
Patterns of Change:

Can modifiable software have

high coupling?

A thesis

submitted in fulfilment

of the requirements for the degree

of

Doctor of Philosophy

at

The University of Waikato

by

Craig Taube-Schock

Department of Computer Science

Hamilton, New Zealand

May 2012

© 2012 Craig Taube-Schock

Abstract

There are few aspects of modern life that remain unaffected by software,

and as our day-to-day challenges change, so too must our software. Soft-

ware systems are complex, and as they grow larger and more intercon-

nected, they become more difficult to modify due to excessive change

propagation. This is known as the ripple effect. The primary strate-

gies to mitigate it are modular design, and minimization of coupling, or

between-module interaction. However, analysis of complex networks has

shown that many are scale-free, which means that they contain some

components that are highly connected. The presence of scale-free struc-

ture implies high coupling, which suggests that software systems may be

hard to modify because they suffer from the ripple effect.

In this thesis, a large corpus of open-source software systems is an-

alyzed to determine whether software systems are scale-free, whether

scale-free structure results in high coupling, and whether high coupling

results in ripple effects that propagate change to a large proportion of

classes.

The results show that all systems in the corpus are scale-free and that

that property results in high coupling. However, analysis of system evo-

lution reveals that existing code is modified infrequently and that there

is rarely sufficient evidence to be confident that ripple effects involving a

high proportion of classes have actually occurred. This thesis concludes

first that while it is desirable to avoid excessive interconnectivity, it is

difficult to completely eliminate high coupling; and second, that the pres-

ence of high coupling does not necessarily imply poor system design.

iii

iv

Acknowledgements

First and foremost, I would like to thank my chief supervisor, Ian Witten.

He is a brilliant researcher and a wonderful person, and it has been both

an honour and privilege to have worked with him for the past three and a

half years. I have always admired how he is able to craft language so that

even complex ideas are easy to understand and enjoyable to read, and I

am particularly fortunate to have been privy to his writing processes and

victim of his editing pen. Thank you, Ian!

I would also like to thank Rob Walker for introducing me to the field of

software evolution, and for his continued direction and support through

the thesis. Rob’s devotion to the field and to high quality research are un-

surpassed, and that has a positive impact on those with whom he works.

There were times throughout this PhD when I would complete some work

only to go back and improve upon it later because I knew that Rob would

look at it. The field of Software Engineering is lucky to have him as a

contributor!

Thanks to my other supervisors Dave Nichols and Mark Utting. I asked

several questions of each of you throughout this work, and your valuable

feedback via progress reports is very much appreciated. As the thesis

writing process came to a close, Dave provided heaps of information and

good ideas for improving its overall structure and quality. I am very much

indebted to each of you.

Many thanks to my fellow PhD students in the Digital Library lab:

Rob Akscyn, Kathryn Hempstalk, Olena Medelyan, David Milne, Shaoqun

Wu, Veronica Liesaputra, Anna Huang, Akram Darwish, Antti Puurula,

and Michael Walmsley. Our ongoing research meetings were a constant

source of inspiration, and it was a great a pleasure to share our many din-

ners and trips to Waiheke Island. From this group, I would particularly

v

like to thank Rob Akscyn, with whom I have worked very closely over the

last three years. His insights into the structure of scientific writing have

helped me immensely to develop my writing style, and the use of “Expe-

ditee” has dramatically reduced the time it takes me to identify defects

in my own writing.

Many thanks, too, to those in the Laboratory for Software Modification

Research at the University of Calgary, with particular thanks to Rylan

Cottrell. His expertise in dealing with Eclipse was key to the completion

of my toolset, and I shudder to think about how things would have gone

had he not been there.

The Symphony high performance computing cluster was used exten-

sively throughout this research. Many thanks to the Department of Com-

puter Science for the use of the cluster, and to Donald Neal, its adminis-

trator.

I would also like to thank the National Science and Engineering Re-

search Council (NSERC) of Canada for the PGS-D3 scholarship that I

was able to take abroad for my PhD studies. Without the scholarship,

this thesis and the research it presents would not have been completed.

Thanks to the University of Waikato for providing a six month Doctoral

scholarship, which is precisely the amount of time that I needed to com-

plete the thesis.

Finally, I would like to thank my family. To my momwho always instilled

in me the importance of education, and provided me with a childhood

that was second to none. Words cannot express how thankful I am to

you for everything that you’ve given me over my life. To my partner,

Ruth, and my daughter, Rachel—I could not have got through this without

you two. Whenever I disappeared into the PhD fog, Ruth was always

there to ensure that I made it out again. Whenever things seemed to

become too big to deal with, Rachel would always help me to remember

the importance of the little things in life. I love you all very much and I

anxiously await the new arrival to our family.

vi

Contents

1 Introduction 1

1.1 Building complex systems that change 2

1.2 Research questions . 3

1.3 Empirical investigation . 4

1.4 Thesis organization . 5

2 Literature Review 7

2.1 Model of a complex system 8

2.1.1 System growth . 9

2.1.2 Connectivity and the ripple effect 9

2.1.3 Regulating change propagation between modules . 12

2.2 Notation used in the thesis 13

2.2.1 System structure and evolvability 14

2.3 Design principles and software evolvability 16

2.3.1 Information hiding 16

2.3.2 Design rules and the design structure matrix 18

2.3.3 Coupling and cohesion 19

2.3.4 Discussion . 20

2.4 Measuring cohesion and coupling 20

2.4.1 Measuring coupling 20

2.4.2 Measuring cohesion 23

2.4.3 Empirical validation of cohesion and coupling metrics 25

2.5 Random models of complexity 26

2.5.1 Power-law distributions 27

vii

Contents

2.5.2 Generating random power-law networks 28

2.5.3 Small-world networks 28

2.6 The ripple effect in scale-free and small-world networks . 29

2.6.1 The Susceptible, Infective, Removed model 29

2.6.2 Empirical studies . 30

2.6.3 Change propagation through inferred links 31

2.7 Network analysis of software 32

2.8 Preferential attachment and source code evolution 35

2.9 The matching problem . 37

2.10 Summary and discussion 40

2.10.1 Research questions revisited 42

3 Tools 45

3.1 Conceptual overview . 45

3.2 Corpus of software systems 47

3.3 The Eclipse AST parser . 48

3.3.1 Parse file format . 49

3.3.2 Abstract syntax tree example 51

3.4 CodeNet . 53

3.4.1 Constructing system graphs 55

3.4.2 References to external entities 57

3.4.3 Reverse inheritance 57

3.4.4 Semgraph file format 58

3.4.5 Quality control . 59

3.5 Analysis . 59

3.5.1 Analysis process . 59

3.5.2 Semgraph data structure 60

3.5.3 Example analysis . 62

3.5.4 Integration with a computing cluster 63

3.6 Discussion . 64

3.6.1 Existing tools . 64

3.6.2 Toolset evolution . 65

viii

Contents

4 Scale-free structures and coupling 67

4.1 Perspectives of degree distributions 67

4.1.1 Inlinks, outlinks and combined perspectives 68

4.1.2 Within-module versus between-module links 68

4.1.3 Link aggregation . 69

4.1.4 Combining degree distribution perspectives 69

4.1.5 Hierarchical links 70

4.2 Hypotheses . 70

4.2.1 Proposed model . 71

4.2.2 Hypothesis 1: Scale-free structure in source code

networks . 73

4.2.3 Hypothesis 2: Scale-free structure and coupling . . 73

4.2.4 Hypothesis 3: Outlink constraints 73

4.2.5 Hypothesis 4: Aggregate measures of coupling . . . 74

4.2.6 Hypothesis 5: Aggregate outlink distributions . . . 75

4.3 Experimental design . 76

4.3.1 Computing module boundaries 76

4.3.2 Testing the hypotheses 77

4.4 Results . 79

4.4.1 Hypothesis 1 . 79

4.4.2 Hypothesis 2 . 81

4.4.3 Hypothesis 3 . 83

4.4.4 Hypothesis 4 . 87

4.4.5 Hypothesis 5 . 90

4.4.6 Post-hoc analysis for Hypothesis 5 91

4.5 Discussion . 92

4.5.1 High coupling caused by node-level interaction . . 92

4.5.2 High coupling caused by aggregate interaction . . 93

4.5.3 Internal validity . 94

4.5.4 Construct validity 95

4.5.5 External validity . 95

4.5.6 Open research question 96

ix

Contents

5 Patterns of change 97

5.1 Automated Matching Method 98

5.1.1 First pass—Applying matchers 98

5.1.2 Second pass—Dependency analysis 100

5.2 Automated Matching Method performance evaluation . . . 102

5.2.1 Unmatched classes 103

5.2.2 Unmatch rates for individual pairings 104

5.2.3 Unmatched classes correlated with coupling 105

5.2.4 Discussion . 106

5.3 Measuring change . 107

5.3.1 Computed measures 107

5.3.2 The lifetime of a class 109

5.4 Analysis of change . 111

5.4.1 Confounding factors 111

5.4.2 Change measures that equal zero 112

5.4.3 Correlation of change measures 113

5.4.4 Discussion of global observations 114

5.5 Observed patterns of change 115

5.5.1 Pattern classification 115

5.5.2 Example classifications 116

5.5.3 Pattern frequency 118

5.6 Discussion . 119

6 High coupling and software evolution 121

6.1 The evolution of inlink coupling 121

6.1.1 Hypothesis 6: Distribution of changes to M7 124

6.1.2 Testing Hypothesis 6 124

6.1.3 Results . 124

6.1.4 Discussion . 126

6.2 High coupling and the ripple effect 127

6.2.1 Criteria for the ripple effect in software 128

6.2.2 Hypothesis 7: Identifying ripple effects in software 129

6.2.3 Results . 130

x

Contents

6.2.4 Discussion . 132

6.2.5 Limitations of this analysis 134

7 Conclusions and Future Work 137

7.1 Research questions . 137

7.1.1 Is the structure of software scale-free? 138

7.1.2 Does scale-free structure result in high coupling? . 140

7.1.3 Can the ripple effect be observed in software with

high coupling? . 141

7.2 Closing remarks . 143

7.3 Contributions . 144

7.4 Future work . 145

7.4.1 Ripple effect detection and impact analysis 145

7.4.2 Research support and reproducibility 146

References 149

A Example parse file 167

B System structural measures 171

C Version pairs 175

C.1 ant release pairs . 175

C.2 antlr release pairs . 176

C.3 argouml release pairs . 177

C.4 azureus release pairs . 178

C.5 freecol release pairs . 180

C.6 hibernate release pairs . 181

C.7 jgraph release pairs . 183

xi

Contents

C.8 jmeter release pairs . 184

C.9 jung release pairs . 185

C.10 junit release pairs . 186

C.11 lucene release pairs . 187

C.12 weka release pairs . 188

xii

List of Figures

2.1 Relationship between the number of nodes and the number of

possible connections between them. 9

2.2 Notational items used in the thesis. 14

2.3 Notational conventions used in the thesis. 15

2.4 Two different modularizations of the KWIC system. 17

2.5 Example of a design structure matrix. 18

2.6 Common aspects of coupling measures. 21

3.1 Toolset architecture. 46

3.2 Code listing 1. 51

3.3 Abstract syntax tree for Java listing 1. 52

3.4 Directed graph meta-model. 54

3.5 Semgraph file structure. 58

3.6 Class model used to encode semgraphs. 61

3.7 Code listing 2. 62

4.1 Inner class definition and coupling. 77

4.2 Distribution of overall connectivity for three sample systems. 80

4.3 Mean degree vs. maximum degree for all systems. 80

4.4 Between-module degree distributions for three sample systems. 81

4.5 Comparison of overall and between-module connectivity dis-

tributions for three sample systems. 82

4.6 Comparison of α estimates for all systems. 83

4.7 All inlinks for derby-10.1.1.0. 83

4.8 Between-module inlinks for derby-10.1.1.0. 84

4.9 All outlinks for derby-10.1.1.0. 84

4.10 Between-module outlinks for derby-10.1.1.0. 85

xiii

List of Figures

4.11 Comparison of all inlinks vs. all outlinks for derby-10.1.1.0. . 85

4.12 Comparison of between-module inlinks vs. between-module

outlinks for derby-10.1.1.0. 86

4.13 Between-module outlinks for jgraph-5.9.2.1. 86

4.14 Degree distribution ranges of inlinks and outlinks for all sys-

tems. 87

4.15 Aggregate distribution for all links for springframework-1.2.7. 88

4.16 Aggregate distribution for fitjava-1.1. 88

4.17 Max degree and mean degree for aggregate distributions. . . 88

4.18 Max degree and mean degree for between-module aggregate

distributions. 89

4.19 Max inlink and outlink degrees for aggregate distributions. . 89

4.20 Max inlink and outlink degrees for between-module aggre-

gate distributions. 90

4.21 Class size versus aggregate between-module outlink count for

derby-10.1.1.0 (r=0.89) . 90

4.22 Correlation (r) between class size and aggregate between-

module outlink count for all systems. 91

4.23 Correlation (r) between class size and aggregate between-

module outlink count for all systems. 91

5.1 Matching classes between versions—pass 2. 101

5.2 Eight parameters of change for a module. 107

5.3 Change measures for eight versions of the same class. 110

5.4 Non-uniformity in the Qualitas corpus. 111

6.1 Frequency of changes in aggregate between-module inlink

count. 125

6.2 Increase in inlink count versus current inlink count. 126

6.3 Ratio of changed and unchanged classes for both degree cen-

trality and percentage change. 131

xiv

List of Tables

3.1 Parsefile tags . 49

3.2 Semgraph file tags . 58

4.1 Distributions required to test Hypotheses 1 – 4 78

5.1 Measures to assess quality of the matching process. I=Empty

Inlink Set, O=Empty Outlink Set, B=Both sets empty, N=No

match found, >1=Too many candidates 103

5.2 List of release pairs with > 15% unmatched classes. 105

5.3 Number of unmatched classes with > 50 between-module links.105

5.4 Change matrix for example class 110

5.5 Number of change measures that equal 0. CR=Change Row

Count, ZR=Count of rows where all entries = 0, MX=Count

of rows with measure X = 0 112

5.6 Correlation of change measures across the Qualitas corpus . 113

5.7 Pattern classification based on the percentage of zero-valued

entries. 115

5.8 Unchanging class with stable M1, moderately unstable M3,

and unstable M7 . 116

5.9 Moderately stable class with stable M8 and unstable M3 and

M7 . 117

5.10 Moderately unstable class with unstable M7 118

5.11 Frequency of patterns observed for each measure and for

classes . 118

6.1 Moderately stable class with moderately unstable M1 and M8

and unstable M3 and M7 . 123

xv

List of Tables

6.2 Number of version pairs where influence of changed classes

exceeds that of unchanged classes. 132

xvi

Chapter 1

Introduction

Change is the only constant. Hanging on is the only sin.

—Denise McCluggage

Complexity abounds! No matter where we look, from our immediate

surroundings to the very frontiers of our exploration, we find bewildering

complexity. We find it in the simplest of life forms, which rely on an

intricate set of metabolic interactions, delicately balanced, to support

the processes of life. We find it in the oceans and the air, which give us

our stable and livable climate, but unpredictable weather systems. We

even find it when we look to the heavens, beyond our own small planet.

Complexity awaits everywhere, for us to discover.

Complexity is not limited to the natural world. Humankind is capable of

creating instruments of immense complexity, and it is difficult to find any

aspect of modern day life that remains unaffected by complex artificial

systems. From the machines that transport us and our goods around

the world, to the network of computers that enable us to communicate,

almost instantaneously, between any two points on earth, we have added

artificial complexities to our natural world.

The problems we solve, however, do not remain fixed. As magnificent

as our tools are, they are only useful if they solve problems that are

relevant. How many times in history have creations become obsolete

because they address problems that we no longer face? No system, no

matter how complex, is immune to obsolescence.

1

Chapter 1 Introduction

1.1 Building complex systems that change

This thesis is about software, and how its structure can affect its ability

to be adapted in response to the pressure of change. It begins with an

exploration of design theory, which reveals that the evolvability of a com-

plex system is closely related to the interconnectivity between its com-

ponents. Too much interaction causes change to propagate from compo-

nent to component, and small changes can ripple to seemingly unrelated

sections of the system. This leads to the avoidance of even small changes

because of the effort they require, rendering the system inflexible.

Design theory teaches methods of mitigating unconstrained propaga-

tion of change. Here, modularization is the primary tool. It enables us

to group components to restrict their mutual changes to specific parts

of the system, thereby making it more flexible in its response to change

pressures. Modularization, however, is no panacea. If change is allowed

to propagate from module to module, the benefit is lost. Constraint is

maintained by the regulation of between-module interaction.

Design theory is applied to software using design principles. Many of

these involve the concept of coupling. Coupling is the strength of asso-

ciation that is caused by the relationship between two modules, and it

relates directly to the probability that change will propagate from one

module to the next. Design principles limit change propagation by re-

ducing coupling. However, an exploration of measures of coupling show

that those measures are largely unvalidated against external properties

of software systems.

The analysis of complex networks has shown that many have a property

called scale-free. A scale-free network is organized in such a manner

that most of its components have limited connectivity, but some have

very high connectivity. Networks in numerous fields of study, including

software networks, have been found to be scale-free.

Scale-free structure, however, appears incongruous with the principles

of minimizing connectivity and coupling. It seems that a network that is

scale-free would have areas of high coupling, and this suggests that they

would, therefore, be less modifiable. How scale-free structure affects a

system’s modifiability is the main theme of this work.

2

1.2 Research questions

1.2 Research questions

This thesis addresses three research questions:

1. Is the structure of software scale-free?

2. Does the high level of connectivity that is associated with scale-free

structure result in high coupling?

3. Can the ripple effect be observed in the version history of software

that has high coupling?

Research that views software systems as complex networks has re-

vealed that several properties of software are scale-free. However, these

investigations are limited to examining the modular structure of systems,

and avoid piercing module interfaces. Because it is the internal com-

ponents of modules that determine between-module connectivity, it is

prudent to go beyond module boundaries to inspect what is happening

inside. This thesis aims to determine whether the source-code network—

the part of the system that programmers modify directly—is also scale-

free. This is the first research question.

If source-code networks are scale-free, some components will inevitably

have very high connectivity. However, high connectivity does not neces-

sarily translate to high between-module interaction. Highly connected

components may only connect with other components that are contained

within the same module, thereby resulting in low coupling. This thesis

aims to determine whether scale-free structure at the source-code level

consistently results in high between-module interaction. This is the sec-

ond research question.

Systems that suffer from ripple effects are considered to be of low mod-

ifiability, but there has been no empirical validation showing that high

coupling necessarily causes ripple effects. Related research considers

system modifiability in a prospective manner, and asks questions such as

“what is the impact of changing this variable?” This research, however,

seeks to examine software retrospectively to determine if a relationship

between high coupling and ripple effects can be supported empirically.

This is the third research question.

3

Chapter 1 Introduction

1.3 Empirical investigation

The questions above are investigated through an empirical analysis that

uses a large, curated corpus of open-source software systems. Since

there are significant barriers to performing analyses of such large scope,

appropriate tools have been constructed. A tool called CodeNet trans-

lates software systems into large networks, which are then analysed

using the methods provided by network theory. Since network analy-

sis algorithms tend to have high time complexity and the corpus rep-

resents a large collection, automated methods for distributing the re-

quired analyses onto a high performance computing cluster have also

been constructed. Finally, in order to facilitate an analysis of how soft-

ware evolves, a tool called Automated Matching Method (AMM) was con-

structed to match classes between different versions of software systems.

AMM is based on existing methods, but is tailored to this particular in-

vestigation.

The empirical investigation comprises seven hypotheses. Research

questions 1 and 2 are addressed by Hypotheses 1 through 6, and re-

search question 3 is addressed by Hypothesis 7. The results of Hypoth-

esis 7 are supported by an exploratory study that examines the patterns

of change that occur in the corpus.

The structure of the software systems and whether that structure re-

sults in high coupling is addressed by comparing several different degree

distributions. Overall scale-free structure is determined by computing a

degree distribution for the whole software network, and between-module

interaction is determined by computing a degree distribution that only

considers between-module links. To analyse coupling at the class level,

aggregate degree distributions are used.

Detecting ripple effects is the most problematic aspect of this work be-

cause there is no established method to quantify these. A method based

on a model of disease propagation through human populations is devised

and presented in conjunction with an exploratory study of observed pat-

terns of change.

4

1.4 Thesis organization

1.4 Thesis organization

This thesis is organized as follows. Chapter 2 provides background from

three distinct areas of study: design theory, software engineering, and

network theory. It begins by presenting a model for complex systems,

and describes methods for constraining systems to improve their evolv-

ability. Once the model is established, existing applications of design

principles and metrics are reviewed. Then, the field of network theory

is introduced with particular attention paid to scale-free structure, since

it this that clashes with the existing literature on design theory and soft-

ware design principles. Finally, research that applies network theory to

software is reviewed. This is found to be exploratory, focusing on demon-

strating the existence of scale-free structure, but does not relate such

structure to existing design principles.

Chapter 3 presents the tools used to support this work. It begins with

a conceptual overview of the analytic framework, and then provides a

detailed description of its four components: the corpus, system parsing,

graph construction, and analysis. This thesis uses the Qualitas corpus

(Tempero, Anslow, Dietrich, Han, Li, Lumpe, Melton and Noble, 2010), a

large curated collection of open-source systems written in Java (Gosling,

Joy, Steele and Bracha, 2005). System parsing is performed using the

AST parser in the Eclipse system (Eclipse Foundation, 2011). Graph con-

struction is accomplished using the custom-built CodeNet tool. Analysis

is completed using analysis modules that are integrated with CodeNet.

The chapter ends with a description of how the framework is distributed

onto a high performance computing cluster.

Chapter 4 presents a study designed to answer research questions 1

and 2. Five hypotheses about the structure of software are proposed, and

tested against 97 open-source systems written in the Java programming

language. As a justification for the hypotheses, a method of software

evolution based on a well-known network evolution model is proposed.

Chapter 5 establishes the two methods used to investigate the evo-

lution of software. The first is an automated technique for matching

classes, based on existing, non-automated techniques. The second is a

framework for measuring how structural properties of software change

5

Chapter 1 Introduction

over successive system versions. Both techniques are used as part of an

exploratory study that examines three aspects of software evolution: the

frequency of change events, the correlation of change measures, and the

patterns of change exhibited by classes.

Chapter 6 examines the relationship between coupling and software

evolution, and is presented in two parts. The first examines the distri-

bution of changes to inlink coupling to determine whether there is sup-

port for the model of software evolution presented in Chapter 4. The

second builds on the exploratory study performed in Chapter 5 to deter-

mine whether ripple effects can be observed in the corpus. As part of

this investigation, an observational method based on a model of disease

propagation in human populations is used.

Chapter 7 presents the conclusions of this thesis, along with a discus-

sion of future work.

6

Chapter 2

Literature Review

Forschen: Sehen, was jeder sieht, und denken, was keiner

denkt
— Albert von Szent-Györgyi Nagyrápolt

This thesis draws on a large body of literature that is spread over three

distinct fields of study—design theory, network analysis, and software

evolution. This chapter begins by introducing the model that is used to

represent software systems. It is based on a mathematical construct,

the directed graph, and is constrained by rules that are expressed in

design theory. Then the notation used in this thesis to represent complex

systems is described.

Once the model has been established, three examples of how con-

straints are applied to software design are examined. The third intro-

duces the concepts of coupling and cohesion, which are described in

detail. A review of the literature concerning cohesion and coupling mea-

sures is presented, and it is shown that these measures are seldom vali-

dated against external properties of software, such as evolvability.

An overview of network theory is presented, which introduces the no-

tion of scale-free structure. A network with scale-free structure is one

that has many nodes with low connectivity, but some with very high con-

nectivity, and it is this characteristic that is inconsistent with the previ-

ously presented literature. Studies that use network theory to analyze

software systems are examined; However, these studies are exploratory

in nature since they do not attempt to relate software structure to soft-

ware design principles and software evolvability. Because this thesis ex-

amines the evolvability of software, literature relevant to the matching

7

Chapter 2 Literature Review

problem—the problem of matching classes between different software

versions so that they can be compared—is presented.

The chapter ends with a discussion that expands upon the research

questions introduced in Chapter 1.

2.1 Model of a complex system

This thesis investigates the relationship between software system struc-

ture and its evolvability. To study this relationship, we first need a defini-

tion of what a system is and how it is represented.

A system is defined as a group of interacting components that collec-

tively provide utility. Not only is a system composed of things, but there

is a reason to put those things together. The minimal system is one with

two components that are related through a single interaction. An ex-

ample is the composition of a nut and a bolt. Alone, each provides lim-

ited functionality, but when used in concert, they fasten together. This

functionality can be used in a larger system to fasten other components

together.

Systems are represented as directed pseudographs, which are graphs

that allow loops and multiple links between nodes (Zwillinger, 2003).

A graph is defined as G = (V,E) where V is a set of nodes (vertices)

and E is a set of links (edges) that connect them. Each node in the

graph represents a component and each link represents an interaction.

In this investigation, a system requires that all of its nodes are weakly

connected. That is, there must exist a path between each pair of nodes

using the links in E. If G is not weakly connected, it represents more

than one system. Graphs are commonly used to model complex systems

(Ashby, 1952; Alexander, 1964; Simon, 1996), including software sys-

tems (Valverde and Sole, 2003; Marchesi, Pinna, Serra and Tuveri, 2004;

Zhou, Lu and Xu, 2004; Chatzigeorgiou, Tsantalis and Stephanides, 2006;

Jenkins and Kirk, 2007; Ichii, Matsushita and Inoue, 2008; Liu, Lü, He,

Li and Tse, 2008; Pan, Li, Ma and Liu, 2011).

Because the term component has many different meanings, its use can

be ambiguous in different contexts. Instead, we use the term node to

8

2.1 Model of a complex system

mean “a piece of a system.”

2.1.1 System growth

Systems are built to satisfy requirements, so as requirements grow, so

too do systems. Growth manifests itself as the addition of nodes and

links, and there is a mathematical relationship between the number of

nodes and the maximum number of links.1 This relationship is shown in

Figure 2.1 and is represented by the formula |E| <= |V|(|V|−1)
2

.

Number

of nodes (n)

Number

of links

2 3 4 5 6

1 3 6 10 15

Figure 2.1: Relationship between the number of nodes and the number of pos-

sible connections between them.

The management of complexity focuses on minimizing the number of

links, because they have the potential to increase faster than nodes. The

number of interdependencies between nodes is widely believed to be the

primary factor affecting the evolvability of systems due to the ripple ef-

fect (Simon, 1962; Alexander, 1964; Haney, 1972; Parnas, 1972; Stevens,

Myers and Constantine, 1974; Chidamber and Kemerer, 1994; Baldwin

and Clark, 2000).

2.1.2 Connectivity and the ripple effect

The ripple effect occurs when a change in one node necessitates changes

in other nodes and these changes propagate through the system (Alexan-

der, 1964; Haney, 1972). Complex systems rely on interaction between

nodes, but those interactions represent dependencies that may facilitate

change propagation. It is this tradeoff that needs to be resolved by sys-

1Excluding self links and multiple links between nodes.

9

Chapter 2 Literature Review

tem designers. Ultimately, any new nodes must be connected to the

system, but the designer must determine how they are connected. De-

sign principles stress the minimization of interconnections (Simon, 1962;

Alexander, 1964; Stevens et al., 1974; Baldwin and Clark, 2000).

To illustrate this point, Simon and Alexander both describe examples of

the ripple effect in complex systems. Simon’s example takes the form of

a parable of two watchmakers (Simon, 1962). Each makes a watch whose

design uses one thousand pieces. In the first design, the pieces depend

on each other in such a way that if construction is interrupted, it must be

restarted from the beginning. In the second, the watch is composed of

sub-modules, which can be constructed independently. While the second

design takes longer to build because of the added complexity of the sub-

modules, the watchmaker need not have to restart construction from the

beginning should the process be interrupted.

Alexander’s example is a simulation of change propagation through

a graph (Alexander, 1964). In this simulation, nodes are represented

by light bulbs, each of which can be in one of two states (on or off).

The system is in equilibrium when all bulbs are off, and that state is the

desired goal. A bulb that is on represents a node that has changed, and

during the simulation, any bulb that is on has a 50% chance of turning off

in the following second. Any bulb that is off has a 50% chance of turning

on in the following second provided that one of the bulbs to which it is

connected is also on. The simulation begins from the state of equilibrium,

and one randomly chosen bulb is turned on.

How the simulation progresses depends on how the bulbs are intercon-

nected. Alexander’s first simulation uses 100 bulbs with no interconnec-

tions. This takes, on average, two seconds to reacquire equilibrium. His

second simulation adds a connection between each pair of bulbs. This

takes, on average, 2100 seconds (1022 years) to reacquire equilibrium.

Alexander contrasts this with a third simulation, where bulbs are placed

in ten groups of ten bulbs each. In each group, there is a connection be-

tween each pair of bulbs, but there are no connections between bulbs

in different groups. The third simulation reacquires equilibrium in 210

seconds, on average (about 15 minutes).

10

2.1 Model of a complex system

Both examples show the role that dependency plays in the propagation

of change. With more connections, there is a larger number of pathways

for change to propagate, which increases the probability that propaga-

tion will occur. The ripple effect, therefore, is more likely to occur in

the presence of high connectivity. Both examples also propose that the

solution to minimizing the total number of connections is to place nodes

into formalized groups. These groups are called modules.

When relating Alexander’s simulations to complex systems, however,

his third simulation is problematic because it allows for no interconnec-

tions between bulbs in different modules. It stabilizes quickly because it

is a simulation of ten independent systems, where a change in one system

cannot possibly necessitate changes in any of the others because no path-

ways exist. For this simulation to represent a single system, it requires

interconnections between modules. Simon calls this property near de-

composability (Simon, 1962). When a system is modularized, the overall

number of connections between nodes is decreased, but the interconnec-

tions between nodes in separate modules cannot be fully eliminated. The

result is that in complex systems, there will always be interconnections

between modules, and it is these connections that become the focus of

system design.

One final note is that Simon’s parable highlights the role of context

in design. Each design produces perfectly good watches, but the judg-

ment as to which design is better depends on the context within which

the watches are made. In an environment where there are few inter-

ruptions, the first design is arguably better because construction is less

complex. However, in an environment where there are many interrup-

tions, the second is better because even with the more complex design,

the overall average time to build a watch will be less. Design attempts

to satisfy multiple contexts, which are often conflicting. This is why the

design of complex systems is so difficult; addressing the demands of one

context often limits the ability to address the demands of others (Alexan-

der, 1964). For a given complex problem, there is no single best solution,

and designers are required to exercise judgment in their decisions.

11

Chapter 2 Literature Review

2.1.3 Regulating change propagation between modules

Alexander suggests that nodes be grouped into modules based on their

degree of interaction (Alexander, 1964). If two nodes are highly interac-

tive, they are likely to have a high probability of change propagation, so

placing them in the same module provides a mechanism for limiting the

effects of change. However, nearly decomposable systems will have in-

teractions that cross module boundaries. If change propagation between

modules is high, the benefit achieved through modularization is negated,

because change may propagate freely from module to module. While

modularization reduces the overall number of connections, the probabil-

ity of propagation between modules must also be reduced, and this is

accomplished by regulating between-module interaction.

In software systems, regulation can be achieved using abstraction (Par-

nas and Siewiorek, 1975; Verelst, 2005). From the definition of abstrac-

tion, Kramer (2007) focuses on two pertinent aspects. Abstraction is:

• generalization of concept by factoring commonality; and

• simplification by the removal of detail.

When two nodes interact directly, the probability of change propagation

is based on their dependency. Abstraction provides a mechanism through

which dependency can be reduced by introducing an intermediary proxy

node whose definition is a generalized concept of the interaction. For

example, if node A uses node C, and C provides specific utility, then

changing C can necessitate a change in A. However, if an intermediary

node B is introduced that provides a generalized concept of C, C can

change without necessitating a change in A so long as its new utility

remains faithful to the concept defined by B.

An example of this is seen in information hiding, which was first in-

troduced by Parnas (1972) as a criterion for decomposing a system into

modules. Parnas noted that some relationships have higher probability of

change propagation than others. Dependency relationships to variables,

for example, have a high probability of change propagation because vari-

ables represent a specific implementation of functionality. Should the

12

2.2 Notation used in the thesis

type of a variable change, for example, then any nodes dependent on it

will have to be changed to become consistent with its new type. However,

dependency on function definitions has a lower probability of propaga-

tion because they represent a generalized concept of utility. The function

definition provides a proxy for nodes that provide the specific implemen-

tation, and should those nodes change, there will be no propagation so

long as the new implementation remains consistent with the general con-

cept of utility provided by the function definition.

With information hiding, the designer determines which nodes of a sys-

tem are likely to change and hides them within modules using abstrac-

tion. Access to hidden nodes is through abstracted interfaces, which

regulate the propagation of change across module boundaries. (Liskov,

1987) The degree to which the specific implementation is exposed by

its interface is called its transparency. Transparent modules offer little

protection from change propagation (Parnas and Siewiorek, 1975).

Simon notes that most complex systems are composed of interrelated

submodules, which are hierarchical until some level of elementary sub-

module is reached (Simon, 1962). This view is consistent with the use of

abstraction, where higher levels in the hierarchy represent higher levels

of abstraction.

2.2 Notation used in the thesis

We represent complex systems as a directed graph, constrained by the

use of modularization and abstraction. Figure 2.2 shows notational ele-

ments used in this thesis. Nodes and proxy nodes2 are shown as circles

or ovals, and can optionally contain descriptive text. Interactions based

on usage are shown as solid lines, and may optionally show dependency.

Hierarchical relationships are shown as solid lines with unfilled arrow-

heads in the direction of the parent node. Transitive relationships are

used to show when two nodes cannot be considered independently. They

are shown using a dashed line, and may also be hierarchical. Modules

are shown as rectangles with the root node at the top and all contained

2In this notation, the role of a node is represented by its position on the diagram. If a

single node has multiple roles, proxy nodes are used to mark each role.

13

Chapter 2 Literature Review

Text Node with text

Proxy Node

Interaction (usage)

Interaction (transitive)

Module

Interaction (hierarchical)

Text

Interface

Interaction (hierarchical, transitive)

Nodes and interactions Modules and interfaces

Node

Interaction (usage, with dependency)

Figure 2.2: Notational items used in the thesis.

nodes within. Interfaces to modules are nodes that are placed on the

border of the three remaining sides of the module rectangle.

Figure 2.3 illustrates the conventions used to represent object-oriented

system structure. Nodes are class declarations, method declarations,

variable declarations, function declarations, blocks, generic modules,

and statements, and are differentiated by numbering, when necessary.

Different versions of the same node are denoted with the same num-

ber, but with distinguishing letters. Module interfaces are denoted using

proxy nodes and transitive connections, which illustrate the nodes that

make up the interface.

2.2.1 System structure and evolvability

Researchers have noted that there is a relationship between system struc-

ture and its evolvability. Simon (1962) concluded that complex systems

evolve faster when they are built from modules because modules rep-

resent a “stable intermediary form” upon which further evolution can

take place. Alexander (1964) argued that high levels of interconnectivity

could make even simple changes difficult, thereby limiting the extent to

which a system can change. Haney (1972) argued that module intercon-

nections can result in “rippling changes,” thereby increasing the time

14

2.2 Notation used in the thesis

C

M

V

S

Class declaration

Method declaration

Variable declaration

Statement

C1

Class declarations 1, 2, and 3C2

C3

C1.A

C1.B

C1.C

Class declaration 1, versions A, B, and C

C1

M1
Method 1 declared in class 1,
where M1 is part of C1's interface

C1

M1
Method 1 declared in class 1,
where M1 and its parameters
are part of C1's interface

V V

}

}

B Block

F Function declaration

Mod Generic Module

Figure 2.3: Notational conventions used in the thesis.

it takes for a system to stabilize after changes are introduced. Parnas

(1972, 1994) argued that the encapsulation of volatile design decisions

creates structures that are more robust to change propagation. He also

argued that systems with fewer between-module interactions are easier

to understand because the modules can be understood independently

of each other, and understanding, in part, contributes to the amount

of effort needed to modify a system. Baldwin and Clark (2000) argued

that modularization promotes the decentralization of “valuable design

options” so that they may change independently, thereby enabling evolu-

tion.

