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Abstract. An infectious disease may reduce or even stop the exponential growth 

of a population. We consider two very simple models for microparasitic and 

macroparasitic diseases, respectively, and study how the effect depends on a 

contact parameter K. The results are presented as bifurcation diagrams involving 

several threshold values of K. The precise form of the bifurcation diagram 

depends critically on a second parameter ~. measuring the influence of the 

disease on the fertility of the hosts. A striking outcome of the analysis is that for 

certain ranges of parameter values bistable behaviour occurs: either the popula

tion grows exponentially or it oscillates periodically with large amplitude. 
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1 Introduction 

One of the aims of mathematical modelling in population dynamics is to find a 

causal relationship between phenomena and the underlying mechanisms. We 

want to understand how mechanisms, which act in and between the individuals 

of a population, determine size and structure of the population as a whole. This 

aim justifies to some extent the study of simple and consequently unrealistic 

models, where "unrealistic" means that they lack predictive value. Simple and 

mathematically tractable models in terms of a few variables allow us to develop 

some idea of the way in which properties of individuals (as incorporated in the 

model structure and summarized in parameters) influence the dynamical be

haviour of the system. The investigation of the similarities and differences in 

dynamical behaviour of models which are identical in all but one structural 

component may yield insight in the influence of the biological mechanism 

described by this particular component. 

In this paper we study the dynamics of two simple epidemic models. One of 

them is a model for microparasitic diseases of the S-/ type, the other one is a 
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model for a host-parasite system. We consider a population which grows 
exponentially in the absence of the disease. We are interested in the regulation 
problem: how does the disease affect the growth rate of its host population? So 
we look at a time scale at which the demographic processes as well as the disease 
transmission are important and we want to know what kind of dynamical 
behaviour can result from their interaction. Of course the answer depends on 
many parameters. Our strategy will be to look for patterns of changes in 
dynamical behaviour as a contact rate parameter, which measures the infective 
strength, is increased. Our results will, in the spirit of May and Anderson [l, 16] 
and Busenberg and van den Driesche [5], identify various thresholds for this 
contact rate parameter. Moreover, we will find that the pattern of changes of 
dynamical behaviour for diseases which have a strong influence on fertility is 
different from that for diseases which have no or only a minor influence on 
fertility. Among other things this clarifies in a much simpler context some 
observations of Kretzschmar [ 13] about subcritical bifurcations and the possibil
ity of bistable behaviour. 

For populations which possibly grow beyond every bound the use of strict 
mass action kinetics is questionable. Some authors dealing with models for 
STD's (sexually transmitted diseases) or worm diseases have introduced homoge
neous models, i.e. models in which the total population size is but a scaling 
variable (see [7, 8, 9]). Such models allow for exponential solutions, as we will 
see in detail below. Of course homogeneous contact rates are debatable at low 
population sizes and hence for the exponential solutions to be meaningful it is 
required that the exponent is positive. Another class of models involves a contact 
rate which is like the strict law of mass action at low population densities, but 
essentially homogeneous for high population densities. Such a contact rate can 
be introduced as a phenomenological description (see Dietz [ 6]) or as resulting 
from application of a time scale argument to a free living infective stage ([ 17], 
also see Subsect. 2.2 below). The models now allow the existence of endemic 
steady states. One of our aims in this paper is to demonstrate how exponential 
solutions with positive exponents occur as asymptotic solutions of the second 
class of models and how they connect to the steady states when the contact rate 
parameter varies. 

We will first introduce the models and explain the biological meaning of the 
parameters. Next we will summarize the results for the two models in biological 
terms. Finally we are going to give a unified formulation for the two systems of 
model equations which we then analyse mathematically. We conclude with some 
remarks about the biological interpretation of the results. 

2 Modelling microparasitic and macroparasitic diseases 

The distinction between micro- and macroparasites was introduced by Anderson 
and May in two articles published in Nature in 1972 [2, 17]. They classify 
diseases that are caused by a virus or by bacteria as microparasitic and diseases 
caused by helminths or arthropods as macroparasitic diseases. Epidemiologically 
the main difference is that in microparasitic diseases possible reinfection of an 
already infected individual plays no role in the disease dynamics, while in 
macroparasitic diseases the number of reinfections, or, more precisely, the 
number of parasites per host, has to be taken into account when modelling the 
disease. 
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The main common features of the models introduced here are 

1. Both models will allow for an effect of the disease on the fertility of the 
infective individuals. 

2. T~e in~ection rate in both models will be an asymptotically homogeneous 

funct10~, Le. for large population sizes the infection rate will be approximately 

p~oportronal to the f~action of infectives in the total population ( microparasitic 

diseases) or proportional to the mean parasite load of the host population 

( macroparasi tic diseases). 

2.1 Model I: Microparasitic diseases 

The model we introduce for microparasitic diseases is a S-/ model, i.e. the 

population is divided into the class of infectives I and the class of susceptibles 

S. We take the following parameters into account: 

{3: per capita natural birth rate 

µ: per capita natural death rate 

cc additional mortality rate caused by the disease 

~: parameter describing the reduction of fertility of an infected individual due to 

the disease (0 ~ ~ ~ 1) 

1c: contact rate between infectives and susceptibles. 

<p: infection rate (to be specified). 

The reduction of fertility in the population due to the disease is 

incorporated into the model by describing its effect on pairs within the popula

tion, i.e. by including a very crude description of pair formation. (For a 

discussion of pair formation models see [4, 7, 18].) A pair can be formed 

by two susceptibles, a susceptible and an infective, or two infectives. We 

assume random mixing. The rate of producing offspring is then reduced by the 

factor ~ or ~ 2 , respectively, depending on whether one or both partners of a 

pair are infective. Thus the presence of infectives also reduces the fertility of 

susceptibles. 
The model is represented by the system of ordinary differential equations 

dS S 2 + 20S + ~ 2 1 2 

- = /3 - 1iS - <.pS, 
dt I+ S 

di 
- = <pS - 1d - :J.l. 
dt 

( 2.1) 

The infection rate <p is described by a function which displays a saturation effect 

accounting for the fact that the number of contacts an individual can have with 

other individuals reaches some finite maximal value due to the spatial or social 

distribution of the population and/or limitation of time ( cf. the derivation of a 

Holling type II functional response in predator-prey models). More precisely, we 

take (P as 

d 
<.p = ' 

c+S+l 
(2.2) 
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where c is a constant. Thus model I is given by the system 

dS = R s 2 + 2~1s + ~ 1 1 2 _ s _ KIS 

dt " I + S µ c + S + I ' (2.3) 

dl KlS 
dt c + S + I - µI - al. 

2.2 Model II: Macroparasitic diseases 

The model for macroparasitic diseases that we want to discuss is based on a 
model that was introduced by Anderson and May in 1978 [I, 16]. It describes the 
dynamics of a host population N and a parasite population P. In order to 
determine how the parasite load of the host influences the dynamics of the 
populations one starts out with a more complicated model which takes "worm
load" structure into account and then simplifies the system by making an 
assumption about the distribution of parasites on the host population. Anderson 
and May showed that data concerning number of parasites per host can be fitted 
very well with a negative binomial distribution. Therefore in the model one 
assumes that the parasites are distributed on the hosts according to a negative 
binomial distribution with the mean given by the mean parasite load P / N and a 
parameter k describing the so-called "clumping". A small k indicates high 
clumping, i.e. few hosts carry a large part of the parasites, while a large part of 
all hosts have only very few parasites. Fork--> w the distribution approaches a 
Poisson distribution, i.e. the parasites are randomly distributed over the host 
population. In the original model by Anderson and May the parasites only 
influenced the mortality of the host, not its fertility. In a variant Anderson and 
May [16] also discussed influence on fertility, but used an approach that is 
different from the one introduced here, which follows Dietz and Hadeler [ 8, 9] 
and Kretzschmar [ 13]. The following parameters occur in the model: 

P: per capita natural birth rate of hosts 
µ: per capita natural death rate of hosts 
a: additional mortality rate caused by one parasite 
~: parameter describing the reduction of fertility of an infected individual due to 

one parasite (0 ~ ~ ~I) 

K: contact rate between hosts and infective stages of the parasites 
c.p: infection rate (to be specified) 
a: death rate of parasites 
k: clumping parameter. 

