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Electroconvection using the liquid crystal N4 is studied as a function of two control parameters:
the applied frequency and the applied voltage. As a function of the voltage, there is rich series of
bifurcations that takes the system from stationary rolls to chaos. As a function of the frequency, the
initial pattern changes from stationary oblique rolls at low frequencies to stationary normal rolls at
higher frequencies. There is also a change in the secondary bifurcations. In particular, we observe
that the bimodal varicose instability is replaced by the skewed varicose instability as the applied
frequency is increased. Comparisons with theoretical predictions are made.
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I. INTRODUCTION

When spatially extended systems are driven out of
equilibrium, there typically exists a critical value of the
driving force where the system makes a transition from
a uniform state to a periodic state, or pattern [1]. One
can consider two broad classes of spatially extended sys-
tems: isotropic and anisotropic. Nematic liquid crystals
have proven extremely useful for the study of pattern
formation in anisotropic systems [2]. A nematic liquid
crystal is a rod-like molecule that posses orientational
order, but no spatial order [3]. The average alignment of
the molecules is referred to as the director. By prepar-
ing samples where the director is spatially uniform, a
preferred spatial direction is selected. Of the various ex-
amples of pattern formation in nematic liquid crystals,
electroconvection has proven particularly fruitful.

For electroconvection, a nematic liquid crystal is con-
fined between two plates and a voltage is applied be-
tween the plates. For planar alignment of the director
(i.e. the director parallel to the plates), a rich variety of
patterns have been observed, including traveling waves
[4–7], defect mediated chaos [5, 8], localized states [9–
11], abnormal rolls [12, 13], grid patterns [14], bimodal
varicose state [15–17], and spatiotemporal chaos at onset
[18–20]. Many of these patterns are superpositions of, or
variations of, an important class of patterns that is not
present in isotropic systems: oblique rolls. Oblique rolls
are a pattern of straight rolls that have a nonzero an-
gle between the wavevector of the pattern and the undis-
torted director. (There is also a growing body of work on
homeotropically aligned convection, but that is beyond
the scope of this paper [2].)

One of the successes of electroconvection has been the
ability of theory to quantitatively describe much of the
pattern forming phenomena, despite the complexity of
the fundamental equations required to describe electro-
convection [16, 21, 22]. Because the system is anisotropic,
most of the material parameters are tensor quantities.
Therefore, a theoretical description of electroconvection
involves at least 12 different material parameters, many
of which are difficult to measure directly. Despite suc-
cesses in various regions of parameter space [16, 22], a

complete theory of electroconvection that explains all of
the phenomena has not been formulated. Two important
phenomena that are described separately are the travel-
ing rolls states found at low conductivity [7, 22] and the
abnormal rolls and bimodal varicose instability present in
stationary states [12, 16, 23]. Recent work in Rayleigh-
Bénard convection with nematic liquid crystals and in
electroconvection has provided a solid framework for a
qualitative understanding of the abnormal rolls and bi-
modal varicose instability. This work treats a twist mode
of the director as a dynamically active mode [23, 24].
However, more quantitative work, especially comparison
between experiment and theory, is needed in this area.

In this paper, we report results for electroconvection in
the liquid crystal, Merck N4. We present a phase diagram
for the material for use in guiding future experiments.
Many of the patterns that we observe are well-known,
and have been observed with other liquid crystals, such
as MBBA, Phase V, and I52. However, there are some
unique features of the phase diagram that suggest inter-
esting future experiments with this material. The rest of
the paper is organized as follows. Section II describes the
experimental set-up and techniques. Also, the physical
properties of the N4 cells are presented in Sec. II. In
Sec. III, we present the phase diagram and the different
patterns found for electroconvection in N4. Finally, Sec.
IV summarizes the results.