However, none of these researchers have offered a precise definition

15

Chapter 2 Literature Review

of what it means for a system to be evolvable.3 Rather, they rely on the

logical implication that making more changes requires more effort, and

since the supply of effort is finite, any system that suffers from increased

change as a result of change propagation is less evolvable.

The primary reason that evolvability is not precisely defined is because

change pressures typically originate from external sources at a future

time, so they are unavailable when the system is created. Because dis-

similar structures respond differently to change pressures, a structure

that is ideal for a particular sequence of change pressures may not nec-

essarily be ideal for a different sequence. To claim that a particular

structure has “high evolvability” requires a corollary definition of the

sequence of change pressures. Because the actual sequence is unknown,

programmers must make design decisions based on anticipating the kind

of pressures that will transpire.

2.3 Design principles and software evolvability

Principles have been formulated to help programmers make “good” de-

sign decisions when faced with limited information about future change

pressures. They are rules of thumb that are generally believed to pro-

duce better system design. This section shows how software design prin-

ciples attempt to improve modifiability by reducing change propagation

between modules.

2.3.1 Information hiding

Parnas (1972) examined two different implementations of the KWIC sys-

tem, which differed in the criteria used for modularization. In the first

version, modularization was based on an analysis of the subprocesses

that make up the system, while in the second it was based on informa-

tion hiding. Parnas then described several change pressures that were

likely to occur, and noted that to address one of them the first modular-

ization would require changes to every module. Figure 2.4 shows the two

3In the literature, the terms evolvable, modifiable, changeable, and their variants, are

used interchangeably.

16

2.3 Design principles and software evolvability

structures.

Mod1

V

F

S

F

S

Mod2

F

S

F

S

Mod3

V

Modularization 1
Modularization 2

F

S

Mod2

F

S

Mod1

F

S

Figure 2.4: Two different modularizations of the KWIC system.

Because the first modularization was based on process flow, primary

data storage for the program is shared between modules. Since each of

the modules contains statements that use the data store directly, changes

to the store have a high probability of propagating into the accessing

modules, resulting in their destabilization. Even though this system is

modularized, its structure provides little protection to the propagation of

change. Parnas judged it to be of poorer design because the implemen-

tation of the data store is a design decision that has a high probability of

change (Parnas, 1972).

In the second modularization, only functions defined within Module 1

have direct access to the data store. All accesses to the store from out-

side Module 1 are through function declarations, which only provide indi-

rect access to the implementation of the store. The pathways of change

propagation from V to external modules include accessing statements

and function declarations, and since the latter are an abstraction of the

implementation, they have a lower probability of propagating change. In

this version, the structure itself acts as an impediment to the propagation

of changes made to the data store.

17

Chapter 2 Literature Review

Design Parameters

D
e

s
ig

n
 P

a
ra

m
e

te
rs

Design
Rules

.X X

X.XX

XX. X

X X.X

 XXX.
Within-module interactions

Between-module interactions

Module

.X XXXX

X.X X

XX.XX X

X X. XX

 XXX.X

XXX X.X

 XXX .
.X X

X. X

XX.X

X X.

.X XX X XX

X. X X XX

XX. XXXX X

X X. X XX

 XXX.X

 XX X.XXX

XXX X . X

 X X X . X

XX XXXX .

XXXX XX X.

X

X

X

X

Figure 2.5: Example of a design structure matrix.

2.3.2 Design rules and the design structure matrix

Baldwin and Clark (2000) and Sullivan, Griswold, Cai and Hallen (2001)

describe a design tool called the design structure matrix (DSM), shown

in simplified form in Figure 2.5, which implements a form of information

hiding. In a DSM, the interaction of design parameters are shown using

an “X”, and modules are shown by a rectangle that groups interacting

components. Interaction markers within the designated boxes signify

interactions between design parameters that are contained within the

same module. However, when interactions are required between param-

eters in different modules, a design rule is created. Design rules are

shown on the left hand side of the matrix, and provide an indication of

those parameters that are visible and cannot be changed without impact

on other parts of the system. Parameters that do not appear in design

18

2.3 Design principles and software evolvability

rules are hidden from the rest of the system and are available for design-

ers to modify freely. DSMs can be viewed as adjacency matrices where

modules represent strongly connected design parameters.

When using a DSM, the regulation of between-module interaction is

accomplished through the declaration of design rules, which specify the

parameters that are not available for modification by designers. This

provides a framework within which designers may explore alternative

designs without fear that their modifications may have a system-wide

impact. Module interfaces have been used as a basis for design metrics

as a method for computing design stability (Yau and Collofello, 1985;

Kelly, 2006), which is primarily used to predict the likely occurrence of

the ripple effect (Yau and Collofello, 1985).

2.3.3 Coupling and cohesion

Stevens et al. (1974) introduced the principles of coupling and cohe-

sion to help system designers minimize the likelihood of the ripple effect

caused by between-module interaction. Coupling is defined as “the mea-

sure of the strength of association established by a connection from one

module to another,” where strength of association relates to the prob-

ability of propagating change. Stevens et al. (1974) cite three factors

which effect the strength of association. The first is the complexity of the

connection. The second is whether the connection is being made to the

module itself, or to something contained inside it. The third is what is

being sent or received.

Stevens et al. (1974) propose two methods for reducing the amount

of coupling in a system. The first is to minimize the number of between-

module connections, and the second is to maximize the number of within-

module connections. They believe that maximizing within-module links

causes highly interactive nodes to be placed within the same module,

which accords with Alexander’s approach to modularization (Alexander,

1964). If highly interactive nodes span module boundaries, they are

likely to provide a conduit through which change freely propagates be-

tween modules. Stevens et al. (1974) call the binding between nodes

within a module a measure of the module’s cohesion.

19

Chapter 2 Literature Review

2.3.4 Discussion

While these principles use different mechanisms, there is commonality

between their goals. Each principle proposes methods that try to avoid

the ripple effect by minimizing the probability of change propagation be-

tween modules, and stresses the use of interfaces as an aid to achieving

that goal.

Where the principles differ is that neither information hiding nor DSM

are concerned with interactions that occur within the modules that are

defined. Only the principles of coupling and cohesion state that there

is a relationship between the internal structure of a module and how it

relates to other modules. The maxim of “high cohesion and low coupling”

is borne out of these principles.

2.4 Measuring cohesion and coupling

While Stevens et al. (1974) provide examples to illustrate cohesion and

coupling in source code, their descriptions are qualitative. There are sev-

eral different ways of measuring both coupling (Selby and Basili, 1991;

Briand, Daly and Wüst, 1999b) and cohesion (Briand, Daly and Wüst,

1998). This section provides a brief overview of them.

2.4.1 Measuring coupling

There are two categories of coupling measurement. The first is coupling

frameworks (Eder, Kappel and Schrefl, 1992, 1994; Hitz and Montaz-

eri, 1995; Briand, Devanbu and Melo, 1997), and the second is coupling

metrics (Chidamber and Kemerer, 1991; Li and Henry, 1993; Chidamber

and Kemerer, 1994; Martin, 1994; Abreu, Goulão and Esteves, 1995; Lee,

Liang, Wu, and Wang, 1995). They all use the class as the primary mod-

ule definition and they all use the interactions between classes as the

basis for measuring the strength of association. The differences between

the various metrics and metric frameworks are based on interaction cat-

egorization, and by the weightings assigned to each category. Where

categorization is used, the rationalization is based on the belief that dif-

ferent categories have different probabilities of propagating change.

20

2.4 Measuring cohesion and coupling

C1

C2

V

M2

M1

V

S

1

2

3

5
V

4

Figure 2.6: Common aspects of coupling measures.

Figure 2.6 shows five different ways that interactions between classes

can be categorized. With 1, a variable is defined to be of type C2. With 2,

M1 defines C2 as its return type, and with 3, a parameter to M1 is of the

type C2. With 4, a local variable in M1 is defined to be of type C2. Finally,

with 5, a statement invokes the method M2. In the Coupling between ob-

jects (CBO) metric, for example, there is no categorization of links, so all

links are treated equally (Chidamber and Kemerer, 1991, 1994). How-

ever, Eder et al. (1992, 1994) differentiate between method to method,

class to class, and class to class interactions through inheritance rela-

tionships, so interactions 1 through 4 are considered separately from

interaction 5.

Amongst the different metrics and metric frameworks, link categories

include:

• Class–attribute, class–method, method–method, inheritance, friend

class, and other (Briand et al., 1997).

• Method–method, class–class, class–class through inheritance, which

are further differentiated as types of “interaction coupling”, “com-

ponent relationships,” and “inheritance relationships” (Eder et al.,

1992, 1994).

• Class–class and object–object (Hitz and Montazeri, 1995).

• Class–class as client-server relationships (Abreu et al., 1995).

21

Chapter 2 Literature Review

• Method invocations weighted by the number of parameters (Lee

et al., 1995).

• Method invocations and variable types (Li and Henry, 1993).

• No categorization (Chidamber and Kemerer, 1991, 1994; Martin,

1994).

Two of the coupling frameworks differentiate between interactions that

used interfaces and those that access internal nodes of other classes.

Briand et al. (1997) defines subcategories of usage based on interface,

“friend” and “other” relationships. Hitz and Montazeri (1995) subcate-

gorize interactions based on “access to interface” and “access to imple-

mentation”.

Some of the measures consider direction of coupling (Martin, 1994;

Abreu et al., 1995; Hitz and Montazeri, 1995; Briand et al., 1997). This

is a potentially contentious issue because the direction of coupling im-

plies causality of change propagation. This is best demonstrated by the

following statement made by Martin (1994): “Consider again the forces

that could make [independent classes] change. They depend upon noth-

ing at all, so a change from a dependee cannot ripple up to them and

cause them to change.” Martin defines independent classes as those that

do not depend on other classes, and since they do not depend on other

classes, there are no reasons for them to change. However, he does not

consider the case where change may propagate from dependent classes.

Consider a situation where class A depends on class B, which, in turn,

depends on class C. Changes to class B can propagate to class A because

A depends on B. However, it is also possible to propagate changes from

B to C when, for example, changes to B highlight errors that exist in C.

This scenario is possible when a system is being refactored (Fowler,

1999). Refactoring occurs when programmers want to change a sys-

tem for the purpose of improving its structure, as opposed to chang-

ing its functionality. It is common for programmers to make design

decisions with incomplete information about future change pressures,

thereby leaving the system’s structure deficient in some way (Fowler,

1999). In the above scenario, changes to B may be difficult because of

22

2.4 Measuring cohesion and coupling

the complexity of class C ’s interface. With refactoring, the programmer

is encouraged to simplify the relationship between B and C by changing

C.

Simon concludes that a necessary criterion for demonstrating causal-

ity between two entities is the identification of an asymmetry in their

relationship (Simon, 1953). To illustrate this asymmetry, he uses the fol-

lowing example from economics:

Poor weather → Reduced wheat harvest → Higher wheat prices

The causal relationship is clear: poor weather can cause a reduction in

the amount of wheat harvested, which can result in high wheat prices.

The asymmetry is demonstrated when the relationship is written in the

reverse order. An increase in wheat prices cannot cause poor weather.

It is not clear that dependency between elements of software (such

as classes and methods) is asymmetric in the manner defined by Simon.

While there are some cases where a programmer may only have con-

trol over one side of a relationship, for example, when he uses libraries,

change propagation may occur in either direction, regardless of the di-

rection of dependency.

2.4.2 Measuring cohesion

There are several different ways of measuring cohesion (Briand et al.,

1998). There are four categories of cohesion metric: structural (Chi-

damber and Kemerer, 1991, 1994; Eder et al., 1994; Bieman and Kang,

1995; Hitz and Montazeri, 1995; Lee et al., 1995; Henderson-Sellers,

1996; Briand et al., 1998; Zhou, Xu, Zhao and Yang, 2002), semantic

(Etzkorn and Delugach, 2000; Marcus and Poshyvanyk, 2005), program

slice (Meyers and Binkley, 2004), and information theory-based (Allen,

Khoshgoftaar and Chen, 2001). Since the scope of this thesis is limited

to software structure, only structural metrics will be described in detail.

While coupling measures between-module connectivity, cohesion mea-

sures within-module connectivity. Alexander’s principle for modulariza-

tion is to group nodes that have high interaction (Alexander, 1964), How-

23

Chapter 2 Literature Review

ever, he did not consider different node categories. Cohesion metrics

consider two categories, methods and attributes,4 and it is their interac-

tion that is measured.

Most of the structural metrics are based on that of Chidamber and Ke-

merer (1991, 1994), which derive class cohesion from the similarity of

its methods. Lack of cohesion in methods (LCOM) is an inverse measure:

the greater its value the lower the cohesion. Cohesion is computed by

constructing the set of accessing methods for each attribute. For n at-

tributes, there will be n sets, and LCOM is the number of disjoint sets

that are formed by the intersection of those sets (Chidamber and Ke-

merer, 1991). This definition was later changed to be the number of

pairs of methods that share no common attribute references minus the

number of pairs that do (Chidamber and Kemerer, 1994). In the second

definition, if the computed value for LCOM < 0, then LCOM = 0.

Hitz and Montazeri (1995) provide a different interpretation of cohe-

sion, and define a measure using directed graphs. A class is a graph of

methods that are linked when both share an attribute. The cohesion of

the class is its number of connected methods. Hitz and Montazeri (1995)

found, however, that accessor methods5 confounded the metric. To com-

pensate, they added a link between methods wherever one invoked the

other.

Bieman and Kang (1995) also recognized the problems with acces-

sor methods, but expanded their solution to include all cases where at-

tributes were accessed transitively. For example, if method A invoked

method B, which invoked method C, and C accessed the attribute X, then

methods A, B, and C all share the common attribute X. Methods are con-

nected if they share any attribute either directly or indirectly. Bieman

and Kang’s metric, tight class cohesion (TCC), is the percentage of pairs

of public methods of a class that share a common attribute.

Henderson-Sellers (1996) defines perfect cohesion when each method

accesses every attribute, for which the measure yields the value 0. If

each method only accesses a single attribute, then the measure yields 1.

4also called “fields,” “members,” “data members,” “variables,” and “instance vari-

ables”.
5also called “getters” and “setters”.

24

2.4 Measuring cohesion and coupling

To compute the cohesion of a class, the percentage of attributes that are

access by each method is computed, and averaged over the methods.

Lee et al. (1995) have a slightly different approach to measuring cohe-

sion. The cohesion of a method is defined as number of within-module

method invocations, weighted by the number of parameters, and the co-

hesion for a class is the sum of the cohesion of each of its methods.

While each of these metrics maintain a slightly different interpretation

of cohesion, they are all based on on the notion that classes with more

internal interaction are more cohesive. Marcus and Poshyvanyk (2005)

note that none of the measures is accepted as the standard measure of

cohesion.

2.4.3 Empirical validation of cohesion and coupling metrics

There has been little empirical validation of coupling and cohesion met-

rics against external properties of software (Briand et al., 1998, 1999b;

Brito e Abreu and Goulao, 2001), and what has been done is limited in its

scope and applicability (Brito e Abreu and Goulao, 2001). Basili, Briand

and Melo (1996) and Briand, Morasca and Basili (1999c) investigated

the relationship between object-oriented metrics against fault proneness.

The study by Basili et al. (1996) only used student subjects, which are not

likely to respond as expert programmers would, and that by Briand et al.

(1999c) only examined three systems. Chidamber and Kemerer (1994)

claim the first validated object-oriented metrics suite, but their valida-

tions were not against external properties of software systems, and their

investigation only considered two systems. Chidamber, Darcy and Ke-

merer (1998) concluded that the C&K metrics (Chidamber and Kemerer,

1991, 1994) give significant insight into the impact of object-oriented

design decisions, but their validations were against three small systems

(<45 classes), one of which comprised only design documentation.

Other investigations include El-Emam, Benlarbi, Goel and Rai (1999),

who examined one commercial Java application, Briand, Wüst, Daly and

Porter (2000), who examined six systems of limited complexity using non-

expert subjects, Bansiya and Davis (2002), who examined a limited set of

small systems (< 29 classes), Gyimothy, Ferenc and Siket (2005), who

25

Chapter 2 Literature Review

examined one system, and Subramanyam and Krishnan (2003), who ex-

amined one system. Some studies provide only a theoretical validation

(Harrison, Counsell and Nithi, 1998; Zhou et al., 2004). Succi, Pedrycz,

Djokic, Zuliani and Russo (2005) performed an analysis of colinearity be-

tween several metrics and concluded that some measures exhibit a high

degree of colinearity.

There have been many calls for more empirical studies in software en-

gineering (Briand et al., 1998, 1999b; Briand, Arisholm, Counsell, Hou-

dek and Thévenod–Fosse, 1999a; Mens and Demeyer, 2001; Kitchenham,

Pfleeger, Pickard, Jones, Hoaglin, El Emam and Rosenberg, 2002) and for

metrics specifically (Briand et al., 1998, 1999b; Brito e Abreu and Goulao,

2001). Briand et al. (1999a) and Kitchenham et al. (2002) note that when

collecting data for software engineering studies it is difficult to control

for variables, and Briand et al. (1998) note that coupling and cohesion

measures are not defined in terms of explicit empirical models. These

factors contribute to the lack of empirical validation of coupling and co-

hesion measures. More empirical investigations that consider a larger

number of systems of greater size are required.

2.5 Random models of complexity

Scientific investigations into random networks began with Solomonoff

and Rapoport (1951), who discovered that when the ratio between links

and nodes exceeds one, groups of randomly connected nodes abruptly

switch from being collections of small disjoint networks to being a sin-

gle, fully-connected network. Their findings were followed by Erdős and

Rényi (1959, 1960), who laid the groundwork for the use of network anal-

ysis in scientific investigations. Among their findings, Erdős and Rényi

(1959) discovered that many of the properties found in randomly gener-

ated graphs appear suddenly, and this transition is related to the ratio

between the number of nodes and links (Erdős and Rényi, 1960).

Erdős and Rényi (1960) defined a general method for generating ran-

dom networks so that they could be used to model complex phenomena.

Their method requires two parameters: the number of nodes n and the

26

2.5 Random models of complexity

number of outgoing links k. Construction of the graph begins with the

creation of n nodes. Then, for each node, k links are associated with

randomly chosen nodes.

When using random networks for empirical analysis, Barabási and Al-

bert (1999) discovered that networks that were generated using Erdős

and Rényi’s process do not accurately reflect the structure of networks

that they observed in real networks. The main difference is that the

distribution of frequency of occurrence against node degree for Erdős

and Rényi networks is a Poisson distribution (Watts and Strogatz, 1998;

Barabási and Albert, 1999; Newman, Strogatz and Watts, 2001), whereas

for real networks it is a power-law distribution (Watts and Strogatz, 1998;

Barabási and Albert, 1999; Newman, 2005).

2.5.1 Power-law distributions

In networks that possess a power-law degree distribution, the probability

that a node x has the degree deg(x) is proportional to deg(x)−α where

α > 1:

p(deg(x)) = C deg(x)−α, (2.1)

for some normalization constant C. In most power-law distributions en-

countered in practice, 2 ≤ α ≤ 3, but this is not always the case (Clauset,

Shalizi and Newman., 2009). From such distributions, two key connec-

tivity characteristics emerge:

1. The mean connectivity is low relative to the range because the dis-

tribution is right-skewed.

2. The range of connectivity has the potential to be several orders of

magnitude greater than the mean, depending on the size of the net-

work.

These properties suggest that most nodes in the system have low con-

nectivity, but there will be nodes that exhibit high degrees of connectiv-

ity with respect to the mean; these nodes reside in the long tail6 of the

distribution. These highly connected nodes are called hubs. Networks

6sometimes called heavy tail.

27

Chapter 2 Literature Review

with a power-law degree distribution are called scale-free (Albert, Jeong

and Barabási, 1999; Barabási and Albert, 1999), due to the fact that they

are self-similar at all scales.

2.5.2 Generating random power-law networks

While several network generation processes result in power-law degree

distributions (Simon, 1955; Keller, 2005), the most commonly used in net-

work analysis is the preferential attachment model (Newman, Barabási

and Watts, 2006). This differs from Erdős and Rényi’s method in two

ways. First, the network evolves through the addition of nodes and links.

Second, links between nodes are not random, but are instead based on a

preferential attachment function. It is also called the BA model, named

for those who first proposed it (Barabási and Albert, 1999).

When a new node is added to the network, the probability that it will

attach to i is:

pi =
ki∑
j kj

, (2.2)

where ki is the degree of node i and
∑

j kj is the sum of degrees of each

node in the network.

The power-law degree distribution emerges for two reasons. First, the

preferential attachment function defines the probability of attachment as

directly proportional to the number of links that a node already has. Sec-

ond, unlike the Erdős and Rényi model, the size of the network evolves

rather than being fully defined at the start. Both factors contribute to a

probability function that is non-uniform across the nodes in the network.

The resulting network is one where nodes that have been in the network

the longest are likely to have the greatest number of links (Barabási and

Albert, 1999; Albert et al., 1999). This is often summarized as “the rich

get richer” (Newman et al., 2006).

2.5.3 Small-world networks

Another network property that often accompanies scale-free structure is

called small-world (Watts and Strogatz, 1998). A network has this prop-

erty if its nodes are highly clustered and the average path length between

28

2.6 The ripple effect in scale-free and small-world networks

nodes is small. The small-world phenomenon is best known through the

work of Milgram (1967) and Travers and Milgram (1969), who sent let-

ters to random people and asked them to forward them to a specific per-

son. If the subject did not know the intended target, they were instructed

to forward the letter to someone whom they thought might know the tar-

get. Although there was a small response rate, Travers and Milgram

found the number of steps between a randomly selected subject and a

specific target to be 6. Since the path chosen was not necessarily opti-

mal, they concluded that the actual average distance was less.

In a small-world network, the small average path length enables infor-

mation to be shared between all nodes in a manner that minimizes direct

connectivity. Two nodes need not have a direct connection if they share

a neighbour through which they can pass information.

2.6 The ripple effect in scale-free and small-world

networks

The scale-free and small-world properties have implications for the ripple

effect.7 A complex network that is scale-free has hubs, which, if changed,

have the ability to propagate change to a large number of nodes. In a

small-world network, the propagation of change has a greater chance of

being system-wide because of the short average path length (Monasson,

1999; Pandit and Amritkar, 2001). This has lead to the rise of the SIR

model in epidemiology (Ball, Mollison and Scalia-Tomba, 1997a).

2.6.1 The Susceptible, Infective, Removed model

While the focus of the SIR model is disease spreading through a pop-

ulation, it can be applied to any network propagation problem. In it,

nodes can be in one of three states: susceptible, infective, or removed.

Susceptible nodes are those which have not yet caught the disease; in-

fective nodes are those that have caught the disease and are able to pass

it along to others; and removed nodes are those that have either died or

recovered, and cannot further propagate the disease.

7Also called Percolation and Diffusive propagation in network analysis.

29

Chapter 2 Literature Review

When researchers used the Erdős and Rényi (1960) model to simulate

disease propagation, they discovered that their models did not behave

like actual epidemics (Ball et al., 1997a). They attributed the observed

differences to the fact that Erdős and Rényi networks are neither scale-

free nor small-world. In such networks, the Poisson degree distribution

means that the degree is similar for all nodes, so the probability of in-

fection propagation is closely related to the number of infective nodes.

However, in a scale-free network, the probability of propagation from

infective to susceptible nodes is based on the number of links between

those node types, and due to the presence of hubs, this can be consider-

ably larger than the number of infective nodes. Because it is generally

easier to estimate the number of infective nodes than the number of links

between infective and susceptible, this can produce unexpected levels of

propagation within the network (Bailey, 1975). This effect is also called

the tipping point (Gladwell, 2002).

If software systems are scale-free and small-world networks, the SIR

model has implications for the propagation of change and the ripple

effect. While most nodes would have low connectivity, hubs would be

present and could facilitate propagation to large numbers of nodes. The

small average path length of the network guarantees that each node is

only a few steps from a hub, which means that changes to any node could

conceivably have system-wide effects. It must be noted that in the SIR

model, nodes gain immunity, which prevents further propagation of the

disease. In a software system, nodes may be “re-infected”, and cause

further change propagation.

2.6.2 Empirical studies

Investigations into the ripple effect in software are limited to simulations

(Yau and Collofello, 1985; Tsantalis, Chatzigeorgiou and Stephanides,

2005; Sharafat and Tahvildari, 2007; Li, Qian and Zhang, 2009). Yau and

Collofello (1985) derive stability measures based on assumptions about

existing software systems, and the computation of a “potential ripple ef-

fect” that occurs as a consequence of modifying a module. Tsantalis et al.

(2005) propose to measure change proneness by estimating which mod-

30

2.6 The ripple effect in scale-free and small-world networks

ules will be affected when new functionality is added, and validate this

against two systems. Sharafat and Tahvildari (2007) compute change

proneness based on dependencies extracted from UML diagrams and

source code, and validate their approach against one system. Li et al.

(2009) propose a design evaluation metric that constructs a simulation

of change propagation from existing software, which is evaluated using

small samples.

Other simulations include impact analysis, which computes the impact

of changing some aspect of a software system (Black, 2001, 2006, 2008;

Abdi, Lounis and Sahraoui, 2009). Black (2001) describes how impact

analysis can be used to predict which modules change when a variable is

modified. She demonstrates that her technique correlates with Yau and

Collofello’s (1985) measure (Black, 2006), and also correlates her mea-

sure against the performance of a human subject (Black, 2008). Abdi

et al. (2009) propose a probabilistic method of impact analysis that re-

lies on Bayesian networks, and validate their approach against a single

system.

All these techniques focus on predicting the effects of software modi-

fication. They are designed to help software maintainers understand the

impact of proposed changes before those changes are made. None of

these studies examine the history of software systems to determine if,

indeed, a ripple effect has occurred.

2.6.3 Change propagation through inferred links

Typically, change propagation occurs through links between modules

that have been established formally. However, there is also interest

in considering the propagation of change that occurs through inferred

(Cubranic and Murphy, 2003) or hidden (Gîrba, Ducasse, Marinescu and

Raţiu, 2004) dependencies. This form of change propagation is called

co-change, and links are inferred using a variety of techniques that iden-

tify common records of change called modification records (German,

2006). Using source code repositories Zimmermann, Weißgerber, Diehl

and Zeller (2004) and Ying, Murphy, Ng and Chu-Carroll (2004) iden-

tify hidden links by considering the temporal aspects of code commits.

31

Chapter 2 Literature Review

Changed files that are committed to the repository at the same time

are deemed to be linked. Cubranic and Murphy (2003) identify hid-

den links by examining Bugzilla8 reports, online developer forums and

usenet newsgroups, developer emails, and design documents. Modules

that are identified in the same container (e.g. email) are deemed to be

related. Hassan and Holt (2004) devised seven heuristic and pruning

techniques based on entity, developer and process data to infer links.

Gîrba, Ducasse, Kuhn, Marinescu and Daniel (2007) used concept anal-

ysis, which is grouping entities based on common properties, as their

basis for identifying hidden links.

With all of these techniques, the presence of a link between nodes may

be coincidental. For example, some developers do not commit code after

each small change, but rather commit code changes in larger groups.

In the latter case, links would be inferred between classes that did not

change in tandem. Contrast this with networks generated from source

code where all links are formally declared and verified to satisfy a pro-

gramming language grammar. Although ripple effects may propagate

through inferred links, the analyses performed in this thesis are based

on formally declared links. Instances of change propagation due to infor-

mal association are considered to be out of the scope of this thesis.

2.7 Network analysis of software

Several investigations into the structure of software systems have re-

vealed the presence of power laws and other long-tailed distributions.

Wheeldon and Counsell (2003) examined power laws in the class cou-

pling relationships in three industrial systems for the purpose of using

power-law distributions to predict coupling patterns. They examined five

different class-coupling relationships (inheritance, interface, aggrega-

tion, parameter type, and return type) and concluded that not only does

each have a power-law distribution but that the relationships are inde-

pendent. Wheeldon and Counsell do not consider coupling as a result of

method invocation, and perform no analysis beyond the class level.

8www.bugzilla.org

32

2.7 Network analysis of software

Myers (2003), Marchesi et al. (2004), Potanin, Noble, Frean and Bid-

dle (2005), and Gao, Xu, Yang, Niu and Guo (2010) observed power-

laws in both the in-degree and out-degree distributions of modules in

26 different software systems. Baxter, Frean, Noble, Rickerby, Smith,

Visser, Melton and Tempero (2006) examined 56 systems for a large set

of measures including some coupling measures, but considered them in-

dependently from one another. They observed log-normal out-degree dis-

tributions, and some specific coupling measures did not match a long-

tailed distribution in some instances, hinting at a lack of universality.

Jing, Keqing, Yutao and Rong (2006) found power laws in two measures,

weighted methods per class (WMC) and coupling between objects (CBO),

for four open-source software systems. Concas, Marchesi, Pinna and

Serra (2007) examined ten properties of three software systems and

found them to have both Pareto (1897) and log-normal distributions. Ichii

et al. (2008) examined four measures (including two variants of WMC) on

six systems, finding that in-degree follows a power law while out-degree

follows some other heavy-tailed distribution. Louridas, Spinellis and Vla-

chos (2008) found power laws present in the dependencies of software

libraries, applications, and system calls in the Linux and FreeBSD operat-

ing systems, and concluded that they are ubiquitous in software systems.

None of the aforementioned investigations considered software sys-

tems at the level of statements and variables, limiting the generality of

the findings. Some of the investigations did not explicitly plan to inves-

tigate coupling. Myers (2003) considered only inheritance and aggrega-

tion relationships. Concas et al. (2007) focused mostly on size measures,

but did include a count of method invocations between classes, which

they found to conform to a power law; however, they did not examine

other forms of coupling. Gao et al. (2010) considered method–method

interaction, excluding other class-level coupling measures.

Hyland-Wood, Carrington and Kaplan (2006) examined coupling rela-

tionships at differing levels of granularity (package, class, and method

level, but not statement level) for two separate open source projects over

a 15-month period and concluded that scale-free properties were present

at all levels of analysis for each snapshot, although they note that these

33

Chapter 2 Literature Review

properties were approximate in most cases. While demonstrating the re-

lationship of scale-free structure between differing levels of granularity,

this study’s lowest level of analysis was that of methods.

Vasa, Lumpe, Branch and Nierstrasz (2009) noted that many software

metrics have a skewed distribution, which makes the reporting of data

using central tendency statistics unreliable. To address this, they recom-

mend using the Gini coefficient, which has been used in the field of eco-

nomics to characterize the relative equality of distributions. They exam-

ined 46 systems on a variety of measures, two of which (in-degree count

and out-degree count) are related to coupling. Their findings appear to

support those of Myers (2003) and Gao et al. (2010) that in-degrees and

out-degrees have differing distributions. However, they do not address

the structure of software at the source code level.

Some of the investigations had confounding factors, which makes them

difficult to directly compare with this work. Marchesi et al. (2004) ex-

amined classes in Smalltalk systems, but issues of dynamic binding pre-

vented precise resolution of between-module interactions. To circumvent

this, dependency relationships that could only be resolved at runtime

were approximated using a weighting function, but it is not clear what

effect this transformation may have had. Potanin et al. (2005) investi-

gated object graphs, which are not directly comparable to class graphs.

For example, collection objects may have many runtime associations that

are undetectable through static analysis. Similarly, the number of in-

stances of each class could skew the total degree distribution, because

classes with higher numbers of instances would have greater weight in

the analysis. It is not clear that scale-free structure in an object graph

translates to scale-free structure in its corresponding class graph.

Valverde, Cancho and Sole (2002) and Jenkins and Kirk (2007) note

that hubs fall into “the set of bad design practices known as antipatterns”

(Koenig, 1995). However, they fail to observe that the ubiquitous pres-

ence of heavy-tailed distributions implies the presence of hubs.

34

2.8 Preferential attachment and source code evolution

2.8 Preferential attachment and source code

evolution

While it has been observed in the literature that various levels of soft-

ware structure are scale-free, none of the investigations has examined

software at the statement level (Wheeldon and Counsell, 2003; Myers,

2003; Marchesi et al., 2004; Potanin et al., 2005; Baxter et al., 2006;

Hyland-Wood et al., 2006; Concas et al., 2007; Ichii et al., 2008; Louridas

et al., 2008; Gao et al., 2010). Analyses are typically performed at the

class level (Wheeldon and Counsell, 2003; Myers, 2003; Marchesi et al.,

2004; Potanin et al., 2005; Valverde and Sole, 2005; Ichii et al., 2008;

Gao et al., 2010) and, in some cases, as low as the method level (Hyland-

Wood et al., 2006). However, it seems reasonable that if scale-free struc-

ture is observed at the class and method levels, then it is derived from

the underlying interactions between variables, statements and methods.

In order to formulate a hypothesis about scale-free structure at those

levels, there needs to be reasonable justification as to why one would

expect such a structure to evolve. As a starting point, we consider the

preferential attachment model.

Several criticisms have been brought forward regarding the BA model,

especially as it applies to software systems. As a general criticism, Keller

notes that the presence of a particular degree distribution does not iden-

tify the process that was actually used to form the network Keller (2005).

Simply stated, knowing the result does not explain how the result was

achieved. She provides several examples of different network evolution

processes, all of which result in power-law degree distributions. The

point of her criticism is that one should not accept a network evolution

model simply because it generates the expected distribution. The pro-

cess described by the model must be relevant to the kinds of processes

that are at work as the system evolves.

Valverde et al. (2002) suggest that the BA model is not relevant to

software development because “no design principle explicitly introduces

preferential attachment.” They offer an alternative model based on de-

sign principles that minimize path length between nodes. However, the

35

Chapter 2 Literature Review

distance between source-code nodes remains largely hidden from the

programmer, so it is unlikely that such a criteria would be used by pro-

grammers because they would have to perform additional analysis in or-

der to optimize this property. Design principles themselves are generally

considered to be rules of thumb, and are most often incomplete, so the

lack of a specific design principle espousing preferential attachment does

not mean that it does not occur in some form.

Myers (2003) dismisses the BA model because it does not generate hi-

erarchical structures like those found in software systems. Alternatively,

he suggests that scale-free structure arises from continuous refactoring.

However, not all software undergoes non-trivial refactoring, so we would

expect to find systems that do not exhibit scale-free structure, which is

not congruent with findings in the literature (Wheeldon and Counsell,

2003; Marchesi et al., 2004; Potanin et al., 2005; Baxter et al., 2006;

Hyland-Wood et al., 2006; Concas et al., 2007; Ichii et al., 2008; Louri-

das et al., 2008; Gao et al., 2010). What Myers does not consider is a

model based on preferential attachment where hierarchical structure is

imposed upon the generation process from an external source, such as

a programming language grammar. When a programmer edits source

code, he adds new code into a program file. The associated network

nodes are inserted into the system hierarchy through a translation pro-

cess that is based on the rules of a program language grammar, which

define a hierarchical structure. If the newly added source code does not

comply with the syntactic requirements of the language, it is rejected

and any associated nodes are not added to the system until those require-

ments have been met. In short, new nodes cannot be added to a system

without explicit placement within the system’s hierarchy. This constraint

enforces preferential attachment, based on grammar, between parent

and children nodes, and does not preclude some form of preferential at-

tachment between nodes based on usage.