The model is derived from the infinite system of differential equations which 
describes an immigration-death process of parasites on the hosts. If we denote 
for i E N0 by ni (t) the number of hosts which carry i parasites, then the following 
system of equations describes birth and death of hosts and immigration and 
death of parasites: 
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Now we define 

~I X 

N(t) == I n; and P(t) == L in; 
i=O i=O 

( 2.5) 

and derive the following equations from (2.4) 

d x 

dt N = - µN - ry_p + /3 I n;~'. 
l=O 

d ~ 
( 2.6) 

dt p = -(µ + CJ)P + cpN - rx. L i2n;. 
l=O 

In order to express the sums in Eqs. (2.6) in terms of N and P we assume that 

t~e pa_rasit.es _are .distri?uted on the host population according to a negative 

bmom1~l d1stnbi:t10n with mean P / N and a "clumping parameter" k. We use the 

generatmg function of the negative binomial distribution to deduce that 

" . ( kN )k 
;~on;~'= N ( 1 - ~)P + kN ' 

I z n; = N - + -- - . >: ·2 (p (k + 1 )(P)2
) 

i=O N k N 

This leads to a closed system of equations for N and P: 

-N= - N-rxP N d ( kN )k 
dt µ + /3 ( 1 - ~)P + kN . 

d (p (k + l )(p)2
) -P= -(µ+CJ)P+cpN-1Y.N -+ -- -

dt N k N . 

( 2.7) 

We now also want to express the infection rate <fJ in terms of N and P. In order 

to do that we have to take the indirect transmission of parasites into account. If 

we denote by W(t) the number of free living larvae of the parasite, which are 

infectious for the host, we can describe the dynamics of W(t) by the equation 

d 
- W=KP-q;N-1·W. 
dt 

( 2.8) 

This means that the production of larvae is proportional to the number of 

parasites, the larvae are taken up by the host with rate <p and die with rate /'. 

Furthermore we assume that cp = 0 W with some constant 8. Now we use a time 

scale argument. We know that for many parasitic diseases the life span of the 

larvae is very short compared with the life spans of hosts and adult parasites. 

This means that on the time scale that we are interested in the larvae population 

is always practically at equilibrium. Consequently we put 

Defining c == y /0 we arrive at 

KP 
W=--. 

i' + iJN 

KP 
(p =---, 

c +N 
(2.9) 
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and the model is now given by the system of equations 

dN ( kN )k 
dt = -aP - µN +{JN (1 - ~)P + kN ' 

dP ( KN (k + 1) p) - = p -- - (µ+a+ a) - a --- . 
& c+N k N 

(2.10) 

For~= 1 this reduces to the model that was investigated by Anderson and May. 
The wormload models of May and Anderson and of Dietz and Hadeler 

differ in several respects. May and Anderson have a saturating infection rate, 
they use the "negative binomial assumption" and they pay hardly any attention 
to effects on fertility (in fact their approach to include effects on fertility in an 
"additive" way may lead to the absurdity of a negative birth rate). Dietz and 

Hadeler take a homogeneous infection rate, they study the full model, i.e. the 
infinite system of differential equations, even including age structure of the host 
population, and they consider "multiplicative" effects on fertility. One of the 
aims of our exercise with the hybrid version (2.10) is to be able to disentangle 
how differences in modelling and differences in qualitative behaviour are related 
to each other. 

In this paper we especially concentrate on the contact rate K and on the 
parameter ~- More precisely, we investigate the bifurcation diagram with K as a 
parameter and how this bifurcation diagram depends on ~. 

3 Patterns of dynamical behaviour 

In this section we summarize the results for models I and II, respectively, and 
give a biological interpretation of the results. The mathematical proofs are 
delayed to Sect. 4. Throughout this paper we assume that f3 > µ, which means 
that the population will grow exponentially in the absence of the disease. 

3.1 No influence on fertility 

We first discuss the dynamics for the case ~ = 1, i.e. for the case that the 
disease has no influence on the fertility of the infectives/hosts. 

For both models the qualitative behaviour of the solutions depends on the 
value of the parameter K, which can be interpreted as a parameter describing 
the contact rate between infectives and susceptibles, or between hosts and 
parasites, respectively. We can compute three threshold values K0 , K 1, K2 for 
which the qualitative behaviour changes. 

I. For 0 ~ K <Ko the disease dies out for t--+ co and the population of suscepti
bles/hosts eventually grows exponentially with growth rate f3 - µ. 

2. For Ko< K < K 1 both the populations of susceptibles/hosts and infectives/ 
parasites eventually grow exponentially, the susceptibles/hosts with the rate f3 - µ, 

the infectives/parasites with a smaller rate. Here we have a "dilution effect": 
although the disease does not die out, the fraction of infectives in the total 
population (model I) and the mean parasite load of the hosts (model II) tend to 
0. 
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3. For K 1 < K < K2 both populations eventually grow exponentially with the 
same rate, which is now smaller than f3 - µ. This means that in this case the 
disease has a long term influence on the demographic process of the population. 

4. For K > K2 there exists an asymptotically stable equilibrium. In other words, 
the disease has the ability to regulate the population to a steady state, in which 
the disease is endemic. For model I this threshold only exists, if the additional 
condition f3 - µ < et. is fulfilled. 

For model I the threshold values can be calculated as 

Ko=µ +et., 

K1 = {3 +a, 

a(µ +a) 
K2 = µ + C( - j3 . 

For model II we get the threshold values: 

Ko=µ+ a+ et., 

K 1 = f3 + a + a, 

K2 = µ + O' + C( + (/J - µ)(k; l). 
One can easily calculate and interpret these critical values on the basis of the 
following formal arguments. (We concentrate on model I.) 

Assuming that S -+ oo and I/ S -+ 0 for t -+ oo we find that asymptotically the 
second equation of (2.3) reduces to 

di 
dt ~ (K - µ - ct.)f. 

Hence I will grow if and only if K > Ko = µ + a, where K is the asymptotic per 
capita "birth" rate of I and µ +et. the death rate. Under the same conditions the 
first equation of (2.3) reduces to 

dS 
dt ~ (/3 - µ)S, 

so S will grow asymptotically with rate f3 - J-t. These findings are consistent with 
the assumption I/ S -+ 0 provided 

K - µ - C( < /3 - µ, i.e. K < K I = f3 + a. 

For larger values of K we may make the ansatz that l/S-+ fJ > 0, while still 
assuming that S-+ oo. Then (2.3) is asymptotically decoupled: 

dS = (/3(1 + 8) - µ - ~) S 
dt 1+8 ' 

di= (-K -µ - C() I. 
dt I+ 0 

Consistency with l/S-+ 0 requires that 

KO K 

/3( I + 8) - µ - 1 + fJ = 1 + 0 - µ - a 
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or, in other words, that 

K-!1.-/3 
()= f3 . 

The common growth rate of S and I then equals 

IC{3 
---µ-a. 
K -rx 

Consistency with S ~ oo requires this to be positive, or 

a(µ+ rx) 
K < IC2 = R 

µ+rx-p 

whenever f3 < µ + a. 
The calculations for model II follow the same pattern, only the details differ. 

3.2 Influence on fertility 

If we allow for the disease to have a strong negative influence on the fertility of 
the infective individuals, the spectrum of possibilities for the dynamic behaviour 
of the solutions becomes richer and the pattern of changes in qualitative 
behaviour with increasing K is different. Both for models I and II it will be shown 
that there exist values er and eP (the index T refers to "turning point" and the 
index p to "periodic solution"), so that 

for e >er the pattern is the same as described in Subsect. 3.1, 
for ep < e < er there exists an additional threshold Value Kr marking the 
beginning of a region of K-values for which there is bistability, 
for Q < e < ep there exists, in addition, a threshold value Kp marking the 
beginning of a region of IC-values for which stable periodic solutions occur. 

More precisely, for e <er the qualitative behaviour of solutions depends on 
the parameter IC as follows: 

1. For 0 ~ K < min(K0 , Kr) we have the same as in Subsect. 3.1, case I. 

2. When Kr >Ko we have for "o < K < Kr the same situation as in Subsect. 3.1, 
case 2. 

3. When Kr < 1e0 then for Kr < K <Ko either the disease dies out or both 
(sub)populations grow with the same reduced growth rate. It depends on the 
initial condition which of the two possibilities actually occurs. 