II. EXPERIMENTAL DETAILS

The N4 liquid crystal is a Eutectic mixture of two
azoxy compounds,CH3O-C6H4-NO=N-C6H4-C4H9 and
CH3O-C6H4-N=NO-C6H4-C4H9. Some of the known
properties of N4 are as follows. N4 has a clearing point
of 76 ◦C. Its dielectric anisotropy is ∆ε = ε‖−ε⊥ = −0.2,
and its optical anisotropy is ∆n = n‖ − n⊥ = 0.28
[25]. We measured K33 in a homoetropically aligned
cell specially built for this purpose. The critical volt-
age of the Fredricks bend transition was V F

c = 9.3 V at
30 ◦C. Since V F

c = π(K33/(εaεo))
1/2, this gives K33 =

15.5×10−12 N. This value is consistent with recent mea-
surements reported in Ref. [26]. They report a value of



2

K33 = 1.29 × 10−11 N and K11/χa = 2.0 × 10−4 G2m2

at a temperature of 25 ◦C [26]. The shear viscosity is
µ = 30 × 10−3 Pa s [25] at 20 ◦C, and the rotational
viscosity is α1 = 0.1204 Pa s [27].

For most of our experiments, N4 is doped with 0.1
wt% of tetra n-butylammonium bromide [(C4H9)4NBr].
The N4/bromide solution is stirred at room tempera-
ture for a few days to a week to ensure that the tetra
n-butylammonium bromide is completely dissolved. Be-
fore filling a cell, the N4 solution is filtered by a syringe
filter of 0.45 µm pore size.

The electrical conductivity of the cell is measured by
applying an ac voltage across the cell and measuring
the amplitude and the phase of the resulting current.
We used a current to voltage converter as described in
Ref. [28] and digitized the voltage signal in the com-
puter. The in-phase and out-of-phase components of the
resulting current were computed using sine and cosine
transforms. They provided both the resistance and the
capacitance of the cell. Knowing the geometry, the resis-
tance was converted to conductivity. In particular, given
our geometry, we measure the perpendicular conductiv-
ity, σ⊥. σ⊥ was temperature, and weakly frequency, de-
pendent. The conductivity of our doped N4 is relatively
high compared to other standard solutions used for elec-
troconvection. For comparison, a typical range for N4
is 3 × 10−7 ≤ σ⊥ ≤ 3 × 10−6 Ω−1m−1. For I52 [7],
1 × 10−9 ≤ σ⊥ ≤ 1 × 10−8 Ω−1m−1. For Merck Phase 5
[9], σ⊥ = 4.4 × 10−8 Ω−1m−1. Two weeks after the end
of the experiment, the conductivity measured in our cell
was σ⊥ = 1.3×10−6 Ω−1m−1 at 30 ◦C. By measuring the
conductivity as a function of time, and and accounting
for the small measured linear drift, we found that dur-
ing the experiment the conductivity was approximately
σ⊥ = 1.6 × 10−6 Ω−1m−1.

We also determined the various material parameters by
comparing the onset properties, Vc and θ, to numerical
calculations of the onset voltage [29]. Here Vc is the criti-
cal voltage for the onset of electroconvection and θ is the
angle between the roll wavevector and the undistorted
director at onset. To determine Vc and θ, the voltage is
increased quasistatically in increments of ∆V = 0.01 V.
After each step, the system is equilibrated for 300 s. Fig-
ure 1 is a plot of Vc and θ versus applied frequency at
T = 30 ◦C. The theoretical curves used the measured val-
ues of ǫ⊥ = 5.7, ǫ‖ = 5.5, and σ⊥ = 1.6× 10−6 Ω−1m−1.
For the other material parameters, we used Ref [23] as a
guide, and selected σ‖ = 2.03×10−6 Ω−1m−1. The values
for the elastic and viscous coefficients are listed in Table
I. For illustration, we show three theoretical curves that
correspond to different choices of the material parameter
K22 : 5.11 × 10−12, 5.21 × 10−12, and 5.31 × 10−12 N.
Varying K11 or K33 has similar effects. First, one ob-
serves that Vc is relatively insensitive to small changes
in many of the parameters. However, it provides strong
limits on the conductivity. However, θ is more sensi-
tive to the exact ratio of elastic constants and viscosi-
ties. Therefore, one can determine surprisingly good es-
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FIG. 1: (a) The onset voltage as a function of applied fre-
quency. (b) The critical angle θ as a function of applied fre-
quency. In both plots, the symbols are the measured points.
The solid curve is computed using the parameters in Table
I. The dashed curve uses the parameters listed in Table I,
but with k22 = 5.11 × 10−12 N. The dotted curve uses the
parameters listed in Table I, but with k22 = 5.31 × 10−12 N.