Jenkins and Kirk (2007) state that “preferential attachment relies on

newly added nodes having prior knowledge of the rest of the network,

which seems implausible since software is build in pieces from a series

of sources using various rules for design patterns which do not apply to

36

2.9 The matching problem

the finished software graph.” It is difficult to imagine how a programmer

could add any new nodes to a software system without having some prior

knowledge of at least part of that system. Jenkins and Kirk imply that

the entire network must be known in order for a programmer to add new

nodes, but this position is clearly false. To add new nodes, programmers

only require knowledge about the location in the network where they

are to be attached. More knowledge about the structure of the network

might enable programmers to make better decisions, but programmers

can and do make mistakes.

Chen, Gu, Wang, Chen and Chen (2008) described a modified version

of the BA model with a parameter that made it less likely that new nodes

will attach to existing nodes that were contained in other modules. In this

model, they fail to consider how modules themselves are added, deleted

or modified. Furthermore, they validate their model against a single sys-

tem, and that limits its generalizability.

Strangely, Li, Han and Hu (2008) accept the BA model wholeheart-

edly as a model of software system evolution without considering the

criticisms raised in the literature. It seems unlikely that nodes newly

added to a software system network are preferentially attached to exist-

ing nodes based solely on the number of links that that the existing nodes

already have.

Research addressing the question of how scale-free structures evolve

in software is focused on class-level structures, and ignores the fact that

scale-free structure may emerge at the class level because the underlying

source-code network is also scale-free. Classes are modules made up

of class declarations, variable declarations, method declarations, blocks

and statements. It is these underlying nodes that programmers modify

directly, so it seems reasonable to examine the evolution of those nodes

to determine how scale-free structure might emerge.

2.9 The matching problem

To address questions about how software evolves, it is necessary to have

a method by which software systems, in their various states of evolu-

37

Chapter 2 Literature Review

tion, can be observed and compared. To illustrate the problems associ-

ated with this process, consider the following scenario. A programmer is

asked to compare two versions of the same software system in an attempt

to ascertain what changes have been made. Because of the size and

complexity of the source code, direct comparison is not feasible. Conve-

niently, however, the system is broken down into modules called classes,

which are smaller and simpler structures upon which comparisons can be

made. The programmer thinks that matching classes between releases

will be fairly easy, because each can be uniquely identified by name.

He soon recognizes, however, that the names of some of the classes

change from one version to the next, which makes matching classes

based solely on their names unreliable. To address this problem, he adds

class structure as a matching criteria, only to discover that many classes

have similar structure because of inheritance or interface obligations,

or from having been created from similar existing code structures. Upon

further analysis, he also recognizes that methods and variables that were

previously in one class have been moved to another class. In some cases,

classes have been broken into three or four classes, of which each con-

tains parts of the original class along with newly added and unrecogniz-

able code. The resulting classes are so different from the original that

it’s difficult to decide whether the original class continues to exist, even

though identifiable pieces remain in the code base.

This scenario illustrates some of the difficulties associated with com-

paring different versions of software. A process that appears simple is

complicated by the fact that the properties that are used to match classes

between versions are themselves subject to change. The process is fur-

ther confused when parts of classes that have been removed remain in

the system as parts of other classes, making it difficult to ascertain that

the removed class was actually removed. This process relies on the judg-

ment of the person making the comparison, and if performed by different

people, the results are likely be different for the difficult cases.

The matching problem is common to research in software evolution (Tu

and Godfrey, 2002) and there are several different approaches. Origin

Analysis is an approach that has been used to study the evolution of both

38

2.9 The matching problem

software architecture and the evolution of individual system components

(Tu and Godfrey, 2002), and to track the merging and splitting of source

entities across software releases (Godfrey and Zou, 2005). Origin Anal-

ysis is based on Bertillonage analysis, which is a process that was used

by the French police prior to the time when fingerprinting came into

common usage. In Bertillonage analysis, measurements of various body

parts were used to reduce a large number of possible matching people

to a small set of likely candidates, and Origin Analysis applies the same

technique to software artefacts.

Origin Analysis makes use of matchers to measure individual charac-

teristics of software. Tu and Godfrey (2002) use the measures described

by Kontogiannis (1997), and Godfrey and Zou (2005) define their own

matchers—name, declaration, metrics, call relation, and expression—to

detect code merging and splitting. These measures are used to compare

classes between different system versions so that the number of possible

matching classes can be reduced.

Origin Analysis also uses dependency analysis. For entities that cannot

be matched using the measured properties of Bertillonage analysis, an

analysis of dependencies—both incoming and outgoing—is used. Specif-

ically, if an entity Aold does not match its new counterpart Anew using

matchers, the callers and callees of Aold are cross referenced against

classes in the new version, which is likely to identify Anew as the most

suitable candidate.

Origin Analysis ultimately relies on human experience to match diffi-

cult cases, thereby limiting it to be a semiautomatic process. Its semi-

automatic nature makes it suitable for software developers who evaluate

their own software systems, and for researchers in software evolution

who analyse a small number of systems, but does not scale well to a

large corpus like Qualitas.

Another approach, used by Demeyer, Ducasse and Nierstrasz (2000)

uses change metrics to identify code refactorings between versions. A

series of assumptions about refactoring are used with a set of class mea-

sures to classify splitting and merging within superclass/subclass struc-

tures, or splitting and merging between sibling classes under common

39

Chapter 2 Literature Review

superclasses. Demeyer et al. admit that their technique is unreliable

when classes are renamed, and when different kinds of change are ap-

plied to a single entity. Their approach is also semiautomatic, because a

human must inspect the results to ensure that the identified refactorings

actually occurred.

Clone detection offers a valuable source of techniques for matching

classes: a version of a class in one release can be viewed as a clone

of the class from a previous release. Baxter, Yahin, Moura, Sant’Anna

and Bier (1998) present a method of detecting code clones by subjecting

program ASTs to a combination of algorithms that detect subtree clones,

sequences of subtree clones, and near-miss clones—those that are nearly

identical. Baker’s (1995) dup and CCFinder by Kamiya, Kusumoto and

Inoue (2002) are methods that match code clones through lexical analy-

sis. Finally, Komondoor and Horwitz (2001) identify code clones by iden-

tifying similar program dependency subgraphs.

A weakness of these solutions is their use of a similarity measure.

When something is changed, its similarity to the original decreases, ren-

dering it less likely to be matched. The likelihood that there will be a

failure to match is proportional to the amount of change that has oc-

curred.

To compensate for this weakness, multiple similarity measures are used,

each measuring an independent aspect of the entities that are being com-

pared. This approach relies on the assumption that no matter how much

an entity changes, it will only be subjected to one or two types of change

at one time. If a class has five properties, for example, then changes to

two of them will not likely result in match failure because three of the

measures will be unaffected. However, if all five properties change at

the same time, then it is likely that the class will fail to match.

2.10 Summary and discussion

This chapter began by introducing of a model for complex systems, which

is based on graph theory. Design theory research states that the evolv-

ability of a complex system is based, in part, on the level of intercon-

40

2.10 Summary and discussion

nectivity between its nodes. Greater interconnectivity results in higher

levels of change propagation, which makes the system less stable when

modified. In the worst case, small changes can result in large-scale

change propagation, which is known as the ripple effect. To reduce the

overall level of node interconnectivity, modularization is used.

For modularization to be effective, it must not only reduce the amount

of node interconnectivity, but also the probability of change propagation

between modules. In software, regulation of between-module interac-

tion is accomplish using abstract proxy nodes, which present a general-

ized concept of the utility of the module. Changes that occur within the

module can be contained provided that their new configuration remains

faithful to the concept presented by their proxy.

The use of modularization and abstraction are observed in software de-

sign principles. Three different design principles were presented. From

one is derived the maxim of “high cohesion/low coupling,” which states

that minimizing between-module interaction is accomplished by maxi-

mizing within-module interaction. There are several metrics that purport

to measure coupling and cohesion, but they remain largely unvalidated

against external properties of software, such as evolvability.

Analysis of networks reveals two properties that are common to com-

plex systems: scale-free and small-world. Scale-free structure dictates

that high connectivity is present, and small-world structure ensures that

the average distance between nodes is small. The application of net-

work analysis to software systems has revealed that scale-free structure

is ubiquitous.

This presentation reveals a clear gap in the literature. The literature on

coupling metrics and its validation make no mention of scale-free struc-

ture and its attendant high connectivity, and the literature that applies

network analysis to software makes no connection between the observed

scale-free structure and high coupling. Furthermore, the application of

network analysis techniques to software have determined that scale-free

structures are ubiquitous. If this is indeed the case, then all software

must contain high coupling, which makes it susceptible to the ripple ef-

fect and limits evolvability.

41

Chapter 2 Literature Review

2.10.1 Research questions revisited

Chapter 1 presented three broad research questions. Based on the liter-

ature review presented in this chapter, these questions can be expanded.

The first question asks whether software is scale-free. The literature

presented in Section 2.7 observes that many aspects of software sys-

tems are scale-free, but does not attempt to ascertain how these struc-

tures evolve. Section 2.8 presents models of how scale-free structure

might evolve in software, but those investigations only consider scale-

free structure in the relationships between classes, and they present no

empirical validation. Classes, however, are an artefact of modulariza-

tion, and their interdependence is based on the interactions of the nodes

they contain. To understand how scale-free structure evolves in class

dependencies, I believe it is necessary to study interactions below the

level of the class. This research considers the interactions of variables,

statements and methods.

The second question asks whether the presence of scale-free struc-

ture results in high coupling. Section 2.3.3 introduced the concepts of

coupling and cohesion, which differentiate between within-module and

between-module links. The presence of scale-free structure implies high

connectivity, but it is possible that nodes with high connectivity may re-

solve their links within their same module. If this is the case, then areas

of high connectivity may not necessarily equate to high coupling.

The third question asks whether the ripple effect can be observed in

the change history of systems that contain high coupling. Section 2.6.2

shows that the literature concerned with studying the ripple effect in

software focuses on predicting the effects of changes to software. None

of the literature presented defines a mechanism for ripple identification

in software version histories, so a technique for identifying the effect

must be developed.

While a network with scale-free structure is strictly defined as having

a power-law degree distribution (Barabási and Albert, 1999), many re-

searchers note that the power-law isn’t the only distribution that exhibits

a long tail (Simon, 1955; Keller, 2005; Clauset et al., 2009). The goal

of this research is not to replicate the findings of Potanin et al. (2005);

42

2.10 Summary and discussion

Baxter et al. (2006); Concas et al. (2007); Louridas et al. (2008); Hat-

ton (2009), which showed the presence—and in some cases, absence—of

power-laws in software systems, but rather to investigate the effects of

long tailed distributions on coupling and overall software system design.

In this thesis, the term scale-free is used in a manner that is inclusive of

other distributions that exhibit similar connectivity properties, which in-

cludes power-law with cuttoff, exponential, and log-normal distributions.

Research questions 1 and 2 are addressed in Chapter 4. Question 3 is

addressed in Chapters 5 and 6.

43

44

Chapter 3

Tools

I think it’s the tragedy of our time that we’re not aware of the

effect of the manner in which we’ve adopted tools. Those tools

have become who we are.

—Godfrey Reggio

This chapter describes the tools created to address the research ques-

tions raised in Chapter 1. It begins with a conceptual overview of the

four key tools that are used, followed by a detailed description of each

one. In essence, the tools provide the ability to convert a wide variety of

software systems from source code form into a directed graph form. This

form is then used to address research questions regarding the structure

and evolution of the software systems. The chapter closes with a discus-

sion of the key challenges that had to be overcome in order to complete

the research described in this thesis.

3.1 Conceptual overview

Figure 3.1 illustrates the tools used in this research: The corpus of soft-

ware systems, the parsing subsystem, the CodeNet subsystem and the

analysis subsystem. The software systems that provide the empirical

data are supplied by the Qualitas corpus. These systems are parsed into

Abstract Syntax Trees (ASTs) using the Eclipse AST Parser (Eclipse Foun-

dation, 2011) and stored in intermediary files called parsefiles. Parsefiles

are translated into graph form by the CodeNet subsystem and the result-

ing graphs are used by the analysis subsystem. Communication between

45

Chapter 3 Tools

Java Source
Java Source

Java SourceOpen Source
Java project

Eclipse
Parser

CodeNet

Analysis

ASTs (parsefiles)

Semantic Graph
(semgraphs)

Java Source files

Computed on the
Symphony Cluster

Qualitas Corpus

Analysis Output

Computed on
Single machine

Figure 3.1: Toolset architecture.

the CodeNet and analysis subsystems is facilitated using an intermedi-

ary data structure called a semgraph. The name is chosen because a

semgraph is a directed graph structure that retains semantic informa-

tion obtained using the AST parser. For each system in the corpus there

is single parsefile and a single semgraph file, which are maintained in a

human readable form.

The use of these files provides several advantages over a streamed pro-

cess. First, they can be examined and tested for correctness, which al-

lows the quality of the data to be assessed through every step of the pro-

cess. Second, separating the intermediary stages of processing allows

easier deployment within the Symphony High-Performance Computing

cluster (University of Waikato, 2011). Finally, the files can be shared

with other researchers, making the results more reproducible.

46

3.2 Corpus of software systems

3.2 Corpus of software systems

Qualitas is a corpus of open-source software systems written in Java

that has been made available to researchers for analysis (Tempero et al.,

2010). It was selected as a basis for this research for two reasons:

1. It provides for the investigation of both general properties of soft-

ware and how systems evolve over time.

2. It is beginning to be widely used in research, which facilitates re-

producibility.

The corpus comprises two releases labelled “r” and “e”. The “r” release

contains a single version of many systems, and is intended for research

that investigates general characteristics of software systems. The “e”

release contains numerous versions of a smaller number of systems, and

is intended for investigations that consider the evolution of software sys-

tems over time. This research investigates both general software prop-

erties and how systems evolve over time, which makes the corpus well

suited.

The authors of the Qualitas corpus cite six criteria for inclusion (Tem-

pero et al., 2010):

• Systems that were present in previous releases of the corpus are

present in future releases so that researchers need not maintain

multiple versions of the corpus as it evolves.

• All systems are written in the Java programming language (Gosling

et al., 2005).

• The systems are distributed in both source and binary form. This is

because of the difficulty of building each of the systems individually.

The assumption is made that the binary form distributed by system

authors is derived from the source code that is provided.

• A given system’s binary form is distributed as a set of jar files. This

limitation is imposed by the set of management tools used to create

the corpus.

47

Chapter 3 Tools

• The system must be available to anyone, independent of the exis-

tence of the corpus. This criterion allows external researchers the

ability to test the corpus for issues of quality.

• The contents of the system must be easily identifiable. This crite-

rion serves to exclude systems for which the distribution contains

significant amounts of irrelevant content.

These criteria focus on issues of managing a large research data set and

do not involve properties of the systems themselves. Systems were not

chosen because they address particular kinds of problems or because

their implementation was particularly good (or bad). For this reason,

one must be cautious about drawing conclusions based solely on their

inclusion in the corpus. For example, one should not conclude that the

systems are well designed simply because they are included in the cor-

pus.

3.3 The Eclipse AST parser

Eclipse (Eclipse Foundation, 2011) is an integrated development envi-

ronment that is commonly used for Java development in industrial set-

tings. To facilitate the creation of plugins that can aid the development

process, it contains sophisticated source code analysis tools, which have

also been used by researchers to perform analyses on source code (eg.

Holmes, Walker and Murphy, 2005). Because these tools are used by a

broad base of users for industrial strength software development and for

research into software systems, they are reasonably robust and free from

error. This research utilizes the AST parser contained within the Eclipse

system.

To parse the systems in the Qualitas corpus, they are first loaded as

individual projects into Eclipse under its main workspace, and each sys-

tem is configured to be fully recognized. Minimally, this requires that

the CLASSPATH variable is set to include all necessary jar files and that

the correct Java compiler version number is set. After configuration,

the systems are parsed using a small initiator program that is embedded

into Eclipse’s plugin framework. This program iterates through all Java

48

3.3 The Eclipse AST parser

projects stored in the Eclipse workspace, and for each one, retrieves indi-

vidual Java source-code files and parses them using the AST parser. Once

an AST is obtained, its structure and semantic information is written to

the appropriate parsefile.

3.3.1 Parse file format

Parsefiles are tag-based text files that contain an AST for each compi-

lable unit1 in the corresponding software system. The tags used are

shown in Table 3.1. The hierarchical structure of the AST is encoded

using begin and end tags in a manner that is similar to the XML speci-

fication (Bosak, Bray, Connolly, Maler, Nicol, Sperberg-McQueen, Wood

and Clark, 1998). Data between these two tags are attributes of the cor-

responding element. Similarly, pairs of begin/end tags that are enclosed

within the begin and end tags of another element are children of the

enclosing element. For tags that are specified with parameters, the tag

name and parameters are separated by a space character.

The entities that are extracted from the source code include class dec-

larations, variable declarations, method declarations, statements, enu-

meration declarations, enumeration constant declarations and expres-

sions. Semantic information, like an entity’s name and type, or the

name of a method that it invokes, is encoded using attribute tags. To

reduce space requirements, semantic information is limited to whatever

is deemed relevant to this research, but discarded information could be

reintroduced into the structure, if required, for future research purposes.

Tag Name Parameters

project name

module path

entity category, definition

attribute name, data

end category

Table 3.1: Parsefile tags

1This includes public classes, non-public classes and interfaces. These are abstractly

represented by the CompilationUnit interface in the Eclipse Java Development Kit.

49

Chapter 3 Tools

The project tag must be the first tag in a parsefile and may only be

used once. It signifies to the CodeNet system that the parsefile does not

contain extraneous information at the start of the file. This tag requires

a name parameter, which is used internally by CodeNet to differentiate

multiple systems that are loaded for comparison purposes. CodeNet re-

turns an error when an attempt is made to define two projects with the

same name.

The module tag is used to specify the namespace for an AST. The de-

cision to use this name was made early in the development of CodeNet.

However, recall from Section 2.1.2, a module is any formalized grouping

of nodes, and is not limited to refer only to namespaces. Ideally, this tag

will be renamed to namespace in future versions of this research. The

namespace is written in the same way as for the package keyword in the

Java programming language.

The entity tag represents the start of an entity definition. It requires

one parameter: the declaration of the node’s category. Acceptable cat-

egories include block, class, enum, enumConstant, expression, method-

Declaration, statement, variable and expression. To aid debugging, the

tag provides an optional parameter called definition, which allows the

programmer to trace an entity tag to its point of origin should the entity

be found to contain an error.

The attribute tag requires two parameters, which specify the name

of the attribute and its associated data. Attributes are name/value-list

pairs: each name maps to a list of values. Multiple values are defined

by specifying several attribute tags with the same name. For example, a

method definition that has both “public” and “abstract” modifiers would

have each assigned as an attribute of the same name. Because each tag

within a parsefile must be defined on a single line, attributes that contain

newline characters in their data must have those characters escaped as

“\n”.

The definition of an entity ends when its corresponding end tag is

reached. Any attributes contained between an entity and its correspond-

ing end tag are assigned to that entity. Entities defined within another

entity/end pair are children of the containing pair. To facilitate debug-

50

3.3 The Eclipse AST parser

ging, the end tag has a single parameter, which is the category of the

node to which the end tag is applied. The category defined by each cor-

responding entity and end tags must match, or the CodeNet system will

signal an error. This ensures that the tags are correctly balanced and

that no errors have been introduced into the parsefile.

3.3.2 Abstract syntax tree example

To illustrate how an AST is translated into a parsefile, this section shows

an example Java program (Figure 3.2), its AST (Figure 3.3), and the re-

sulting parsefile (see Appendix A). To simplify the diagram, some of the

information in the AST is not shown. In Figure 3.3, entities that are iden-

tified by the AST are represented as ovals, and the text in each oval spec-

ifies the entity’s category and starting location within the source code

listing. To aid readability, attributes are written beside each oval.

1 package org.afox.codenet;

2

3 import java.util.HashMap;

4

5 public class Entity {

6 private String name;

7 private HashMap attributes;

8

9 public Entity(String name) {

10 this.name = name;

11 attributes = new HashMap();

12 }

13 }

Figure 3.2: Code listing 1.

In this example, line 1 provides the hierarchical package definition

(namespace) within which the remaining code resides. The code defines

a single class (line 5, called Entity) that contains two instance variables

(lines 6 and 7, called name and attributes). The class also contains a

51

Chapter 3 Tools

single constructor declaration. It (line 9, called Entity) has a single pa-

rameter (called name) and contains a block with two statements (lines

10 and 11). The import statement (line 3) does not contribute to the

structure of the AST, but allows the programmer to refer to the class

“java.util.HashMap” by its simple name “HashMap”.

class

Line: 5

variable

Line: 6

variable

Line: 7

method

Declaration

Line: 9

variable

Line: 9

block

Line: 9

statement

Line: 10

expression

Line: 10

statement

Line: 11

expression

Line: 11

expression

Line: 10

expression

Line: 10

expression

Line: 10

expression

Line: 10

expression

Line: 10

expression

Line: 11

expression

Line: 11

expression

Line: 11

expression

Line: 11

pathName: Entity
fullName: org.afox.codenet.Entity
superclass: java.lang.Object
modifier: public

type: java.lang.String
pathName: name
modifier: private

type: java.lang.HashMap
pathName: attributes
modifier: private

pathName: Entity
parameterCount: 1
declaredSignature: Entity(java.lang.String)
modifier: public
constructor: true

type: java.lang.String
pathName: name

operator: =
stateChange: true

fieldTarget: org.afox.codenet.Entity
stateChange: true
this: org.afox.codenet.Entity

stateChange: true

variableUsage: name

variableUsage: name

operator: =
stateChange: true

variableUsage: attributes
stateChange: true

targetType: java.util.HashMap
signature: HashMap()

CompilationUnit

Figure 3.3: Abstract syntax tree for Java listing 1.

When the source code in Figure 3.2 is parsed, the parser returns a ref-

erence to the root node of the resulting AST. This reference is of type

CompilationUnit, which is an interface in the Eclipse JDK. The JDK im-

52

3.4 CodeNet

plements a Visitor design pattern (Gamma, Helm, Johnson and Vlissides,

1994), which is used to execute a depth-first traversal of the AST. As each

entity is visited, its start tag is written to the corresponding parsefile

along with its semantic information in the form of attributes. If the entity

has children, those entities are recursively visited; once all children have

been addressed, the end tag is written.

In the example AST (Figure 3.3), the class declaration node is visited

first. Its module tag is written to the parsefile, followed by the entity

tag for the class declaration. After the class declaration’s attributes have

been written, each child entity is visited. Since the method declaration

in this class has children, those children are visited recursively, and so

on. Once all of the entities in the AST have been visited, the end tag for

the root node is written to the parsefile.

3.4 CodeNet

The purpose of CodeNet is to translate parsefiles into semgraphs, which

are the basis of analysis in this research. To accomplish this, it performs

two tasks:

• It unifies the ASTs in the parsefile into a single hierarchical struc-

ture.

• It translates relationships that are encoded as attributes in the AST

into links between nodes.

Each parsefile is a collection of ASTs, each of which resides in a defined

namespace. A semgraph contains a root node whose child nodes define

namespaces for the system. The root node for each AST is inserted into

the semgraph as a child node of the corresponding namespace. Once the

full hierarchical structure for the semgraph is complete, relationships

that are defined as attributes are translated to links between nodes in

the semgraph structure. Attributes in the ASTs that do not represent

relationships remain as attributes in the corresponding semgraph.

The process of translating fully qualified names to links is guided by a

meta-model, shown in Figure 3.4. Hierarchical structure is represented

53

Chapter 3 Tools

System

Package

Class/Interface

Variable
Method

Declaration

Block

Statement

Contains

Contains

Extends,

Implements,

Contains

Polymorphic

Returns, Throws,

Return Type,

ContainsType
Contains

Contains

Contains

Contains

Contains

Accesses,

Contains

Contains

Invokes/calls

Contains

Figure 3.4: Directed graph meta-model.

as links between a parent node and its children (shown as “contains”

in Figure 3.4). Nodes for classes may have relationships with nodes for

other classes and interfaces because of extension and implementation.

In Java, a subclass extends a superclass and implements interfaces. A

class has one superclass but may implement many interfaces. Nodes for

variables have an association with the node for the class that represents

the variable’s type. In the case of generic types, a variable’s node may

have relationships with multiple class nodes. Method declarations have

a return type and may throw exceptions, which are represented as a

relationship between the declaration nodes and the nodes for the corre-

sponding classes. Nodes for method declarations have relationships with

the nodes of the methods that are overridden, and nodes for statements

have relationships with the nodes for the methods that the statements in-

voke. Constructors are modeled as method nodes with an attribute that

identifies them are constructors. Finally, statements may use variables

and this usage is represented as a relationship between the nodes for

54

3.4 CodeNet

statements and the nodes for the variables those statements use.

In semgraphs, nodes and links are categorized according to their func-

tion in the software system. Node categorization provided by the AST

parser is carried forward into the semgraph. Link categorization is de-

termined based on the meta-model. For example, Figure 3.4 shows that

a link from a variable node to a class can only be of one category: “type”.

However, a link from a method to a class can be one of three categories:

“return type”, “throws” (in the case of exceptions), or “contains” (in the

case of inner classes). Semantic information about the nature of the rela-

tionship between source code entities is provided by the AST and main-

tained in the resulting parsefiles. This information is used by CodeNet to

assign the correct category to links in the semgraph.

The intent of node link categorization is to help identify and analyze

particular structures. For example, a researcher may be interested in

the inheritance hierarchy of classes. In this case, she would formulate an

analysis that traversed semgraphs to identify nodes of the class category

and links of the superclass category. Similarly, a researcher interested

in obtaining a list of all invocations of a particular method (including

polymorphic invocations) would formulate an analysis that considered

nodes of methodDeclaration category and links of the methodInvocation

and polymorphic categories.

3.4.1 Constructing system graphs

Semgraphs are constructed using a four phase process. First, a sin-

gle root node for the system is created. Second, a hierarchical tree of

nodes is built from each AST in the parsefile and inserted under the root

based on the AST’s namespace. Third, each node in the semgraph is

examined for entity relationships, which are resolved as links between

nodes. These relationships include the method return type, exceptions

thrown by methods, variable type, superclass and superinterface rela-

tionships, method invocations, variable usage, and method overriding

(polymorphism). Finally, expression nodes are removed from the sem-

graph through a process called reverse inheritance.

In the Java programming language, source code entities are referenced

55

Chapter 3 Tools

by name, which may be simple or qualified. Simple names are those that

do not include the node’s namespace, and the name assigned to a node

upon declaration must be simple. For example, a class may be called

Person, or a variable may be called name. The class called Person may

be placed in the package called org.apache.users. In this case, the fully

qualified name for the class is org.apache.users.Person, where the no-

tation uses a “.” (dot) to separate levels in the namespace hierarchy.

Because classes and methods are named, they contribute to the fully

qualified name of the entities they contain. For example, if the class

org.apache.users.Person contained a variable called name, the fully

qualified name of the variable is org.apache.users.Person.name. Sim-

ilarly, if the same Person class contained a method called getLastName,

which in turn contained a looping variable called index, the fully quali-

fied name is org.apache.users.Person.getLastName.index.2 Because

nodes are placed into the semgraph relative to the root node by names-

pace, any node in the system that has a fully qualified name can be found

by starting at the root node and traversing nodes at each level of the

name. All nodes with a fully qualified name can be found in the same

way so creating links to nodes with fully qualified names is a straightfor-

ward process of finding the node and then inserting the link.

Some nodes, however, do not have a fully qualified name, because they

are contained in entities that are anonymous. Block and statement nodes

do not have a name, so any variables contained within a block or state-

ment cannot be referenced using a fully qualified name. Similarly, Java

allows for the definition of anonymous inner classes, which are class def-

initions that are utilized in situ and are not given a name. Those classes

and any entities contained within them cannot be referenced using a fully

qualified name. In these cases, the nodes can only be referenced relative

to the position of another node within the semgraph.

Referencing nodes that do not have a fully qualified name is equivalent

to computing the scope of a program. In the case where a source node

2Since local variables cannot be accessed from outside their scope, some would argue

that they don’t strictly have a fully qualified name. Because the structural analysis

defined here is not limited by scope, local variables can be referenced using a fully

qualified name.

56

3.4 CodeNet

must link to a target node that does not have a fully qualified name, the

scope of the source node is computed. The scope for any given node in

the semgraph is the ordered list of all nodes from that node to the root

node. Once the scope is obtained for the source, the target node can be

identified within the scope using the node’s simple name.

3.4.2 References to external entities

Virtually all systems utilize external libraries, which contain nodes for

which the declaration is unknown to the AST parser. To address this

situation, CodeNet creates a proxy node for each external entity that

is identified by the AST parser. Proxy nodes are assigned the category

external. Their use allows researchers to formulate analyses that address

questions about the external relationships of software systems, and at

the same time provides a simple mechanism through which externally

defined nodes can be excluded from the analysis.

3.4.3 Reverse inheritance

One of the primary goals of any research is to utilize methods that are

reproducible. The hierarchical structures extracted from source code

using the parser resemble the structures obtained from any Java parser,

except in the case of expressions. Different parsers may produce differ-

ent expression hierarchies because of the application of compiler opti-

mizations. For example, one parser may optimize subexpressions using

directed acyclic graphs (Aho, Johnson and Ullman, 1976), while another

may not. The effect that such optimizations might have on any subse-

quent analysis is not clear. For this reason, CodeNet eliminates expres-

sion nodes from semgraphs in the final stage of computation.

The removal of expression nodes is called reverse inheritance. In this

process, all links associated with an expression are inherited by its near-

est non-expression parent. For example, consider a statement node that

contains five subexpressions, each of which contain a methodInvoca-

tion link. The methodInvocation link associated with each subexpres-

sion node is rewritten as a link between the original target method—the

57

Chapter 3 Tools

method being invoked—and the statement node. Once this link rewriting

process is complete, the statement node will posses five methodInvoca-

tion links, and the subexpression nodes will be removed from the sem-

graph. On Figure 3.3, the expression nodes below the dashed line will be

eliminated from the semgraph.

3.4.4 Semgraph file format

Once a semgraph has been computed, it is stored in an intermediary

file called a semgraph File. Semgraph files are text files that have two

sections, shown in Figure 3.5. The first contains node and attribute def-

initions, while the second contains link definitions. Nodes are assigned

an index (starting from zero) based on their position within the file, and

node declarations include a specification of the node’s category, which

is followed by a declaration of the node’s attributes. Link definitions

include the category of the link as well as the source and target node

indexes. The format is shown in Table 3.2.

Semgraph File

Node Definitions
Attribute Definitions

Link Definitions

Figure 3.5: Semgraph file structure.

Tag Name Parameters

entity category

attribute name, value

link category, source node index, target node index

Table 3.2: Semgraph file tags

58

3.5 Analysis

3.4.5 Quality control

Of primary concern for any analytic tool is the integrity of the data it

produces with respect to the phenomena that it models. For this reason,

a quality control process was initiated before building the tool and ap-

plied throughout its construction. Quality was maintained using two key

processes. The first involved the creation of representative code snip-

pets that model key components of software structure. Examples include

class declaration, method declaration, variable declaration, and various

code statement structures such as loops and conditionals. Parsefile and

semgraph files were generated for each of these structures, and hand-

inspected for correctness. When major changes were introduced into

the system during its development, new parsefiles and semgraphs were

constructed from the representative code snippets and compared to the

hand-inspected versions.

The second process involved sampling random source-code components

from the Qualitas Corpus. The source code of the whole corpus was con-

catenated into a single text file (with line numbers). Random numbers

were generated and the source code at those line numbers was hand in-

spected for correctness. This process was performed for 150 locations

throughout the corpus.

3.5 Analysis

3.5.1 Analysis process

To simply the process of semgraph analysis, a generalized analysis frame-

work has been created. This provides a standard mechanism for defining

analyses using Python code, and a standard mechanism for executing

specific analyses. All analyses are initiated from a terminal shell using

the following command:

$ analysis.py analysis_name input=path outputDir=path ...

Each analysis is assigned a name; the first parameter on the command

line. All analyses require a minimum of two further parameters, input

59

Chapter 3 Tools

and outputDir. The first may be either the path of a semgraph file or the

path of a directory that contains semgraph files. The second parameter

specifies where the results of the analysis are to be placed (outputDir

must specify a directory to which the user has write access). If either

of these parameters is missing, an error is reported. Further, analysis-

specific, parameters are specified in the form name=value; their order is

immaterial. They are parsed by the Python framework and are placed in a

dictionary so that they may be forwarded to the analysis implementation.

An analysis implementation is a Python function that has been deco-

rated3 with the following:

@startup.EntryPoint

Upon startup, the program inspects the analysis_name parameter and

attempts to match it with the name of a decorated function. If no such

function can be found, an error is returned to the user. If the method is

found, the program loads the appropriate semgraph file(s) and invokes

the specified analysis method with the following parameters:

analysis_method(project, project_name, parameters)

The first parameter is a reference to the semgraph, the second the

name of the project, and the third a dictionary of parameters that were

parsed from the initial command line arguments. If the input parame-

ter is a directory, the system loads each semgraph in it and invokes the

analysis method for each.

3.5.2 Semgraph data structure

Figure 3.6 illustrates the UML (Booch, Rumbaugh and Jacobson, 2005)

class model for the CodeNet representation of semgraphs. Nodes in the

graph are represented by the Entity class, and edges between nodes are

represented by the Link class. Each Entity and Link maintain a reference

3The Python programming language provides a mechanism for wrapping function in-

vocations. This mechanism is called a decorator. The decorator in this case places

functions that have been duly decorated into a dictionary so that they can be invoked

based on the value of a specified command-line parameter.

60

3.5 Analysis

Link

Project
<<flyweight>>
Category

Entity
Source

Target
Inlinks
Outlinks
Attributes

entities
links
entityCategoryIndex
linkCategoryIndex
namesIndex
methodNamesIndex

Figure 3.6: Class model used to encode semgraphs.

to their associated Category, where Category objects are implemented

using the FlyWeight design pattern (Gamma et al., 1994). In this design

pattern, there is only one instance for each category, which is shared by

all objects of that category. This is particularly useful when determining

whether two objects have the same category, because object references

can be compared directly.

The system root node is an instance of the Project class, and there

is only one Project instance for each system. The Project maintains a

list of all entities and links, as well as specialized indexes that are used

to optimize performance. Lists of nodes and links that are part of the

semgraph can be obtained using a method call on the root node. Lists

of all nodes or links of a specific category can also be obtained. This is

useful for analyses that focus on nodes of specific categories.

Each Entity object maintains a list of both the incoming and the outgo-

ing links. Even though semgraphs are directed, maintaining a list of all

links for each node simplifies its traversal, because links can be followed

in either direction. Entities also maintain a dictionary of attributes, which

encode semantic information that is not encoded as links between nodes.

For example, a particular node may represent a source code component

whose visibility “modifier” is public. This information can be obtained

by querying the node for its “modifier” attribute. Attributes are stored

as name-value pairs whose value is a list of strings. In this way, multi-

ple values can be stored for each attribute. For example, a source code

component may be both public and abstract.

61

Chapter 3 Tools

3.5.3 Example analysis

The listing shown on Figure 3.7 shows the Python code for computing the

degree distribution for the project named in the first parameter (line 1).

This analysis computes a combination of all incoming and outgoing links,

or between-module links only, as determined by the module parameter,

which defaults to False if not specified by the calling routine (line 1).

The variable bins (line 2) holds a reference to an object that accumulates

data for the degree distribution. The variable total (line 3) accumulates

the total number of links in the distribution, and the count variable (line

6) computes the number of links for a given node. Because some types of

link may be excluded from analysis (such as links representing structural

hierarchy), computing the degree distribution must consider each link

individually rather than simply summing the number of incoming and

outgoing links.