4. For max(K0 , Kr) < K < 1e 1 the Jong term dynamical behaviour depends on the 
initial conditions. For certain regions of initial conditions we again have the 
"dilution effect": exponential growth of both (sub)populations, but the fraction 
of infectives/mean parasite load goes to 0. For other regions of initial conditions 
the long term behaviour is exponential growth with the same reduced rate for 
both (sub )populations. 

5. For K > K2 there exists an equilibrium solution, which is a stable node or 
Spiral for all IC > IC2 in the Case e > ep, While it is Unstable for all IC > IC2 in the 
case e < eP. For e < ep, i.e. if the equilibrium is unstable, there exists a stable 
limit cycle for K > KP (the index p stands for "periodic"). This means that the 
population sizes of susceptibles/hosts and infectives/parasites oscillate in time. In 
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numerical solutions we could observe an extreme "outbreak" behaviour, i.e. the 
number of infectives/parasites is almost 0 until the susceptible/host population 
has reached some threshold size. Then a huge outburst of the infective/parasite 
population occurs, which quickly breaks down again. 

6. In contrast to Subsect. 3.1 we do not necessarily have K 1 < K 2• If K 2 < K 1 we 
have coexistence of a stable equilibrium or a periodic solution and the "dilution 
effect" situation. It again depends on the initial condition, whether the disease is 
able to regulate the population to a steady or periodic state in which it is 
endemic, or whether it is outgrown by the rapid instream of susceptibles. 

These results are summarized in the bifurcation diagrams in Subsect. 4.4. 
The thresholds Ko and K 1 for both models are the same as in Subsect. 3.1. 

Furthermore we get the following thresholds: 

For model I: 

with (we write Y/ = 1 - ~) 

di= 2~2 (211 +~ -J(211 +~)2-411 2 (1-~)). 
The threshold KT for model I is given by 

KT = IX + 4/J~( J - ~). 

Note that KT-+ IX for ~ --+ 0, so KT can indeed be smaller than K0 . The thresholds 
for ~ are given by 

~T=~ and ~P = 1-Y/P' 

where Y/p is the unique solution in [~, 1] of the cubic equation 

4/317 3 - 8/317 2 + ( 4/3 - 21X - µ)17 +IX= Q. 

It is not possible to calculate KP explicitly. 

For model II we get the following thresholds: 

K1 = µ + (J + IX + d2 IX e ; J } 

with a positive constant d2 , which again depends on the param7t~rs of the. model 
(except K). In this case, however, we cannot write .d?wn an exphc1t exp~es~10~ for 
d2 • Similarly KT and KP cannot be calculated exphc1tly. The threshold ST is given 

by 

IX 

~T = J - /Jk' 

while ~ cannot be calculated explicitly. 
Ag;in we can derive and interpret the critical parameter values by perfom1-

ing formal calculations. 
When we assume that Jf S--+ () and S--+ oo we find, in model I, that the 

asymptotic growth rates of S and I are, respectively, 

KB 
/3f(B, ~) - µ - 1 + 8' 
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and 

where 

IC 

l+e-µ-ex, 

f<e. e) ·= < l 1++e~)2 

0. Diekmann and M. Kretzschmar 

describes the apparent per capita birth rate of susceptibles. Increasing () now has 

two opposite effects: more individuals contribute to reproduction, which makes 
f larger, but the average per capita birth rate of all individuals decreases when 

e < 1, which makes f smaller. It depends on e. which effect is more important. 
Since 

we conclude that 

of 
o() > 0 for e ~ ! and () > 0, 

whereas for e < ! we have 

of l -2e 
oe < o for e < -e - , 

and 

Of l - 2e 
oe > o for e > -e- . 

Define e T = 1- The minimum value off as a function of () is 

j(O, e) = 1 for e ~er. 

f (1 ~ 2e, e) = 4e(l - e) for e <er· 

Equality of the growth rates of S and I requires 

K =ex +Pi((), e). 

Define 

IC1 =ex + {Jf(O, e) =ex+ fJ 

Kr =ex + p minf =ex + 4Pe< l - e). 

We conclude that fore< er and Kr < K < K1 two values of() lead to consistency 
(see Fig. l ). 

Rather than solving for e, given K and the other parameters, we may use () 

as a parameter which determines K. Along the curve IC= ex+ P/(8, e) the 
common growth rate of S and I is given by 

ex +PI (8, e) 
1 + () - µ - ex. 
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8r=(1-2£)1£ ------

Fig. 1 
K 

One easily verifies that this expression defines a decreasing function of 8 which 

equals [J - µ > 0 for e = 0 and tends to [J~ 2 - µ - a for 8 _... oo. So provided 

/3~2 
µ+a<l, (3.1) 

there exists precisely one value of e, say e2 , for which the growth rate equals 

zero. The corresponding value of K is, by definition, K 2 • Since finding 82 amounts 

to solving a quadratic equation, one can derive an explicit expression for Kz as 
given above. 

Since of/o~ > 0 we infer that 82 is an increasing function of(. On the other 

hand, 8T = ( 1 - 2~) I~ is a decreasing function of (. By definition (p is the value 

of ( for which 82 = eT. Hence ~p has to be a solution of 

Cl. +fJ!(~, ~) 
1 - 2~ - µ - Cl. = O, 

l+--
~ 

which can be rewritten as a cubic equation in (. 

The condition ( 3.1) can be interpreted as follows (as was first pointed out by 

Andreasen [3]): in a population consisting of infectives only, the expected 

number of offspring of any newborn individual which is infected immediately at 

birth, is given by [J~ 2 /(µ +a). Clearly this is a lower bound for the expected 

number of offspring in any other situation. For a population to be at equilibrium 

it is necessary that the expected number of offspring equals one. Combining these 

observations we find that the existence of an equilibrium requires condition ( 3.1 ). 

4 Transformation, unification and analysis of the model equations 

In this section we want to introduce a unified formulation for models I and II 

and analyse the dynamical behaviour of the resulting system. We begin with a 

transformation of the model equations into different coordinate systems. For the 

transformation to be useful, it is essential that the birth term B = B(S, I) is 

homogeneous of degree one, i.e. B(aS, al) = aB(S, /), and that the force of 

infection equals the product of the proportion of infectives /(/ + S) and a factor 

depending on total population size I+ S only. 
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In model I we define 

1 I 
X:=--· 

I +S' 
y:=--. 

l+S 

The transformed system of equations for model I is 

dx 
dt = x(µ + ay - {3(1 - (1 - ()y)2), 

dy = y ( (_1e _ _ a)(l _ y) _ {3(1 _(I _ ()y) 2). 

dt \~x + 1 

We are interested in the dynamics of this system in the region 

M := { (x, y) E IR2: x ~ 0, 0 ~ y < b} 

with b = 1. 

For model II we take the following transformation 

1 p 
X==N, y:=N. 

The transformed system of equations for model II is given by 

dx ( ( k )k) 
dt = x cxy + µ - f3 ( 1 - ()y + k ' 

;; = y Cx: 1 - (()+ex) - ~ y - f3(c1 - ~y + k J). 

( 4.1) 

( 4.2) 

( 4.3) 

( 4.4) 

For this system we are interested in the dynamics in the whole positive quadrant, 

so now we define 

M := {(x, y) E IR2: x ~ 0, 0 ~ y < b} 

with b = oo. In ( 4.2) and ( 4.4) all parameters are nonnegative and f3 > µ. 

We use the following unified notation 

dx 
dt = xF(y), 

dy 
dt = yG(K, x, y), 

( 4.5) 

with (x, y) EM, K ~ 0. We assume that F and G are continuously differentiable 

in all variables. 