timates for all of the standard material parameters from
just these two curves and the measurement of a single
elastic constant and viscosity to set the scale. For com-
parison, Table I also includes the material parameters
reported in Ref. [30] for the liquid crystal Merck phase
5 (N4 is a mixture of 2 components among the 4 types
of molecules that are part of phase 5) and reported in
Ref. [23] for the liquid crystal N4. For the data reported
in Ref. [23], since only non dimensional relations were
used, we write them in terms of the measured value of
K33 = 15.5× 10−12 N and the value of α1 = 0.1204 Pa s
given in Ref. [27]. As shown in Table I, the only change
needed to the parameters as used in Ref. [23] is to use a
nonzero α1. In Ref. [23], α1 = 0 × 10−3 N, and we find
α1 = −39 × 10−3 N. This value is consistent with the
value given in Ref. [30].

Many of the transitions will be discussed in term of
the dimensionless control parameter ǫ = (V/Vc)

2 − 1,
where Vc is the threshold voltage at which that transition
from the uniform state to a pattern occurs. Vc is defined
separately for each applied frequency. The voltage steps
used to measure Vc correspond to steps in ∆ǫ < 0.003,
depending on Vc. The voltage is always either increased
monotonically from the non-pattern forming regime to
the chaotic regime, or decreased monotonically from the
chaotic regime to the uniform state.

A standard issue with electroconvection is the stability
of the samples. Because one purpose of this work is to
serve as a reference for the behavior of N4, it is important
to make a few comments on potential problems. Despite
being remarkably stable under most conditions, heating
solutions in the oven at 50 ◦C accelerated the dissolution
of the bromide but produced a darker yellow solution.
Even with filtering, dark dust was evident in the cells
made with this solution, and the electroconvection pat-
terns were not reproducible. Similar problems occurred
with solutions containing substantially higher bromide
content. A high bromide content also resulted in “frag-
ile” cells. These cells were susceptible to various prob-
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source Parameters

K11 (N) K22 (N) K33 (N)

Phase 5 9.8 × 10−12 4.6 × 10−12 12.7 × 10−12

N4 Ref. [23] 10.36 × 10−12 5.21 × 10−12 15.5 × 10−12

Figure 1 10.36 × 10−12 5.21 × 10−12 15.5 × 10−12

α1 (Pa s) α2 (Pa s) α3 (Pa s) α4 (Pa s) α5 (Pa s) α6 (Pa s)

Phase 5 −39 × 10−3
−109.3 × 10−3 1.5 × 10−3 56.3 × 10−3 82.9 × 10−3

−24.9 × 10−3

N4 Ref. [23] 0 × 10−3
−117.6 × 10−3 2.76 × 10−3 59 × 10−3 87.2 × 10−3

−30.4 × 10−3

Figure 1 −46 × 10−3
−117.6 × 10−3 2.76 × 10−3 59 × 10−3 87.2 × 10−3

−30.4 × 10−3

TABLE I: List of Material Parameters. The values in the row labelled Figure 1 were used to compute the theoretical curves in
Fig. 1.

lems whenever even a small dc voltage was temporarily
applied to the cell. Most of the problems resulted in the
cells being unusable for electroconvection studies. There-
fore, it is critical to take care with the doping procedure.

Another common issue in electroconvection is the “ag-
ing” of cells with time. As mentioned, we did observe a
slow decrease in the conductivity over time. The main re-
sult of this was slight increases in Vc at higher frequencies
as the cutoff frequency for the material changed. How-
ever, on the time scale of the experiments reported here
(one week) there was no observable change in the mate-
rial properties of the sample.

Commercial cells from EHC Ltd in Japan were used
for the studies reported here. The cells are composed of
two glass plates that are roughly an inch on a side. In the
center of each glass slide is a square electrode that is 1
cm x 1 cm. The glass slides are spaced 25 µm apart. The
surfaces of the electrodes are treated with a rubbed poly-
mer, and the direction of rubbing provides the axis along
which the director is aligned. We refer to that axis as the
x-axis, and the direction perpendicular to the rubbing is
the y-axis. The z-axis is perpendicular to the glass plate.
The cell is placed in an aluminum temperature controlled
block. Unless otherwise stated, the temperature was set
to 30 ◦C and was maintained constant at ±2 mK.

