differing only for wavelengths larger than one half of th
container length. Note that the kink atfp ø 0.5 appears
also for the larger aspect ratio.

Transitions.—Figure 3 shows the regions in theG-fp

plane in which various spatial patterns occur. Th
diagram, obtained for 0.55 mm lead particles (withN ­
5.42 andLyD ­ 100) is in good accord with the diagram
in [3], obtained for 0.165 mm bronze particles (withN ­
7.3 andLyD ­ 770). This agreement, as well as that fo
the wavelengths for lead and bronze particles shown

FIG. 2. Wavelength vs frequency from simulations and e
periments withG ­ 3.0. The 1 and 3 points are obtained
from experiments with lead spheres (D ­ 0.55 mm) and
LyD ­ 100, while the≤ points correspond to experiments with
bronze spheres (D ­ 0.165 mm) andLyD ­ 982.
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Fig. 2, indicates that the patterns are rather insensitive
particle properties.

When the acceleration amplitude of the cell is increase
aboveg, the granular layer leaves the supporting plat
for part of each cycle, but the layer remains flat until
critical accelerationGc is reached; forG . Gc, square
[Fig. 1(a)] or stripe [Fig. 1(b)] standing wave pattern
spontaneously form. At higherG, both types of patterns
become unstable to hexagons [Figs. 1(c) and 1(d)]. AsG

is further increased, the layer begins to collide with th
plate on only every other plate oscillation, and the fla
state is recovered [Fig. 1(e)]. At a higher acceleratio
Gc,2, the flat layer again bifurcates to squares [Fig. 1(f
or stripes [Fig. 1(g)], now oscillating atfy4. These
patterns become unstable tofy4 hexagons [Fig. 1(h)] at
still higherG.

We now exploit observations from the simulations t
develop a heuristic argument for the value of the critica
acceleration for the onset of patternsGc. One periodT of
the plate’s oscillation may be broken up into two disjoin
parts. During the time intervaltd between the collision
of the layer with the plate and the apogee of the layer
bottom, peaks of the pattern decay. The layer becom
flat just before (about 5% of the pattern period before
the bottom particles reach their apogee. Then peaks gr
during the time intervaltg between the apogee and the
next collision with the plate. Finally, we observe that fo
square and stripe patterns,tg ­ td ­ Ty2; i.e., the layer
bottom’s apogee occurs halfway between collisions wi
the plate; see Fig. 4.

We conjecture that states without patterns correspo
to td . tg; patterns decay during the extra time spent i

FIG. 3. Phase diagram obtained in the experiments. T
parameter values for the comparison in Fig. 1 of patterns fro
the simulations and experiments are indicated by (a) throu
(h). The transitions from a flat layer to square patterns a
hysteretic: solid lines denote the transition for increasingG,
while dotted lines denote it for denote decreasingG. Shaded
areas show transitional regions between stripes and squares
59
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FIG. 4. Trajectories of the layer bottom from simulations
The fy2 and fy4 curves are obtained at points (a) and (g
on Fig. 3, and the solid line shows the motion of the plate.

the damping part of the cycle. If the collision betwee
plate and layer occurred while the plate was descendin
the apogee of the layer bottom could not occur before t
plate reached its maximum height, at a time greater th
Ty2 after the collision. Sincetd . Ty2 and td 1 tg ­
T , we find thattd . tg and we suppose that patterns wil
not be stable. Hence, the marginal trajectory for patte
stability is one for which the collision occurs at the plate’
lowest point and the layer bottom’s apogee occurs at t
plate’s highest location. This layer free falls from its
apogee through a distance2A to collide with the plate
bottom after a timeTy2, so that2A ­ gT2y8 or Gc ­
s2pd2y16 ø 2.47, in accord with experiment (Fig. 3).

We observe that the crossover between stripes a
squares occurs when the distance vertically traversed
the layer bottom from apogee to collision,gT2y8, equals
the depth of the layerH so that the frequency of the
square-stripe transition is given byfp

ss ­ 1y
p

8 ø 0.35
(cf. Fig. 3). Unlike the kink in Fig. 2,fp

ss has been found
to be independent ofN [7].

For fy4 patterns, the behavior is the same as that
their fy2 counterparts: growth of peaks between apoge
and collision, decay of peaks between collision an
apogee, and temporal centering of the apogee betwe
consecutive collisions, which in this case are separated
2T ; see Fig. 4. We suppose that the marginal trajectory
this case is one in which the layer bottom’s apogee occu
when the plate is at its lowest point; an earlier apoge
will not allow the collisions to occur on only every other
plate oscillation. Simulation shows that for this trajectory
the bottom of the layer reaches a height of about3.4A,
so that 3.4A ­ gT2y2, or Gc,2 ­ s2pd2y6.8 ø 5.81, in
accord with experiment (Fig. 3). We also observe tha
once again, the square-stripe transition corresponds to
frequency at which the distance traveled from apoge
to collision, gT2y2, equals the depth of the layerH, or
fp

ss,2 ­ 1y
p

2 ø 0.71.
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The present work validates our model, which ca
now be used to examine many outstanding issues
vibrated granular media, such as the variation of partic
transport properties with frequency and acceleration. Th
simulations can be used to determine coefficients
phenomenological models proposed to describe granu
patterns (e.g., [4]). Also, through appropriate spatia
averaging it may be possible to construct continuum
equations and subject them to standard stability analys
to gain insight into the pattern formation processes.
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