We will proceed as follows: We first state a set of conditions which are 

satisfied by the special functions F and G defined by the model equations ( 4.2) 

and ( 4.4 ). We then study for fixed K the steady states of the transformed system 

and their local stability and we give a catalogue of possible phase portraits of the 

system. Then we show how with changing K the phase portrait changes with the 

bifurcation of steady states and periodic solutions. In Subsects. 4.1-4.3 the 

parameter ~will be fixed and suppressed in the notation, while in Subsect. 4.4 we 

will investigate how the dynamics depends on ~- Finally in Subsect. 4.5 we 

demonstrate how exponential solutions of the original model equations are 

related to steady states of the transformed system. 
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4.1 Conditions on F and G 

We assume that F and G satisfy the following conditions: 

dF 
(i) -d > 0; 3!ji E [0, b): F(ji) = O 

y 

I 
(ii) oG 

ox < 0 and there exists a unique function g = g(K, y) 

such that G(K, g(K, y), y) = 0 

( iii) oG 0 G(O -;--- > , , x, y) < 0 V(x, y) E M. 
uK 
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( 4.6) 

We will alternatively use the notation F' for the derivative of F and G,, G" G, 
for the partial derivatives of G. · 

It is easy to see that the transformed systems ( 4.2) and ( 4.4) fulfil conditions 
l(ii), (iii) (see Appendix). For model II condition I(i) is always fulfilled, provided 
/3 > fl. For model I the condition y E [O, b) leads to the condition 

/3~2 
--<I 
µ+a 

as a necessary condition for the existence of a steady state. 
The isoclines dx/dt = 0 are the y-axis and a straight line given by y = y. The 

isoclines dy /dt = 0 are the x-axis and the graph of g, where g is the solution of 
the implicit equation G(K, x, y) = 0. Condition l(ii) shows that G(K, x, y) < 0 for 
x > g(K, y), and G(K, x, y) > 0 for x < g(K, y). The graph of g does not necessar
ily intersect the region M, in fact condition I(iii) ensures that it does not for 
K = 0. But the restriction of our attention to M was only motivated by the 
biological interpretation, while mathematically we can study system ( 4.5) in IR2. 

It is easy to see that condition I( ii) holds in IR2 for the functions considered in 
( 4.2) and ( 4.4). 

We may get three types of steady states: 

I. The trivial steady state x = 0, y = 0. 

2. Nontrivial steady states (0, y*) on the y-axis determined by g(K, y) = 0. 

3. A unique positive steady state given by y = y and .;; == g(k, y). 

The following set of conditions yields constraints on the form of the function 
g and on how this form depends on the parameter K. 

{ 

( i) g" is independent of K. 

(ii) i.-(K, y) as a function of y has at most one zero. When 
II the zero exists, it corresponds to a local maximum of g. 

(iii) Jim g(K, y) < 0. 
y-h 

( 4.7) 

Note that these assumptions imply that g can have no local minimum. 

4.2 A catalogue of phase portraits 

In this section we want to study which phase portraits are possible for system 
( 4.5) under the conditions stated in Subsect. 4.1. We consider K as fixed and 
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consequently suppress it in the notation of this section. We first show that 

positive orbits are always bounded. 

Proposition 1 The set M is positively invariant and there exists a bounded region 

Q which absorbs all orbits. When g has no zero to the right of y all orbits converge 

to the segment of the y-axis between 0 and ji. When g has no zero at all, (0, 0) is 

globally asymptotically stable. 

Proof The invariance of M is a direct consequence of assumption II(iii). Now 
choose a ji with ji < ji < b, such that g(y) < 0 for y ~ ji. So along the straight line 

y = ji we have G(x, ji) < 0. Choose 

x > sup g(y). 
O\!!y<b 

Define c > 0 by 

-c =max{G(.X,y):ji ~y ~Y}. 

Let S denote the semi-infinite strip 

S - {( )· ::>.: - - ~ ~ -} - x, y . x :;:::: x, y ~ y ::,;:: y . 

Assumption I(ii) implies that G(x, y) ~ -c for (x, y) ES. Denote by t i--> y(t) the 
trajectory with y(O) = (x, ji). Since F(ji) > 0 and G(x, ji) < 0 the trajectory y 

enters the strip S. As long as it stays in S we have 

dy dx 
dt ~ - cy and dt > 0. 

So in finite time y hits the boundary y = ji of S, say at x = x. 
Consider the region Q bounded by the x- and y-axis, the straight lines x = x 

and y = ji, and the part of y inside S. Note that y stays in Q after hitting (x, ji), 
since dx/dt < 0 for y <ji. So the boundary segments of Qare either invariant or 
such that the vector field points inward along them. We conclude that Q is 
positively invariant (see Fig. 2). 

x !------+--

x 

Fig. 2 
y y 

Next consider any trajectory starting in S but not in Q. By the same 
argument as before it hits the line y = ji in finite time, somewhere above x. It 
then enters the region { (x, y): x > x, 0 < y < ji}, where dx /dt < 0 and dy /dt < 0. 
Inevitably it then enters in the long run Q at the boundary x = x. 

Finally, consider any trajectory starting with y > ji. Using now c defined by 

-c = sup{G(O, y): ji ~Y < b} 
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~nd the ~a.me a:gu1!1ent as .be~ore we conclude that the trajectory has to hit the 

!me Y = .Y m finite time. So it either enters Q, and we are ready, or it enters Sand 

we can mvoke the result above that trajectories starting in S have to enter Q. 
W~en g(y) < 0 for ally > ji we find, using exactly the same arguments, that 

th~ stnp {(x, y): x ~ 0, 0 ~ y < ji} is positively invariant and absorbing. In the 
stnp we have F(y) < 0 and consequently x(t) ->O fort-> oo. When g has no zero 
at all, then dy /dt < 0 and consequently y(t) -> O as well. 
This completes the proof. o 

W~ now analyse the local stability of the different types of steady states. The 
Jacobian of system ( 4.5) is given by 

J _ ( F(y) xF'(y) ) ( 4.S) 
(x.y) - \yGx(X, y) yGy(X, y) + G(x, y) . 

In the trivial steady state we get 

l<o, OJ = ( F~O) G( i, 0)). 

From condition l(i) it follows that F(O) < 0, so the stability is determined by the 

sign of G(O, 0) and hence by the sign of g(O). In case g(O) < 0 the trivial steady 

state is a stable node and in case g( 0) > 0 it is a saddle point. 

The Jacobian for an equilibrium (0, y*), i.e. an equilibrium on the positive 

y-axis, is given by 

( F(y*) 0 ) 
1<0,y*> = \y*GxCO, y*) y*G.v(O, y*) 

and consequently the eigenvalues are F(y*) and y*G.v(O, y*). The sign of the first 

eigenvalue is determined by the position of y* relative to the zero y of F. More 

precisely we have F(y*) < 0 for y* < ji, and F(y*) > 0 for y* > .v. From the 

implicit function theorem it follows that the sign of G 1 (and therefore the sign of 

the second eigenvalue) is the same as the sign of g'. So we have the following cases: 

{

a saddle point for y* < ji and g'(y*) > 0, 

(O *) · a stable node for y* < ji and g'(y*) < 0, 
,y is a saddle point for y* > ji and g'(y) < 0, 

an unstable node for y* > ji and g'(y*) > 0. 

The Jacobian at the positive equilibrium (x, ji) is given by 

( o xF'(Y) ) 

lu, .. v> = \yG.(x, ji) jiG,.(x, ji) · 

The assumptions I(i), (ii) imply that the determinant is positive and consequently 

the stability of the positive steady state depends on the sign of the trace Gr(.\',~) 

which is again identical to the sign of g'(.Y). If g'(.V) < 0 we have a smk, 1f 

g'(y) > O a source. In both cases we can have a node or a spiral point. 
In the following we discuss the various possible phase portraits of system 

( 4. 5). In the simple case that g( y) < 0 for all y ~ 0 the trivial steady state is the 

only equilibrium and all solutions converge to it for t-> oo (Proposition I). Now 

assume that g takes positive values on [O, b). . . 
The sign of g(O) then determines whether we ha.ve one or two. nontnv1~l 

steady states on the y-axis and whether or not (0, 0) 1s stable. The sign of g(y) 
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determines whether or not we have an interior steady state and, in case it exists, 

its stability is determined by the sign of g'(jl). Likewise the sign of g( ji) 

determines the position of the nontrivial steady states on the y-axis relative to ji, 

which in turn has a decisive influence on their stability. Excluding degenerate 

cases Figs. 3-9 list the collection of possible phase portraits classified by the 

binary three vector (sign g(O), sign g(ji), sign g'(ji)). 

Note that the case ( +, - , +) cannot occur under assumptions II( ii), (iii). 