The optical system is described in detail in Ref. [17],
and for a detailed discussion of the analysis of the system,
see Ref. [31]. It consists of a light source and polarizer
below the cell and a λ/4 plate and second polarizer (an-
alyzer) above the cell. For all of our experiments, except
the observation of abnormal rolls, the polarizer is aligned
along the rubbing direction. Therefore, the cell is illumi-
nated with extraordinary light. After the cell, the light
goes through a λ/4 plate oriented at 45◦ with respect to
the polarizer, and the analyzer has the same orientation
as the polarizer. Without the λ/4 plate, this is the stan-
dard shadowgraph setup [32] used to observe the director
tilt in the x-z plane, i.e. the study of convection rolls pat-
terns. With the addition of a λ/4 plate at 45◦, the rolls
still appeared clearly, but one also can distinguish a di-
rector twist in the x-y plane. Depending on the sense of
the twist angle, a given region appears darker or lighter
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FIG. 2: Phase diagram of an N4 cell as a function of ǫ and
frequency. The solid line is ǫ = 0. The symbols indicate
the various transitions: (�) transition to oblique rolls, ei-
ther directly from the uniform state or from normal rolls; (+)
the bimodal varicose instability; (◦) the oscillatory bimodal
varicose instability; (N) transition to chaotic state; and (M)
skewed varicose instability.

[31, 32].
For a clearer observation of the twist mode in abnormal

rolls, ordinary light (i.e. light polarized perpendicularly
to the rubbing direction) is used. Again, the light coming
out of the cell passes through a circular analyzer, i.e. a
combination of a λ/4 plate oriented at 45◦ relative to
the polarizer, and an analyzer oriented perpendicular to
the polarizer direction. This setup is more sensitive to
the director twist profile [17], but the roll structure is not
visible [31]. In Ref. [31], the twist angle of abnormal rolls
is calculated with this setup. We use this configuration in
the last section to demonstrate the presence of abnormal
rolls.

Images are taken by a monochrome CCD COHU cam-
era with 640 x 480 pixels and digitized with an 8-bit
framegrabber. The resolution of the camera with this
setup of the lenses is 375 pixel/mm. The images repre-
sent an area 1.28 mm x 1.71 mm. Further image analysis
and calculations are done with Matlab.
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FIG. 3: Two images of the pattern at the onset of electro-
convection. The solid bars in the lower left corner represent
0.5 mm. (a) Onset of zig and zag rolls at Vrms = 9.53 V and
a frequency of f = 500 Hz. Also illustrated in the image is
the definition of the x and y-axis with respect to the undis-
torted director (rubbing direction). (b) Onset of normal rolls
at Vrms = 10.76 V and a frequency of f = 6500 Hz.

III. PHASE DIAGRAM

The phase diagram of N4 at 30 ◦C is presented in Fig. 2
in terms of ǫ versus frequency. As previously mentioned,
ǫ is defined separately for each frequency in terms of the
Vc at that frequency. The transitions were measured both
by stepping up the voltage from below the initial onset
to the fully chaotic regime and by stepping down the
voltage from the chaotic regime to below onset. Within
our resolution (∆ǫ ≤ 0.005), the transitions showed no
hysteresis.

As expected, for low values of the applied frequency,
the initial pattern is oblique rolls, and as the applied fre-
quency is increased, the transition is to normal rolls. The
frequency at which the initial transition switches from
normal to oblique is referred to as the Lifshitz point.
There were a number of different secondary bifurcations
that we observed. In the oblique roll state, we observed
both the bimodal varicose and skewed varicose instabili-
ties. This confirms the theoretical prediction that one can
have a transition from the bimodal varicose to the skewed
varicose instability. Further studies near the transition
point will be interesting. From the bimodal varicose
state, we observed the onset of the oscillating bimodal
varicose state, and a further transition to a chaotic state.
This chaotic state may simply be a more fully developed
oscillating bimodal varicose state. Finally, we observed
the standard transition from normal rolls to oblique rolls
via the zig-zag instability. Each transition will be dis-
cussed in more detail in the following paragraphs.