1 def degreeDistributionImpl(project, module = False):

2 bins = stats.Bins()

3 total = 0

4 for entity in project.entities:

5 if entity.isValidForAnalysis():

6 count = 0

7 for link in entity.inlinks + entity.outlinks:

8 if link.addsToDegree(module = module,

parent=False):

9 count += 1

10 entity.degree = count

11 bins.add(count)

12 total +=count

13 return bins, total

Figure 3.7: Code listing 2.

The for loop (line 4) ensures that all entities within the project are con-

sidered for evaluation. For each one, a test is made to ensure that the

entity is valid for analysis (line 5). For example, proxy objects that are

62

3.5 Analysis

created to represent externally defined entities are excluded from analy-

sis. For each entity, both its inlinks and outlinks (line 7) are considered.

For each link, a test is made to determine whether the link is relevant to

the analysis (line 8). Links to parent nodes, for example, are often not

considered for analysis. Similarly, one may wish to only consider links

that cross module boundaries. These cases are controlled by setting the

module and parent parameters accordingly.4 When a link is deemed to

be valid for the analysis, it is added to the count (line 9). Once the degree

of a node has been computed, it is added to the distribution (line 11) and

the total count of links is updated (line 12).

As a convenience, each node’s degree instance variable is initialized

to the number of valid links (line 10), so that this value need not be

recomputed. Finally, the distribution and the total number of links are

returned to the calling routine (line 13).5

3.5.4 Integration with a computing cluster

The University of Waikato maintains a high-performance cluster called

Symphony.6 It is a cluster of 180 cores that are available for general

purpose computing. Interaction with the cluster occurs through the

head node, and jobs are distributed through the cluster using the Torque

scheduler.

The scheduler provides a series of command-line tools for submitting

and managing jobs. Jobs are submitted using the qsub program, for

which the user defines two sets of parameters:

1. Ones specific to the job being submitted.

2. Ones that describe the job, which are used by the Torque scheduler—

such as memory or CPU time limits—to allocate resources.

4 The Python programming language allows for both named and positional parameters.

In this example, the parameters are passed as named parameters. Positionally, the

module parameter is defined first and the parent parameter is defined second.
5The Python programming language allows functions and methods to have multiple

return values: each of the parameters is returned in a tuple.
6http://symphony.waikato.ac.nz

63

Chapter 3 Tools

The full command line required to execute a specific job (including pa-

rameters from point 1 above) is placed in a script file, which is submitted

along with parameters from point 2 above to the qsub program.

As noted in Section 3.5.1, the input parameter for an analysis can be a

single semgraph file or a directory that contains multiple files. When dis-

tributed on the Symphony Cluster, analyses are invoked using the single

file form. Because of this, a script must be created for each semgraph

file, and each script must be individually submitted to Torque using the

command line program qsub. To minimize errors, this process has been

automated. A script generation program has been integrated into Co-

deNet that accepts the path to a directory containing semgraph files, a

series of job parameters, and a series of qsub parameters. This program

generates a command line script for each semgraph file and a master

shell script, which contains code that handles the submission of each in-

dividual job. To use this system, a user generates the scripts for a given

directory of semgraph files and then execute the master shell script to

submit the jobs.

3.6 Discussion

3.6.1 Existing tools

Before beginning to construct the toolset, I performed a review of com-

mercial and open-source products that could supply the same function-

ality. While there are many existing tools available that perform spe-

cific kinds of analyses (e.g. Burn, 2011; Hovemeyer and Pugh, 2004;

Dixon-Peugh, 2011; Vallée-Rai, Hendren, Sundaresan, Lam, Gagnon and

Co, 1999; Parasoft, 2011; Semmle Limited, 2011; Software-Tomography

GmbH, 2011), they do not provide the general framework for analysis

that is required for this research. The closest contender was the Moose

platform (Ducasse, Lanza and Tichelaar, 2000), which is based on a meta-

model defined by Mens and Lanza (2002). While CodeNet is similar to

this framework, there are three main differences.

1. CodeNet explicitly defines nodes that represent packages and blocks,

64

3.6 Discussion

which are implicit in Mens and Lanza’s model. It is not clear what ef-

fect these structural entities have on the analysis of software struc-

ture. Since the Mens and Lanza model makes these entities implicit,

they are difficult to consider as part of analysis.

2. CodeNet is more explicit about containment and hierarchical struc-

ture, which allows more precise representation of inner classes and

hierarchical relationships between statements. Also, it represents

different kinds of variables explicitly whereas the Mens and Lanza

model focuses exclusively on instance variables.

3. CodeNet supports relationships that do not exist in the Mens and

Lanza model. For example, variables have a type, which CodeNet

represents as a relationship between the variable declaration node,

and the associated type declaration node. Similarly, it represents

method invocation as a relationship between the invoking statement

and the associated method declaration node whereas the Mens and

Lanza model represents invocation as an entity contained within a

method.

Because of the above differences, I decided to construct my own tools to

support the research.

3.6.2 Toolset evolution

Over the lifetime of this research, the structure of the toolset has evolved

considerably. The original design consisted of a corpus of open-source

systems written in Java and a single program that parsed it, generated

semgraphs, and performed analysis in a single pass. However, a series of

problems unfolded which made this structure unfeasible. First, parsing

medium and large-scale software systems and the subsequent generation

of semgraphs is a computationally expensive process, and recomputing

these structures for each analysis soon became cumbersome. To com-

pensate, graph generation was separated from graph analysis.

A second problem that arose was associated with the use of parsers.

The original development used the Eclipse AST parser, but I could not

65

Chapter 3 Tools

get it to work “headless”, that is, outside the graphical environment,

which is required for execution on the Symphony Cluster. In fact, many

users in online Eclipse forums claimed that it was possible to run the AST

parser in a headless fashion, and considerable effort was wasted trying

to accomplish this goal. While I was able to get the parser to run with-

out the supporting GUI, I could not get it to produce bindings, which are

necessary for CodeNet to create links between semgraph nodes. Eventu-

ally, I switched to another Java parser (Gesser, 2008), but that parser did

not work with Java generics. After a year of using the alternate parser,

it became clear that more and more systems were using Java generics,

and excluding those from a scientific investigation was undesirable. Thus

development reverted to using the Eclipse AST parser.

One of the drawbacks of reverting to Eclipse was that it would only

produce bindings while running within the Eclipse GUI framework. This

posed problems with Symphony because it does not allow direct inter-

action with cluster nodes, so execution of Eclipse is not possible. To

address this, parsing and semgraph generation were separated into two

processes; one remaining on a single machine capable of running the

Eclipse GUI and the other being executed on the cluster. Parsefiles were

introduced to bridge the gap between these now separated processes.

Another shift in the development of the tools was the move from Java

to Python. The original CodeNet system was written in Java. As issues

with the various Java parsers arose, it was easiest to compensate by us-

ing Java reflection. While reflection offers a simple solution to some of

the problems, the result was that CodeNet started to become overly de-

pendent on the systems that were being analysed, and a considerable

amount of code was being written just to maintain its generality. A de-

cision was made to reimplement CodeNet in a language other than Java.

This proved to be an excellent move because removing dependencies be-

tween CodeNet and the systems being analysed simplified its design.

66

Chapter 4

Scale-free structures and coupling

The beauty of a living thing is not the atoms that go into it, but

the way those atoms are put together.
—Carl Sagan

This chapter uses the tools presented in Chapter 3 to address the re-

search questions raised in Chapter 1. To do this, we examine a series of

degree distributions that are extracted from semgraph representations

of the systems in the Qualitas corpus. To provide a complete treatment

of the research questions, twelve different types of degree distributions

are considered. To avoid confusion about the differences between them,

we begin with a definition of each type and a description of how it is

constructed. We then state five hypotheses along with a justification for

each, followed by a description of experiments that are designed to test

them. The chapter ends by presenting the results of the experiments,

along with statements of validity and a discussion of the implications of

these results for software systems.

4.1 Perspectives of degree distributions

As noted in Chapter 2, a common technique for analysing the general

level of connectivity in a network is to compute its degree distribution,

which plots node degree against frequency of observation. The most gen-

eral method of computing a degree distribution is to examine each node

in the network, count its connections, and accumulate the counts in the

form of a histogram. This method produces a general degree distribu-

tion for the network, and assumes that all links are equivalent. However,

67

Chapter 4 Scale-free structures and coupling

networks can have connectivity properties that can only be found by an-

alyzing certain types of link. This section discusses three factors that,

when combined, produce twelve (3 × 2 × 2) different types of degree

distribution that are used to test hypotheses about the structure of soft-

ware systems.

4.1.1 Inlinks, outlinks and combined perspectives

The literature in network theory (Albert et al., 1999) and software sys-

tems (Myers, 2003) demonstrates that distributions for inlinks and out-

links generally assume different shapes. This occurs because the reasons

for creating a link to a particular node are different than those for creat-

ing a link from a particular node. While a combined degree distribution—

one that counts both inlinks and outlinks—shows the overall pattern of

connectivity, it conceals the differences between inlinks and outlinks.

To reveal these differences, two new distributions are computed count-

ing just inlinks and just outlinks respectively. To compute the inlink distri-

bution, each node’s inlinks are counted and accumulated in a histogram;

outlink distributions follow the same process except that outlinks are

counted. In what follows, any reference to a degree distribution is as-

sumed to be a combined distribution unless stated otherwise.

4.1.2 Within-module versus between-module links

As noted in Chapter 2, the purpose of modularization is to minimize the

propagation of change through a network. Nodes that are highly inter-

active are placed within the same module, so that any waves of change

propagation that result from changes to individual nodes are contained

within the module itself. However, because systems are only nearly

decomposable, between-module interaction cannot be completely elim-

inated. It is important to distinguish within-module links from between-

module links because the latter create the potential for change to prop-

agate from one module to another. If the module under consideration is

a class, between-module links represent class coupling relationships as

described in Section 2.3.3.

68

4.1 Perspectives of degree distributions

Because coupling is a measure of strength of interaction between mod-

ules, research questions that involve coupling require studying the de-

gree distributions of between-module links. These distributions are con-

structed by examining each node and only counting links that cross a

module boundary. In what follows, any reference to degree distribu-

tions assumes that all links—both within-module and between-module—

are counted, unless explicitly stated otherwise.

4.1.3 Link aggregation

Much of the analysis of coupling in object-oriented systems focuses on

class-level interactions (Chidamber and Kemerer, 1991; Li and Henry,

1993; Chidamber and Kemerer, 1994; Lee et al., 1995; Briand et al.,

1999b), because classes are the basic unit of modularization. Analysis of

links, therefore, is not focused on individual nodes, but rather on an ag-

gregation of links per class. Some of our hypotheses focus on individual

nodes, because nodes are the source of all links in a software network,

but others consider links in aggregated form.

The method for constructing aggregate distributions differs from those

already presented in that only aggregate nodes are examined. For each

such node, its children are identified and the links to them and from the

aggregated node are counted. Degree distributions can be aggregated

for any node that has children, but only aggregates at the class level are

considered in this research. In what follows, any reference to a degree

distribution assumes node-level analysis unless explicitly stated other-

wise.

4.1.4 Combining degree distribution perspectives

Degree distributions can be computed using any combination of the above

perspectives. For example, to examine issues surrounding coupling be-

tween classes, an aggregate between-module distribution would be ap-

propriate. If that question were expanded to differentiate inlinks and out-

links, aggregate between-module inlink and aggregate between-module

outlink distributions would be used. Combining the three perspectives—

69

Chapter 4 Scale-free structures and coupling

combined/inlink/outlink, all links/between-module links, and node-level/

aggregate-level—results in twelve possible degree distributions.

4.1.5 Hierarchical links

The source code for software systems is structured hierarchically, and

this structure is represented in semgraphs using links that are catego-

rized as hierarchical. The model of software evolution presented in Sec-

tion 4.2.1 suggests that the hierarchical structure of software is imposed

by the programming language grammar, which is external to the software

systems themselves. Because this structure does not result from internal

processes, hierarchical links are excluded from all degree distributions

examined in this work.

4.2 Hypotheses

The questions introduced in Section 1.2 focus on the relationship be-

tween scale-free structure and coupling: does the presence of scale-free

structure imply that high coupling is present? Existing coupling mea-

sures attempt to quantify the strength of association between modules in

order to predict how robust they will be to change propagation. While

there has been some empirical evaluation of these measures (Briand

et al., 1998, 1999b; Brito e Abreu and Goulao, 2001), little work has

focused on what comprises a typical distribution of coupling in software

systems (Briand et al., 1999b; Brito e Abreu and Goulao, 2001). Fur-

thermore, research on coupling metrics promotes the maxim of “high

cohesion and low coupling,” but there is little indication of what level of

coupling is considered to be “high” (Brito e Abreu and Goulao, 2001).

Network theory suggests that complex systems exhibit scale-free struc-

ture (Barabási and Albert, 1999; Albert et al., 1999; Newman, 2005; New-

man et al., 2006), and network analysis of software systems suggest that

they are, ubiquitously, at least approximately, scale-free (Wheeldon and

Counsell, 2003; Myers, 2003; Marchesi et al., 2004; Potanin et al., 2005;

Baxter et al., 2006; Hyland-Wood et al., 2006; Concas et al., 2007; Ichii

et al., 2008; Louridas et al., 2008; Gao et al., 2010). This suggests that

70

4.2 Hypotheses

the network for a given software system contains areas of high connec-

tivity where the maximum connectivity is substantially larger than the

mean value for the network. For example, in the situations we will an-

alyze it turns out to be two or three orders of magnitude larger. This

suggests that high coupling may be common, but neither the coupling

metrics literature nor the network analysis of software systems litera-

ture addresses this question directly. Sections 4.2.2 – 4.2.6 state five

hypotheses as a means of exploring the question of whether software

systems are scale-free and, if so, whether their scale-free structure indi-

cates high coupling.

4.2.1 Proposed model

Source code networks evolve over time through the addition and deletion

of nodes and links. When new nodes are added, there are two types of

attachment that have to be resolved. In the first, programmers have to

resolve where in the network the new nodes are to be placed. In the

second, programmers need to resolve usage relationships between the

newly added node and existing ones.

Because software networks are hierarchical, new nodes are always

added as children of existing nodes, and valid hierarchical structure is

maintained through a language grammar. For example, in the Java pro-

gramming language, a method declaration node can only be the child of

a class declaration node; otherwise, the language grammar would not

allow it.

The second type of node attachment is optional because new nodes

do not always require the use of functionality that already exists in the

network. When required, the connection between a newly created node

and an existing one is driven by whatever functionality is required for the

new node to achieve its goals.

The above description of the software development process is used as

a starting point to modify the BA model. When a programmer wishes to

add new code, he must first determine its location. It may be within an

existing container, such as a class or method declaration, or it may re-

quire a new container which the programmer must place appropriately.

71

Chapter 4 Scale-free structures and coupling

A programmer’s decision about location is based upon his current un-

derstanding of the network’s hierarchical structure and requires him to

exercise judgement as to which location is best. Once the location has

been determined, he must decide whether the newly created node re-

quires interaction with nodes already existing in the system.

The BA model specifies that nodes will preferentially attach to other

nodes based on a probabilistic attachment function. For hierarchical

structure, this function is determined by the language grammar. For

usage relationships, the preferential nature of the attachment function is

based on these criteria:

1. Different nodes offer different functionality.

2. Programmers have an incomplete understanding of the network.

3. Programmers are more likely to use nodes that they trust.

Functions that are more generally applicable are usable in a larger

number of contexts, and will garner more incoming links than functions

that are more specific. Because programmers have an incomplete under-

standing of the network, their choices will be limited to nodes of which

they are aware and ones they have used before. Programmers are less

likely to use a node that is known to have bugs and are more likely to

use one that has a reputation for robustness. In each of these cases, a

programmer is likely to give preference to some nodes over others.

Keller (2005) notes that in order to produce a scale-free network, the

constraints on an evolutionary process are quite minimal. In general, an

attachment function that has a non-uniform distribution will suffice (Si-

mon, 1955). The model demonstrates that programmers have reasons to

choose some nodes over others, which would cause a non-uniform distri-

bution of usage. It is also important to recognize that programmers do

make mistakes. A programmer may choose a module for a newly created

node for which another module may be better suited, but is unknown to

the programmer. Mistakes based on inadequate knowledge of the net-

work serve to consolidate linking, thereby increasing the likelihood that

some nodes will receive more links than others. For these reasons, a

source code network with scale-free properties is expected to emerge.

72

4.2 Hypotheses

4.2.2 Hypothesis 1: Scale-free structure in source code

networks

Based on the proposed model of source code evolution, our first hypoth-

esis is stated as follows:

Hypothesis 1: The source code network of a software system

exhibits a long-tailed degree distribution.

It is recognized that software systems below a certain size may not ex-

hibit scale-free like structure due to their limited number of nodes. In

these cases, however, there is little concern about modifiability because

the systems are small enough to be rewritten.

4.2.3 Hypothesis 2: Scale-free structure and coupling

Should Hypothesis 1 hold true for a given software system, the pres-

ence of highly connected nodes—as implied by the presence of scale-free

structure—may not necessarily indicate high coupling. Since design the-

ory considers the primary criterion of modularization is to group highly

interactive nodes (Alexander, 1964), we expect to find within-module in-

teraction. However, it seems unlikely that the level of interaction that

is implied by scale-free structure can be fully resolved within-module as

this would require that the module contains a large number of nodes.

As outlined in Section 2.1.2, larger modules are less modifiable because

they take longer to stabilize in light of change propagation, so there is

pressure to keep modules as small as possible.

Given this pressure to limit module size, Hypothesis 2 is stated as fol-

lows:

Hypothesis 2: The network made up of between-module con-

nections exhibits approximately scale-free structure.

4.2.4 Hypothesis 3: Outlink constraints

Hypothesis 1 does not differentiate between inlinks and outlinks. How-

ever, there is reason to expect that these may not contribute uniformly to

73

Chapter 4 Scale-free structures and coupling

the degree distribution. First, differences have been observed between

inlink and outlink distributions (Myers, 2003). Second, constraints are

imposed on node outlinking by programming languages and by practi-

cal usage. For example, Java allows only single inheritance, thereby

constraining classes to have a single link to their superclass. Variable

declarations may have only one type, for simple declarations, or just a

few types, in the case of generics. While programming languages do not

impose limits on the number of outlinks from statement nodes, most pro-

grammers conform to coding standards that limit statements to a single

line of source code, and this serves to constrain the number of outgoing

links that statements have.

None of the aforementioned constraints on outlinks are imposed on

inlinks. There is no limit on how many times an abstraction may be used,

and because of the mechanism for defining links—from source node to

target node—there is no indication in the source code of the frequency

of use of a given abstraction. Therefore our third hypothesis is stated as

follows:

Hypothesis 3: The connectivity network of inlinks for source

code entities exhibits a long-tailed degree distribution, while

the connectivity network for outlinks is constrained by an up-

per bound.

4.2.5 Hypothesis 4: Aggregate measures of coupling

Hypotheses 1 through 3 relate to linking at the source code node level,

and do not consider the aggregation of links based on the class structure

of the software. However, it is useful to examine aggregate interaction

at the class level, for two reasons:

1. In a software system, there are fewer classes than statements and

variables. It easier for programmers to consider dependency be-

tween classes at an aggregate level than to consider dependency

between individual source code nodes.

2. It is difficult to ascertain the level of outward dependency of a mod-

ule based on source code nodes, because of the constraints placed

74

4.2 Hypotheses

on outlinks for individual nodes. Understanding how much one class

depends on others requires the examination of all outlinks of all its

child nodes.

If Hypothesis 1 holds true, that means that the underlying source code

structure is scale-free. This suggests that an aggregation of these nodes

at the class level will also exhibit scale-free properties, although the dis-

tribution is likely to look different because of the aggregation. Specifi-

cally, aggregating nodes will shift the distribution to the right. Because

the number of class nodes is small when compared with the total number

nodes in the system, a distribution that only considers classes will have

fewer data points, so the resulting distribution will be more noisy and less

well defined. Smaller systems may not have enough nodes to generate

a sufficiently defined distribution to perceive the aggregate structure as

scale-free. However, the range of connectivity will be on the same scale

as the non-aggregate distributions, which implies that high coupling will

be present.

Hypothesis 3 suggests that there is a difference between inlink and

outlink distributions because of the constraints placed on node outlinks.

However, no such constraints exist at the class level, so it is expected that

the outlink distribution for classes will not exhibit an upper bound, as

Hypothesis 3 expects. Given these considerations, our fourth hypothesis

is:

Hypothesis 4: The network of classes for software systems of

sufficient scale exhibits a long-tailed degree distribution. Ag-

gregate outlink distributions are not bounded.

4.2.6 Hypothesis 5: Aggregate outlink distributions

Hypothesis 3 predicts that the distribution of outlinks on a per node ba-

sis will be bounded. Hypothesis 4 predicts that because the constraints

on outlinks at the node level do not exist at the aggregate level, the re-

sulting distribution will not exhibit the same bounding as is predicted for

node level outlinks. The question arises, with the constraints on outlinks

removed, what distribution is expected?

75

Chapter 4 Scale-free structures and coupling

Since most individual nodes have relatively few outlinks, the aggrega-

tion of a small number of nodes will also have relatively few outlinks—

albeit a larger number than an individual node. As a module increases

in size, the aggregate number of outlinks is likely to increase, because

each new node adds to the count. Given this relationship, it is reasonable

to expect the distribution of outlinks aggregated at the class level to be

highly correlated with the size of the module. The literature reports that

class size is scale-free (Baxter et al., 2006; Louridas et al., 2008; Hatton,

2009), so it is expected that the aggregate outlink distribution will also

be scale-free. Our fifth hypothesis is stated as follows:

Hypothesis 5: The degree distribution for outlinks aggregated

at the class level is correlated with class size and, for systems of

sufficient scale, will exhibit approximate scale-free structure.

4.3 Experimental design

Hypotheses 1 through 5 will be tested against the Qualitas corpus (de-

scribed in Section 3.2) using the tools described in Sections 3.3 – 3.5.

Semantic graphs are computed for each system, from which the degree

distributions required to test the hypotheses are extracted.

4.3.1 Computing module boundaries

While Hypothesis 1 involves all links of a software system, Hypotheses 2,

3, 4, and 5 utilize degree distributions that only reflect between-module

links, which requires that module boundaries are explicitly defined. Re-

call from Section 2.1.2 that a module is any formal grouping of nodes.

However, to remain consistent with existing coupling measures, the class

is used as the module boundary for this experiment (Chidamber and Ke-

merer, 1991; Li and Henry, 1993; Chidamber and Kemerer, 1994; Lee

et al., 1995; Briand et al., 1999b). Whether a specific link crosses a mod-

ule boundary is determined by examining the hierarchical ancestry of the

source and target nodes associated with the link. The closest class in a

node’s parent hierarchy is marked as the containing class for that node.

76

4.3 Experimental design

A link is determined to cross a module boundary if the containing classes

for its source and target nodes are not the same.

The Java programming language allows for the definition of anonymous

inner classes, which are the same as ordinary inner classes except that

they are not explicitly named. Inner classes are ones that are defined

within the context of a containing class, as illustrated in Figure 4.1. This

Figure shows an inner class (CInner) defined within a method (M1) that

is contained within another class (C1). A statement (S1) accesses an

instance variable (V1) that is defined within C1, but outside CInner. Al-

though both V1 and S1 are contained within the same class (C1), the

interaction between the two nodes crosses the CInner class boundary, so

it is considered to be between-module. One could argue that there are

conditions under which the relationship between V1 and S1 should be

considered within module. However, it is not the purpose of this thesis

to speculate why programmers chose specific structures, but rather to

report what structures are present.

C1

M1

CInner

V1

S1
Module boundary
crossed

Figure 4.1: Inner class definition and coupling.

4.3.2 Testing the hypotheses

To test Hypotheses 1 through 4, 12 degree distributions are created for

each system in the corpus. Table 4.1 illustrates which ones are used to

test each hypothesis. The table is separated into two sections: node-level

distributions and class-level distributions. Each section has two dimen-

sions. In the first, distributions are computed for inlinks, outlinks, and

inlinks and outlinks combined. In the second, one distribution includes

77

Chapter 4 Scale-free structures and coupling

all links and the other includes only between-module links.

Hypothesis 1 is tested by examining the combined node-level degree

distribution for system in the corpus. To satisfy the test, the resulting

distributions must be left skewed and have a “heavy tail,” which means

that the tail of the distribution contains nodes that have high connectivity

with respect to the mean. When observed on a log-log plot, each distri-

bution should approximate a straight line for values above a minimum x

value, below which the distribution is not observed (Clauset et al., 2009).

Hypothesis 2 is tested by examining the degree distribution for all

between-module links in a software network. Because areas of high

connectivity are not expected to be resolved within-module, these distri-

butions should maintain the characteristic heavy tail that Hypothesis 1

postulates. When distributions computed for Hypothesis 2 are compared

with those computed for Hypothesis 1, the nodes that made up the heavy

tail for Hypothesis 1 should also make up the heavy tail for Hypothesis 2.

To test Hypothesis 3, the degree distributions used to test Hypotheses

1 and 2 are recomputed for both inlinks and outlinks, resulting in four

node-level degree distributions for each system. Hypothesis 3 suggests

that the outlink distributions will be constrained by an upper bound,

while the inlink distributions will retain approximate scale-free structure.

This structure can be identified by comparing the inlink distributions to

the outlink distributions.

Hypothesis 4 suggests that connectivity aggregated at the class level

will demonstrate scale-free structure. To test this, the six degree distri-

Node Connectivity

Links Considered Combined links Inlinks Only Outlinks Only

All links H1 H3 H3

Between-Module Links H2 H3 H3

Aggregate Connectivity

Links Considered Combined Links Inlinks Only Outlinks Only

All links H4 H4 H4

Between-Module Links H4 H4 H4

Table 4.1: Distributions required to test Hypotheses 1 – 4

78

4.4 Results

butions used to test Hypotheses 1 through 3 are recomputed, but aggre-

gated at the class level. The resulting distributions will have fewer data

points, so it will be more difficult to identify them, but characteristics of

approximate scale-free structure are expected in all distributions.

Hypothesis 5 predicts that, due to constraints on outlinks at the node

level, the distribution of outlinks at the aggregate class level will corre-

late with the number of nodes in the class. This will be tested by com-

puting the Pearson correlation coefficient (r) between aggregate outlink

degree and class size, measured as the number of nodes.

4.4 Results

Testing Hypotheses 1 through 4 against the 97 systems contained in the

Qualitas corpus results in 1164 degree distributions. This collection is

too large to present here, so representative plots are provided. The full

set of plots is available from the University of Waikato Institutional repos-

itory.1

4.4.1 Hypothesis 1

Three plots are chosen for discussion based on system size (total node

count): derby-10.1.1.0, jung-1.7.6 and picocontainer-1.3. These repre-

sent the largest, median, and smallest systems, respectively. Figure 4.2

shows their distributions on a single plot. The similarity in shape is strik-

ing: a positive slope is observed between the first two data points, fol-

lowed by a linear negative trend. Note that each distribution is noisy to-

ward the right hand side, which is expected because they are produced

from discrete data points and naturally have fewer points exhibiting high

values.

All the plots exhibit characteristics of heavy-tailed distributions. They

are left skewed and have a total range that is at least an order of mag-

nitude larger than the mean. The mean degree for each one is shown in

Figure 4.2, and the means are approximately the same despite the enor-

mous different in system size. To demonstrate this effect for all systems,

1http://hdl.handle.net/10289/6373

79

Chapter 4 Scale-free structures and coupling

Figure 4.2: Distribution of overall connectivity for three sample systems.

the mean and maximum degrees of each system are computed and plot-

ted with a logarithmically-scaled y-axis in Figure 4.3, where the systems

are sorted into descending order of maximum degree. The mean degree

over all systems remains fairly constant, while the maximum is between

10 and 1000 times the mean for almost all systems.

1

Figure 4.3: Mean degree vs. maximum degree for all systems.

Further study of the distributions in Figure 4.2 reveals a clear differen-

tiation of the three systems, except to the right where the distributions

are noisy. This is consistent with the expectations of a power-law distri-

bution Clauset et al. (2009). The probability of a node with a high degree

decreases proportionally to the degree; therefore, given a fixed α, the

number of nodes with higher degrees increases with the node count.

Based on these observations, we conclude that Hypothesis 1 is satisfied:

80

4.4 Results

overall connectivity for source code entities follows a heavy-tailed distri-

bution for all systems in the corpus.

4.4.2 Hypothesis 2

The between-module connectivity distributions for the three sample sys-

tems are shown in Figure 4.4. These show the overall coupling present in

each system, and are similar in shape to the distributions for Hypothesis

1. The between-module connectivity distributions are less well defined,

which is due to the lack of between-module interaction: less interaction

equates to fewer data points, thereby producing noisier distributions. All

the between-module distributions have similar shape, including a heavy

tail that is apparent in Figure 4.4.

Figure 4.4: Between-module degree distributions for three sample systems.

Figure 4.4 demonstrates that the between-module connectivity distri-

butions are similar in shape to those for overall connectivity (Figure 4.2).

The between-module distributions are less well defined, which is due to

programmers favoring within-module interaction over between-module

interaction: less interaction equates to fewer data points, producing nois-

ier distributions. All the between-module connectivity distributions have

similar shape, including a heavy tail.

Figure 4.5 shows the full and between-module distributions plotted to-

gether, for each of the sample systems. An overlap in the heavy tail is

81

Chapter 4 Scale-free structures and coupling

observed in each case. If the links for nodes with high overall connec-

tivity were primarily resolved within-module, data points would migrate

towards the left in the between-module distributions, and they would not

exhibit a heavy tail. However, this migration is not observed. Instead,

both distributions have heavy tails, which overlap when plotted on the

same graph. This demonstrates that the nodes that appear in the heavy

tail of the overall connectivity distributions are these nodes that appear

in the heavy tail of the between-module connectivity distributions, and

are responsible for the presence of high coupling.

Figure 4.5: Comparison of overall and between-module connectivity distribu-

tions for three sample systems.

In Figure 4.5, there is a difference in slope of the linear portions of

the distributions. Because the full connectivity distributions have more

data points on their left side, the slope in the overall connectivity dis-

tributions are steeper than those for the corresponding between-module

distributions. Using the process outlined in Clauset et al. (2009), α—the

slope of the linear portion of the distribution—is estimated for distribu-

tions using xmin = 1 for between-module distributions and xmin = 2 for

all full distributions; data below xmin are ignored. Figure 4.6 compares

the estimated α between overall and between-module distributions for

all systems, sorted in descending order by largest α estimate. The α for

between-module connectivity distributions is lower than the overall con-

nectivity distribution for the same system. Based on the above analysis,

we conclude that Hypothesis 2 is satisfied.

82

4.4 Results

Figure 4.6: Comparison of α estimates for all systems.

4.4.3 Hypothesis 3

Because of the large number of distributions to be considered, only those

for the system derby-10.1.1.0 will be shown here. This is the largest sys-

tem in the corpus, with the largest number of data points, and therefore

produces distributions that highlight key properties most clearly. Fig-

ures 4.7 and 4.8 illustrate the distributions for all inlinks and between-

module inlinks respectively. Both show approximate scale-free structure,

as predicted by Hypothesis 3. The two distributions of inlinks for derby-

10.1.1.0 exhibit the same patterns observed for Hypotheses 1 and 2 for

that system.

1 10 100 1000 10000

Node Degree

1

10

100

1000

10000

100000

C
o

u
n

t

derby-10.1.1.0

Figure 4.7: All inlinks for derby-10.1.1.0.

Figures 4.9 and 4.10 show the full outlink and between-module degree

83

Chapter 4 Scale-free structures and coupling

1 10 100 1000 10000

Node Degree

1

10

100

1000

10000

100000

C
o

u
n

t
derby-10.1.1.0

Figure 4.8: Between-module inlinks for derby-10.1.1.0.

distributions for derby-10.1.1.0. Both show a straight-line segment on

the log-log plot, but their range is truncated when compared to the same

distribution plots for inlinks. This can be seen in Figures 4.11 and 4.12.

1 10 100 1000 10000

Node Degree

1

10

100

1000

10000

100000

C
o

u
n

t

derby-10.1.1.0

Figure 4.9: All outlinks for derby-10.1.1.0.

Hypothesis 3 predicts that the inlink distributions for software systems

exhibit scale-free structure. This is clearly shown by Figures 4.7 and 4.8.

It also predicts that the outlink distributions for software systems are

truncated, which is shown by Figures 4.9, 4.10, 4.11 and 4.12. Hypothe-

sis 3 holds true for the system derby-10.1.1.0.

While derby-10.1.1.0 is reasonably representative, the distribution of

its between-module outlinks does not fully convey the amount of trunca-

tion in outlinks that is observed in many of the smaller systems. However,

84

4.4 Results

1 10 100 1000 10000

Node Degree

1

10

100

1000

10000

100000

C
o

u
n

t

derby-10.1.1.0

Figure 4.10: Between-module outlinks for derby-10.1.1.0.

1 10 100 1000 10000

Node Degree

1

10

100

1000

10000

100000

C
o

u
n

t

derby-10.1.1.0 All inlinks

derby-10.1.1.0 All outlinks

Figure 4.11: Comparison of all inlinks vs. all outlinks for derby-10.1.1.0.

45 of the 97 systems in the corpus have between-module outlink distri-

butions for which the maximum value is ten or less. For example, the

between-module outlink plot is shown for jgraph-5.9.2.1 in Figure 4.13,

and shows that the between-module outlink maximum does not exceed

10 links. While it may be tempting to look at the outlink distributions

for derby-10.1.1.0 (Figures 4.9 and 4.10) and argue that they illustrate

approximate scale-free structure, this is clearly not the case for jgraph-

5.9.2.1 (Figure 4.13).

To test Hypothesis 3 for all systems in the corpus, the range for between-

module inlinks and for between-module outlinks is shown in Figure 4.14.

Along the x-axis are the systems in the corpus, sorted into descending

85

Chapter 4 Scale-free structures and coupling

1 10 100 1000 10000

Node Degree

1

10

100

1000

10000

100000

C
o

u
n

t

derby-10.1.1.0 Between-module inlinks

derby-10.1.1.0 Between-module outlinks

Figure 4.12: Comparison of between-module inlinks vs. between-module out-

links for derby-10.1.1.0.

1 10 100 1000 10000

Node Degree

1

10

100

1000

10000

100000

C
o

u
n

t

jgraph-5.9.2.1

Figure 4.13: Between-module outlinks for jgraph-5.9.2.1.

86

4.4 Results

1

10

100

1000

10000

100000

Inlinks

Outlinks

Systems in Corpus sorted by descending range of inlinks

Degree
Distribution

Range

Figure 4.14: Degree distribution ranges of inlinks and outlinks for all systems.

order of inlink distribution range. With the exception of some peaks in

the outlink plot, the range of inlinks typically exceeds the range of out-

links by a factor of ten. In the case of the peaks in the outlink plot, the

range of the inlinks exceed that of the outlinks by a factor of between 2.5

and 7. Based on the evidence presented in this section, we conclude that

Hypothesis 3 holds true for all systems in the corpus.

4.4.4 Hypothesis 4

A post-hoc analysis of node categories in the Qualitas corpus reveals that

the mean class declaration count is 1.40% of the total system node count,

with a standard deviation of 0.64 across all systems. Whereas the distri-

butions used to test Hypotheses 1 through 3 contained 10,000 to 300,000

points, the distributions required to test Hypothesis 4 contain 50 to 2000

points. Because of the limited number of data points, it is difficult to

observe scale-free structure by examining the degree distribution. While

the aggregate combined distribution for springframework1.2.7 (Figure

4.15) clearly shows the expected structure, this level of clarity is not

present for fitjava-1.1 (Figure 4.16).