To conclude this section we make an observation concerning a case which is 

ruled out by assumption I(i), but which is, nevertheless, relevant in the context 

x 

x 

y \ 
y 

gl 

x 

y \ 
y 

Fig. 3. ( +, -, - ) The unique 

nontrivial steady state on the 

y-axis is globally stable in 

M - {(x, y): y = O} 

Fig. 4. ( +, +, - ) The interior 

steady state is locally stable, but in 

principle there can be an even 

number of limit cycles surrounding 

it 

Fig. 5. ( - , +, - ) The interior 

steady state is stable, but there can 

be an even number of limit cycles 

surrounding it. The stable manifold 

of the lower one of the nontrivial 

steady states on the y-axis 

separates the domains of attraction 

of the ( 0, 0) stable steady state and 

(the outer limit cycle surrounding) 

the interior steady state. We have 

bistable behaviour 
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x 

x 

{a) 

{b) 

\ 
g I 

y 

Fig. 6. (a) ( -, +, +)-eradication, 

(b) ( - , +, + )-bistability. The 

( - , +, +) case splits into two 

subcases, depending on the 

behaviour of the stable manifold of 

the lower one of the two nontrivial 

steady states on the v-axis. When 

the stable manifold :.originates" at 

the (y =b)-boundary of M, it acts 

as a separatrix and consequently 

the unstable interior steady state 

must be surrounded by an odd (so 

at least one!) number of limit 

cycles. When the stable manifold is 

contained in a compact subset of 

M, it either extends back to the 

unstable interior point or to the 

outer one of an even number of 

limit cycles surrounding it. In the 

first situation every other orbit 

starting in the interior must 

converge to the trivial steady state 

and in the second situation the 

same is true except for the orbits 

inside the outer limit cycle. 

The two subcases are separated 

from each other by the degenerate 

case in which the unstable 

manifold of the upper steady state 

on the y-axis coincides with the 

stable manifold of the lower one 

(i.e. there exists a heteroclinic orbit 

or saddle-connection) 

Fig. 7. ( +, +, +) The unstable 

manifold of the upper saddle point 

on the y-axis cannot connect to 

the trivial saddle point or to itself, 

nor can it converge to the unstable 

interior steady state. Consequently 

its w-limit set must contain a limit 

cycle. We conclude that an odd 

number of limit cycles must 

surround the interior steady state 

of model I when assumption ( 3.1) does no hold. When F( y) < 0 for ally E [O, b) 

necessarily x(t) _. 0 as t _. oo and we can concentrate on the y-axis when 

investigating the asymptotic dynamics. The cases ( +, - , - ) and ( - , - , - ) 

describe the two possibilities adequately. 
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4.3 Bifurcation diagrams 
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\ y 
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Fig. 8. ( - , - , - ) This is a 

bistable case with the stable 

manifold of the lower nontrivial 

steady state on the y-axis 

separating the domains of 

attraction of the trivial steady state 

and the stable upper steady state 

on the y-axis 

Fig. 9. ( - , - , +) All orbits 

starting in the interior of M 

converge to the trivial steady state 

We now take into account the contact rate parameter K and study how the phase 

portrait changes with increasing K. From assumptions I( ii) and I( iii) we conclude 

that og /oK > 0, which means that the graph of g moves in the positive x-direc

tion as K increases. In our notation this means that, as K increases, the first and 

second component of the sign-vector can change from - to +, but not vice 

versa. Assumption II(i) guarantees that sign gv(K, y) does not depend on Kor, in 

other words, that the stability character of the interior steady state does not 

change when K is varied. In our notation it implies that the third component of 

the sign-vector stays constant as K varies. We start from the situation in which 

g < 0 for all y ~ 0 (so that (0, 0) is globally stable). We shall denote this 

situation symbolically by ( - ). Depending on the exact form of the graph of g we 

obtain one of the following sequences of transitions as K is increased. (Recall 

that our three vector notation implicitly includes the assumption that g assumes 

positive values on [O, b).) 

Diagram 1 ( - ) --> ( +, - , - ) --> ( +, +, - ) 

g(K, y) as a function of y is strictly monotone decreasing. With increasing K we 

then first for a threshold value K1 have g(Ki, 0) = 0 and a stable node bifurcates 

from the trivial solution. For a threshold value K2 , characterized by g(K2, ji) = 0, 

we get a bifurcation of a positive stable steady state (see Fig. 10). 
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y 

Stable node 

Stable node or spiral 

Saddle 

]( 

Fig. 10. Bifurcation diagram I in 
the K-y-plane 

Diagram 2 (a) ( - ) --> ( - , - , - ) --> ( +, - , - ) ....... ( +, +, - ) 
(b)(-)-->(-,-,-)-->(-,+,-)-->(+,+,-) 

y 1--> g(K, y) has a maximum at Ymax < ji. Then we first have a bifurcation of two 
steady states, a saddle and a stable node, at K =Ky defined by g(Kr, Ymax) = 0. At 
K = K 1 there is a subcritical bifurcation as the saddle passes the trivial equi
librium. At K = K2 a stable node or spiral point bifurcates from the existing 
branch of stable nodes (see Figs. l l(a), (b)). If K 1 < K2 , we have case (a), 
otherwise (b). 

y 

y 

la) 

(\0 

~e 
c,\O'Q 

so 
c;>"~ 

Stable node 
I!> 

Kr K1 

(b) 

so 
c;>"(r, 

Stable node 11!> 

c,.e 
Stable node or spiral 

Saddle 

Kz K 

Stable node or spiral 

Saddle 

]( 

Fig. I I. Bifurcation diagram 2 for: 

(a) "1 < "2· (b) "1 > "2 
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Diagram 3 ( - ) -> ( - , - , +) -> ( - , + ' +)eradication 

_,. ( - • +' + )bistable _,. ( + • + ' + ) 
y H g(K, y) has a maximum Ymax E M with Ymax > y. Again as K = Kr two steady 
states bifurcate, a source y1 and a saddle Y2. The unstable manifold of the saddle 
Yi connects to the trivial steady state, to which all positive solutions converge 
(see Fig. 9). At K = K2 an unstable positive equilibrium bifurcates from y 1, which 
turns into a saddle. Still all positive solutions converge to ( 0, 0) except for a 
heteroclinic orbit connecting the positive steady state with the saddle y 1 (see Fig. 
6(a)). At K = K the unstable manifold of Yz connects to Yi and we have a 
bifurcation of a limit cycle (see Fig. 6(b)). The existence of the limit cycle will be 
proved in Proposition 2. At K = Ki we have a subcritical bifurcation as y 1 crosses 
the trivial steady state. We have K2 < KP < K1. Figure 12 shows the bifurcation 
diagram for this situation. 

y 

Unstable node 

Unstable node or spiral 

Stable node Saddle Saddle 
Fig. 12. Bifurcation diagram 3 

That in Diagram 3 in going from ( - , - , +) to ( - , +, +) we first obtain the 
eradication situation follows from a continuity argument: at the bifurcation the 
unstable manifold of the upper steady state on the y-axis still connects to the trivial 
steady state. Likewise, in going from ( - , +, +)-eradication to ( +, +, +) we 
must go through ( - , +, +)-bistable in order to obtain the odd number of limit 
cycles. In principle, when K increases one may go a number of times back and forth 
between ( - , +, +)-eradication and ( - , +, +)-bistable. 

Proposition 2 Assume the situation of Diagram 3: g(K, y) has a maximum at Ymax > .Y 
and two zeros Yi and Yz on the positive y-axis. Then there exists a KP with K2 < KP ~ Ki 

such that for all K > KP there exists a limit cycle in M. The limit cycle comes into 
existence by a global bifurcation from a saddle connection. 

Proof For K "'. Ki we have Yi "'. 0. From Proposition I it follows that the unstable 
manifold of the saddle ( 0, y2 ) in Mis bounded. If we denote the unstable manifold 
of ( 0, Yi) by y, the OJ-limit set of y lies in the region Q defined in the proof of 
Proposition 1. Since the interior steady state is unstable, the w-limit set of y must 
be an equilibrium on the y-axis or a limit cycle. 