The initial bifurcation is to one of two states: oblique
rolls or normal rolls. Images of the two states are shown
in Fig. 3. The frequency at which there is a transition
from oblique rolls at onset to normal rolls is known as the
Lifshitz frequency. This can be seen in Fig. 1b. Figure 4
shows the evolution of the modulus of the wavevector
and the angle θ between the wavevector and the rubbing
direction for a frequency below the Lifshitz frequency
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FIG. 4: The wavenumber, k, of the zig and zag rolls (left-
hand axis, solid squares) and the angle of rolls with respect
to the undistorted director, θ, (right-hand axis, open circles)
is plotted as a function of ǫ for an applied frequency of 100Hz.
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FIG. 5: The wavenumber, k, of the zig and zag rolls (left-
hand axis, solid squares) and the angle of rolls with respect
to the undistorted director, θ, (right-hand axis, open circles)
is plotted as a function of ǫ for an applied frequency of 7500
Hz.

(100 Hz). Above the Lifshitz point, there is a transi-
tion from normal rolls to oblique rolls as the voltage is
increased. This is usually referred to as the zig-zag in-
stability [12, 16, 33]. The threshold voltage of this tran-
sition is determined by measuring the angle θ between
the wavevector and the rubbing direction. θ increases
continuously from zero as the voltage is increased above
the transition. Figure 5 shows both the magnitude of the
wavevector and the angle θ as a function of voltage for a
particular frequency above the Lifshitz point (7500 Hz).
Images of the transition are given in Fig. 6.

The bimodal-varicose instability has been observed in
thermoconvection in the nematic liquid crystal 5CB [24]
and in electroconvection in I52 [15]. In the latter work, it
was originally named the OS2 (oblique roll of the second
type) pattern. However, it was clarified in Ref. [16], and
shown definitely in [17] that the OS2 pattern is equiva-
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(a) (b) (c)

FIG. 6: Three images illustrating the transition from normal
rolls to zig-zags at an applied frequency of 6500 Hz The bar
in (a) is 0.5 mm and applies to all three images. (a) Vrms =
10.9 V (ǫ = 2.5× 10−4) (b) Vrms = 11.15 V ( ǫ = 1.5× 10−3)
(c) Vrms = 11.35 V (ǫ = 3.34 × 10−3)

(a) (b) (c)

FIG. 7: Three images illustrating the transition from zag rolls
to the bimodal-varicose state at an applied frequency of 2000
Hz. The bar in (a) is 0.25 mm and applies to all three images.
(a) Vrms = 8.0 V (ǫ = 2.59 × 10−2) (b) Vrms = 8.3V ( ǫ =
4.2 × 10−2) (c) Vrms = 8.4V (ǫ = 4.8 × 10−2).

lent to the bimodal-varicose state. The bimodal-varicose
instability is specific to oblique roll patterns. It is due
to the growth of a mode with a wavevector that is at an
angle of approximately 90◦ with respect to either the zig
or zag rolls that are present in the system.

We observed the bimodal-varicose at frequencies less
than 6500 Hz. Figure 7 illustrates this transition. As
observed in Refs. [15, 24], the bimodal varicose instabil-
ity nucleates in homogeneous regions that are all zig or
all zag and not from grain boundaries between the zig
and zag domains. Within a domain of zig or zag rolls,
it tends to first appear locally around defects of the pat-
tern. Then, by increasing the voltage, it fills the entire
cell.

In Fourier space, the bimodal varicose is detected by
a second peak that corresponds to the growing mode.
We will follow Ref. [24] and refer to this as the dual
wavevector. The onset of the bimodal varicose regime is
calculated by measuring the intensity of this dual peak.
The angle θbv between the bimodal-varicose wavevector
and the rubbing direction, and the angle θbd between
the bimodal-varicose wavevector and dual wavevector are
plotted in Fig. 8. As mentioned, θbd is slightly less
than 90◦. Both angles are decreasing functions of the
frequency.

In this paper, we distinguish between two transitions:
bimodal varicose patterns to oscillating bimodal-varicose
patterns and oscillating bimodal-varicose pattern to fully
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FIG. 8: The angle between the bimodal-varicose wavevector
and the dual wavevector, (open circles) and the angle between
the bimodal-varicose wavevector and the undistorted director
(solid squares) as a function of the applied frequency at the
onset of the bimodal varicose state.

