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Patterns of Diagnosed Mathematical Content
and Process Skills in TIMSS-R Across 

a Sample of 20 Countries

Kikumi K. Tatsuoka and James E. Corter
Teachers College, Columbia University

Curtis Tatsuoka
George Washington University

This study used a diagnostic testing approach to compare the mathematics
achievement of eighth-grade students across a sample of 20 countries, ana-
lyzing data from the Third International Math and Science Study–Revised
(TIMSS-R, 1999). Using the rule-space method, student mastery was mea-
sured on 23 specific content knowledge and processing subskills (“attributes”)
underlying students’ item scores, using 23 attributes previously defined
and validated. Mean mastery levels for each attribute were compared for
the 20 selected countries. Clear differences among the countries were found
in patterns of subskill achievement. U.S. students were strong in some content
and quantitative reading skills, but weak in others, notably geometry. Inter-
estingly, success in geometry was found to be highly associated with logical
reasoning and other important mathematical thinking skills across the
sampled countries.

KEYWORDS: international comparisons, mathematics achievement, mathe-
matics problem-solving, TIMSS.

The Third International Math and Science Study–Revised (TIMSS-R), con-
ducted in 1999, is the successor to the 1995 Third International Mathe-

matics and Science Study. The TIMSS-R (1999) contained revised versions of
the 1995 TIMSS items, using the 1999 TIMSS assessment frameworks and
specifications, and collected data solely from eighth-grade students. Thirty-
eight countries participated (Mullis et al., 2001). The data collected are multi-
faceted, including not only achievement data from the actual math and
science test, but also background questionnaires aimed at measuring various
aspects of students, teachers, and schools, and even including videotaped
observations of actual math and science lessons in the various countries. The
TIMSS-R (1999) study also included benchmarking data, providing to states,
school districts, and educational consortia an unprecedented opportunity to
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evaluate the comparative international standing of their students’ achieve-
ment (Mullis et al., 2001).

The TIMSS studies have had political and educational impact. Accord-
ing to Macnab (2000), participating countries have reacted in a variety of
ways to the comparative performance of their students. Other studies have
examined how these reactions have played out in terms of changes to math-
ematics curricula and teaching methods (Macnab, 1999; Robitaille, 1997).
These investigations document that some countries, including Canada,
England, Germany, Japan, Sweden, and the United States, have used TIMSS
results to help plan or implement changes designed to improve their edu-
cational systems.

The first TIMSS study and the TIMSS-R also have had considerable sci-
entific impact, generating much research aimed at understanding differ-
ences between countries in math and science teaching practices and in
student achievement. But because of the huge volume of data collected by
the studies, there is much work still to be done in understanding student per-
formance in math and science in these countries. In particular, few studies
have attempted analyses of students’ underlying performance on the mathe-
matics portion of the TIMSS studies by using cognitive “diagnostic” approaches,
nor have any studies tried to compare differences among countries at this
microlevel. The present article aims to accomplish these two goals, using
a statistical approach called the rule-space method (RSM) developed by
K. Tatsuoka and her associates (e.g., K. Tatsuoka, 1985, 1995; K. Tatsuoka &
M. Tatsuoka, 1987). The RSM is an example of a diagnostic testing approach
to analyzing large-scale tests, one aimed at discovering and measuring
important subskills involved in domain competence.

Recently there has been increased interest in such diagnostic testing
models (e.g., Haertel & Wiley, 1993; Stout, 2002; C. Tatsuoka & Ferguson,
1999; C. Tatsuoka, 2002; Yan, Mislevy, & Almond, 2003), but in mathemat-
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ics education there is a long tradition of attempting to analyze mathematics
ability and achievement into component skills. Fifty years ago, Polya (1954)
described how highly effective mathematicians think. His description of
creative and effective patterns of mathematical thinking is wholly consis-
tent with recent descriptions of effective information processing in math-
ematics problem solving (Pressley, 1995). Polya emphasized that students
should always be attempting to understand when and how particular prob-
lem solutions can be applied, and to determine if they might already know
how to solve the problem at hand. Polya’s perspectives are still relevant
today, and substantial data have accrued to support his theories about
instruction and mathematical thinking (Pressley, 1995). Other studies have
described a variety of thinking skills required in mathematics (Jones & Idol,
1990; Marzano et al., 1988) and the effects of education on cognitive com-
petencies (Pascarella & Terenzini, 1991). Different cognitive models of
learning and teaching mathematics have been developed (Carpenter &
Moser, 1982; Davis, 1992; Greeno, 1991; Schneider & Graham, 1992), and
validated by empirical evidence.