For K = Ki the trivial steady state (0, 0) is the only other equilibrium on the 
y-axis. So if there is no limit cycle, (0, 0) must be the w-limit set of y. As soon 
as K > K 1 the trivial equilibrium turns into a saddle with the x-axis as a stable 
manifold. Consequently (0, 0) can no longer be the w-limit set of y and there must 
exist a limit cycle in Q. Ifwe denote the value of K for which the limit cycle comes 
into existence by KP, we conclude that KP ~ K 1 . 
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On the other hand for K = K2 the unstable steady state bifurcates in a 
nondegenerate bifurcation, so KP must be larger than K 2 . The positive steady 
state is always unstable. This means that the limit cycle does not arise through 
Hopf-bifurcation, but comes into existence through a global bifurcation from the 
saddle connection of (0, y 1) and (0, J2). D 

We recall from Subsect. 4.2 that the threshold K 1 is characterized by 

G(K1' 0, 0) = 0 

or, equivalently, g(K1, 0) = 0, and K2 is characterized by g(K2, Ji)= 0, while Kris 
characterized by g(K7 , Ymax) = 0. The threshold value KP is only implicitly defined 
in terms of the existence of a saddle connection (in fact several such values may 
exist, each one corresponding to the birth or death of a limit cycle). The 
threshold value K 0 , which distinguishes in the original model equations between 
an eventual extinction of the disease and the dilution effect situation, is charac
terized by F(O) = G(K0 , 0, 0). This can be seen in the following way. The 
linearized system in the trivial steady state is given by 

G) = J(O,O) (;). 

The solutions for an initial value (x0 , y0 ) are given by 

x(t) =x0 e;· 11 and y(t) =y0 ei·2 1 

with 

A. 1 = F(O) and A.2 = G(K, 0, 0). 

For K < K0 we have A.2 < A. 1 < 0. This implies 

2:'.=Y0 e<"2 -!· 11'-+0 for t-+oo. 
X Xo 

For Ko< K < K 1 we have A. 1 < A.2 < 0, which implies 

2:'. =Yoeo.2 -i.1>'__,co for t-+OO. 
X Xo 

Since both I and Pare given by y/x, we conclude that the disease dies out when 
K < 1<0 , whereas when K > Ko the number of infectives/parasites grows exponen
tially. 

We have now analysed the dynamics of the system ( 4.5) in dependence of the 
parameter K, while taking all other parameters in the models to be fixed. In the 
following subsection we depart from this assumption and analyse how the 
dynamics of the system change with (varying in the interval [O, I]. In doing so 
we concentrate more on the specific systems ( 4.2) and ( 4.4) corresponding to 
models I and II than on the general system ( 4.5). 

4.4 Dependence on the parameter ~ 

In Subsect. 4.3 we distinguished three bifurcation diagrams. Which of these is 
realized depends on the value of the parameter ( since ( determines the exact 
form of g(K, y). With decreasing ~ we move from diagram I to 2 to 3. 

First we show that there exists a threshold value ( = ~r such that the bifurca
tion of steady states from the trivial steady state with K as a bifurcation parameter 
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is subcritical for ~<~rand supercritical for~> ~r- The branch of steady states 
on the y-axis is described by the implicit function 

G(K, 0, y) = 0, 

which we solve for K to get a function K = K( y). This is possible because of 

condition I( iii). The direction of bifurcation is then determined by the sign of the 

derivative dK/dy evaluated at y = 0. 
For model I we get 

This implies 

K(y) = {3(1 - (I - ~)y) 2 +Cl'.. 
1-y 

dKI = /3(2~ - 1) 
dy y=O 

and we infer that the threshold for model I is ~r = ~
For model II we get 

and 

K(y) = u +IX + ~ y + /3(( 1 - ~~y + k J 

dK I = ~ - /3(1 - ~)
dy y=O k 

So for model II we get the threshold ~r = 1 -(a//3k). 

Proposition 3 For both models limit cycles do not exist for ~ > ~r- Local stability 

of a steady state then implies global stability (with respect to M 0 , the interior of 

M). 

Proof To show the nonexistence of limit cycles we use a theorem by Dulac (see 
[ 19]). We first consider model I and define* 

B(x, y) = xy(l _ y)" 

Then easy computation shows that 

a a 
ax (B(x, y)xF(y)) + ay (B(x, y)yG(K, X, y)) 

= - /3(1-(l - ~)y) ((1 - ~) +2~ -1) 
x(l - y)2 Y 

which is negative for ~ > ~r = ~ for all (x, y) E M 0 . 

In case of model II we define 

1 
B(x, y) ==-. 

xy 

* We thank Dr. Jin Cheng-Fu for suggesting this auxiliary function 
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Then we have 

a a 1 
ax (B(x, y)xF(y)) +-;-- (B(x, y)yG(K, x, y)) = - Gy(K, X, y) 

uy x 

for all (x, y) e M. For model II we have 

G <" x y) = - ~ + P ( k )k k< 1 - e) 
y ' ' k o - e)y + k o - e>Y + k · 

We see that GY < 0 is equivalent to 

~>P( k )k k(I-e) 
k (1 - e)y + k ( i - e>Y + k · 

The right hand side of this inequality is strictly decreasing in y. This means that 
if the inequality is fulfilled for y = 0, it is valid for all y S?; O. For y = O the 
inequality reduces to 

IX 

"k >Po - e), 

which is fulfilled if and only if e >er. So for e >er we have G < 0 for all 
(x, y) e M 0 • .v 

We can now conclude for both models by using a theorem of Dulac that the 
system ( 4.5) does not have any closed trajectory or singular closed trajectory 
lying entirely in M. 

For e >er we have a supercritical bifurcation of a steady state from the 
trivial steady state. This means that we have the situation described in Subsect. 
4.3, diagram 1. For IC < 1C1 the trivial steady state is the only equilibrium and it 
is locally stable. Boundedness of solutions implies global stability. For IC> 1C1 

there exists one locally stable equilibrium; the other existing equilibria are 
saddles, whose stable manifolds conicide with parts of the boundary of M. This 
means that all solutions starting in the interior of M converge to the locally 
stable equilibrium (here we use once more their boundedness). D 

Before we prove the following proposition, recall that for e < er we denoted 
by Kr the threshold value for IC for which two steady states y1 and y2 arose from 
a saddle node bifurcation on the y-axis. In the previous subsections we always 
assumed that e was fixed. Now we have to take into account that ICr varies with 
e. We assume the following set of conditions to hold: 

( i) 8F 0 ae < 

III d 
(ii) de Ymax < 0 for e <er (4.9) 

(iii) e = 0 => Y <Ymax· 

Condition III( iii) ensures that for e = 0 the situation described in Subsect. 4.3, 
diagram 3 is realized. For model I condition III(iii) is fulfilled, because 
gy{IC, y) > 0 for e = 0, so we have Ymax = 1. For model II condition III( iii) is 
fulfilled, provided rx/1C/3 is small enough. More precisely, there exists a constant 
e < 1 such that condition III( iii) is fulfilled if and only if (a/kP) < e (see 
Appendix). Biologically this means that the mortality caused by the parasites 
should be small compared with the birth rate of the host population weighted by 

the amount of "clumping" of the parasites. 
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Proposition 4 There exists a threshold value ~P such that for decreasing ~ there 

occurs a Hopf-bifurcation of a limit cycle from the positive stable equilibrium as ~ 

crosses ~P' for any fixed K >KT with KT= KT(~p). 

Proof From I(i) and III(i) it follows that (d/d~)j > 0, i.e. if ~ decreases then 

also y decreases. On the other hand III(ii) shows that with decreasing ~ the 

maximum of the function g moves in the positive y-direction, i.e. Ymax increases, 

starting from Ymax = 0 for ~ = ~T- The interior steady state loses its stability and 

the periodic solution comes into existence at the moment that j = Ymax· Condi

tion III( iii) ensures that there exists a ~PE [O, ~T) for which ji = Ymax. Conditions 

III( i), (ii) guarantee that ji crosses Ymax with positive speed as ~ decreases. This 

proves that there occurs a Hopf-bifurcation at ~ = ~p· 

4.5 Relation between original and transformed systems 

We now want to close the circle and show how the results for the transformed 

system can be interpreted in terms of the original variables. To this end we 

demonstrate how exponentially growing solutions of the original equations (2.3) 

and (2.10) are related to steady states of the transformed system (4.5). With the 

term "exponential solution" we refer to a solution for which both (sub)popul

ations in the original equations grow eventually exponentially with the same 

growth rate Jc. Solutions with this type of asymptotic behaviour can exist for 

both models, since for growing populations the infection rate cp converges to a 

function that is homogeneous of degree 0, i.e. a function that is invariant under 

scaling of S and I (or N and P, respectively) with the same factor. Indeed, for 

c = 0 the function cp is homogeneous of degree 0. For c > 0 we call it asymptot

ically homogeneous. 