With scale-free structure, we expect the range of the distribution to be

much larger than the mean. Figure 4.17 plots the mean and maximum

87

Chapter 4 Scale-free structures and coupling

1 10 100 1000 10000

Node Degree

1

10

100
C

o
u

n
t

springframework-1.2.7

Figure 4.15: Aggregate distribution for all links for springframework-1.2.7.

1 10 100 1000 10000

Node Degree

1

10

100

C
o

u
n

t

fitjava-1.1

Figure 4.16: Aggregate distribution for fitjava-1.1.

1

10

100

1000

10000

100000
Max degree

Mean degree

Systems in Corpus sorted by descending max degree of inlinks

Degree

Figure 4.17: Max degree and mean degree for aggregate distributions.

88

4.4 Results

1

10

100

1000

10000

100000

Systems in Corpus sorted by descending max degree of inlinks

Degree

Max degree

Mean degree

Figure 4.18: Max degree and mean degree for between-module aggregate

distributions.

degree for aggregate distributions, and Figure 4.18 plots the mean and

maximum degree for between-module aggregate distributions. In both

plots, the range of the distribution exceeds the mean degree by at least

an order of magnitude, which shows that even though the distributions

have few data points, they exhibit scale-free structure. From this, we

conclude that approximate scale-free structure is observed in aggregate

measures of class connectivity and class coupling.

1

10

100

1000

10000

100000
Max inlink degree

Max outlink degree

Systems in Corpus sorted by descending max degree of inlinks

Degree

Figure 4.19: Max inlink and outlink degrees for aggregate distributions.

Hypothesis 4 also predicts that because there are no constraints on cre-

ating outlinks at the class level, outlink distributions will not be bounded

as they are for Hypothesis 3. Figure 4.19 plots the maximum inlink

degree and maximum outlink degree for the aggregated distributions.

Figure 4.20 shows the same values for the between-module aggregate

distributions. Whereas Figure 4.14 shows a clear separation between

maximum inlink and outlink degrees, this is not seen in either of the

89

Chapter 4 Scale-free structures and coupling

1

10

100

1000

10000

100000
Max inlink degree

Max outlink degree

Systems in Corpus sorted by descending max degree of inlinks

Degree

Figure 4.20: Max inlink and outlink degrees for between-module aggregate

distributions.

comparison plots for the aggregate distributions. Indeed, both aggre-

gate distributions have a similar range. We conclude that the structure

observed in the aggregate measures is observed for both inlink and out-

link distributions, and this satisfies Hypothesis 4 for all systems in the

corpus.

4.4.5 Hypothesis 5

1 10 100 1000 10000

Aggregate between-module inlink count

1

10

100

1000

10000

100000

C
la

s
s
 s

iz
e

Figure 4.21: Class size versus aggregate between-module outlink count for

derby-10.1.1.0 (r=0.89)

For each system, the Pearson correlation coefficient (r) is computed

for class size and aggregate between-module outlinks. The mean value

of r across all systems is 0.83, with a standard deviation of 0.09. The

90

4.4 Results

Pearson
Correlation
Coefficient

(r)
for

class size
versus

aggregate
between-
module
outlinks

Systems sorted in order of decreasing r.

0

0.25

0.50

0.75

1.00

Figure 4.22: Correlation (r) between class size and aggregate between-module

outlink count for all systems.

system with the lowest value of r, namely r = 0.55, is junit-4.5. Figure

4.21 plots class size against aggregate outlink count for derby-10.1.1.0

(r = 0.89). Figure 4.22 shows r for each system in the corpus, sorted

into descending order. Three quarters of the systems have correlation

exceeding 0.75 and the remaining have correlation of at least 0.55. Based

on these results, we conclude that Hypothesis 5 is satisfied.

4.4.6 Post-hoc analysis for Hypothesis 5

Pearson
Correlation
Coefficient

(r)
for

class size
versus

aggregate
within-

module links

Systems sorted in order of decreasing r.

0

0.25

0.50

0.75

1.00

Figure 4.23: Correlation (r) between class size and aggregate between-module

outlink count for all systems.

The observed correlation between class size and aggregate between-

module outgoing links raises the question as to whether there is a cor-

91

Chapter 4 Scale-free structures and coupling

relation between class size and links that are internal to the class. A

post-hoc analysis was performed that computed the Pearson correlation

coefficient for class size and aggregate within-module links. This yields

a much higher correlation: the mean correlation across all systems is r

= 0.92, with σ = 0.04. Figure 4.23 shows the Pearson correlation co-

efficient between class size and aggregate within-module links for all

systems. These results show that when new nodes are added to a class,

they are more likely to be accompanied by within-module links than by

between-module links. For the corpus, the programmers, in general,

favoured cohesive links over coupling links, which is expected.

4.5 Discussion

This empirical investigation demonstrates five properties of software struc-

ture that are present for all systems in the Qualitas corpus:

1. The node-level networks are approximately scale-free.

2. Scale-free structure at the node level translates to areas of high

coupling.

3. At the node level, inlink distributions differ from outlink distribu-

tions in that the latter show evidence of an upper bound.

4. Class-level networks are approximately scale-free.

5. Class size is correlated with aggregate between-module outlink count.

4.5.1 High coupling caused by node-level interaction

All systems in the corpus contain areas of high coupling, which is a direct

result of scale-free structure in the source code network. High coupling

was predominantly caused by node inlinks, because outlinks are highly

constrained in comparison. This suggests that the reduction of high cou-

pling caused by node-level interaction depends on reducing the number

of inlinks for highly connected nodes.

An obvious question arises concerning the presence of high coupling

due to node inlinking: can it be effectively eliminated by placing arbitrary

92

4.5 Discussion

limits on the number of inlinks for each node? Consider the case where a

programmer required the use of the functionality offered by node n, but

where that node had already reached its maximum connectivity limit. To

make use of its functionality, the programmer has two options:

1. Replicate the functionality of n.

2. Use another node m to link to n, effectively acting as a proxy for it.

Replicating functionality within a software system is known as code

cloning (Baxter et al., 1998). Although there are cases where using code

clones is unavoidable (Kim, Sazawal, Notkin and Murphy, 2005), it is con-

sidered poor design because clones are semantically related, but their

relationship is not obvious to the programmer, thereby making it possi-

ble to update one clone independently of the others. This can result in

inconsistent behaviour between different parts of the system. Replacing

high coupling with code replication is not a suitable solution.

In the case of node proxies, nodem would link to node n, thereby using

up only one of n’s inlinks. Nodes that needed to use the functionality of

n would link to node m, which would delegate to node n. Should m

reach its limit of inlinks, another proxy node k could be created to act

in place of m. Theoretically, a proxy structure could be devised to allow

for an arbitrary number of uses of n’s functionality while limiting to the

number of direct connections to n.

The problem with a proxy solution, however, is that the proxy nodes

are semantically equivalent to the nodes they represent. In the example

above, because node m is just a proxy of node n, any changes to node n

will be replicated at node m. Proxy nodes do not provide a mechanism to

reduce the probability of change propagation, so the only point of having

them is to avoid limits placed on connectivity. This begs the question as

to why limitations should be imposed at all.

4.5.2 High coupling caused by aggregate interaction

Hypotheses 3 and 4 demonstrate that while outlinking does not cause

high coupling at the node level, it does contribute to high coupling at the

93

Chapter 4 Scale-free structures and coupling

aggregate level. Hypothesis 5 demonstrates that the number of aggre-

gate outlinks is highly correlated with the number of nodes contained in

the aggregate. An aggregate structure that contains few nodes has lim-

ited opportunity to generate a large number of outlinks because of the

upper bound on outlinking for individual nodes. As an aggregate struc-

ture grows, the data suggests that the number of outlinks also grows;

therefore the probability of high coupling due to aggregate outlinking

increases as the aggregates grow.

The same question arises as to whether high coupling could be effec-

tively managed by limiting the number of outlinks that can occur at the

aggregate level. An outlink from a class implies that that class depends

on some functionality that is defined externally. If a class were unable

to utilize some external functionality because it had reached its outlink-

ing limit, that functionality would have to be brought into the class in

order to be usable. This would cause the class to grow, but Hypothesis 5

suggests that increasing the size of a class increases its dependency on

external functionality, thereby increasing the pressure for more outlinks.

This creates a positive feedback loop where an increase in class size at-

tracts more outlinks, which causes more functionality to be brought into

the class, thereby increasing its size again. This, too, is not a viable way

to reduce coupling.

4.5.3 Internal validity

It is difficult to use these findings as a basis for an argument about the

effectiveness of coupling as a design measure. There is no a priori in-

formation about the quality of the designs in the corpus, so one cannot

correlate measurements taken against systems that are known to be well

(or poorly) designed. However, the results hold across the entire set,

which means that the properties measured do not differentiate systems

in the corpus. Chapter 2 covered the reasoning behind which high cou-

pling is considered to be poor design, but the findings of this investiga-

tion suggest that the mere presence of high coupling is not synonymous

with poor design. If it were, one would have to conclude that all systems

in the Qualitas corpus are poorly designed, but many of these systems

94

4.5 Discussion

are actively maintained and utilized in production environments and, as

a result, satisfy the basic criterion of design quality outlined in this the-

sis: that the system remains responsive to change pressures. It seems

unlikely that all of the systems are poorly designed. A much more plau-

sible argument is that the presence of high coupling is indeed consistent

with good design.

4.5.4 Construct validity

Keller (2005) noted that the presence of a particular distribution does

not imply a particular underlying or generational process at work. The

fact that the empirical results support the five hypotheses does not prove

that the proposed evolutionary model is the correct one for software evo-

lution. It does, however, demonstrate that the BA model can be modi-

fied to be consistent with the evolution of software systems, and should

not be dismissed without a deeper investigation. Since the proposed

model is not specifically targeted to software written in the Java program-

ming language, these findings may be applicable to other languages and

paradigms, and this idea is supported by the literature (Myers, 2003).

4.5.5 External validity

While this investigation demonstrates that high coupling can be consis-

tent with good design, one should exercise caution when extrapolating

the results to systems other than those in the corpus. These systems are

all open source and no effort has been made to compare open source

systems to proprietary ones.

However, the differing functionality, size, maturity, and modification

histories of the systems in the Qualitas corpus suggests some generaliz-

ability of these findings. None of the systems in the corpus were immune

to the hypothesized effects, thereby suggesting that scale-free structure

is independent of these properties.

95

Chapter 4 Scale-free structures and coupling

4.5.6 Open research question

This work suggests that despite the maxim of “high cohesion and low

coupling,” high coupling is common to all software systems. Are we to

conclude that most software systems are poorly designed, or is it possi-

ble to reconcile the presence of high coupling with good design practice?

Chapter 2 described why high coupling is considered to be poor design:

it facilitates the ripple effect, whereby small changes to a part of a system

can necessitate system-wide changes. Since all systems in the Qualitas

corpus exhibit high coupling, high levels of change propagation should

be observable between releases for those parts of systems for which cou-

pling is high. This is addressed in Chapters 5 and 6.

96

Chapter 5

Patterns of change

The times they are a-changin’

—Bob Dylan

This chapter describes the mechanisms used to measure change in soft-

ware systems, and identifies the patterns of change that occur. We begin

with a detailed description of the method used to match classes between

system versions, which is based on Origin Analysis (Section 2.9).

Measuring the changes that occur between different versions of soft-

ware systems requires a method of quantification. The proposed method

uses eight change measures, which are derived from the main unit of

modularization in object-oriented systems—the class. They are described

in detail, and to aid in the identification and classification of higher levels

of change patterns, a method of visualizing class lifetimes is presented.

The corpus is analysed using the eight measures. These analyses are

used to identify and classify the kinds of change that are observed be-

tween versions of software. The first analysis examines the performance

of the proposed matching heuristic by measuring the number of matched

classes and the number of unmatched classes to assess the likelihood

that unmatched classes represent errors in the matching process. The

second uses a summary of the eight measures computed over the corpus

as a whole to identify the frequency of change events. The third analy-

sis investigates the correlation of change measures to identify how they

change in relation to each other. The final analysis classifies patterns of

change based on how classes change over their lifetime.

97

Chapter 5 Patterns of change

The chapter ends with a discussion of the implications of the observed

results and their relationship with the structural properties identified

in Chapter 4. This discussion provides the basis for the investigation

described in Chapter 6.

5.1 Automated Matching Method

Automated Matching Method (AMM) is an automated process that is

based on Origin Analysis. It is performed in two passes, where the first

pass matches classes whose internal structure has had limited change,

and the second pass matches classes based on interactions with other

classes.

Because of the size of the corpus under investigation, a semiautomatic

approach is unfeasible for two reasons. First, the volume of matches

that are expected in a corpus of this size makes it unlikely that the work

could be completed within a reasonable schedule. Second, no researcher

will have enough experience with all systems in the corpus to exercise

consistent judgment.

5.1.1 First pass—Applying matchers

The first pass uses four matchers, which each compare independent

properties of classes—Nameset similarity, Abstract/concrete, Class/in-

terface, and Simple name. The Nameset similarity matcher implements

the primary similarity measure that is used to identify candidate match-

ing classes. Classes that satisfy its criteria are included as possible candi-

dates, and those that satisfy the criteria of the remaining three matchers

are excluded as candidates.

Semgraphs represent classes by a subtree where the class declara-

tion node is the root. A class’s Nameset is the set of all names used

by the class declaration node and its children. Named nodes are vari-

able, parameter, method and non-anonymous inner class declarations.

The names that are given to the nodes in a class are associated with its

semantics (Church, 1943), so they are only likely to change when the se-

mantics of the class change or when a programmer refactors the nodes

98

5.1 Automated Matching Method

so that they are better aligned with the semantics of the class.

Using the measure of similarity stated by Bunge (1977), we compute

the similarity between namesets as:

N.similarity(A,B) =
|NS(A) ∩NS(B)|

Min(|NS(A)|, |NS(B)|)
(5.1)

where NS(A) is a function that computes the nameset for class A.

The Abstract/concrete matcher excludes candidate classes that are not

exclusively abstract or concrete between system versions. A concrete

class represents a fully defined entity in a software system that can be

instantiated. An abstract class, however, is an artefact of a factoring pro-

cess that provides a single repository to house code that would otherwise

be duplicated across multiple classes. Because abstract classes main-

tain code that is common to many classes, they tend to possess a similar

structure to their subclasses, which can confuse the Nameset matcher

and cause it to identify too many candidate classes. This matcher en-

sures that concrete classes can only be matched with concrete classes,

and that the same is true for abstract classes.

Like the Abstract/concrete matcher, the Class/interface matcher does

not allow classes to match with interfaces. An interface defines a set

of methods that must be supplied by implementing classes. The use of

interfaces can produce a series of classes that possess similar structure,

making it difficult to match using Namesets.

The final matcher excludes classes that do not have the same Sim-

ple name between versions. Software systems have several classes that

exhibit similar structure—such as code clones, sibling classes in inher-

itance hierarchies, and classes that implement interfaces—so matchers

based on structure are likely to produce too many candidates. Since the

aim of the first pass is to match classes that have exhibited little or no

change, this matcher will only allow candidates whose Simple name has

not changed. Classes whose Simple name has changed between system

versions must be matched by pass 2.

Given these four matchers, the first pass works as follows. The simi-

larity measure is computed for each pair of classes between the classes

99

Chapter 5 Patterns of change

in version A—the earlier version—and those in version B. Class pairings

are grouped when

N.similarity(A,B) > 0.8.

Once all groupings have been made, the remaining matchers are applied

to the groups, and those classes with a single remaining candidate are

matched. Any classes that do not have exactly one candidate, or two or

more candidates are forwarded to pass 2 of the process.

To determine an appropriate threshold, an ad-hoc sensitivity analysis

was performed. The matchers were applied to corpus with an initial

threshold value of 0.25. For each subsequent application, the threshold

value was increased by 0.05, until a threshold value of 1.0 was achieved.

The analysis showed that the number of matches remained most stable

between threshold values 0.6 and 0.9. Based on these results, the thresh-

old value of 0.8 was chosen because it provided a reasonable number of

matches, and was high enough to provide reasonable confidence that it

would produce fewer false positives than false negatives.

5.1.2 Second pass—Dependency analysis

The second pass uses dependency analysis to resolve matching for classes

that exhibit more than the minimal internal change. Figure 5.1 illustrates

how dependencies are used to match classes. In this diagram, there are

two system versions (A and B) and three classes (C1, C2, and C3), where

the first pass matched C1.A with C1.B, and C3.A with C3.B. However,

C2.A was not matched by the first pass to C2.B.

Pass two computes the inlink set and outlink set for each unmatched

class in system version A and for all classes in system version B. A class’s

inlink set is the set of classes that use its functionality, and its outlink set

is the set of classes that it uses. In the above example, class C2.A is

used by class C3.A and uses classes C3.A and C1.A. Although both C1.A

and C3.A are in the earlier version of the system, they have both been

matched to classes in the later version, and it is those matched classes

that are added to the inlink and outlink sets of C2.A.

Class similarity is computed by comparing the similarity between inlink

100

5.1 Automated Matching Method

Ver A

C1.A

Next

Ver B

C1.B

Next

Next

C2.A C2.B

C3.A C3.B

S

S

S

S

S S

M M

M

M

M

M

C2.A

Inlink Set

C3.B

Outlink Set

C3.B

C1.B{

C2.B

Inlink Set

C3.B

Outlink Set

C3.B

C1.B{

Figure 5.1: Matching classes between versions—pass 2.

and outlink sets. This comparison is performed using the same formula

that is used to compare Namesets in pass 1.

I.similarity(A,B) =
|IS(A) ∩ IS(B)|

Min(|IS(A)|, |IS(B)|)
(5.2)

where IS(A) is a function that computes the inlink set for class A. The

similarity of outlink sets (O.similarity) is computed in the same way.

For classes to be candidates, they must satisfy the following criteria:

Min(I.similarity(A,B), O.similarity(A,B)) ≥ 0.5

and

Max(I.similarity(A,B), O.similarity(A,B)) ≥ 0.7.

Using these thresholds allows one set of links to change more than the

other, but at least one of the sets must remain stable for a candidate to

101

Chapter 5 Patterns of change

be considered.

To perform the actual matching, each unmatched class in the earlier

system version is compared against all classes in the later version, and

classes whose similarity measures exceed the specified thresholds are

grouped. As in pass 1, AMM judges two classes to be matched only in the

case where there is a single matching candidate. In cases of no matching

candidates or two or more candidates, no match is made.

To determine appropriate threshold values, an ad-hoc sensitivity anal-

ysis was performed on all classes that weren’t matched by the first pass.

All combinations of minimum and maximum thresholds were tested using

increments of 0.05, where 0.25 ≤ thresholdmin ≤ 0.95, 0.3 ≤ thresholdmax ≤

1.0 and thresholdmin < thresholdmax. The number of matches decreased

significantly for values thresholdmax ≥ 0.75 and increased significantly

for values thresholdmin ≤ 0.45. Based on these findings, the thresholds

thresholdmin = 0.5 and thresholdmax = 0.7 were chosen.

5.2 Automated Matching Method performance

evaluation

AMM was evaluated using three criteria:

1. The number of unmatched classes between release pairs.

2. The number of release pairs that have a large percentage of un-

matched classes.

3. The number of unmatched classes that are highly coupled.

AMM was applied to the “e” release of the Qualitas corpus, which con-

tains 334 versions of 12 independent software systems. The systems

in the corpus were ordered based on their version number and release

date, which is maintained as part of the corpus metadata (Tempero et al.,

2010).1 A full list of software system versions and pairings can be found

in Appendix C.

1The “alpha” and “beta” versions of the hibernate system were excluded because they

are not part of the normal release stream.

102

5.2 Automated Matching Method performance evaluation

5.2.1 Unmatched classes

When a class in an earlier version of a pairing fails to match a class in

the later version, there are two possible reasons:

1. The class was deleted from the system and no matching class exists

in the later version.

2. The heuristic failed to find the appropriate matching class.

In case 2, a matching error has occurred. These represent the difficult

cases for which an expert’s judgment would be used in the semiauto-

mated methods.

Table 5.1 shows the total number of matching opportunities, the num-

ber of classes matched (94%), and the number of unmatched classes

(6%). Unmatched classes are broken down into five categories, each

representing the reason that a match did not occur. Most unmatched

cases were because of either one or both of the inlink and outlink sets

were empty. In the final two cases, there were either no candidates or

two or more candidates.

When using dependency analysis, the similarity of inlink and outlink

sets must exceed 0.5 for both sets and 0.7 for one of the sets. In the

case where one (or both) of the sets is empty, no suitable match can

be found because of insufficient matching criteria. When a class has an

empty inlink or outlink set, that signifies that none its interactions could

be matched against classes in the later version, or that the class itself

has no interaction with other classes. In each of these cases, depen-

dency analysis cannot identify a match because there is no criteria for

computing similarity. Of the 20,124 unmatched classes, failure to match

Total Matched Unmatched

351335 331211 (94%) 20124 (6%)

I O B N >1

11582 449 7014 51 1028

(3%) (<1%) (2%) (< 1%) (< 1%)

Table 5.1: Measures to assess quality of the matching process. I=Empty Inlink

Set, O=Empty Outlink Set, B=Both sets empty, N=No match found,

>1=Too many candidates

103

Chapter 5 Patterns of change

because of insufficient criteria accounts for 95% (19,045). If these cases

were brought before experts in a semiautomated analysis, they would

have similar difficulty in assessing whether a match should occur, be-

cause lack of information is a weak criterion for making an assessment.

The number of classes that were unmatched because there were too

many candidate classes is 1028. These cases are most likely indicative of

small code clone classes whose evolution has been limited, so they retain

similar structure and interaction patterns to other clones. Here, it is

likely that an expert would perform far better than AMM, but these cases

represent less than 0.3% of the total cases and 5% of the unmatched

ones.

In the remaining 51 cases, no matches could be found through both a

comparison of structure and dependency analysis. It is likely that these

cases represent classes that have been removed. Of the 20,124 classes

that could not be matched, it is likely that more than 51 classes were re-

moved, but their removal cannot be confirmed by this measure. Godfrey

and Zou (2005) reported deletion rates as high as 18% for one pairing of

the PostgreSQL system, with a mean rate of 3.5%. Since class deletions

do occur, it is unlikely that all of the unmatched classes are due to failure

of the matching heuristic.

5.2.2 Unmatch rates for individual pairings

The average number of classes that were unmatched between system

versions is 6%. However, there are 14 system version pairings, shown

in Table 5.2, whose unmatched classes exceed 15%. In the first six, the

number of total classes decreases, so it is only to be expected that many

classes will be unmatched. The next four saw a large increase in the

number of classes along with an increase in major version number, sug-

gesting a significant modification to the system. The next two cases are

small systems, so the 15% match represents a small number of actual

classes, and there appears to be a gap in the data between junit 3.0 and

junit3.4. In the last two cases there was an increase in the number of

total classes, but a subsystem containing a large number of classes was

removed.

104

5.2 Automated Matching Method performance evaluation

Earlier Version Later version

antlr 2.7.7 antlr 3.0

jmeter 2.2 jmeter 2.3-rc3

jung 1.2 jung 1.3

jung 1.7.6 jung 2.0

junit 3.8.2 junit 4.0

lucene 2.2.0 lucene 2.3.0

azureus2.0.8.5 azureus 2.1.0.0

hibernate 0.8.1 hibernate 1.0

hibernate 1.1 hibernate 2.0-rc2

hibernate 2.1.8 hibernate 3.0-rc2

junit 2.1 junit 3.0

junit 3.0 junit 3.4

ant 1.3 ant 1.4

junit 4.4 junit 4.5

Table 5.2: List of release pairs with > 15% unmatched classes.

In most of these cases, a large number of classes were removed, which

explains the high rate of unmatched classes. In the four cases where the

systems increased in size, they appear to have significant modification,

which could either indicate that the classes were deleted or that there

was a large amount of class splitting, which could have confused AMM.

5.2.3 Unmatched classes correlated with coupling

We have already determined that coupling exhibits approximate scale-

free structure, so the dataset has a large number of classes that exhibit

low coupling and fewer that exhibit high coupling. Since the focus of

the analysis of change is to correlate levels of change with measures of

Reason for failure High Coupling

Empty inlink set 1423

Empty outlink set 99

Both sets empty 424

Too many matches 370

No matches 37

Total 2353

Table 5.3: Number of unmatched classes with > 50 between-module links.

105

Chapter 5 Patterns of change

coupling, a loss of data points that exhibit low coupling will have little im-

pact on the analysis because there are many. However, because there are

fewer data points that exhibit high coupling, we should first ask whether

a significant number of those points may be lost because of unmatched

classes.

To make an assessment, the aggregate between-module incoming and

outgoing links are recorded for each unmatched class. If either the in-

coming or outgoing links exceed 50—a conservative threshold—the class

was judged to exhibit high coupling. Table 5.3 shows the number of

highly coupled classes that remained unmatched for each of the rea-

sons noted in Section 5.2.1. The total of 2353 represents 12% of the

unmatched classes and < 1% of the total matching opportunities.

5.2.4 Discussion

It is not known how many of the unmatched classes represent ones that

have been deleted by programmers and how many are errors caused by a

failure of AMM. If all unmatched classes were in error, the total error rate

represent 6% of the data points. If only classes that are highly coupled

are considered, the error rate drops below 1%. These numbers represent

an upper bound to the number of false negatives.

In cases where there were insufficient criteria for making a match,

the default was to make no match. Also, in the case where too many

possibilities were available, no match was made. These characteristics,

in conjunction with the high thresholds used in the similarity metrics,

makes it likely that there are fewer false positives than false negatives.

AMM possess some advantages over using an expert-based approach.

Subjective judgment makes the matching process less reproducible be-

cause the underlying process is unquantifiable. The approach used here

is described fully, and can be reproduced by other researchers.

Another problem associated with human participants are issues of fa-

tigue and cognitive bias, which can impair their judgment (Tversky and

Kahneman, 1974). While some biases can be controlled by experimental

design, it is unlikely that fatigue would not be a factor for a corpus of the

size used.

106

5.3 Measuring change

5.3 Measuring change

We now describe the eight measurements that are used to represent how

classes change over time.

5.3.1 Computed measures

Figure 5.2 illustrates the eight change measures used. Each is num-

bered, but to simplify the diagram, only between-module measures are

labelled. Measure 1 represents the number of the nodes contained by

the module, and measures 2 through 8 represent links. While modules

can be any hierarchical element that contains child nodes, this section

assumes that modules are classes.

C

M1 M2

V

V

V

SS

S
S

S

S

SS

S
S

S

S

3. Between-module inlink count

7. Aggregate
between-module

Inlink
Count

8. Aggregate
between-module

outlink
Count

2 C
4

5. Between-module outlink count

6

1. Node count

Figure 5.2: Eight parameters of change for a module.

Measure 1—Node count

The first measure is the number of nodes contained in the module, which

can be seen as the number of nodes within the class rectangle in Figure

5.2. The addition and removal of nodes are reflected by changes to this

measure.

107

Chapter 5 Patterns of change

Measure 2—Within-module inlink count

This measure is the number of inlinks to the module’s root node that

originate from within the module itself, which is shown as links from

nodes within the rectangle to the class’s root node on Figure 5.2. Links

of this type are variable and parameter declarations whose type is the

class, and method declarations whose return type is the containing class.

Less common cases are inner classes that are defined as a subclass of the

containing class. Changes to this measure indicate that the level of usage

that originates from within the class has changed.

Measure 3—Between-module inlink count

This measure represents the number of inlinks to the module’s root node

that originate from outside the module’s boundary, which reflects the

level of usage of the class as a type by other nodes in the system. On

Figure 5.2, this is shown as links to the class’s root node that originate

from outside of the rectangle.

Measure 4—Within-module outlink count

This measure reflects the number of outlinks from the module’s root node

that are resolved within the module itself. Outlinks from a class’s root

node are superclass and interface relationships. Since it is very unusual

for such relationships to be resolved within the class itself, it is expected

to be zero in most cases. On Figure 5.2, this is shown as links originating

from the class’s root node and terminating at a node within the rectangle.

Measure 5—Between-module outlink count

This measure represents the amount of dependence between the mod-

ule’s root node and nodes that are external to the module. Since the

Java programming language only allows single inheritance and classes

are likely to implement few interfaces, its value is expected to remain

low. On Figure 5.2, this is shown as links originating from the class’s

root node and terminating with a node outside the rectangle.

108

5.3 Measuring change

Measure 6—Within-module aggregate link count

This measure represents the number of links between nodes contained

within the module, not including links to the module’s root node, which

is indicative of the level of internal dependence exhibited by the class.

On Figure 5.2, this is shown as a relationship between two nodes within

the class’s rectangle.

Measure 7—Between-module aggregate inlink count

This measure reflects the number of inlinks to nodes contained by the

module that do not originate from within the module itself, which reflects

the level of dependence upon the class’s public interface by the rest of

the system. While links to both method and variable declarations can be

included, object-oriented design rules encourage encapsulating variable

declarations (Meyer, 2000), so they are less likely to be accessed from

external sources. On Figure 5.2, this is shown as a relationship between

external nodes and class interface nodes.

Measure 8—Between-module aggregate outlink count

This measure reflects the number of aggregate outlinks from nodes con-

tained in the module to nodes defined outside the module’s boundaries,

which indicates the level of dependence between the class and the rest

of the system. On Figure 5.2, this is shown as a relationship between

nodes within the rectangle and external nodes.

5.3.2 The lifetime of a class

Figure 5.3 shows measures for an example class over eight system ver-

sions, and Table 5.4 illustrates the corresponding change matrix. The

table has nine columns, the first column showing the version pair num-

ber and the remaining columns the class’s change measures. The first

and last rows show the initial and ending values for the measures, and

the intervening rows show the amount of change of each measure for

each version pairing. The purpose of the change matrix is to illustrate

109

Chapter 5 Patterns of change

Class V1 V2

M1: 236

M2: 3

M3: 66

M4: 0

M5: 0

M6: 13

M7: 761

M8: 144

236

3

68

0

0

13

777

144

V3

244

3

70

0

0

13

810

148

V4

244

4

70

0

0

13

815

148

V5

244

4

70

0

0

13

815

148

V6

248

8

111

0

0

13

1373

164

V7

248

8

111

0

0

13

1386

164

V8

248

8

114

0

0

13

1548

164

+2

+16

+8

+2

+33

+4

+1

+5

+4

+4

+41

+558

+16

+13

+3

+162

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Pair 7

Figure 5.3: Change measures for eight versions of the same class.

Pair M1 M2 M3 M4 M5 M6 M7 M8

236 3 66 0 0 13 761 144

1 0 0 2 0 0 0 16 0

2 8 0 2 0 0 0 33 4

3 0 1 0 0 0 0 5 0

4 0 0 0 0 0 0 0 0

5 4 4 41 0 0 0 558 16

6 0 0 0 0 0 0 13 0

7 0 0 3 0 0 0 162 0

248 8 114 0 0 13 1548 164

Table 5.4: Change matrix for example class

the amount of change that occurred for each step in a class’s lifetime.

The initial values for this class indicate that it is well established, with

a large number of nodes (M1=236). It has moderate coupling to the class

declaration (M3=66), high aggregate inlink coupling (M7=761), and high

aggregate outlink coupling (M8=144). There is little interaction between

nodes within the class (M6=13). The change matrix has seven version

pairing rows indicating that the class was matched in eight successive

versions of the software. Throughout those releases, the internal struc-

ture remains relatively stable as there are no changes to internal links,

and only 12 nodes (M1) and 20 aggregate outgoing links (M8) are added.

However, there is more change in the usage of this class by the rest of

the system. Links to it increase by a total of 48 (M3), and the number of

aggregate incoming links increases by a total of 787 (M7).

110

5.4 Analysis of change

5.4 Analysis of change

AMM was applied to the “e” release of the Qualitas corpus. 18,758

unique class lifetimes were identified in the corpus, and their change

matrices computed. Three analyses are performed. First, the number

of zero-value change measures is computed. Second, the correlation of

each change measure pair is computed. Finally, a nomenclature for de-

scribing patterns of change is defined and their frequencies computed.

The semgraph files for some software versions can exceed 200 MB.

Combined with multiple system versions, this makes it impractical to per-

form the analysis within the memory space of a single process. There-

fore, change analysis is performed on each system version pairing and

the results are stored in a file. After the change analysis has been per-

formed for each pair, the files are aggregated to produce change matrices

for all classes across all system versions. Change analysis is computed

for each pairing independently on the computing cluster using the tools

described in Chapter 3.

5.4.1 Confounding factors

System 1

System 2

System 3

Version of System 3
not in the corpus

Arbitrary initial
versions

Arbitrary final
versions

Non-uniform amounts
of change between versions

Time
Different number of

versions for each system

Figure 5.4: Non-uniformity in the Qualitas corpus.

The variability between releases and between systems in the corpus

represents confounding factors. Irregularities in the systems are shown

in Figure 5.4. Each system has a different number of versions, which

makes comparison difficult in the absence of normalization. Also, the ini-

111

Chapter 5 Patterns of change

tial and final versions of each system are not constrained to a particular

point in the system’s lifetime. For example, hibernate’s initial version

in the corpus is 0.8.1 where antlr’s initial version is 2.4.0. For some

systems, some versions were released, but are not present in the cor-

pus because they do not meet the inclusion criteria, creating gaps in the

dataset. Finally, there is no normalization of the amount of change rep-

resented by each version, so direct comparison between versions must

be done with care.

5.4.2 Change measures that equal zero

A cursory analysis suggests that the change matrices are sparse. In Table

5.5, the column CR shows the number of change rows for each system,

along with the total for the corpus. Column ZR shows the number of

rows that contain only zero-valued entries, and the remaining columns

show the number of zero-valued entries for each measure.

Of the 331,211 change rows, 81.2% contained all zero entries. Columns

M2, M4, and M5 reveal that those measures do not change very often:

they have 99.6%, 99.9%, and 99.3% zero-valued entries respectively.

Measure M8 has the fewest zero-valued entries at 88.8%, followed by

M7 at 91.5%. Both M7 and M8 represent coupling through inlinking and

outlinking respectively, and this suggests that of the changes that can oc-

cur, changes in coupling are most likely. Contrast M7 and M8 with M6,

which is zero-valued 92.3% of the time. The structure of internal class in-

System CR ZR M1 M2 M3 M4 M5 M6 M7 M8

ant 13919 10704 11817 13839 13113 13919 13850 12012 12591 11737

antlr 3589 2493 3094 3563 3105 3589 3575 3186 3042 3035

argouml 15703 9667 12091 15502 14508 15703 15301 12817 13179 11417

azureus 138429 119131 129221 138244 132718 138429 137953 131409 128964 127568

freecol 8857 5859 6797 8774 7866 8857 8768 7217 7384 7002

hibernate 76827 66864 71807 76650 73708 76827 76525 72776 72138 71758

jgraph 2962 2434 2705 2955 2775 2962 2962 2739 2693 2718

jmeter 12556 8970 10199 12403 11596 12556 12479 10826 11204 10477

jung 7367 5587 6732 7344 6571 7367 7284 6818 6367 6533

junit 2913 2093 2387 2890 2617 2913 2879 2616 2572 2466

lucene 17621 13437 15121 17491 16276 17621 17436 15468 15768 14924

weka 30468 21676 26492 30335 28572 30468 29902 27693 27313 24349

Total 331211 268915 298463 329990 313425 331211 328914 305577 303215 293984

Percent of Total 81.2 90.1 99.6 94.6 99.9 99.3 92.3 91.5 88.8

Table 5.5: Number of change measures that equal 0. CR=Change Row Count,

ZR=Count of rows where all entries = 0, MX=Count of rows with

measure X = 0

112

5.4 Analysis of change

teraction appears to be slightly more stable than that of between-module

interaction.