(a) (b) (c)

FIG. 9: Three images taken 1.6 s apart illustrating the lo-
cally oscillatory bimodal-varicose state. The scale bar in
(a) is 0.25 mm and applies to all three images. The circle
highlights a region where the oscillation is particularly clear.
The applied frequency is 2000 Hz, and the applied voltage is
Vrms = 8.46 V.

chaotic patterns. The first transition occurs locally, prob-
ably near defects as with the initial bimodal varicose
transition. The local oscillatory bimodal-varicose is char-
acterized by regions where the relative amplitudes of the
zig (or zag) rolls and the dual roll oscillate in time. This
state is predicted to exist [16, 23], and has been observed
in thermoconvection [24] and in electroconvection [17].
The use of the λ/4 plate highlights this behavior because
the initial wavevector and its dual produce twists in the
director orientation as a function of z that are opposite
each other. Therefore, the overall intensity of the image
oscillates as the relative amplitudes of the original mode
and the dual mode oscillate. This is illustrated in Fig. 9,
where a circle highlights the oscillating region.

Upon increasing the voltage, the system enters a state
that appears to exhibit spatiotemporal chaos, i.e. irregu-
lar behavior in space and time. Figure 10(a) is an image
from this regime. One possible source of this behavior
is the existence of multiply frequencies in the pattern.
Even in the more regular oscillating state at lower values
of ǫ, there is evidence of the presence of more than one
frequency in the pattern. This is illustrated in Fig. 11.
A time series of the light intensity at a single point is
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(a) (b)

FIG. 10: Comparison of the fully chaotic regime reached via
the bimodal varicose instability with the state existing above
the skew-varicose instability. The scale bar in (b) is 0.25 mm
and applies to both images. (a) Chaotic state at a driving
frequency f = 1500 Hz and driving voltage Vrms = 8.4 V (ǫ =
6.63× 10−2). The bimodal nature is visible in the underlying
grid pattern. (b) State above the skew-varicose instability
for a driving frequency of f = 8000 Hz and driving voltage
Vrms = 15.8 V (ǫ = 3.7 × 10−2).

shown in Fig. 11a. One observes that the signal has a low
frequency, amplitude modulation, suggesting that there
are two frequencies producing a beating. Figure 11 is the
power spectrum for the time series given in Fig. 11a. The
peak for the dominate frequency (0.215 Hz) is obvious,
but there is also a peak at f = 0.293 Hz. This peak is
small, but the difference is consistent with the observed
beating. Currently, the existence of the second frequency
is not predicted by theory, and further work on this state
and the possibility of multiple frequencies as the source
of the chaotic state is needed.

The competition between the zig-zag and skewed vari-
cose instabilities were studied in detail in Ref. [33].
In this system, we are able to observe a different type
of competition: the predicted [12] crossover from the
bimodal-varicose instability at low values of the applied
frequency to the skewed-varicose instability. The skewed-
varicose instability is characterized by undulations in the
direction of rubbing as shown in Fig. 10b. These undula-
tions have a slow, not completely periodic, back and forth
movement. The number of undulations per area increases
dramatically with increasing ǫ. The difference between
the bimodal varicose (in which the pattern is dominated
by a grid-like appearance) and the skew-varicose is made
clear by comparing Fig. 10a and b. The transition be-
tween the two instabilities occurs around an applied fre-
quency of 7000 Hz (see Fig. 2). It is interesting to note
that as one approaches the transition from lower frequen-
cies, the range of existence of both the bimodal varicose
and the regular, oscillating biomodal varicose states de-
creases as a function of ǫ. The behavior right at the tran-
sition certainly requires further study, as it appears that
up to four transition are converging on a single point.

The transition from a bimodal varicose instability to a
skew-varicose instability is predicted to occur at ωτo =
2.8 (τo=εoε⊥/σ⊥) for the material parameters of Phase
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FIG. 11: (a) A time series of the light intensity at a single
pixel in the image. A low frequency modulation is evident
suggesting the beating of two frequencies. (b) Power spectrum
of the signal in (a). The two frequencies of 0.215 Hz and 0.293
Hz are indicated. Another peak occurs at 0.43 Hz, and is the
second harmonic of the main peak.

5 [12]. The Lifschitz transition is also predicted to oc-
cur at ωτo = 0.8. The material properties of N4 are
close to that of Phase 5. In our experiments, the Lifs-
chitz and bimodal varicose - skewed varicose transitions
occurred respectively around 2000 and 7000 Hz, which
corresponds to ωτo of 0.4 and 1.4 respectively. There is a
factor of 2 between the predicted transition and the mea-
sured transition, but the very interesting point is that
the ratio between the frequency of transition bimodal
varicose/skewed varicose and the Lifschitz frequency are
exactly the same in the experiment and in the theory.