If in Eqs. (2.3) and (2.10) we set c = 0, there exist solutions of the form 

S(t) = S* e"', l(t) =I* e;' 

for (2.3), and solutions of the form 

P(t) = P* ei' 

for (2.10) with some A. E IR for K larger than some threshold KT. For these 

exponential solutions <.p is constant in time. 

It is clear that for solutions of (2.3) with I+ S-> oo and solutions of (2.10) 

with N--> ctJ the infection rate cp converges to a function which is homogeneous 

of degree 0. Furthermore exponential solutions of the homogeneous system 

(characterized by c=O) are mapped by the transformations (4.1) and (4.3), 

respectively, on solutions of ( 4.5) (with c = 0), which approach a steady state 

with x = 0 as t-> oo. 

Assume now that (0, y*) with y* > 0 is an asymptotically stable steady state 

of ( 4. 5). The linearized system in ( 0, y *) is given by 

(.X) ( F(y*) 0 )f x ) 

y = \y*G,(K, 0, y*) y*Gv(K, 0, y*) \y - y* . 
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We assume that A.1 ==F(y*) < 0 and A.2 == y*G.,(K, 0, y*) < 0. We write 
a==y*Gx(K, O,y*). Solving for an initial value (x0 ,y0 ) we get 

x(t) = x0 e"1' 

y(t) =--a-e.i,r +(Yo-~ - y*) e;·2' + y*. 
A., - A.2 A.1 - A.2 

This implies that y(t)--+ y* for t--+ oo and therefore 

y . 
_,..,, y* e-•,1 
x 

This means that asymptotically y/x grows exponentially with the same rate -21 

as does l/x. 

Furthermore it is easy to see that x(t) = x0 e" 11 , y(t) = y* is an exact solution 
of the sys~em ( 4.5) with c = 0. This shows that in a neighbourhood of a steady 
state solutions of the homogeneous system approximate solutions of the inhomo
geneous system with an error that depends on the chosen neighbourhood. 

This in tum shows that exponential solutions with positive growth rate of the 
systems (2.3) and (2.10) with c = 0 approximate solutions of the nonhomoge
neous system (c > 0) for t--+ oo. 

When (0, y*) is unstable (either a saddle point or a source), the linearization 
yields an approximation which loses its significance for t tending to infinity. One 
can then describe the "repelling" behaviour of the steady state with infinite 
total/host population size and fraction of infectives/mean parasite load y * in 
terms of exponential solutions, but this is hardly of any interest. The fact that for 
c = 0 we again find an exact exponential solution of the nonlinear problem does 
not alter this conclusion. 

The growth rate -F(y*) of the exponential solutions is the reduced growth 
rate that was mentioned in Subsect. 3.1, case 3 and in Subsect. 3.2, cases 3 and 
4. Furthermore we can see the following: For exponential solutions in the case 
c = 0 we have q> =Ky*. This means that increasing q> implies increasing y*. 
From condition I( i) we now get that the growth rate of the population decreases 
as q> increases. If we consider q> as a parameter, we get a branch of exponential 
solutions in the K-q> plane. Along this branch the growth rate A. is decreasing. At 
the point where A. = 0 the branch of exponential solutions of the homogeneous 
system intersects a branch of equilibria for the system with c > 0. For the 
homogeneous system 2 = 0 occurs only at a single point of the branch, so in this 
case the equilibrium solution is an exceptional case. The part of the branch of 
exponential solutions where 2 < 0 is biologically not very relevant, because these 
solutions are approximated by solutions of the nonhomogeneous system for a 
limited time interval only. We showed in Subsect. 4.4 that the bifurcation of the 
branch of exponential solutions is supercritical for values of ~ above the 
threshold value ~r < 1 and subcritical for ~ < ~r· 

5 Conclusions 

The interaction of disease transm1ss1on and population growth takes subtle 
forms and may produce complicated patterns of dynamical behaviour. Key 
ingredients of any model are the influence of the disease on the mortality and the 
fertility of the hosts and the way in which the force of infection depends on 
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population size and compos1tion. We have incorporated a saturating force 
of infection as well as additional mortality and reduced fertility due to the 
disease. 

For a contact parameter "(the least upper bound for the force of infection) 
a number of critical values were established. The intuitive idea that the disease 
gets a stronger hold on the population when K is increased, is substantiated, but 
needs a careful interpretation in view of the possibility of bistable behaviour. The 
latter means that, for given parameter values, the disease may or may not reduce 
the growth rate of the population (or even regulate the population), depending 
on the initial conditions. 

We have shown in the foregoing analysis for two types of epidemic models 
that incorporating a "multiplicative" negative influence of the disease on the 
fertility of the infectives can lead to sustained (and even large) oscillations in 
the sizes of the populations under consideration. This phenomenon does not 
occur, if the influence on fertility is modelled additively, as was done in [ 16] for 
the host-parasite model. For model I it can be shown that it is essential that we 
take the pair formation between infectives and susceptibles into account. In
deed, if the birth term in (2.1) is described by f3(S + ~/), the equations do not 
have periodic solutions. (It was brought to our attention by Professor R. M. 
May [ 15] that this form arises as well when we do incorporate pair formation, 
but assume that reduced fertility is a consequence of vertical transmission 
followed by the death of the offspring before reaching the reproductive age, 
where only mothers can transmit the disease vertically.) This means that the 
interaction between infectives and susceptibles is important, i.e. the way in 
which an infective individual in effect reduces the fertility of the susceptible that 
it is paired with. 

The phenomenon of oscillating solutions in model I is interesting, because up 
to now oscillations in epidemic models of the S-I or S-I-R type were only found 
for models, which contained time delays or periodic forcing terms (see for 
instance [IO]). In 1981 Hethcote et al. [11] were led to the conjecture that "a 
constant-parameter model for a single, homogeneously mixing, uniform popula
tion can have periodic solutions for some parameter values if and only if the 
model is cyclic and involves temporary immunity through which individuals can 
be significantly delayed in the immune class". As far as we know model I is the 
first model which contradicts this conjecture. 

It is now an open question whether oscillatory behaviour in real biological 
host-parasite systems may be ascribed to the influence of the parasite on the 
fertility of the host. 

We hope that the analysis of this paper has contributed to the knowledge of 
possible relations between mechanisms and resulting phenomena. 

Appendix 

In order to apply the general results for ( 4.5) to the specific examples ( 4.2) and 
( 4.4) one has to determine y, g and Ymax and from these ingredients one then can 
calculate K 1, K 2 , KT and ~T· We shall now carry out this program and meanwhile 
also check the various assumptions. 

Model I. We use the notation Y/ = 1 - ~. From 

F(y) = µ + ocy - /3( 1 -Y1y) 2 
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we deduce 

F'(y) =IX+ 2/317( l -17y) > 0 

for 0 ~ Y < 1 and 0 ~ 17 ~ 1. Furthermore III( i): 

8F 
817 = 2/3y(l -17y) > 0. 

Solving the quadratic equation F(y) = O we find 

ji = 2~ 2 ( 217 + ~ - J ( 217 + i )2 - 417 2 ( 1 - ~)) 
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(weFhave to take the negative square root to ensure ji E (0, 1)), which yields I(i). 
rom 

G(K, x, y) = (-K- -1X)(1 - y) - /3(1 - 11y) 2 

ex+ 1 

we conclude that 

1 K(l -y) 
g(K,y)=--+ . 

c c(IX( I - y) + /3(1 - 17y) 2) 

Since 

( i) 
(l-17y) 2 

Gy(K, g(K, y), y) = - /3 1 + 2/317( 1 -17y) 
-y 

is independent of K, 

(ii) ( ) K/3(1 -17y)('/'/(2 - y) - 1) 
gKy=---------

y , c(o:(l - y) + /3(1 -17y)2)2 

equals zero for y E [O, 1) =- (y = Ymax == 2 - ( 111'/) and 11 > ~ = IJr) 

{

- ~ for 17<1 

lim g(K, y) = C 

v~I 1( K) 
· ~ -1+~ for17=l 

(iii) 

we see that Assumptions II hold for 17 < 1, but that the case 17 = I deserves 

special attention (see below). Assumptions III(ii) and (iii) follow directly from 

the explicit expression for Ymax. 