M3 shows that the number of links to class declaration nodes remain

unchanged 94.6% of the time. That M3 changes less often than M7 sug-

gests that programmers do not always have to declare new variables

when they choose to invoke methods, but rather use existing links. M1

remains unchanged 90.1% of the time, which suggests that between sys-

tem versions, most classes do not change in size.

5.4.3 Correlation of change measures

The proposed model of software evolution and the correlation between

class size and between-module links revealed by Hypothesis 5 suggests

that some of the measures are correlated. Table 5.6 shows the Spear-

man rank correlation coefficient (rs) for each pair of the eight computed

change measures. This table shows that most of the measures have a

low correlation, with p < 0.001 for all entries. Measure M4 has <0.06

correlation with all other measures, M5 has <0.18 correlation with all

other measures, and M2 has <0.22 correlation with all other measures.

M3 has a low correlation with all other measures (< 0.16), with the

exception M7 (0.44). It is expected that M3 would have a higher correla-

tion with M7 because a reference to a class declaration (M3) is required

in order to invoke methods on that class (M7). If a programmer needs

to invoke a method on a class and a variable of the necessary type is not

available within its scope, a new variable is required, increasing both M3

M1 M2 M3 M4 M5 M6 M7 M8

M1 – – – – – – – –

M2 0.09 – – – – – – –

M3 0.06 0.15 – – – – – –

M4 <0.01 <0.01 0.02 – – – – –

M5 0.14 0.10 0.03 0.05 – – – –

M6 0.84 0.21 <0.01 < 0.01 0.17 – – –

M7 0.11 0.20 0.44 < 0.01 0.07 0.09 – –

M8 0.78 0.08 0.08 < 0.01 0.14 0.71 0.09 –

Table 5.6: Correlation of change measures across the Qualitas corpus

113

Chapter 5 Patterns of change

and M7. If method invocations are removed, the references to the class

are no longer necessary, decreasing both M3 and M7.

M1 has low correlation (< 0.15) with measures M2, M4, and M5, which

suggests that there is little relationship between a class’s size and is

internal links to the class declaration node. Similarly, M1 has a very low

correlation with M3 and M7, which implies that changes in class size

do not accompany changes in how the class is used. However, M1 has

a higher correlation with M8 (0.78) and M6 (0.84), which is predicted

by Hypothesis 5. When nodes are added to an existing classes, they are

accompanied by both within-module and between-module links.

The correlation between M1, M6, and M8 shows that programmers

tend to favor within-module links over between-module links. This is

an important finding as it demonstrates that the high coupling identi-

fied by Hypotheses 1 through 4 occurs in spite of a greater focus on

within-module links. The high correlation between M1 and M8 provides

some support for Lehman’s laws of software evolution (Lehman, 1996;

Lehman, Ramil, Wernick, Perry and Turski, 1997). In the face of con-

tinuing change (law 1), programs tend to grow in size (law 6), while at

the same time their complexity increases (law 2) and their quality de-

clines (law 7), unless rigorous attempts are made to maintain complexity

and quality. As classes grow in response to change pressures, complex-

ity is added through increased between-module dependencies, which in-

creases the probability of change propagation.

5.4.4 Discussion of global observations

Over the lifetimes of the systems in the corpus, there is little change to

existing code. Class size and incoming and outgoing between-module

links changes in only 8%–11% of the cases, which demonstrates that

most classes remain stable despite the change pressures that have been

applied. That between-module incoming links to the class declaration

change less often than incoming links to child nodes implies that the in-

creased use of classes occurs in contexts where the class is already being

used.

The two areas of correlated change appear to be independent. The us-

114

5.5 Observed patterns of change

age of classes is independent of their internal structure because changes

in size, internal links, and external outgoing links are uncorrelated with

incoming links. This shows that increases in usage of a class do not

accompany changes to its structure, which suggests that as classes are

used more they tend to change less frequently.

5.5 Observed patterns of change

In this section, a method for classifying the changes observed within

classes is proposed and applied to the corpus. We first describe pat-

tern classification, which is supported by examples from the corpus, and

then present the frequency of occurrence of the various classifications at

both the measure and the class levels.

5.5.1 Pattern classification

We use five labels to represent the frequency of change that is observed

over a class’s lifetime: unchanging, stable, moderately stable, moder-

ately unstable and unstable. Labels are assigned to each measure in the

change matrix based on the percentage of zero entries that are present,

which is shown by Table 5.7.

The label assigned to a class is the same as that assigned to the major-

ity of its measures, and in the event of a tie, the label denoting the least

change is assigned. This means that the class label describes the pattern

of change of most of its measures, so that only those measures that are

different need to be expressed. For example, a class with all measures

having zero entries is called unchanging. However, a similar class with a

Classification Percentage of Zero values (p)

Unchanging p = 100

Stable 100 > p ≥ 75

Moderately Stable 75 > p ≥50
Moderately Unstable 50 > p ≥ 25

Unstable 25 > p≥ 0

Table 5.7: Pattern classification based on the percentage of zero-valued

entries.

115

Chapter 5 Patterns of change

stable M1 and an unstable M8 is called an unchanging class with stable

M1 and unstable M8. Because measures M2, M4, and M5 exhibit little

change, they are not considered when the class label is assigned, and are

not presented in any examples.

5.5.2 Example classifications

Tables 5.8, 5.9, and 5.10 show the change matrices for three example

classes taken from the ant system.

The first is the class org.apache.tools.ant.BuildEvent, which is an

unchanging class with stable M1, moderately unstable M3, and unstable

M7. This highlights several important aspects of the class. First, its

internal structure has changed little, which means that little modification

has occurred throughout its lifetime in the corpus. Second, there are

many changes in how the class is used, so it likely holds a key role in

the system. Finally, M3 is more stable than M7, which means that the

Pair M1 M3 M6 M7 M8

52 31 27 26 12

1 0 7 0 54 0

2 0 44 0 46 0

3 0 8 0 56 0

4 0 0 0 0 0

5 0 61 0 127 0

6 0 0 0 2 0

7 0 0 0 2 0

8 0 0 0 1 0

9 0 0 0 –1 0

10 0 14 0 32 0

11 0 0 0 0 0

12 0 8 0 3 0

13 0 7 0 8 0

14 0 0 0 0 0

15 0 0 0 –2 0

16 0 –11 0 6 0

17 1 8 0 2 0

18 0 30 0 23 0

19 0 0 0 –1 0

53 207 27 385 12

Table 5.8: Unchanging class with stable M1, moderately unstable M3, and un-

stable M7

116

5.5 Observed patterns of change

usage of this class is not only changing in new code, but in existing code

as well.

The second is the class org.apache.tools.ant.BuildException, which

is moderately stable class with stable M8 and unstable M3 and M7 (see

Table 5.9). This is similar to the first class except that its internal struc-

ture does change, and both M3 and M7 change in similar ways. This

suggests that the class sees minimal modification, and is heavily used by

both new and existing classes in the system.

The third (Table 5.10) is the class org.apache.tools.ant.Path, which

is moderately unstable with unstable M7. This class is heavily used and

has a reasonably high degree of change. Unlike the first two examples,

the internal structure of this class changes throughout its lifetime while

at the same time its usage increases. This class has the potential to be

a problem in the system because it is highly coupled and exhibits a high

frequency of change.

Pair M1 M3 M6 M7 M8

40 146 13 195 7

1 5 153 2 203 1

2 23 101 15 187 1

3 0 156 2 236 0

4 0 –1 0 1 0

5 0 317 0 329 0

6 3 1 1 2 0

7 0 12 0 22 0

8 0 0 0 3 0

9 0 3 0 3 0

10 0 100 0 312 0

11 0 5 0 23 0

12 0 13 0 64 0

13 0 41 0 28 0

14 0 1 0 –1 0

15 0 –1 0 –3 0

16 0 68 0 128 0

17 1 15 0 19 0

18 –28 43 –22 25 –1

19 0 –2 0 –3 0

44 1171 11 1773 8

Table 5.9: Moderately stable class with stable M8 and unstable M3 and M7

117

Chapter 5 Patterns of change

Pair M1 M3 M6 M7 M8

97 49 70 88 8

1 165 48 115 93 61

2 53 48 41 40 8

3 –1 75 2 135 2

4 0 0 0 0 0

5 77 83 44 97 72

6 0 4 0 4 0

7 10 4 10 12 6

8 0 0 0 –1 0

9 0 0 0 0 0

10 27 43 16 68 11

11 0 0 0 –1 0

12 4 8 2 7 1

13 –8 6 –8 3 –2

14 0 0 0 1 0

15 0 0 0 0 0

16 –58 32 –63 –40 –20

17 23 5 7 4 3

18 7 9 3 1 2

19 0 1 0 2 0

396 415 239 513 152

Table 5.10: Moderately unstable class with unstable M7

5.5.3 Pattern frequency

Table 5.11 shows the frequency of occurrence of each pattern for the

measures M1, M3, M6, M7, and M8, and for classes. The table shows

8,262 instances of unchanging classes, which represents 44% of the

cases. Classes are stable 38% of the time and moderately stable 15%

of the time. Classes are moderately unstable slightly less than 2% and

unstable < 1% of the time.

M3 exhibits the least amount of change, with an unchanging rate of

55% and a stable rate of 32%. M6 and M7 have similar rates, with an

Measure Unchanging Stable Mod. Stable Mod. Unstable Unstable

M1 6682 (36%) 8022 (43%) 3235 (17%) 587 (3%) 232 (1%)

M3 10378 (55%) 5961 (32%) 1956 (10%) 318 (2%) 145 (1%)

M6 8336 (44%) 7020 (37%) 2736 (15%) 474 (3%) 192 (1%)

M7 8370 (45%) 7040 (38%) 2528 (13%) 541 (3%) 279 (1%)

M8 6642 (36%) 7310 (39%) 3796 (20 %) 728 (4%) 282 (1%)

Class 8262 (44%) 7208 (38%) 2666 (15%) 445 (2%) 177 (1%)

Table 5.11: Frequency of patterns observed for each measure and for classes

118

5.6 Discussion

unchanging classification accounting for 44%–45% and stable account-

ing for 37%–38%. M1 and M8 have the lowest unchanging rates at 36%

each. For all of the measures, unchanging, stable, and moderately stable

account for approximately 95%–96% of all observable patterns.

5.6 Discussion

We have seen that 81.2% of the change rows in the corpus contain all zero

entries (Section 5.4.2). The measures, when grouped by class lifetimes,

contain all zero entries 36%–55% of the time, depending on the measure.

Similarly, the measures have either unchanging, stable, or moderately

stable 95%–97% of the time (Section 5.5.3). Classes that are moderately

unstable and unstable account for only 3%–5% of the cases, which sug-

gests that the frequency of overall change to existing classes is relatively

low. Since Chapter 4 revealed that all of the systems in the corpus ex-

hibit areas of high coupling, these observations raise questions about the

relationship between high coupling and the ripple effect.

The primary concern about highly coupled classes is that they have

the ability to propagate change to a large number of classes. How-

ever, the observations presented in this chapter suggest that it has not

occurred in any of the systems in the corpus. The modification of ex-

isting classes is reflected by changes in the number of nodes, within-

module links, and aggregate between-module links. However, the cor-

responding change measures—M1, M6, and M8—do not show evidence

of widespread change. Indeed, these measures show a high degree of

stability.

The analyses performed in sections 5.4.2 and 5.5.3 addresses the fre-

quency that classes change, and do not consider change that is propa-

gated between connected classes. Questions about the relationship be-

tween coupling and change propagation are addressed in Chapter 6.

119

120

Chapter 6

High coupling and software

evolution

We come and go just like ripples in a stream.

—John V. Politis

In Chapter 4 we determined that high coupling is a common property of

software systems, and in Chapter 5 we observed that as software grows,

changes to existing code are infrequent. Now we examine structural

changes in relation to coupling. First, do changes in coupling measures

provide support for the software evolution model proposed in Chapter

4? Second, can we observe the ripple effect that is predicted by the

presence of high coupling?

6.1 The evolution of inlink coupling

While there are studies that have measured coupling in software systems

(Chidamber and Kemerer, 1991; Li and Henry, 1993; Chidamber and Ke-

merer, 1994; Briand et al., 1999b; Baxter et al., 2006; Gao et al., 2010),

I have found no investigation of how coupling itself evolves. Consider

the change matrix in Table 6.1, which shows the lifetime of a moderately

stable, highly coupled class. The class is weka.core.Instances, and it is

the most used class in the weka system (Witten, Frank and Hall, 2011).

It begins as a large class with 1251 children nodes (M1), and it is highly

coupled with 370 inlinks to its declaration (M3), 1267 inlinks to its chil-

121

Chapter 6 High coupling and software evolution

dren nodes (M7), and 401 outlinks from its children to other nodes in

other classes (M8).

The first five rows show little change. However, in the remaining his-

tory, M7 has only three zero entries and M3 has only five, which makes

those measures unstable. Measures M1 and M8 also exhibit change,

but have more zero rows, so they are classified as moderately unstable.

Perhaps surprising, in light of the level of change seen in those other

measures, is the limited amount of change observed in M6; the internal

link structure of the class itself is moderately stable. The main area of

change is the degree to which the class is used.

Further examination reveals that although M1 and M8 are moderately

unstable and M6 is moderately stable, the starting and ending values

have not changed much when compared to the magnitude of their val-

ues. They have changed frequently, but have maintained a kind of equi-

librium over the class’s lifetime. However, M3 and M7 have changed

considerably, with M3 and M7 increasing by a factor of six and five times

respectively. Although this class has had internal modifications, it has

seen a steady change in how it is used.

An examination of column M7 reveals several numbers that appear

large when compared to the change matrices of other classes. In most

cases, the numbers are increasing, but there are some negative num-

bers, including a large loss of inlinks in the last version of the system.

For a class to lose 2551 links it must have had at least that many prior to

the change, so large negative values like this one could only exist in the

change matrix for a highly coupled class. However, for a class to receive

a large number of new inlinks does not require that it had previously pos-

sessed a large number. The consistent presence of the large numbers in

this change matrix compared to the relatively small number seen in oth-

ers raises the question as to whether or not the current level of coupling

has an effect on the number of new incoming links that a class receives.

Is a heavily used class likely to garner more links than less heavily used

ones, which is a form of preferential attachment? How does the coupling

of a highly coupled class evolve?

122

6.1 The evolution of inlink coupling

Pair M1 M2 M3 M4 M5 M6 M7 M8

1251 26 370 0 0 1278 1267 401

1 0 0 0 0 0 0 1 0

2 0 0 –2 0 0 0 –6 0

3 0 0 5 0 0 0 8 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 –105 1 222 0 0 –73 662 21

7 72 0 55 0 0 67 128 11

8 25 –1 52 0 0 20 185 6

9 16 2 35 0 0 12 59 14

10 3 0 48 0 0 1 41 –1

11 0 0 1 0 0 0 33 0

12 0 0 0 0 0 0 0 0

13 0 0 22 0 0 0 68 0

14 42 0 173 0 0 44 397 30

15 0 0 121 0 0 0 184 12

16 0 0 66 0 0 0 163 0

17 0 0 6 0 0 0 19 6

18 146 1 76 0 0 203 394 34

19 2 0 43 0 0 6 361 5

20 –156 –1 21 0 0 –212 42 –35

21 14 2 20 0 0 10 100 –3

22 1 0 121 0 0 0 248 0

23 0 0 67 0 0 0 264 0

24 0 0 3 0 0 0 –4 0

25 50 0 0 0 0 56 5 6

26 0 0 2 0 0 0 23 –4

27 0 0 1 0 0 0 4 0

28 0 0 7 0 0 0 28 0

29 0 0 0 0 0 0 4 0

30 5 0 0 0 0 11 0 4

31 0 0 14 0 0 0 24 0

32 –3 0 0 0 0 –3 0 –1

33 0 0 2 0 0 0 3 0

34 –2 0 93 0 0 –8 166 –9

35 68 3 48 0 0 107 129 36

36 0 0 5 0 0 0 5 0

37 6 –1 211 0 0 5 563 1

38 0 0 256 0 0 0 460 8

39 9 0 35 0 0 11 138 16

40 –321 1 115 0 0 –347 218 -115

41 0 0 83 0 0 0 315 0

42 46 0 114 0 1 48 342 23

43 0 0 448 0 0 0 1578 0

44 6 0 –27 0 0 7 –176 15

45 –33 0 13 0 0 –38 42 –14

46 41 1 54 0 0 57 146 19

47 24 0 192 0 0 5 565 –44

48 13 0 –862 0 0 10 –2551 4

1220 34 2329 0 1 1277 6645 446

Table 6.1: Moderately stable class with moderately unstable M1 and M8 and

unstable M3 and M7

123

Chapter 6 High coupling and software evolution

6.1.1 Hypothesis 6: Distribution of changes to M7

Because all the systems in the corpus possess approximate scale-free

structure, it is likely that the distribution of increases to M7 are not uni-

form. Similarly, for the structure to remain scale-free over time, some

classes must consistently receive higher increases while others consis-

tently receive lower ones.

Hypothesis 6: The distribution of aggregate between-module

inlink increases is non-uniform and classes that have higher

inlink counts are more likely to receive larger increases.

6.1.2 Testing Hypothesis 6

Hypothesis 6 is tested by extracting the non-zero values from change

rows for M7 and the corresponding count of aggregate between-module

inlinks from the full corpus. To determine whether the distribution is

non-uniform, the frequency of change values are plotted. To determine

whether there is a relationship between historical usage and future us-

age, the Pearson correlation coefficient (r) is computed between the

count of aggregate between-module inlinks and the corresponding in-

crease.

This method of evaluation is valid with respect to the non-uniformity

of the data in the corpus, as discussed in Section 5.4.1. Although the

amount of change between versions is not normalized, the change values

for M7 are not being directly compared to each other. Rather, the first

test demonstrates that across the corpus, the distribution of change val-

ues is non-uniform. The second test demonstrates that the distribution

of high change values is preferential with respect to the current value of

M7.

6.1.3 Results

Figure 6.1 shows the distribution of the change values for M7, which is

clearly non-uniform. Most increases to inlink counts are small, and larger

values occur decreasingly often, much like a power law distribution.

124

6.1 The evolution of inlink coupling

1 10 100 1000 10000

Increase in Inlink Count

1

10

100

1000

10000

100000

F
re

q
u

e
n

c
y

Figure 6.1: Frequency of changes in aggregate between-module inlink count.

Figure 6.2 plots the measured increase in M7 against its current val-

ues. This shows that most of the increases are less than 200 new inlinks,

which can be seen as the large body of points at the bottom of the plot.

For the current inlink count range of 10 to 100, the range of the corre-

sponding increase values rises from around 75 new inlinks to 200. The

range of increases stays at around 200 new inlinks until the current in-

link count reaches 1000, at which point the increase values decrease.

For the group of points on the lower portion of the plot, the distribution

of increase values is not uniform across current inlink values. Classes

that have more inlinks are more likely to receive a larger increase than

those with a smaller number of inlinks.

The scattering of points across the plot for increases larger than 200

is more difficult to interpret. While current inlink counts between 1 and

100 do have some of these larger increases, there are more points for

current inlink values larger than 100. Again, this suggests that classes

with larger inlink counts do tend to receive larger increases.

The Pearson correlation coefficient for this plot is r = 0.27. This rather

small value shows that a large M7 value does not necessarily mean that

the class will always receive large increases. However, the correlation

does show a tendency for classes with large M7 values to receive larger

increases when increases of that magnitude occur.

125

Chapter 6 High coupling and software evolution

Figure 6.2: Increase in inlink count versus current inlink count.

6.1.4 Discussion

These findings mirror those presented in Chapter 5, but from a different

perspective. In Chapter 5, the frequency of non-zero change values was

investigated to show that most of the time, classes do not change. In

this section, when change did occur, it was the magnitude that was con-

sidered. Figure 6.1 shows that most of increases are small and the fre-

quency of occurrence decreases as change values become larger. While

one could argue that the non-uniform distribution revealed by Figure 6.1

is due to the non-uniform degree of change between version pairs, Fig-

ure 6.2 shows that larger magnitudes of change are more likely to be

observed for classes that already possess higher measures. The non-

uniform increases are applied in a non-uniform way, thereby resulting in

scale-free structure. This shows that when creating new links, program-

mers show a preference for some classes over others.

The BA model of network evolution has been described as “the rich get

richer” (Barabási and Albert, 1999) and there is evidence of that phe-

nomenon in these results. However, this model is not directly applicable

to software evolution because it derives its causal factors from the in-

trinsic structure of the network, and in software systems the factors that

cause change do not originate from within the network but rather from

external sources. Predicting how a software system might change based

126

6.2 High coupling and the ripple effect

on its structure is only valid if future change pressures are not indepen-

dent from its past. If there is a dependency between future and past

change pressures, then how the structure changed in the past is likely to

reflect how it is going to change in the future.

From this perspective, the scale-free structure of software systems may

be the result of the dependence between change pressures over the life-

time of a software system. For example, a software system for word pro-

cessing may be subjected to different change pressures over its lifetime,

but those pressures will always be related because they are constrained

by the problem that the system addresses. No matter what feature is

added, provided that it relates to word processing, the resulting change

pressures will likely result in changes that are non-uniformly distributed,

and those patterns of non-uniformity are likely to be repeated.

6.2 High coupling and the ripple effect

From Chapter 2, we recognize that the ripple effect is a primary concern

when considering the evolvability of a complex network. Too much inter-

dependence between nodes increases the probability of change propaga-

tion to the point that small changes result in large-scale change propa-

gation. Mens and Demeyer (2001) state “obviously, highly coupled parts

of the software are very sensitive to changes because they typically con-

sist of software entities that are strongly connected with one another.” In

their definition, highly coupled nodes are evolution-sensitive, and “when-

ever something is changed in these [evolution-sensitive] parts, it may

have a high impact on many other parts.”

Also from Chapter 2, we recognize that programmers have to make

design decisions based on an anticipation of what they believe is likely

to change. With information hiding, nodes that are likely to change are

hidden within a module, and access is only granted through a defined

interface. With DSM, the effects of between-module interaction are mit-

igated through the introduction of a design rule. In both of these cases,

the node that is expected to change is hidden by one that is less likely to

change. Nodes that are less likely to change make up module interfaces.

127

Chapter 6 High coupling and software evolution

Consider the case where a programmer was able to successfully pre-

dict the change pressures for a system, to the extent that his design

decisions minimized change propagation. Is it possible that such a de-

sign might still possess areas of high coupling? Inherent in the maxim

of “high cohesion/low coupling” is that any high coupling reduces the

quality of design and should be avoided Dhama (1995). Not considered,

however, is the case where a design may be well suited to change pres-

sures and still possess high coupling. In an investigation of the evolution

of the Eclipse system, Hou (2007) claims that the architecture protects

the system from ripple effects and design changes.

This section investigates whether evidence of ripple effects that prop-

agate to a large proportion of classes can be found in the corpus. Since

all the systems contain high coupling, it is expected that numerous in-

stances of the ripple effect have occurred.

6.2.1 Criteria for the ripple effect in software

The literature about ripple effects in software focuses on simulating rip-

ple effects (Yau and Collofello, 1985; Tsantalis et al., 2005; Sharafat and

Tahvildari, 2007; Li et al., 2009), and there is no accepted way of identi-

fying systems that have been subjected to system-wide changes because

of change propagation. To determine whether high coupling contributes

to ripple effects, we need the ability to detect them in software networks.

Recall the SIR model of disease propagation (Section 2.6.1), where the

network exhibits scale-free structure and nodes can be in one of three

states: susceptible, infective, and removed. The rate of transmission

through a scale-free network is not determined solely by the number of

infective nodes, but also depends on the number of links between infec-

tive and susceptible nodes. This is the same basis upon which the maxim

of high cohesion/low coupling is based: highly coupled classes have the

ability to propagate change to a large number of other classes Watts

(2002). Applying these principles from the SIR model to software change

propagation suggests three criteria for ripple effects:

1. a large proportion of classes must exhibit change

128

6.2 High coupling and the ripple effect

2. the changed classes must be connected

3. the subnetwork of changed classes must contain highly coupled

nodes.

While it is possible for change to propagate between a small number of

classes, this investigation is concerned with ripple effects that propagate

change to a large proportion of classes. However, because systems can

vary in size, it is difficult to ascertain what constitutes a large proportion

of classes. In this investigation this determination is made by comparing

the number of changed classes to the number of unchanged.

In order for change to propagate based on coupling, the affected classes

must be connected. This investigation does not consider change that may

propagate for reasons other than through direct connection, such as co-

change (Ball, Adam, Harvey and Siy, 1997b; Gall, Hajek and Jazayeri.,

1998; Zimmermann et al., 2004).

Since our purpose is to study the role that coupling plays in the ripple

effect, some of the classes that change must be highly coupled. If there

is high propagation of change through a system and none of the classes

involved are highly coupled, one cannot conclude that high coupling was

a contributing factor.

6.2.2 Hypothesis 7: Identifying ripple effects in software

Unfortunately, it is not possible to conclusively identify the ripple effect

in the corpus. If two connected classes change, there is insufficient in-

formation to determine whether the changes are the result of change

propagation, or whether the classes have changed coincidentally. How-

ever, if one or more of the conditions outlined are not met, then we can

conclude that ripple effects that match our criteria have not occurred.

To determine whether a high proportion of classes have changed, we

check the ratio between the total number of changed classes and the

total number of unchanged classes. Instances where this ratio exceeds

one are considered significant for this investigation.

The ratio of changed to unchanged classes is not sufficient to deter-

mine if highly coupled classes are included in the set of changed classes.

129

Chapter 6 High coupling and software evolution

To make this determination, classes must be weighted by their level of

coupling. This can be accomplished by using the degree centrality mea-

sure, which computes the level of influence of a node based on its de-

gree. While there are other measures for computing a node’s influence

within a network—examples include betweenness centrality (Newman,

2010) and pagerank (Page, Brin, Motwani and Winograd, 1998)—these

other measures do not compute influence based on coupling, which is

relevant here. The degree centrality of a node is computed by dividing

its degree by the number of links in the network (Wasserman and Faust,

1994). Classes that are highly coupled have a greater ability to propa-

gate change within the software system, so they will have a larger degree

centrality.

To use the degree centrality measure, the system is split into two sub-

networks, one network the changed classes and the other the unchanged

classes. For each subnetwork, the disjoint sets of connected classes are

identified, and for each set, its influence is computed by summing the

degree centrality for each node. The results are considered significant if

the sum of influence for changed sets exceeds those for unchanged.

This leads to:

Hypothesis 7: In systems that have high coupling, we expect

to find evidence of the ripple effect, which is characterized by

a significant proportion of changed classes, whose influence

exceeds that of unchanged classes.

Since all systems in the corpus possess high coupling, it is expected

that they should exhibit characteristics of the ripple effect when sub-

jected to change pressures.

6.2.3 Results

Figure 6.3 plots both measures used to test Hypothesis 7, sorted by de-

scending order of the influence measure. The two are highly correlated,

with a Pearson correlation coefficient r = 0.95. The percentage measure

is consistently lower than the degree centrality measure except for a few

130

6.2 High coupling and the ripple effect

points and for cases where there are few changed classes, which are on

the right side of the plot.

0.001

0.010

0.100

1.000

10.000

100.000
Sum of degree centrality

Percentage of classes changed

Ratio
between

changed and
unchanged

classes

Systems sorted in order of decreasing ratio of degree centrality

Figure 6.3: Ratio of changed and unchanged classes for both degree centrality

and percentage change.

For the influence measure, there are 49 system pairs for which the ra-

tio is considered significant, and for the percentage measure, there are

22 pairs. Out of the total of 334 pairs, this gives rates of 15% and 7% re-

spectively where there is a possibility that the ripple effect has occurred.

Even though the two measures are highly correlated, the degree cen-

trality measure identified twice as many version pairs that indicate the

possibility of system-wide change to existing classes.

For many of the version pairs, the graph of changed classes contains

two or more disjoint sets of nodes. In all cases, there was a single set

that had most of the nodes. Since the sum of degree centrality for the

smaller sets was always a small fraction of that for the main set, those

sets are not reported on Figure 6.3.

A post-hoc analysis was performed to identify which version pairs ex-

hibit the potential for ripple effect. The pairs were grouped by system

and are shown in Table 6.2. The system with the largest number of ver-

sion pairings is freecol, which has 9 release pairings out of a total of 22

releases. Ant was second on the list with 7 release pairings out of a to-

131

Chapter 6 High coupling and software evolution

System High influence count

freecol 9

ant 7

lucene 6

hibernate 6

weka 5

argouml 4

jmeter 3

antlr 3

junit 2

jgraph 2

jung 1

azureus 1

Table 6.2: Number of version pairs where influence of changed classes exceeds

that of unchanged classes.

tal of 19 releases, and lucene was third with 6 release pairings out of

20. These three systems show a high influence of changed classes in a

large percentage of their releases when compared to the other systems,

and this suggests the possibility that these systems may not have been

well designed for the kinds of change pressures to which they have been

subjected.

6.2.4 Discussion

The primary concern of high coupling is that it facilitates the ripple ef-

fect through software systems as they are being modified in response to

change pressures (Mens and Demeyer, 2001). All systems in the Quali-

tas corpus have areas of high coupling, which suggests that ripple effects

should be common, but the results show that evidence for the possibility

of this effect was only observed in 15% of the version pairs, based on the

criteria proposed. Neither measure indicated any significant effect in

85% of the cases. Because these measures do not confirm the presence

of a ripple effect, the percentage of cases where it actually occurred may

be smaller than 15%.

Overall, the results cannot confirm Hypothesis 7 in 85% of the version

pairs, and this finding is supported by the observations made in Chapter

5, which showed that most classes in the corpus are either unchanged or

remain stable between releases. This suggests that while high coupling

132

6.2 High coupling and the ripple effect

may be necessary for the ripple effect to occur, it is not sufficient, and

that mechanisms such as abstraction may help programmers to mitigate

the effects of change pressures. Thus it does not appear as though the

presence of high coupling is necessarily indicative of poor design. In-

stead, the systems appear to be reasonably well designed with respect

to the change pressures that they faced. It must be noted, however,

that the post-hoc analysis does reveal that the systems freecol, ant, and

lucene have the largest number of release pairings that meet the criteria

for exhibiting the ripple effect. Further investigation of these systems is

warranted.

These findings contradict those of some studies that attempt to assess

the impact of change propagation through simulation. Li et al. (2009)

proposed a method of evaluating the impact of change propagation us-

ing a graph model of software, and concluded that coupling is “a sig-

nificant quality attribute” because their simulations demonstrated that

the presence of high coupling led to the ripple effect. Their simulations

were for a single system (JEdit), and it is not clear that they represented

realistic change pressures or that their primary control parameter (α) re-

flects reasonable probability of propagation of change. Abdi et al. (2009)

proposed a probabilistic approach based on Bayesian networks to pre-

dict the impact of change in object-oriented systems, and also concludes

that coupling is a good indicator of change propagation. However, their

simulation was tested on a single system (BOAP) and only attempts to

determine whether links are going to be weak, average or strong, and

does not go on to show that high coupling causes ripple effects.

Sharafat and Tahvildari (2007) developed an approach to compute the

probability that a class will change in the future based on its source code

structure and dependencies extracted from UML models. They evaluate

it against a single system (JFlex), which they chose because it is small

enough to be visualized easily. Unfortunately, because small systems

have few classes, changes can appear to have a higher impact because

changing even a small number of classes can represent a high percent-

age of the total classes. Tsantalis et al. (2005) developed an approach to

detecting the change proneness of classes and tested it on both JFlex and

133

Chapter 6 High coupling and software evolution

a system called JMol. In their results, they state that the change histo-

ries of JFlex and JMol have a ripple effect of 25% and 50% respectively.

These high figures reflect their chosen measurement method, which is

based on the work of Yau, Collofello and McGregor (1978). In this mea-

sure ripple effect computation is based on how coupling of variables can

propagate changes to the rest of the program. It is not clear how they

used this measure to measure an object-oriented system.

6.2.5 Limitations of this analysis

While the findings presented here show that high coupling has had less

impact on the evolution of software systems than was expected there

are some scenarios that cannot be identified through this analysis. We

have only considered the ripple effect for classes that are connected on

the class graph. However, the literature on co-change demonstrates that

classes that are not connected can show a high correlation of change,

thus demonstrating that a change relationship does not require direct

connection in the source code (Hassan and Holt, 2004; Zimmermann

et al., 2004). These kinds of relationships cannot be detected using the

Qualitas corpus because they are based on a temporal analysis of a fine

grained dataset—for example, every time a particular class is changed

and committed to the system repository, it is accompanied by changes to

another class.

While some cases of co-change cannot be detected using static analysis

(Zimmermann et al., 2004), it is possible to determine whether co-change

effects would have caused these results to be different. For the central-

ity measure, the influence was computed for each subgraph of connected

nodes and compared against the maximum importance for the subgraphs

of unchanged nodes. A post-hoc analysis that computes the aggregate

influence of all changed nodes revealed that there was no change to the

number of systems that may have exhibited ripple effects. If co-change

had occurred, the effects were either too small, or the classes were al-

ready part of the largest subgraph of changed nodes.

One other case that is undetectable by this investigation is when change

pressures are rejected because of their perceived impact on the system.

134

6.2 High coupling and the ripple effect

Programmers decide that a particular change request is too difficult to

perform because of the level of dependency in the system, so the changes

are never made. In this case, the level of coupling has had an impact on

the evolvability of the system by preventing the changes from occurring

at all.

135

136

Chapter 7

Conclusions and Future Work

“Begin at the beginning,”, the King said, very gravely, “and go

on till you come to the end: then stop”

—Alice’s Adventures in Wonderland, Lewis Carroll

This thesis investigates the structure of software and how it might have

an impact on system modifiability. From design theory, we recognize that

the interconnectivity between the various pieces of a system can render

it inflexible to change because of the ripple effect. Small changes can

propagate in such a manner that they have system-wide effects, and this

kind of structure is difficult to modify.

To minimize the probability of ripple effects, systems are modularized

and their between-module interaction is regulated. However, network

theory postulates that complex systems are scale-free, which means that

some parts exhibit very high levels of connectivity. Network analysis has

been applied to software systems, and findings have shown that many

properties of software systems are scale-free. The goal of this research

was to perform an empirical investigation to determine whether software

systems are scale-free, and, if so, whether scale-free structure has a neg-

ative impact on their modifiability.

7.1 Research questions

The investigation addresses three research questions:

1. Is the structure of software scale-free?

137

Chapter 7 Conclusions and Future Work

2. Does scale-free structure result in high coupling?

3. Can the ripple effect be observed in software that has high coupling?

Each of these questions is considered in turn.

7.1.1 Is the structure of software scale-free?

While there have been several analyses that have identified scale-free

structure in software (Wheeldon and Counsell, 2003; Myers, 2003; March-

esi et al., 2004; Potanin et al., 2005; Baxter et al., 2006; Hyland-Wood

et al., 2006; Concas et al., 2007; Ichii et al., 2008; Louridas et al., 2008;

Gao et al., 2010), many have been purely exploratory in that they do

not attempt to ascertain why scale-free structure emerges (Baxter et al.,

2006; Concas et al., 2007; Louridas et al., 2008). Those that have pro-

posed reasons for the emergence of scale-free structure have used class

and method level analyses (Wheeldon and Counsell, 2003; Myers, 2003;

Marchesi et al., 2004; Potanin et al., 2005; Valverde and Sole, 2005;

Hyland-Wood et al., 2006; Ichii et al., 2008; Gao et al., 2010). How-

ever, classes and methods are an aggregation of simpler nodes, and it

is the interaction of those nodes that forms the basis for the patterns of

interaction observed at the higher levels. The goal of the first research

question was to determine whether source-code network at the level of

statements and variables are also scale-free.