We performed some experiments in cells with signifi-
cantly lower conductivity. For these cells, we were able to
access the abnormal roll state [12, 13] in a very small re-
gion of parameter space. This states occurs at high values
for the applied frequency before the normal rolls experi-
ence the skewed varicose or zig-zag instability. The state
corresponds to normal rolls in which the director develops
a twist in the x-y plane. This twist is detectable using the
λ/4 plate and analyzer. To highlight the twist mode, the
polarizer is set perpendicular to the undistorted direc-
tor. Therefore, the rolls are no longer imaged. When the
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(a) (b) (c)

FIG. 12: Three images of the same abnormal roll pattern
at an applied frequency f = 8000 Hz and applied voltage
Vrms = 42.6 V. The bar in (a) is 0.25 mm and applies to
all three images. (a) Image taken with the polarizer perpen-
dicular to the undistorted director and with the λ/4 plate
at +45◦. (b) Image taken with the polarizer perpendicular
to the undistorted director and with the λ/4 plate at −45◦.
Note, regions that are dark in image (a) are now light and
vice versa. (c) Image taken with polarizer parallel to the
undistorted director.

λ/4 plate is oriented at +45◦, the regions with a positive
twist angle appears darker, the region with a negative
twist angle appears lighter. When the λ/4 plate is ori-
ented at −45◦, the effect is reversed. This is illustrated
in Fig. 12. For Fig. 12c, the polarizer is rotated parallel
to the undistorted director so that the rolls are visible.
As the abnormal rolls have been heavily studied in other
liquid crystal systems [12, 13], we merely report their
existence in this paper.

IV. SUMMARY

We provide a comprehensive overview of the phase di-
agram for electroconvection in N4 as a function of the
applied voltage and frequency. We find that a compar-
ison of Vc and θ with theoretical curves based on the
standard model of electroconvection [21] provide a good
estimate of the material parameters for this liquid crys-
tal. Also, the qualitative features of the secondary bifur-
cations are in agreement with extensions to the standard
model that include a twist mode [16]. Furthermore, this
phase diagram will serve as a nice quantitative test of
this extended model, as the parameters are well deter-
mined by the onset behavior. It should be noted that
the work in Ref. [17] was also in qualitative agreement
with predictions from calculations using an active twist
mode. However, there were quantitative disagreements
due to complications from an initial Hopf bifurcation.
Such complications do not exist for this system; however,

two issues remain unresolved: the two frequencies in the
oscillating bimodal and the factor of two between the
predicted and observed value for the Lifshitz frequency
and the value for the transition from bimodal varicose to
skew varicose.

Though many of the patterns in electroconvection in
N4 have been previously identified, the phase diagram
presents some interesting features. First, some of the
open questions that have originated in the theoretical
analysis of the twist mode and abnormal rolls include: (a)
the possibility of hysteresis as a function of applied fre-
quency between abnormal rolls and oblique rolls [12] and
(b) the nature of patterns near the bimodal varicose to
skew varicose transition point. In this system, the transi-
tion from the bimodal varicose to the skew varicose insta-
bility is accessible. A detailed study of this region will be
the subject of future work. Also, at high enough temper-
atures, abnormal normal rolls were observed. Therefore,
under the right conditions of temperature and doping,
the abnormal rolls to oblique roll transition as a function
of frequency can be studied.

Finally, the state of apparent spatiotemporal chaos
that exists at low frequency deserves further study, es-
pecially the existence of two frequencies. Other issues
to explore include: (a) the connections between the lo-
cal, oscillating bimodal-varicose state and the “chaotic”
state; (b) the possibility of a transition to spatiotemporal
chaos that involves multiple frequencies; and (c) the role
of all three modes (original wavevector, dual wavevector,
and twist mode) in the dynamics of this state. Also of
interest is the issue of controlling, or eliminating, this
state of spatiotemporal chaos. For the case of travel-
ing rolls, temporal modulation is known to be able to
eliminate spatiotemporal chaos by coupling the left- and
right- traveling rolls [34]. Therefore, it will be useful to
explore the impact of temporal modulation on this state,
for which a fundamental frequency exists, but for which
the rolls are not traveling rolls.
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