The equation F(O) = G(K, 0, 0) amounts to µ - f3 = K - a - /3 from which 

we can conclude that Ko=µ +a. 
The equation g = 0 reduces to a quadratic equation whose solutions are 

y* = 2 ~ 2 ( 217 + a p K ± J ( 217 +a p K )
2

_ 4172( 1 _ K pa)) 

Putting y* = O amounts to requiring that I -(K - o:)//3 = 0. Hence 

K1 =IX+ {3. 

For K > K 1 only the"+" sign yields a solution in (0, I). 
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The threshold value Ky should be such that g(K, Ymax) = 0 from which we 

find that 

Kr =IX +4{Jry(l -17) 

provided ri > 17r =~,(i.e. ~Y =~).Note that Ky---> rx for 17--> 1, so that Ky can even 

be smaller than Ko. 

The condition y = y* amounts to 

~ -J ( 217 + ~ )2 - 417 2 ( I - ~) = ± J ( 217 + IX p K) 
2 

- 41] 2( 1 - K ; rx) . 

Squaring both sides and solving for K we find 

2(1X + 11)17 2 

K

2

= 217 2 -(21] +~)+ J(211 +~) 2 -417 2 (1-~) 
For ri---> 0 we find 

rx(µ + rx) 
K ---> 

2 µ+1X-f3. 

The critical value 1Jp can be equivalently characterized by Ymax = y or K2 = Ky. 

Elaborating one of these we find the cubic equation 

4{317 3 - 8/317 2 + (4{3 -21X - µ)17 +IX= 0. 

The left hand side is positive for ri = ~ and negative for 17 = 1, so in G, 1) there 

exists a unique root 11r 

Finally, we look at the special case 11 = 1 (i.e. ~ = 0). It is now more natural 

to include y = I in the set M, since the system 

dx 
dt =X(Jl +1Xy-j3(1-y)2) 

dy ( K ) 
dt = y( 1 - y) ex + I - rx - /3( 1 - y) 

has (x, y) = ( 0, 1) as a steady state. The bifurcation diagram for this situation is 

shown in Fig. 13. 

Drawing phase portraits we arrive at the conclusion that necessarily KP = K1. 

More precisely, the limit cycle bifurcates at K = K 1 from the "degenerate" saddle 

y 

Unstable node Saddle 

Unstable node 
or spiral 

y -----------------"<-~~~~~~-

S'o 
O'~ 
~ 

o~~~~S-ta_b_le~no_d_e~--'-~~~-'---~Sa_d_d_le=---
K 

Fig. 13 
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connection given by the trajectory on the y-axis connecting (0, 0) and (0, 1), the 
unstable manifold of (0, 1) (the straight line y = 1), which at infinity connects to 
the stable manifold of (0, 0) (the x-axis). This result illustrates that the periodic 
outbreaks for K slightly larger than K 1 are indeed huge. 

Dr. Jin Cheng-Fu [ 12] informs us that he can prove the uniqueness of the 
limit cycle for ~ ~ l by using a modified version of Zhang's theorem (see [ 14]). 

Model II. From 

F(y) = rt.y + µ - f3 ((1 - ~y + k y 
we deduce I(i): 

F'(y) = C( + [3(1- ~)(o - ~y + kr+I > 0. 

Furthermore we see that 

F(y) =0 <=> cxy + µ =[3 ((1-~~y +kY. 

The left hand side of the second equation is a straight line with slope ex, the right 
hand side a hyperbola which intersects the (y = 0)-axis at /3 and goes to zero for 
y ---. w. This shows that there exists precisely one y > 0 with F(.Y) = 0 provided 
µ < [3. In general y cannot be calculated explicitly. From 

we get l(ii) 

and I( iii) 

G(K, x, y) =ex: I -(a+ a) - ~y - /J ((1 - ~y + k)k 

CK 

GAK, x, y) = - (ex+ !)2 < 0 

1 
G,(K, x, y) = --1 > 0, 

ex+ 

G(O, x, y) =-(a+ a) - ~ y - /3 (0 _ ~Y + ky < O. 

Furthermore we see that 

(X ( k )k+I 
Gy(K, x,y) = - k + /J(l - ~) (1- ~)y +k 

is independent of K, which ensures II(i). We calculate g(K, y) from G(K, x, y) = 0 

as 

K 

g(K,y) = ( C( ( k )k) 
c a + ex + k y + f3 (I - ~)y + k 

c 

To study g we find the derivative with respect to y as 

K (/J(l-~)((1-~y+kJ+I_~) 
g,.(K, y) = -( a ( k )k)2 . 

. c a + ex + k y + {J ( 1 - ~)y + k 
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So we get 

gy(K,y) = 0 ~ ~ = {3(1- e)((l - ~y +kr+I. 
Again the right hand side of the second equation is a hyperbola which intersects 

the (y = 0)-axis at /3( 1 - e) and tends to zero for y-+ oo, while the left hand side 

is a parallel to the y-axis at rx/k. So again there exists precisely one y = Ymax for 

which gy(K, Ymax) = 0 provided {J( 1 - e) > rx/k, which is equivalent to ~ <er. 
(The threshold er was already computed in Subsect. 4.4.) That Ymax is indeed a 
local maximum can be seen by evaluating the second derivative with respect to 

y of g at Ymax 

(
k + 1 )( k )k + I 

K {3(1- ~) 2 -k- (1- ~)Ymax + k 

gyy{K, Ymax) = - ~ ( IX ( k )k)2 < 0. 

(f + et + k Ymax + {3 ( 1 - !') k 
'> Ymax + 

Also condition II(iii) is fulfilled, because 

1. 1 
im = - -. 

y .... oo C 

Now we turn to the conditions concerning e. First of all we get 

!; = -{3y (o - ~y +kY+' < 0• 

which is condition IIl(i). To prove IIl(ii) we consider a function f which 

implicitly defines Ymax as a function of ~: 

/(Ymax• e) = {3( 1 - e)((l _ K)~max + k r+ 1 -~ = 0. 

By the Implicit Function Theorem we can now write 

dy max - - of/_}_!___ 
d~ - oe 8Ymax 

provided the partial derivative off with respect to Ymax is not zero. We compute 

8f = fJ ( k )k+ '(( 1 - e)(k + l)Ymax _ i) 
8~ (1 - e)Ymax + k (1 - e)Ymax + k 

and 

Y.._ = - {3( 1 - e) z k + I ( k )k + 2 < 0. 
8Ymax k ( 1 - e)Ymux + k 

This leads to 

dymax k( 1 - ( 1 - ~)Ymax) 
--=------
d~ <k + 1)0 - e) 2 

So we get the condition 

dYmax 1 
~ < 0 ~ Ymax > I _ e . 
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Recalling the definition of Ymax we see that this is equivalent to 

{3( 1 - ~) ( 1 : k y + I > ~ . 

The inequality is valid for all k ~ 0 provided /3( I - ~) > a/k, i.e. ~ < ~r-
To prove condition III( iii) we consider Ymax which is in the case ~ = 0 

characterized by 

(f. G k )k+I - - f3 
k - max + k 

We solve for Ymax and get 

Now Ymax > y amounts to 

So with 

(f. (Jl )-(k+IJ 

f3k < k + 1 . 

e==(f + lr(k+I) < 1 

we get that III(iii) is valid, if a/f3k <e. 
Now we calculate the thresholds for K. 

From F(O) = G(K0 , 0, 0) we see immediately that 

Ko=µ+ er+ a. 

From G(K 1 , 0, 0) = 0 we get 

K1 = f3 +er+ a. 

The threshold K 2 is characterized by g(K2, y) = 0. As y is characterized by 

ay + p = /3 (o - ~~y + ky 
we can write 

_ K2 1 

g(Kz,y)= ( (l+k) _)-~=0, 
c () +(f. + µ + (f. -k- y 

which implies 

K2 = er + a + µ + a (1 : k) Y, 

In Subsect. 4.4 we formulated K as a function of y along the bifurcation branch. 

A value y = 8 is characterized by K'(8) = 0, or, equivalently, by 

~ = {3( 1 - ~) ((1 - ~8 + k y +I 

We solve for f! and get 

e = _k_ (k+ Jkf3( 1 - ~) _ r). 
1-~ a 
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Now Kris given by Kr = K(B): 

K(8) =a+o: +I:~ C+Jk/3(111.-~) _ 1)+/3 (k+Jk/J(t-~)r 
The threshold ~r was already computed in Subsect. 4.4. The threshold ~P 

cannot be given explicitly. 
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