To address this question, CodeNet was used to create directed-graph

representations of 97 open-source software systems. The degree distri-

bution histogram for each was computed, and examined for evidence of

scale-free structure (Hypothesis 1). The histogram for each system ex-

amined possessed evidence of scale-free structure.

Other researchers have observed different degree distributions for in-

links and outlinks (Myers, 2003; Louridas et al., 2008), so the inlink and

outlink distributions were computed (Hypothesis 3). In each system, the

former was found to exhibit scale-free structure, while the latter was

found to be truncated by an upper bound. This demonstrates that the

presence of scale-free structure at the level of statements and variables

results from node inlinking. The number of outlinks from each node are

138

7.1 Research questions

subjected to programming language and practical constraints—for exam-

ple, each class can only have one superclass, and coding standards tend

to limit the length of source-code lines, and therefore limits the number

of outlinks that can be defined. However, no such limitations affect the

frequency of node use; a node is used as many times as programmers

require the utility that it provides.

To help ascertain why scale-free structure emerges in source-code, a

model of software evolution was presented (Section 4.2.1). It is based

on the well-known BA model of network evolution (Barabási and Albert,

1999), modified to be applicable to source code evolution. In the BA

model, the probability of inlinking to a specific node is based on the num-

ber of links that the node already has: nodes with more links are more

likely to attract new inlinks. In the proposed model, nodes are more

likely to attract inlinks based on three criteria: the utility provided by

the node, whether or not the node was know to programmers, and the

trust that programmers had in the node. Nodes that provide more gen-

eral functionality and that are known and trusted by programmers are

more likely to receive inlinks. For scale-free structure to emerge, the

probability distribution for inlinking must be non-uniform (Simon, 1955;

Keller, 2005), and this is observed with Hypothesis 6.

Scale-free structure was also found at the class level (Hypothesis 4),

which supports the findings of others (Baxter et al., 2006; Louridas et al.,

2008; Gao et al., 2010). However, at the class level, both inlink and

outlink distributions were found to be scale-free.

As noted in Section 2.5.1, the definition of a scale-free network re-

quires that it’s degree distribution is a power-law. However, other dis-

tributions exhibit similar connectivity properties (Simon, 1955; Keller,

2005; Clauset et al., 2009) that are of interest to this investigation, so

the strict definition of scale-free structure is too restrictive here. Since

other researchers have found power-laws in software software networks

Potanin et al. (2005); Baxter et al. (2006); Concas et al. (2007); Louridas

et al. (2008); Hatton (2009), the aim was not to replicate those findings,

but rather to investigate the broader implications between high coupling

and software modifiability. In light of this context, the term scale-free

139

Chapter 7 Conclusions and Future Work

is used loosely here to mean any network whose degree distribution ap-

proximates a power-law.

7.1.2 Does scale-free structure result in high coupling?

Having ascertained that the source-code network of software systems is

scale-free, the next question is whether scale-free structure results in

high coupling. Since coupling is defined as the strength of association

between modules, it is not necessarily the case that the high connec-

tivity found in scale-free structure results in high coupling. One of the

criteria used for modularization is the grouping of nodes based on high

levels of interaction (Alexander, 1964; Brito e Abreu and Goulao, 2001),

so it is possible that areas of high connectivity may be resolved within

the containing module, which is indicative of high cohesion rather than

high coupling. To test whether this was the case, the degree distribu-

tions for each system were computed, but only links that crossed class

boundaries were considered (Hypothesis 2). In all cases, the resulting

degree distributions showed evidence of scale-free structure.

This finding is important because it shows that scale-free structure ob-

served at the class level results directly from scale-free structure of the

underlying source-code network. Nodes that contribute to high coupling

between modules are the same nodes that exhibit high connectivity in the

source-code network. In all cases where high connectivity was observed

due to scale-free structure, high coupling was also observed.

This investigation also considered high coupling that resulted from the

aggregation of nodes into classes (Hypothesis 4). Here too, degree distri-

butions also showed evidence for scale-free structure, which means that

some classes exhibited connectivity patterns that were much larger than

the mean connectivity between classes. This is true for both inlink and

outlink distributions.

140

7.1 Research questions

7.1.3 Can the ripple effect be observed in software with

high coupling?

Based on the design theory presented in Chapter 2, it is believed that

high coupling can facilitate change propagation between modules in such

a manner that small changes propagate system-wide. Software in this

state has limited changeability because of the effort required to make

simple changes. Since high coupling is observed in all of the systems, it is

expected that successive version pairs will see internal change to a high

percentage of connected classes. Due to the nature of the data, however,

the presence of change propagation cannot be conclusively confirmed be-

cause two connected classes that both exhibit internal structural change

may have simply changed coincidentally. However, if two classes are con-

nected and one of them exhibits no internal structural changes, it can be

confirmed that no change propagation occurred.

There is no accepted method of determining the severity of change

propagation in software systems. Research that focuses on ripple effects

in software is prospective and attempts to answer the question, “what

is the impact if this change is made,” rather than retrospectively con-

sidering the changes that were actually made (Black, 2001, 2006, 2008;

Abdi et al., 2009). Other research is based on simulation of change prop-

agation, which are also prospective (Yau and Collofello, 1985; Tsantalis

et al., 2005; Sharafat and Tahvildari, 2007; Li et al., 2009).

Because no accepted measure is available, an assessment was made by

considering two separate analyses. The first, described in Chapter 5, is

an exploratory investigation that identified and categorized the patterns

of change based on the frequency of changes to structural measures.

The second, described in Chapter 6, identified classes that exhibited in-

ternal structural changes, and computed a ratio between the number

of changed versus unchanged classes. The second analysis is based on

the SIR model of disease propagation (Ball et al., 1997a), which includes

properties that are expected in software systems that exhibit system-

wide change propagation.

The exploratory analysis revealed that in response to change pres-

sures, the majority of classes remained unchanged between software

141

Chapter 7 Conclusions and Future Work

versions. In 81.2% of the cases, all of the class measures remained

unchanged, and in 88.8% to 99.9% of the cases, individual measures

remained unchanged, depending on the measure. Classes were catego-

rized as either unchanging, stable, moderately stable, moderately un-

stable, or unstable, based on the frequency of change observed in their

structural measures. In 95% of the cases, classes were either unchang-

ing, stable, or moderately stable, which suggests that most classes ex-

hibited low frequency of change.

While these measures are coarse-grained, they do show that classes

are more likely to remain unchanged between system versions than to

show modification. This suggests that if ripple effects are occurring, they

are not propagating far into the class network, because we would expect

to see evidence of a larger number of classes exhibiting change.

This observation is confirmed by the second analysis (Hypothesis 7),

which examined two ratios per system version pair. The first ratio is

between the number of changed versus unchanged classes, and only ex-

ceeded 1 in fewer than 7% of the total cases.

The second ratio is based on network properties extracted from the SIR

model of disease propagation. In this model, the impact of the disease

on the population is not based on the number of infective persons, which

are equivalent to changed nodes, but rather on the number of links be-

tween the infective and susceptible persons. Nodes with more links (i.e.

more highly coupled) are seen to have greater influence in the network

because they have a greater chance of propagating infection to suscepti-

ble portions of the network. This is similar to the propagation of change

within a software system. Classes that have low connectivity have little

ability to affect the network, but highly coupled classes can have a large

impact. To determine whether the classes that were modified include

those that have greater ability to propagate change, the influence of each

class was measured, and the total influence of connected subgraphs of

changed and unchanged classes was compared. For all systems, the ra-

tio of collective influence of changed classes exceeds that for unchanged

classes in only 15% of the cases. There is a high degree of correlation

between this measure and the previous measure based on percentages.

142

7.2 Closing remarks

While these measures do not conclusively prove that ripple effects did

not occur, they show that for each system version pair, changes appear

to be confined to a subset of classes. In the majority of version pairs, it

would be difficult to conclude that change propagation involving a large

number of classes has occurred. Based on the observations made here,

this investigation cannot confirm system-wide change propagation for

systems that are confirmed to possess areas of high coupling.

While these measures have limitations, it is important to recognize that

they represent a systematic and transparent method of attempting to

ascertain the presence and impact of change propagation due to high

coupling, which can be applied to a large corpus of software systems.

Ripple effects in software systems have been postulated for over three

decades and design principles have been devised to address the their

effects, yet no method of conclusively demonstrating the phenomenon in

existing software systems currently exists. I believe that this is because

the phenomenon is complex. The measures introduced here represent

an initial step in addressing the problem, and further research is clearly

warranted.

7.2 Closing remarks

In light of the literature presented and the investigations conducted, the

question arises, “how is it possible for high coupling to be consistent

with good design?” The design of complex systems requires that design-

ers balance the tradeoffs between different design decisions. When a

module is constructed, two aspects must be considered. The first is the

part of the module that remains hidden. This is the part of the system

that the designer believes has a high probability of changing based on

anticipation of future change pressures. The second is the part of the

module that is exposed. This is the part that the designer believes will

not need to change in light of anticipated change pressures.

If the designer has been successful in anticipating future change pres-

sures, the system will remain flexible because those pieces that need to

change remain hidden and those that are exposed do not need to change.

143

Chapter 7 Conclusions and Future Work

In this case, if the exposed portions are highly coupled, the impact of that

coupling will be minimal because it is precisely those parts of the system

that are expected to change the least. Because the analyses presented

here could not conclusively demonstrate some theorized effects of high

coupling, the door is opened to the possibility that the systems are well

designed from the perspective of their modifiability, in spite of their high

coupling.

7.3 Contributions

This thesis makes four contributions. First, it demonstrates, using a large

corpus of open source software systems, that the source-code network is

scale-free. This shows that when programmers build software from state-

ments, and class, method and variable declarations, the majority of nodes

have limited connectivity, but some have very high connectivity. This is

important because design theory and design principles stress the avoid-

ance of high connectivity. In a scale-free network, most nodes have low

connectivity, and that accords with design principles. However, scale-

free structure shows that areas of high connectivity cannot be eliminated

completely. Because scale-free structure is observed in all the systems,

this suggests that it is a common property of software.

Second, this work demonstrates that the high connectivity of source-

code nodes results in high coupling. The pressure to keep modules small

limits the ability for highly connected nodes to resolve their links within

their containing module, which is the reason why high connectivity re-

sults in high coupling. Since this characteristic was observed in all exam-

ined systems, and it is also observed in the literature (Gao et al., 2010), it

is likely to be a common property of software systems. This finding is im-

portant because modularization is seen as the prime method of avoiding

high levels of change propagation, and high coupling between modules

can limit its effectiveness.

Third, this investigation is unable to confirm some theorized effects of

high coupling. While this suggests that high coupling may not necessar-

ily be a conclusive indicator of poor design quality, this finding is largely

144

7.4 Future work

due to the lack of methods available to demonstrate the phenomenon.

Because design principles are devised, in part, to address issues of high

change propagation, this highlights a significant gap in the field. This in-

vestigation introduces an initial measure that draws from network anal-

ysis, which is used by other fields that also track propagation through

complex networks.

Finally, this investigation provides some evidence that programmers

generate links to nodes preferentially, and this is observed by the evo-

lution of class usage. Increases in class usage are non-uniformly dis-

tributed, and are more likely to be applied to nodes that already exhibit

higher levels of usage. While this work conjectures that this preferential

attachment is based on three criteria, those criteria are not specifically

tested, so no conclusions are drawn about what causes programmers to

link preferentially.

7.4 Future work

It has been said that good research generates more questions than it does

answers. Two avenues of future research are presented in this section.

7.4.1 Ripple effect detection and impact analysis

It has been stressed in this investigation that even though there is con-

siderable effort expended to address the impact of large change prop-

agation, no method of detection exist. As the field expands its under-

standing of the structure of software, and as analysis techniques become

more sophisticated, it is clear that in order to determine if our methods

of dealing with the problem are effective, we need means to identify and

characterize the phenomenon. If we cannot demonstrate that our meth-

ods cause favorable changes, then the effectiveness of those methods

remain largely theoretical.

This research provide two bases for further research. First, there

are other fields from which ideas about propagation through complex

networks can be drawn. This investigation considered the SIR model,

which models the propagation of infectious disease through a population.

145

Chapter 7 Conclusions and Future Work

Ripple effects in software have similar properties—for example, change

propagates from node to node through interactions. This research shows

how properties of that model can be tailored to the problem of change

propagation in software, and applied to a large corpus of software sys-

tems. While the model presented here is immature, I hope that it can be

used as a basis for further development and refinement, so that ripple

effects can be detected and their impact quantitatively assessed.

Second, this research provides a network model of software that is not

limited to classes and methods. Many investigations in object-oriented

systems focus on class-level analysis. This has the advantages of deal-

ing with fewer entities, but is a disadvantage if important properties

of change propagation are based in internal class structures. In these

cases, those properties will be masked by analyses at the class level. The

model presented here provides a more complete representation of soft-

ware than class-based or method-based model, thereby making it possi-

ble to identify aspects of change propagation due to internal class struc-

ture.

7.4.2 Research support and reproducibility

The availability of the Qualitas corpus has had a significant impact on this

research. First, it eliminated the time that would be required to collect

a large corpus of systems. Second, it provides a stable series of soft-

ware systems upon which the analyses can be based. Since this corpus

is accessible to all researchers, its use makes the research more repro-

ducible. Indeed, since its formal release in 2010, several researchers

have begun to incorporate the corpus in their own research (Beckman,

Kim and Aldrich, 2011; Chow and Tempero, 2011; Ducasse, Oriol and

Bergel, 2011; Taube-Schock, Walker and Witten, 2011; Vasilescu, Sere-

brenik and van den Brand, 2011; Zaparanuks and Hauswirth, 2011b,a).

However, the Qualitas corpus does not solve all the problems that face

a researcher who is performing empirical studies on software systems.

It is large (currently 42GB), so obtaining it through a network connec-

tion can take a considerable amount of time. Similarly, once it has been

obtained, considerable effort must be expended in processing it to get

146

7.4 Future work

it into a form that is suitable for analysis. The experience of building

the tools for this research provide evidence enough of that, and this per-

spective is also shared in the literature (Murphy and Notkin, 1996). As

more effort is put towards processing the corpus prior to analysis, the re-

producibility of the work decreases, because researchers would have to

commit more of their own resources to obtain the same results. As more

resources are required, there is less likelihood that researchers will have

the ability to make this effort.

A solution to this problem is to make Qualitas available online through

a web service that provides data from the corpus in different forms.

For those researchers who wished to perform lexical analyses, the web

service can serve the source code as it appears in the corpus. For re-

searchers interested in performing a semantic analysis, the web service

could return AST or semgraph forms of the requested information. A

centralized service of this kind could save many researchers consider-

able time through the elimination of complex and redundant work.

Another benefit of such a service is that of searchability. To perform

searches within the corpus, researchers are limited to the lexically-based

indices, unless they go through the costly process of building indices

based on their search requirements. With the use of semgraphs, indices

based on structure can be built, which would allow researchers the abil-

ity to not only search on lexical properties of source code, but on struc-

tural properties as well. This could significantly reduce the time it takes

for researchers to find examples of source code that satisfy a specific

structural property.

147

148

References

Abdi, M., Lounis, H., Sahraoui, H. (2009). Predicting change impact in

object-oriented applications with bayesian networks. In The 33rd An-

nual IEEE International Computer Software and Applications Confer-

ence (COMPSAC ’09), pp. 234–239.

Brito e Abreu, F., Goulao, M. (2001). Coupling and cohesion as modu-

larization drivers: are we being over-persuaded? In Fifth European

Conference on Software Maintenance and Reengineering, pp. 47–57.

Abreu, F., Goulão, M., Esteves, R. (1995). Toward the design quality

evaluation of object-oriented software systems. In Proceedings Fifth

International Conference on Software Quality, Austin, Texas.

Aho, A. V., Johnson, S. C., Ullman, J. D. (1976). Code generation for

expressions with common subexpressions. In Proceedings of the 3rd

ACM SIGACT-SIGPLAN symposium on Principles on programming lan-

guages, POPL ’76, pp. 19–31. New York, NY, USA: ACM.

Albert, R., Jeong, H., Barabási, A.-L. (1999). Diameter of the World Wide

Web. Nature, 401, 130–131.

Alexander, C. (1964). Notes on the Synthesis of Form. Harvard University

Press.

Allen, E. B., Khoshgoftaar, T. M., Chen, Y. (2001). Measuring coupling

and cohesion of software modules: an information-theory approach.

In Proceedings of 7th International Software Metrics Symposium, pp.

124–134.

Ashby, W. (1952). Design for a Brain. John Wiley and Sons.

149

References

Bailey, N. T. J. (1975). The mathematical theory of infectious diseases and

its applications 2nd edition, vol. 413. Griffin.

Baker, B. S. (1995). On finding duplication and near-duplication in large

software systems. In Second Working Conference on Reverse Engi-

neering, pp. 86–95.

Baldwin, C. Y., Clark, K. B. (2000). Design Rules: the power of modularity.

The MIT Press.

Ball, F., Mollison, D., Scalia-Tomba, G. (1997a). Epidemics with two levels

of mixing. Annals of Applied Probability, 7, 46–89.

Ball, T., Adam, J.-M. K., Harvey, A. P., Siy, P. (1997b). If your version

control system could talk. In ICSE Workshop on Process Modeling and

Empirical Studies of Software Engineering.

Bansiya, J., Davis, C. G. (2002). A hierarchical model for object-oriented

design quality assessment. IEEE Transactions on Software Engineer-

ing, 28 (1), 4–17.

Barabási, A.-L., Albert, R. (1999). Emergence of scaling in random net-

works. Science, 286, 509–512.

Basili, V., Briand, L., Melo, W. (1996). A validation of object-oriented

design metrics as quality indicators. IEEE Transactions on Software

Engineering, 22 (10), 751 –761.

Baxter, G., Frean, M., Noble, J., Rickerby, M., Smith, H., Visser, M.,

Melton, H., Tempero, E. (2006). Understanding the shape of java soft-

ware. SIGPLAN Notes, 41, 397–412.

Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., Bier, L. (1998). Clone de-

tection using abstract syntax trees. In Proceedings of the International

Conference on Software Maintenance, pp. 368 –377.

Beckman, N., Kim, D., Aldrich, J. (2011). An empirical study of object pro-

tocols in the wild. In Mezini, M. (Ed.), ECOOP 2011 – Object-Oriented

150

References

Programming, vol. 6813 of Lecture Notes in Computer Science, pp.

2–26. Springer Berlin / Heidelberg.

Bieman, J., Kang, B.-K. (1995). Cohesion and reuse in an object-oriented

system. In Proceedings of ACM Symposium on Software Reusability

(SSR’95), pp. 259–262.

Black, S. (2001). Computing ripple effect for software maintenance. Jour-

nal of Software Maintenance and Evolution: Research and Practice, 13,

263–279.

Black, S. (2006). Is ripple effect intuitive? a pilot study. Innovations in

Systems and Software Engineering, 2, 88–98.

Black, S. (2008). Deriving an approximation algorithm for automatic com-

putation of ripple effect measures. Information and Software Technol-

ogy, 50 (7–8), 723–736.

Booch, G., Rumbaugh, J., Jacobson, I. (2005). Unified Modeling Language

User Guide, The (2nd Edition). Addison-Wesley Professional.

Bosak, J., Bray, T., Connolly, D., Maler, E., Nicol, G., Sperberg-McQueen,

C. M., Wood, L., Clark, J. (1998). W3c xml specification dtd.

http://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm

Briand, L., Arisholm, E., Counsell, S., Houdek, F., Thévenod–Fosse, P.

(1999a). Empirical studies of object-oriented artifacts, methods, and

processes: State of the art and future directions. Empirical Software

Engineering, 4, 387–404.

Briand, L., Daly, J., Wüst, J. (1999b). A unified framework for coupling

measurement in object-oriented systems. IEEE Transactions on Soft-

ware Engineering, 25 (1), 91–121.

Briand, L., Devanbu, P., Melo, W. (1997). An investigation into coupling

measures for c++. In Proceedings 19th International Conference on

Software Engineering, ICSE97, Boston, pp. 412–421.

151

http://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm

References

Briand, L., Morasca, S., Basili, V. (1999c). Defining and validating mea-

sures for object-based high-level design. IEEE Transactions on Soft-

ware Engineering, pp. 722–743.

Briand, L., Wüst, J., Daly, J., Porter, D. V. (2000). Exploring the relation-

ships between design measures and software quality in object-oriented

systems. The Journal of Systems and Software, 51, 245–273.

Briand, L. C., Daly, J. W., Wüst, J. (1998). A unified framework for co-

hesion measurement in object-oriented systems. Empirical Software

Engineering, 3, 65–117.

Bunge, M. (1977). Treatise on Basic Philosophy, Volume 3: Ontology I,

The furniture of the world. D. Reidel Publishing Company, Dordrecht-

Holland.

Burn, O. (2011). Checkstyle 5.5.

http://sourceforge.net/projects/checkstyle/

Chatzigeorgiou, A., Tsantalis, N., Stephanides, G. (2006). Application of

graph theory to OO software engineering. In Proceedings of the 2006

International Workshop on Interdisciplinary Software Engineering Re-

search, WISER ’06, pp. 29–36. ACM.

Chen, T., Gu, Q., Wang, S., Chen, X., Chen, D. (2008). Module-based

large-scale software evolution based on complex networks. In 8th IEEE

International Conference on Computer and Information Technology,

CIT 2008, pp. 798 –803.

Chidamber, S., Kemerer, C. (1991). Towards a metrics suite for object-

oriented design. In Proceedings of the Conference on Object-Oriented

Programming: Systems, Languages and Applications, OOPSLA91, pp.

197–211.

Chidamber, S., Kemerer, C. (1994). A metrics suite for object oriented

design. IEEE Transactions on Software Engineering, 20 (6), 476–493.

152

http://sourceforge.net/projects/checkstyle/

References

Chidamber, S. R., Darcy, D. P., Kemerer, C. F. (1998). Managerial use

of metrics for object-oriented software: An exploratory analysis. IEEE

Transactions on Software Engineering, 24 (8), 629–639.

Chow, J., Tempero, E. (2011). Stability of java interfaces: a preliminary

investigation. In Proceedings of the 2nd International Workshop on

Emerging Trends in Software Metrics, WETSoM ’11, pp. 38–44. New

York, NY, USA: ACM.

Church, A. (1943). Carnap’s introduction to semantics. The Philosophical

Review, 52 (3), 298–304.

Clauset, A., Shalizi, C. R., Newman., M. E. J. (2009). Power-law distribu-

tions in empirical data. SIAM Review, 51 (4), 661–703.

Concas, G., Marchesi, M., Pinna, S., Serra, N. (2007). Power-laws in a

large object-oriented software system. IEEE Transactions on Software

Engineering, 33 (10), 687 –708.

Cubranic, D., Murphy, G. (2003). Hipikat: recommending pertinent

software development artifacts. In Software Engineering, 2003. Pro-

ceedings. 25th International Conference on, pp. 408 – 418. doi:

10.1109/ICSE.2003.1201219.

Demeyer, S., Ducasse, S., Nierstrasz, O. (2000). Finding refactorings via

change metrics. SIGPLAN Notices, 35, 166–177.

Dhama, H. (1995). Quantitative models of cohesion and coupling in soft-

ware. The Journal of Systems and Software, 29 (1), 65–74.

Dixon-Peugh, D. (2011). PMD: Java source code analysis.

http://pmd.sourceforge.net/

Ducasse, S., Lanza, M., Tichelaar, S. (2000). Moose: An extensible

language-independent environment for reengineering object-oriented

systems. In Proceedings of the Second International Symposium on

Constructing Software Engineering Tools (CoSET 2000).

153

http://pmd.sourceforge.net/

References

Ducasse, S., Oriol, M., Bergel, A. (2011). Challenges to support auto-

mated random testing for dynamically typed languages. In Interna-

tional Workshop on Smalltalk Technologies. Edinburgh, Royaume-Uni.

Eclipse Foundation (2011). The Eclipse Foundation community website.

http://www.eclipse.org

Eder, J., Kappel, G., Schrefl, M. (1992). Coupling and cohesion in object-

oriented systems. Conference on Information and Knowledge Manage-

ment.

Eder, J., Kappel, G., Schrefl, M. (1994). Coupling and Cohesion in Object-

Oriented Systems. Technical Report, Univ. of Klagenfurt.

El-Emam, K., Benlarbi, S., Goel, N., Rai, S. (1999). A Validation of Object-

Oriented Metrics. National Research Council of Canada, NRC/ERB

1063.

Erdős, P., Rényi, A. (1959). On random graphs. Publicationes Mathemat-

icae, 6, 290–297.

Erdős, P., Rényi, A. (1960). On the evolution of random graphs. Pub-

lications of the Mathematical Institute of the Hungarian Academy of

Sciences, 5, 17–61.

Etzkorn, L., Delugach, H. (2000). Towards a semantic metrics suite for

object-oriented design. In Proceedings of 34th International Confer-

ence on Technology of Object-Oriented Languages and Systems, pp.

71–80.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code.

Addison-Wesley Professional.

Gall, H., Hajek, K., Jazayeri., M. (1998). Detection of logical coupling

based on product release history. In Proceedings International Confer-

ence on Software Maintenance (ICSM’98), pp. 190–198.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994). Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-

fessional.

154

http://www.eclipse.org

References

Gao, Y., Xu, G., Yang, Y., Niu, X., Guo, S. (2010). Empirical analysis of

software coupling networks in object-oriented software systems. In

Proceedings IEEE International Conference on Software Engineering.

Service Sci., pp. 178–181.

German, D. M. (2006). An empirical study of fine-grained software modi-

fications. Empirical Software Engineering, 11, 369–393.

Gesser, J. V. (2008). javaparser.

http://code.google.com/p/javaparser/

Gîrba, T., Ducasse, S., Kuhn, A., Marinescu, R., Daniel, R. (2007). Using

concept analysis to detect co-change patterns. In Ninth international

workshop on Principles of software evolution: in conjunction with the

6th ESEC/FSE joint meeting, IWPSE ’07, pp. 83–89. New York, NY,

USA: ACM.

Gîrba, T., Ducasse, S., Marinescu, R., Raţiu, D. (2004). Identifying enti-

ties that change together. In the Ninth IEEE Workshop on Empirical

Studies of Software Maintenance ICSM2004.

Gladwell, M. (2002). The Tipping Point: How Little Things Can Make a

Big Difference. Back Bay Books.

Godfrey, M., Zou, L. (2005). Using origin analysis to detect merging

and splitting of source code entities. IEEE Transactions on Software

Engineering, 31 (2), 166–181.

Gosling, J., Joy, B., Steele, G., Bracha, G. (2005). The Java Language

Specification, third ed. Addison-Wesley.

Gyimothy, T., Ferenc, R., Siket, I. (2005). Empirical validation of object-

oriented metrics on open source software for fault prediction. IEEE

Transactions on Software Engineering, 31 (10), 897–910.

Haney, F. M. (1972). Module connection analysis: a tool for scheduling

software debugging activities. In Proceedings of the December 5-7,

1972, fall joint computer conference, part I, AFIPS ’72 (Fall, part I),

pp. 173–179. New York, NY, USA: ACM.

155

http://code.google.com/p/javaparser/

References

Harrison, R., Counsell, S., Nithi, R. (1998). An evaluation of the mood set

of object-oriented software metrics. IEEE Transactions on Software

Engineering, 24 (6), 491–496.

Hassan, A., Holt, R. (2004). Predicting change propagation in software

systems. In Proceedings of the 20th IEEE International Conference on

Software Maintenance, pp. 284–293.

Hatton, L. (2009). Power-law distributions of component size in general

software systems. IEEE Transactions on Software Engineering, 35 (4),

566–572.

Henderson-Sellers, B. (1996). Software Metrics. Prentice Hall, U. K.

Hitz, M., Montazeri, B. (1995). Measuring product attributes of object-

oriented systems. In Schäfer, W., Botella, P. (Eds.), Software Engineer-

ing — ESEC ’95, vol. 989 of Lecture Notes in Computer Science, pp.

124–136. Springer Berlin / Heidelberg.

Holmes, R., Walker, R. J., Murphy, G. C. (2005). Strathcona example

recommendation tool. SIGSOFT Software Engineering Notes, 30, 237–

240.

Hou, D. (2007). Studying the evolution of the eclipse java editor. In

Proceedings of the 2007 OOPSLA workshop on eclipse technology eX-

change, eclipse ’07, pp. 65–69. New York, NY, USA: ACM.

Hovemeyer, D., Pugh, W. (2004). Finding bugs is easy. SIGPLAN Notices,

39, 92–106.

Hyland-Wood, D., Carrington, D., Kaplan, S. (2006). Scale-free nature of

Java software package, class and method collaboration graphs. Tech-

nical Report TR-MS1286, University of Maryland, College Park.

Ichii, M., Matsushita, M., Inoue, K. (2008). An exploration of power-law

in use-relation of java software systems. In 19th Australian Conference

on Software Engineering, 2008, ASWEC 2008, pp. 422–431.

156

References

Jenkins, S., Kirk, S. (2007). Sotware architecture graphs as complex net-

works: A novel partitioning scheme to measure stability and evolution.

Information Sciences, 177 (12), 2587–2601.

Jing, L., Keqing, H., Yutao, M., Rong, P. (2006). Scale free in software

metrics. In Computer Software and Applications Conference, 2006.

COMPSAC ’06. 30th Annual International, vol. 1, pp. 229–235.

Kamiya, T., Kusumoto, S., Inoue, K. (2002). Ccfinder: a multilinguistic

token-based code clone detection system for large scale source code.

IEEE Transactions on Software Engineering, 28 (7), 654–670.

Keller, E. F. (2005). Revisiting “scale-free” networks. BioEssays, 27 (10),

1060–1068.

Kelly, D. (2006). A study of design characteristics in evolving software

using stability as a criterion. IEEE Transactions on Software Engineer-

ing, 32 (5), 315–329.

Kim, M., Sazawal, V., Notkin, D., Murphy, G. (2005). An empirical study

of code clone genealogies. SIGSOFT Software Engineering Notes, 30,

187–196.

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam,

K., Rosenberg, J. (2002). Preliminary guidelines for empirical research

in software engineering. IEEE Transactions on Software Engineering,

28 (8), 721–734.

Koenig, A. (1995). Patterns and antipatterns. Journal of Object-Oriented

Programming, 8 (1), 46–48.

Komondoor, R., Horwitz, S. (2001). Using slicing to identify duplication

in source code. In Cousot, P. (Ed.), Static Analysis, vol. 2126 of Lecture

Notes in Computer Science, pp. 40–56. Springer Berlin / Heidelberg.

Kontogiannis, K. (1997). Evaluation experiments on the detection of

programming patterns using software metrics. In Proceedings of the

Fourth Working Conference on Reverse Engineering, pp. 44–54.

157

References

Kramer, J. (2007). Is abstraction the key to computing? Communications

of the ACM, 50 (4), 37–42.

Lee, Y.-S., Liang, B.-S., Wu, S.-F., , Wang, F.-J. (1995). Measuring the cou-

pling and cohesion of an object-oriented program based on information

flow. In Proceedings of the International Conference on Software Qual-

ity, Maribor, Slovenia.

Lehman, M. (1996). Laws of software evolution revisited. In Montangero,

C. (Ed.), Software Process Technology, vol. 1149 of Lecture Notes in

Computer Science, pp. 108–124. Springer Berlin / Heidelberg.

Lehman, M., Ramil, J., Wernick, P., Perry, D., Turski, W. (1997). Metrics

and laws of software evolution-the nineties view. In Software Metrics

Symposium, 1997. Proceedings., Fourth International, pp. 20–32.

Li, D., Han, Y., Hu, J. (2008). Complex network thinking in software

engineering. In International Conference on Computer Science and

Software Engineering, vol. 1, pp. 264–268.

Li, L., Qian, G., Zhang, L. (2009). Evaluation of software change prop-

agation using simulation. In The WRI World Congress on Software

Engineering (WCSE ’09), pp. 28–33.

Li, W., Henry, S. (1993). Object-oriented metrics that predict maintain-

ability. Journal of Systems and Software, 23 (2), 111–122.

Liskov, B. (1987). Keynote address – data abstraction and hierarchy. SIG-

PLAN Notices, 23, 17–34.

Liu, J., Lü, J., He, K., Li, B., Tse, C. K. (2008). Characterizing the structure

quality of general complex software networks. International Journal of

Bifurcation and Chaos, 18 (2), 605–613.

Louridas, P., Spinellis, D., Vlachos, V. (2008). Power laws in software.

ACM Transactions on Software Engineering Methodology, 18, 2:1–

2:26.

158

References

Marchesi, M., Pinna, S., Serra, N., Tuveri, S. (2004). Power laws in

Smalltalk. In Proceedings of European Smalltalk User Group Joint

Event.

Marcus, A., Poshyvanyk, D. (2005). The conceptual cohesion of classes.

In ICSM’05. Proceedings of the 21st IEEE International Conference on

Software Maintenance, pp. 133–142.

Martin, R. (1994). OO design quality metrics – an analysis of depen-

dencies. In Proceedings of the Workshop Pragmatic and Theoretical

Directions in Object-Oriented Software Metrics, OOPSLA94.

Mens, T., Demeyer, S. (2001). Future trends in software evolution met-

rics. In Proceedings of the 4th International Workshop on Principles of

Software Evolution, IWPSE ’01, pp. 83–86. New York, NY, USA: ACM.

Mens, T., Lanza, M. (2002). A graph-based metamodel for object-oriented

software metrics. Electronic Notes in Theoretical Computer Science,

72 (2), 57–68.

Meyer, B. (2000). Object-Oriented Software Construction SECOND EDI-

TION. Prentice Hall.

Meyers, T. M., Binkley, D. (2004). Slice-based cohesion metrics and soft-

ware intervention. In Proceedings of 11th Working Conference on Re-

verse Engineering (WCRE’04), pp. 256–265.

Milgram, S. (1967). The small world problem. Psychology Today, 2, 60–

67.

Monasson, R. (1999). Diffusion, localization and dispersion relations on

“small-world” lattices. The European Physical Journal B - Condensed

Matter and Complex Systems, 12, 555–567.

Murphy, G. C., Notkin, D. (1996). Lightweight lexical source model ex-

traction. ACM Transactions on Software Engineering Methodology, 5,

262–292.

159

References

Myers, C. R. (2003). Software systems as complex networks: Structure,

function, and evolvability of software collaboration graphs. Physical

Review E, 68, 046116.

Newman, M., Barabási, A.-L., Watts, D. J. (2006). The Structure and

Dynamics of Networks. Princeton University Press.

Newman, M. E. J. (2005). Power laws, pareto distributions and zipf’s law.

Contemporary Physics, 46, 323–351.

Newman, M. J. E. (2010). Networks: An Introduction. Oxford University

Press.

Newman, M. J. E., Strogatz, S. H., Watts, D. J. (2001). Random graphs

with arbitrary degree distributions and their applications. Physical Re-

view E, 64 (2), 1–17.

Page, L., Brin, S., Motwani, R., Winograd, T. (1998). The pagerank cita-

tion ranking: Bringing order to the web. Technical Report, Stanford

University.

Pan, W., Li, B., Ma, Y., Liu, J. (2011). Multi-granularity evolution analysis

of software using complex network theory. Journal of Systems Science

and Complexity, 24, 1068–1082.

Pandit, S. A., Amritkar, R. E. (2001). Random spread on the family of

small-world networks. Physical Review E, 63, 041104.

Parasoft (2011). Java static analysis, code review, unit testing, runtime

error detection.

www.parasoft.com/jsp/products/jtest.jsp

Pareto, V. (1897). Cours D’économique Politique. Macmillan.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems

into modules. Communications of the ACM, 15, 1053–1058.

Parnas, D. L. (1994). Software aging. In Proceedings of the International

Conference on Software Engineering, pp. 279–287.

160

www.parasoft.com/jsp/products/jtest.jsp

References

Parnas, D. L., Siewiorek, D. P. (1975). Transparency in the design of

hierarchically structured systems. Communications of the ACM, 18 (7),

401–408.

Potanin, A., Noble, J., Frean, M., Biddle, R. (2005). Scale-free geometry

in OO programs. Communications of the ACM, 48, 99–103.

Selby, R. W., Basili, V. R. (1991). Analyzing error-prone system structure.

IEEE Transactions on Software Engineering, 17 (2), 141–152.

Semmle Limited (2011). On demand software analytics.

http://semmle.com

Sharafat, A. R., Tahvildari, L. (2007). A probabilistic approach to predict

changes in object-oriented software systems. In The 11th European

Conference on Software Maintenance and Reengineering (CSMR’07).

Simon, H. (1953). Causal ordering and identifiability. In Studies in Econo-

metric Method (edited by W.C. Hood and T.C. Koopmans). Cowles Com-

mission Monograph 14, New York.

Simon, H. A. (1955). On a class of skew distribution functions.

Biometrika, 42, 425–440.

Simon, H. A. (1962). The architecture of complexity. Proceedings of the

American Philosophical Society, 106 (6), 467–482.

Simon, H. A. (1996). The Sciences of the Artificial. The MIT Press.

Software-Tomography GmbH (2011). Sonargraph architect.

http://www.hello2morrow.com/products/sonargraph

Solomonoff, R., Rapoport, A. (1951). Connectivity of random nets. Bul-

letin of Mathematical Biology, 13, 107–117.

Stevens, W. P., Myers, G. J., Constantine, L. L. (1974). Structured design.

IBM Systems Journal, 13 (2), 115 –139.

161

http://semmle.com
http://www.hello2morrow.com/products/sonargraph

References

Subramanyam, R., Krishnan, M. (2003). Empirical analysis of ck met-

rics for object-oriented design complexity: implications for software

defects. IEEE Transactions on Software Engineering, 29 (4), 297–310.

Succi, G., Pedrycz, W., Djokic, S., Zuliani, P., Russo, B. (2005). An em-

pirical exploration of the distributions of the chidamber and kemerer

object-oriented metrics suite. Empirical Software Engineering, 10, 81–

104.

Sullivan, K. J., Griswold, W. G., Cai, Y., Hallen, B. (2001). The structure

and value of modularity in software design. SIGSOFT Software Engi-

neering Notes, 26, 99–108.

Taube-Schock, C., Walker, R., Witten, I. (2011). Can we avoid high cou-

pling? In Mezini, M. (Ed.), ECOOP 2011 – Object-Oriented Program-

ming, vol. 6813 of Lecture Notes in Computer Science, pp. 204–228.

Springer Berlin / Heidelberg.

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton,

H., Noble, J. (2010). The Qualitas Corpus: A curated collection of Java

code for empirical studies. In Proceedings of the Asia-Pacific Software

Engineering Conference, pp. 336–345.

Travers, J., Milgram, S. (1969). An experimental study of the small worls

problem. Sociometry, 32, 425–443.

Tsantalis, N., Chatzigeorgiou, A., Stephanides, G. (2005). Predicting the

probability of change in object-oriented systems. IEEE Transactions on

Software Engineering, 31 (7), 601–614.

Tu, Q., Godfrey, M. (2002). An integrated approach for studying archi-

tectural evolution. In Proceedings of the 10th International Workshop

on Program Comprehension, pp. 127–136.

Tversky, A., Kahneman, D. (1974). Judgment under uncertainty: Heuris-

tics and biases. Science, 185 (4157), 1124–1131.

162

References

University of Waikato (2011). Symphony: High performance computing

cluster.

http://symphony.waikato.ac.nz/

Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.

(1999). Soot—a Java optimization framework. In Proceedings of CAS-

CON 1999, pp. 125–135.

Valverde, S., Cancho, R. F., Sole, R. V. (2002). Scale-free networks from

optimal design. EPL (Europhysics Letters), 60 (4), 512.

Valverde, S., Sole, R. V. (2003). Hierarchical small-worlds in software

architecture. ArXiv preprint cond-mat/0307278 – arxiv.org.

Valverde, S., Sole, R. V. (2005). Logarithmic growth dynamics in software

networks. EPL (Europhysics Letters), 72 (5), 858.

http://stacks.iop.org/0295-5075/72/i=5/a=858

Vasa, R., Lumpe, M., Branch, P., Nierstrasz, O. (2009). Comparative anal-

ysis of evolving software systems using the gini coefficient. In IEEE

International Conference on Software Maintenance, ICSM 2009, pp.

179–188.

Vasilescu, B., Serebrenik, A., van den Brand, M. (2011). You can’t con-

trol the unfamiliar: A study on the relations between aggregation tech-

niques for software metrics. In Proceedings of the 27th IEEE Interna-

tional Conference on Software Maintenance (ICSM), pp. 313–322.

Verelst, J. (2005). The influence of the level of abstraction on the evolv-

ability of conceptual models of information systems. Empirical Soft-

ware Engineering, 10, 467–494.

Wasserman, S., Faust, K. (1994). Social Network Analysis. Cambridge

University Press.

Watts, D. (2002). A simple model of global cascades on random networks.

Proceedings of the National Academy of Sciences, 99 (9), 5766–5771.

163

http://symphony.waikato.ac.nz/
http://stacks.iop.org/0295-5075/72/i=5/a=858

References

Watts, D. J., Strogatz, S. H. (1998). Collective dynamics of “small-world”

networks. Nature, 393 (6684), 409–410.

Wheeldon, R., Counsell, S. (2003). Power law distributions in class rela-

tionships. In Proceedings of the Third IEEE International Workshop on

Source Code Analysis and Manipulation, pp. 45–54.

Witten, I. H., Frank, E., Hall, M. A. (2011). Data Mining: Practical Ma-

chine Learning Tools and Techniques, Third Edition. Morgan Kauf-

mann.

Yau, S., Collofello, J. (1985). Design stability measures for software main-

tenance. IEEE Transactions on Software Engineering, SE-11 (9), 849–

856.

Yau, S., Collofello, J., McGregor, T. (1978). Ripple effect analysis of soft-

ware maintenance. In Proceedings of the Computer Software and Ap-

plications Conference (COMPSAC ’78), pp. 60–65.

Ying, A. T., Murphy, G. C., Ng, R., Chu-Carroll, M. C. (2004). Predicting

source code changes by mining change history. IEEE Transactions on

Software Engineering, 30 (9), 574–586.

Zaparanuks, D., Hauswirth, M. (2011a). The beauty and the beast: Sep-

arating design from algorithm. In Mezini, M. (Ed.), ECOOP 2011 –

Object-Oriented Programming, vol. 6813 of Lecture Notes in Computer

Science, pp. 27–51. Springer Berlin / Heidelberg.

Zaparanuks, D., Hauswirth, M. (2011b). Vision paper: The essence of

structural models. In Whittle, J., Clark, T., Kühne, T. (Eds.), Model

Driven Engineering Languages and Systems, vol. 6981 of Lecture

Notes in Computer Science, pp. 470–479. Springer Berlin / Heidelberg.

Zhou, Y., Lu, J., Xu, H. (2004). A comparative study of graph theory-based

class cohesion measures. In Proceedings of the 18th IEEE International

Conference on Software Maintenance, pp. 44–53.

164

References

Zhou, Y., Xu, B., Zhao, J., Yang, H. (2002). ICBMC: an improved cohesion

measure for classes. In Proceedings of International Conference on

Software Maintenance, pp. 44–53.

Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A. (2004). Mining ver-

sion histories to guide software changes. In Proceedings of the 26th

International Conference on Software Engineering, pp. 563–572.

Zwillinger, D. (Ed.) (2003). CRC Standard Mathematical Tables and For-

mulae, 31st Edition. CRC Press.

165

166

Appendix A

Example parse file

The following text is the parsefile for the Java listing on Figure 3.2 given

in Chapter 3.

project Demonstration

module org.afox.codenet

entity class [TypeDeclaration-Resolved]

attribute pathName Entity

attribute fullName org.afox.codenet.Entity

attribute lineNumber 5

attribute superclass java.lang.Object

attribute modifier public

entity variable [VariableDeclarationFragment]

attribute type java.lang.String

attribute pathName name

attribute lineNumber 6

attribute modifier private

end variable

entity variable [VariableDeclarationFragment]

attribute type java.util.HashMap

attribute pathName attributes

attribute lineNumber 7

attribute modifier private

end variable

entity methodDeclaration

attribute pathName Entity

attribute parameterCount 1

attribute lineNumber 9

attribute declaredSignature Entity(java.lang.String)

attribute constructor true

attribute modifier public

167

Appendix A Example parse file

entity variable [SingleVariableDec]

attribute lineNumber 9

attribute type java.lang.String

attribute pathName name

end variable [SingleVariableDec]

entity block

attribute lineNumber 9

entity statement [ExpressionStatement]

attribute lineNumber 10

entity expression [Assignment]

attribute lineNumber 10

attribute operator =

attribute stateChange true

entity expression [LHS]

entity expression [FieldAccess-Resolved]

attribute fieldTarget org.afox.codenet.Entity

attribute stateChange true

attribute this org.afox.codenet.Entity

entity expression [SimpleName]

attribute variableUsage name

attribute stateChange true

end expression [SimpleName]

end expression [FieldAccess]

end expression [LHS]

entity expression [RHS]

entity expression [SimpleName]

attribute variableUsage name

end expression [SimpleName]

end expression [RHS]

end expression [Assignment]

end statement [ExpressionStatement]

entity statement [ExpressionStatement]

attribute lineNumber 11

entity expression [Assignment]

attribute lineNumber 11

attribute operator =

attribute stateChange true

entity expression [LHS]

entity expression [SimpleName]

attribute variableUsage attributes

attribute stateChange true

168

end expression [SimpleName]

end expression [LHS]

entity expression [RHS]

entity expression [ClassInstanceCreation]

attribute targetType java.util.HashMap

attribute signature HashMap()

end expression [ClassInstanceCreation]

end expression [RHS]

end expression [Assignment]

end statement [ExpressionStatement]

end block

end methodDeclaration

end class [TypeDeclaration]

169

170

Appendix B

System structural measures

The following data are the structural measures of the systems in the

Qualitas corpus that were examined. Column titles are as follows:

Nod=nodes;Lnk=links; Pkg=Packages; Cls=classes; Mth=methods;

Blk=blocks; Sta=statements; Var=variables.

Name/Version Nod Lnk Pkg Cls Mth Blk Sta Var

derby-10.1.1.0 318831 809952 135 1805 25067 56357 160555 74910

gt2-2.2-rc3 256838 651522 219 3453 26347 52556 106738 67523

weka-3.5.8 248704 682151 91 2019 19169 47561 124152 55710

jtopen-4.9 230394 593240 18 1940 20559 42206 112259 53410

tomcat-5.5.17 177249 433523 149 1777 17152 36247 80214 41708

compiere-250d 155379 388859 43 1260 18128 25458 73472 37016

jrefactory-2.9.19 145131 339539 152 2377 14360 28069 69583 30588

springframework-1.2.7 134537 345844 175 3359 15190 24186 58898 32727

jena-2.5.5 131297 344557 99 2491 16087 22670 53850 36098

xalan-j.2.7.0 116465 299784 45 1253 10261 22459 46033 36412

ant-1.7.1 112705 267462 87 1570 12485 26538 46413 25610

xerces-2.8.0 110658 284063 59 960 9078 23259 52158 25142

squirrel.sql-2.4 103945 263161 149 2508 11620 20755 42450 26461

aoi-2.5.1 100684 327557 25 806 6553 12553 52454 28291

exoportal-v1.0.2 96607 245273 470 2165 12386 17066 38103 26415

megamek-2005.10.11 95350 270531 29 634 6572 16304 53314 18495

jruby-1.0.1 90464 237725 50 1166 8816 17310 40733 22387

aspectj-1.0.6 89315 212129 47 1580 12293 18713 34534 22146

mvnforum-1.0-ga 88992 226592 61 617 7208 15728 43692 21684

azureus-3.1.1.0 88525 210525 134 1438 8874 19818 35455 22804

jgroups-2.6.2 88493 226551 23 1007 8310 16151 43564 19436

sandmark-3.4 88073 245897 126 1131 7429 13929 39713 25743

itext-1.4.5 87308 233801 32 710 6537 15168 42079 22780

jedit-4.3pre14 87088 224173 57 1153 6953 15245 42922 20756

hibernate-3.3.1-ga 86974 212863 100 1314 11876 18330 31594 23758

jmeter-2.3.2 77818 203577 134 950 8139 15647 34778 18168

poi-2.5.1 72893 195343 45 780 8510 12413 32430 18713

c.jdbc-2.0.2 71312 187144 155 796 5994 12749 33678 17938

jfreechart-1.0.1 69042 183005 55 713 6581 13227 30019 18445

171

Appendix B System structural measures

Name/Version Nod Lnk Pkg Cls Mth Blk Sta Var

hsqldb-1.8.0.4 68174 175169 15 382 4897 13802 32831 16245

ireport-0.5.2 67994 195718 37 1323 5290 10122 38661 12559

struts-1.2.9 67756 150767 73 791 9483 15048 28553 13806

freecol-0.7.4 64207 174633 31 778 4794 13448 30208 14946

columba-1.0 63416 162011 199 1341 6913 12082 26459 16420

drjava-20050814 63160 164795 28 1356 7085 11339 29894 13456

jasperreports-1.1.0 61926 161668 42 815 7673 12782 26158 14454

findbugs-1.0.0 56686 150501 43 990 5795 9655 25295 14906

galleon-1.8.0 51840 135837 36 724 3819 9762 25066 12431

jext-5.0 51776 140724 56 818 3940 8222 27815 10923

antlr-2.7.7 49316 120770 14 298 3308 11002 25161 9531

pmd-3.3 45635 103427 57 677 4398 8952 22614 8935

heritrix-1.8.0 44892 113124 46 553 4521 9601 18537 11632

colt-1.2.0 44612 117946 27 592 4143 6978 18358 14512

rssowl-1.2 42674 125329 23 715 2464 4130 28909 6431

pooka-1.1-060227 42588 106430 27 802 4166 9338 18435 9818

jung-1.7.6 37741 101931 74 801 4133 6262 14896 11573

roller-2.1.1-incubating 35911 78393 53 427 3771 7097 14442 10119

james-2.2.0 35078 87966 38 503 3236 7774 15133 8392

trove-1.1b5 32353 73515 4 555 4664 7600 10633 8895

proguard-3.6 29563 75305 21 409 3977 5762 9012 10380

drawswf-1.2.9 26520 71057 44 325 2747 4040 10661 8701

velocity-1.5 25620 59716 39 353 2556 4914 11917 5839

ganttproject-1.11.1 24613 67425 37 549 2724 4219 10463 6619

quartz-1.5.2 24575 61428 42 185 2215 4945 10616 6570

axion-1.0-M2 24505 56203 14 261 2978 5693 10656 4901

lucene-1.4.3 23928 61307 17 333 2096 3769 11856 5855

htmlunit-1.8 23456 56642 14 362 3112 4778 8392 6796

sablecc-3.1 22929 57684 7 267 2191 5058 8959 6445

joggplayer-1.1.4s 22082 58094 17 311 1790 3724 10408 5830

jgraphpad-5.10.0.2 21630 62411 27 442 1879 3761 9289 6230

sunflow-0.07.2 21579 64717 22 239 1507 2862 10306 6641

ivatagroupware-0.11.3 21214 50862 87 226 1996 4510 8256 6137

jspwiki-2.2.33 20759 54309 26 314 1979 4060 8686 5692

jparse-0.96 19933 47566 4 75 905 3824 11349 3774

emma-2.0.5312 19647 49134 30 325 1813 3542 8189 5746

jgraph-5.9.2.1 18855 52349 18 256 2021 3489 7571 5498

quickserver-1.4.7 18798 47198 33 260 1692 3560 9880 3371

log4j-1.2.13 18185 43805 49 349 1948 3694 7643 4500

jsXe-04.beta 17890 47195 19 270 1445 3482 8089 4583

xmojo-5.0.0 17303 43089 28 168 1457 3528 8008 4112

cobertura-1.9 16639 39569 22 110 1239 2486 10468 2312

freecs-1.2.20060130 16184 43826 11 129 981 2927 8965 3169

openjms-0.7.7-alpha-3 15604 37055 27 275 1974 3593 5853 3880

jhotdraw-5.3.0 15065 38506 15 273 2283 3192 5387 3913

jag-5.0.1 15001 39581 23 259 1399 2909 6782 3627

javacc-3.2 14739 40712 8 140 715 2460 9036 2378

displaytag-1.1 14731 34959 29 335 1701 3104 5910 3650

jgrapht-0.7.3 13223 37994 19 279 1280 2109 6313 3221

informa-0.6.5 12980 32712 20 221 1581 2574 5125 3457

jrat-0.6 12440 32003 51 249 1463 2377 4719 3579

172

Name/Version Nod Lnk Pkg Cls Mth Blk Sta Var

jpf-1.0.2 12158 30827 12 152 1271 2895 5065 2761

marauroa-2.5 11245 28188 20 159 1223 2322 4809 2710

argouml-0.24 9802 23975 17 122 1087 1946 4239 2389

webmail-0.7.10 9244 23352 24 122 1071 1947 3694 2384

oscache-2.3-full 8049 18863 16 119 779 1869 3358 1906

quilt-0.6-a-5 7735 18808 16 114 820 1571 3270 1942

fitlibrary-20050923 7706 17826 17 234 1103 1444 2940 1966

jFin.DateMath-R1.0.0 6866 17277 26 112 816 1234 2878 1798

nekohtml-0.9.5 6606 17153 7 54 422 1453 2887 1781

jmoney-0.4.4 6310 17618 6 193 713 996 2989 1411

junit-4.5 6308 14766 33 400 1233 1362 2112 1166

jchempaint-2.0.12 5757 15844 8 125 419 1146 2696 1361

jasml-0.10 5482 15419 8 53 256 895 3011 1257

fitjava-1.1 3862 10296 5 96 462 786 1564 947

picocontainer-1.3 3771 9117 5 99 540 842 1155 1128

173

174

Appendix C

Version pairs

C.1 ant release pairs

Pair Number Version 1 Version 2

1 1.1 1.2

2 1.2 1.3

3 1.3 1.4

4 1.4 1.4.1

5 1.4.1 1.5

6 1.5 1.5.1

7 1.5.1 1.5.2

8 1.5.2 1.5.3.1

9 1.5.3.1 1.5.4

10 1.5.4 1.6.0

11 1.6.0 1.6.1

12 1.6.1 1.6.2

13 1.6.2 1.6.3

14 1.6.3 1.6.4

15 1.6.4 1.6.5

16 1.6.5 1.7.0

17 1.7.0 1.7.1

18 1.7.1 1.8.0

19 1.8.0 1.8.1

175

Appendix C Version pairs

C.2 antlr release pairs

Pair Number Version 1 Version 2

1 2.4.0 2.5.0

2 2.5.0 2.6.0

3 2.6.0 2.7.0

4 2.7.0 2.7.1

5 2.7.1 2.7.2

6 2.7.2 2.7.3

7 2.7.3 2.7.4

8 2.7.4 2.7.5

9 2.7.5 2.7.6

10 2.7.6 2.7.7

11 2.7.7 3.0

12 3.0 3.0.1

13 3.0.1 3.1

14 3.1 3.1.1

15 3.1.1 3.1.2

16 3.1.2 3.1.3

17 3.1.3 3.2

176

C.3 argouml release pairs

C.3 argouml release pairs

Pair Number Version 1 Version 2

1 0.16.1 0.18.1

2 0.18.1 0.20

3 0.20 0.24

4 0.24 0.26

5 0.26 0.26.2

6 0.26.2 0.28

7 0.28 0.28.1

8 0.28.1 0.30

9 0.30 0.30.2

177

Appendix C Version pairs

C.4 azureus release pairs

Pair Number Version 1 Version 2

1 2.0.8.2 2.0.8.4

2 2.0.8.4 2.1.0.0

3 2.1.0.0 2.1.0.2

4 2.1.0.2 2.1.0.4

5 2.1.0.4 2.2.0.0

6 2.2.0.0 2.2.0.2

7 2.2.0.2 2.3.0.0

8 2.3.0.0 2.3.0.2

9 2.3.0.2 2.3.0.4

10 2.3.0.4 2.5.0.4

11 2.5.0.4 3.0.0.8

12 3.0.0.8 3.0.1.0

13 3.0.1.0 3.0.1.2

14 3.0.1.2 3.0.1.4

15 3.0.1.4 3.0.1.6

16 3.0.1.6 3.0.2.0

17 3.0.2.0 3.0.2.2

18 3.0.2.2 3.0.3.0

19 3.0.3.0 3.0.3.4

20 3.0.3.4 3.0.4.0

21 3.0.4.0 3.0.4.2

22 3.0.4.2 3.0.5.0

23 3.0.5.0 3.0.5.2

24 3.0.5.2 3.1.0.0

25 3.1.0.0 3.1.1.0

26 3.1.1.0 4.0.0.0

27 4.0.0.0 4.0.0.2

28 4.0.0.2 4.0.0.4

29 4.0.0.4 4.1.0.0

30 4.1.0.0 4.1.0.2

31 4.1.0.2 4.1.0.4

32 4.1.0.4 4.2.0.0

33 4.2.0.0 4.2.0.2

34 4.2.0.2 4.2.0.4

35 4.2.0.4 4.2.0.8

36 4.2.0.8 4.3.0.0

37 4.3.0.0 4.3.0.2

Continued on next page

178

C.4 azureus release pairs

Continued from previous page

Pair Number Version 1 Version 2

38 4.3.0.2 4.3.0.4

39 4.3.0.4 4.3.0.6

40 4.3.0.6 4.3.1.0

41 4.3.1.0 4.3.1.2

42 4.3.1.2 4.3.1.4

43 4.3.1.4 4.4.0.0

44 4.4.0.0 4.4.0.2

45 4.4.0.2 4.4.0.4

46 4.4.0.4 4.4.0.6

47 4.4.0.6 4.4.1.0

48 4.4.1.0 4.5.0.0

49 4.5.0.0 4.5.0.2

50 4.5.0.2 4.5.0.4

179

Appendix C Version pairs

C.5 freecol release pairs

Pair Number Version 1 Version 2

1 0.3.0 0.4.0

2 0.4.0 0.5.0

3 0.5.0 0.5.1

4 0.5.1 0.5.2

5 0.5.2 0.5.3

6 0.5.3 0.6.0

7 0.6.0 0.6.1

8 0.6.1 0.7.0

9 0.7.0 0.7.1

10 0.7.1 0.7.2

11 0.7.2 0.7.3

12 0.7.3 0.7.4

13 0.7.4 0.8.0

14 0.8.0 0.8.1

15 0.8.1 0.8.2

16 0.8.2 0.8.3

17 0.8.3 0.8.4

18 0.8.4 0.9.0

19 0.9.0 0.9.1

20 0.9.1 0.9.2

21 0.9.2 0.9.3

22 0.9.3 0.9.4

180

C.6 hibernate release pairs

C.6 hibernate release pairs

Pair Number Version 1 Version 2

1 0.8.1 1.0

2 1.0 1.1

3 1.1 2.0-rc2

4 2.0-rc2 2.0-final

5 2.0-final 2.0.1

6 2.0.1 2.0.2

7 2.0.2 2.0.3

8 2.0.3 2.1-rc1

9 2.1-rc1 2.1-final

10 2.1-final 2.1.1

11 2.1.1 2.1.2

12 2.1.2 2.1.3

13 2.1.3 2.1.4

14 2.1.4 2.1.5

15 2.1.5 2.1.6

16 2.1.6 2.1.7

17 2.1.7 2.1.8

18 2.1.8 3.0-rc1

19 3.0-rc1 3.0

20 3.0 3.0.1

21 3.0.1 3.0.2

22 3.0.2 3.0.3

23 3.0.3 3.0.4

24 3.0.4 3.0.5

25 3.0.5 3.1-rc1

26 3.1-rc1 3.1-rc2

27 3.1-rc2 3.1-rc3

28 3.1-rc3 3.1

29 3.1 3.1.1

30 3.1.1 3.1.2

31 3.1.2 3.1.3

32 3.1.3 3.2-cr1

33 3.2-cr1 3.2-cr2

34 3.2-cr2 3.2.0-cr3

35 3.2.0-cr3 3.2.0-cr4

36 3.2.0-cr4 3.2.0-cr5

37 3.2.0-cr5 3.2.0.ga

Continued on next page

181

Appendix C Version pairs

Continued from previous page

Pair Number Version 1 Version 2

38 3.2.0.ga 3.2.1-ga

39 3.2.1-ga 3.2.2-ga

40 3.2.2-ga 3.2.3-ga

41 3.2.3-ga 3.2.4-ga

42 3.2.4-ga 3.2.4-sp1

43 3.2.4-sp1 3.2.5-ga

44 3.2.5-ga 3.2.6-ga

45 3.2.6-ga 3.3.0.cr1

46 3.3.0.cr1 3.3.0-cr2

47 3.3.0-cr2 3.3.0-ga

48 3.3.0-ga 3.3.0-sp1

49 3.3.0-sp1 3.3.1-ga

50 3.3.1-ga 3.3.2-ga

51 3.3.2-ga 3.5.0-cr-1

52 3.5.0-cr-1 3.5.0-cr-2

53 3.5.0-cr-2 3.5.3-final

54 3.5.3-final 3.5.5-final

182

C.7 jgraph release pairs

C.7 jgraph release pairs

Pair Number Version 1 Version 2

1 5.4.4-java1.4 5.5

2 5.5 5.5.1

3 5.5.1 5.6.2.1

4 5.6.2.1 5.6.2

5 5.6.2 5.6.3

6 5.6.3 5.7

7 5.7 5.7.1

8 5.7.1 5.7.3

9 5.7.3 5.7.3.1

10 5.7.3.1 5.7.4

11 5.7.4 5.7.4.1

12 5.7.4.1 5.7.4.2

13 5.7.4.2 5.7.4.3

14 5.7.4.3 5.7.4.4

15 5.7.4.4 5.7.4.5

16 5.7.4.5 5.7.4.6

17 5.7.4.6 5.7.4.7

18 5.7.4.7 5.8.0.0

19 5.8.0.0 5.8.1.1

20 5.8.1.1 5.8.2.0

21 5.8.2.0 5.8.2.1

22 5.8.2.1 5.8.3.1

23 5.8.3.1 5.9.0.0

24 5.9.0.0 5.9.1.0

25 5.9.1.0 5.9.2.0

26 5.9.2.0 5.10.0.0

27 5.10.0.0 5.10.0.1

28 5.10.0.1 5.10.2.0

29 5.10.2.0 5.11.0.0

30 5.11.0.0 5.11.0.1

31 5.11.0.1 5.12.0.0

32 5.12.0.0 5.12.0.1

33 5.12.0.1 5.12.0.4

34 5.12.0.4 5.12.1.0

35 5.12.1.0 5.12.2.1

36 5.12.2.1 5.13.0.0

183

Appendix C Version pairs

C.8 jmeter release pairs

Pair Number Version 1 Version 2

1 1.8.1 1.9.1

2 1.9.1 2.0.0

3 2.0.0 2.0.1

4 2.0.1 2.0.2

5 2.0.2 2.0.3

6 2.0.3 2.1-rc1

7 2.1-rc1 2.1

8 2.1 2.1.1

9 2.1.1 2.2

10 2.2 2.3-rc3

11 2.3-rc3 2.3-rc4

12 2.3-rc4 2.3

13 2.3 2.3.1

14 2.3.1 2.3.2

15 2.3.2 2.3.3

16 2.3.3 2.3.4

17 2.3.4 2.4

184

C.9 jung release pairs

C.9 jung release pairs

Pair Number Version 1 Version 2

1 1.0.0 1.1.0

2 1.1.0 1.1.1

3 1.1.1 1.2.0

4 1.2.0 1.3.0

5 1.3.0 1.4.0

6 1.4.0 1.4.1

7 1.4.1 1.4.2

8 1.4.2 1.4.3

9 1.4.3 1.5.0

10 1.5.0 1.5.1

11 1.5.1 1.5.2

12 1.5.2 1.5.3

13 1.5.3 1.5.4

14 1.5.4 1.6.0

15 1.6.0 1.7.0

16 1.7.0 1.7.1

17 1.7.1 1.7.2

18 1.7.2 1.7.4

19 1.7.4 1.7.5

20 1.7.5 1.7.6

21 1.7.6 2.0

22 2.0 2.0.1

185

Appendix C Version pairs

C.10 junit release pairs

Pair Number Version 1 Version 2

1 2.0 2.1

2 2.1 3.0

3 3.0 3.4

4 3.4 3.5

5 3.5 3.6

6 3.6 3.7

7 3.7 3.8

8 3.8 3.8.1

9 3.8.1 3.8.2

10 3.8.2 4.0

11 4.0 4.1

12 4.1 4.2

13 4.2 4.3.1

14 4.3.1 4.4

15 4.4 4.5

16 4.5 4.6

17 4.6 4.7

18 4.7 4.8

19 4.8 4.8.1

20 4.8.1 4.8.2

186

C.11 lucene release pairs

C.11 lucene release pairs

Pair Number Version 1 Version 2

1 1.2-final 1.3-final

2 1.3-final 1.4.3

3 1.4.3 1.9-rc1

4 1.9-rc1 1.9-final

5 1.9-final 1.9.1

6 1.9.1 2.0.0

7 2.0.0 2.1.0

8 2.1.0 2.2.0

9 2.2.0 2.3.0

10 2.3.0 2.3.1

11 2.3.1 2.3.2

12 2.3.2 2.4.0

13 2.4.0 2.4.1

14 2.4.1 2.9.0

15 2.9.0 2.9.1

16 2.9.1 2.9.2

17 2.9.2 2.9.3

18 2.9.3 3.0.0

19 3.0.0 3.0.1

20 3.0.1 3.0.2

187

Appendix C Version pairs

C.12 weka release pairs

Pair Number Version 1 Version 2

1 3.0.1 3.0.2

2 3.0.2 3.0.3

3 3.0.3 3.0.4

4 3.0.4 3.0.5

5 3.0.5 3.0.6

6 3.0.6 3.1.7

7 3.1.7 3.1.8

8 3.1.8 3.1.9

9 3.1.9 3.2

10 3.2 3.2.1

11 3.2.1 3.2.2

12 3.2.2 3.2.3

13 3.2.3 3.3

14 3.3 3.3.1

15 3.3.1 3.3.2

16 3.3.2 3.3.3

17 3.3.3 3.3.4

18 3.3.4 3.3.5

19 3.3.5 3.3.6

20 3.3.6 3.4

21 3.4 3.4.1

22 3.4.1 3.4.2

23 3.4.2 3.4.3

24 3.4.3 3.4.4

25 3.4.4 3.4.5

26 3.4.5 3.4.6

27 3.4.6 3.4.7

28 3.4.7 3.4.8

29 3.4.8 3.4.9

30 3.4.9 3.4.10

31 3.4.10 3.4.11

32 3.4.11 3.4.12

33 3.4.12 3.4.13

34 3.4.13 3.5.0

35 3.5.0 3.5.1

36 3.5.1 3.5.2

37 3.5.2 3.5.3

Continued on next page

188

C.12 weka release pairs

Continued from previous page

Pair Number Version 1 Version 2

38 3.5.3 3.5.4

39 3.5.4 3.5.5

40 3.5.5 3.5.6

41 3.5.6 3.5.7

42 3.5.7 3.5.8

43 3.5.8 3.6.0

44 3.6.0 3.6.1

45 3.6.1 3.6.2

46 3.6.2 3.7.0

47 3.7.0 3.7.1

48 3.7.1 3.7.2

189

190

	Front Matter
	Contents
	List of Figures
	List of Tables

	Introduction
	Building complex systems that change
	Research questions
	Empirical investigation
	Thesis organization

	Literature Review
	Model of a complex system
	System growth
	Connectivity and the ripple effect
	Regulating change propagation between modules

	Notation used in the thesis
	System structure and evolvability

	Design principles and software evolvability
	Information hiding
	Design rules and the design structure matrix
	Coupling and cohesion
	Discussion

	Measuring cohesion and coupling
	Measuring coupling
	Measuring cohesion
	Empirical validation of cohesion and coupling metrics

	Random models of complexity
	Power-law distributions
	Generating random power-law networks
	Small-world networks

	The ripple effect in scale-free and small-world networks
	The Susceptible, Infective, Removed model
	Empirical studies
	Change propagation through inferred links

	Network analysis of software
	Preferential attachment and source code evolution
	The matching problem
	Summary and discussion
	Research questions revisited

	Tools
	Conceptual overview
	Corpus of software systems
	The Eclipse AST parser
	Parse file format
	Abstract syntax tree example

	CodeNet
	Constructing system graphs
	References to external entities
	Reverse inheritance
	Semgraph file format
	Quality control

	Analysis
	Analysis process
	Semgraph data structure
	Example analysis
	Integration with a computing cluster

	Discussion
	Existing tools
	Toolset evolution

	Scale-free structures and coupling
	Perspectives of degree distributions
	Inlinks, outlinks and combined perspectives
	Within-module versus between-module links
	Link aggregation
	Combining degree distribution perspectives
	Hierarchical links

	Hypotheses
	Proposed model
	Hypothesis 1: Scale-free structure in source code networks
	Hypothesis 2: Scale-free structure and coupling
	Hypothesis 3: Outlink constraints
	Hypothesis 4: Aggregate measures of coupling
	Hypothesis 5: Aggregate outlink distributions

	Experimental design
	Computing module boundaries
	Testing the hypotheses

	Results
	Hypothesis 1
	Hypothesis 2
	Hypothesis 3
	Hypothesis 4
	Hypothesis 5
	Post-hoc analysis for Hypothesis 5

	Discussion
	High coupling caused by node-level interaction
	High coupling caused by aggregate interaction
	Internal validity
	Construct validity
	External validity
	Open research question

	Patterns of change
	Automated Matching Method
	First pass—Applying matchers
	Second pass—Dependency analysis

	Automated Matching Method performance evaluation
	Unmatched classes
	Unmatch rates for individual pairings
	Unmatched classes correlated with coupling
	Discussion

	Measuring change
	Computed measures
	The lifetime of a class

	Analysis of change
	Confounding factors
	Change measures that equal zero
	Correlation of change measures
	Discussion of global observations

	Observed patterns of change
	Pattern classification
	Example classifications
	Pattern frequency

	Discussion

	High coupling and software evolution
	The evolution of inlink coupling
	Hypothesis 6: Distribution of changes to M7
	Testing Hypothesis 6
	Results
	Discussion

	High coupling and the ripple effect
	Criteria for the ripple effect in software
	Hypothesis 7: Identifying ripple effects in software
	Results
	Discussion
	Limitations of this analysis

	Conclusions and Future Work
	Research questions
	Is the structure of software scale-free?
	Does scale-free structure result in high coupling?
	Can the ripple effect be observed in software with high coupling?

	Closing remarks
	Contributions
	Future work
	Ripple effect detection and impact analysis
	Research support and reproducibility

	References
	Example parse file
	System structural measures
	Version pairs
	ant release pairs
	antlr release pairs
	argouml release pairs
	azureus release pairs
	freecol release pairs
	hibernate release pairs
	jgraph release pairs
	jmeter release pairs
	jung release pairs
	junit release pairs
	lucene release pairs
	weka release pairs