The RSM has been developed for analyzing latent variables, such as
whether or not a student possesses particular pieces of knowledge or cog-
nitive processing and thinking skills required in solving a particular problem.
The RSM has been applied successfully to generate scoring reports pre-
scribing individual weaknesses and strengths for large-scale assessments. It
has also been applied to reading comprehension tests (Buck, Tatsuoka, &
Kostin, 1997) listening (Buck & Tatsuoka, 1998), hands-on tasks in science
(Yepes-Baraya & Allen, 2002), and other mathematics tests (K. Tatsuoka,
Linn, M. Tatsuoka, & Yamamoto, 1988; K. Tatsuoka, 1990, 1995; K. Tatsuoka
& Boodoo, 2000). Because the theoretical foundation of RSM is still relatively
new to the field of educational and psychological measurement, some back-
ground and a brief introduction to basic concepts of the RSM are presented.

Introduction to the Rule-Space Method

In psychometrics and educational measurement, one of the best known
examples of a statistical modeling approach is item response theory (IRT).
Many models of test performance assume some kind of algebraic relationship
on a latent variable (or a few latent variables) to explain observed responses.
In IRT models, logistic functions are used on the latent variable θ (ability) to
explain students’ item responses. The latent variable θ is viewed as ability, or
a trait to perform well on test items. In a statistical modeling approach, it is
crucial to test how well the model fits the observed responses. Various fit sta-
tistics have been developed for this purpose (Glas & Meijer, 2003).

The value of a diagnostic profile that enumerates particular strengths
and weaknesses in individual performance has been recognized by various
investigators (e.g., K. Tatsuoka & M. Tatsuoka, 1997; VanLehn, 1982). How-
ever, to be most valuable, diagnostic profiles should provide information
about how well test takers performed on the underlying knowledge and
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cognitive processing skills required in answering problems. In the rule-
space approach, posited knowledge and thinking skills are termed attri-
butes, and binary attribute patterns that express mastery/nonmastery of
attributes define what are called knowledge states or latent knowledge states.
While physical objects or events in science applications are usually observ-
able, attributes and knowledge states are not observable. Measurement of
such unobservable latent variables can be performed only indirectly from
observable item scores by making inferences about what misconceptions,
leading to what incorrect responses, did a tested individual most likely have.
Given a response pattern, the goal in RSM is to determine the closest knowl-
edge state to that pattern as well as the probability that a test taker’s observed
responses came from that state.

Factor analysis, cluster analysis, and traditional latent class models pro-
duce factors, clusters, and classes, but they are exploratory methods that
merely group observed responses into similar classes or patterns. For this
reason, they may produce solutions with no clear interpretation of the result-
ing groups of items or respondents. Ideally, diagnostic analyses of test results
should be descriptive and objective, uniquely expressing an individual’s state
of knowledge, which must be free from ambiguous interpretations.

To achieve these goals, we need a new methodology that transforms
unobservable knowledge and subskill variables into observable variables.
The RSM transforms unobservable latent variables (attributes) into observ-
able attribute mastery probabilities. Once the RSM results (the attribute mas-
tery probabilities) are estimated, further statistical methods, such as factor
analysis, cluster analysis, hierarchical multi-level analysis, and other multi-
variate analyses, can be applied to these outputs of the RSM analysis.

To explain how RSM works, it is helpful to relate it to statistical pattern
recognition and classification problems, in which an observed pattern will
be classified into one of the predetermined classification groups (Fukunaga,
1990; Ripley, 1996). Typical examples are to enable computers to recognize
handwritten letters or to scan to X-ray images to diagnose whether or not a
tumor is cancerous. For example, the letter recognition problem has 52 pre-
determined groups representing lower and upper cases of 26 alphabetic
characters. These letters are expressed uniquely by 52 binary patterns of fea-
tures. The set of features is predesigned by examining shapes, strokes, and
geometric characteristics of the 52 letters. After this design stage is done, sta-
tistical classifiers are usually estimated. The classifiers classify an observed
input pattern into one of 52 predetermined groups, and compute error prob-
abilities. The group with the smallest error probability is usually taken as the
letter to which the observed input pattern would belong. This general out-
line of a pattern recognition system applies to cognitive diagnosis, as follows:
in a diagnostic analysis of a test, feature variables become attributes and the
52 letters represented by the patterns of the feature variables are analogous
to knowledge states. However, the predetermined groups in the letter recog-
nition example are expressed by observable feature variables, and hence
they are directly measurable. Attributes are feature variables that are impos-
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sible to measure directly, and knowledge states defined by patterns of attri-
butes are also impossible to measure directly.

Therefore, RSM has to be extended to include an additional step to deal
with latent feature variables. K. Tatsuoka (1990, 1991) solved this difficulty
by introducing an item by attribute matrix Q where the cell qjk in a Q matrix
is coded by 1 if item j involves attribute k for answering item j correctly, and
0 if not. Thus, the Q matrix is a cognitive model for test item performance
hypothesized by cognitive researchers, teachers, or other domain experts. It
explains performance on the n observable test items in terms of competen-
cies on k latent attributes. A knowledge state KSm is defined by a (latent)
attribute pattern of 1s and 0s. If a student can use attribute k correctly, then
the kth element of KSm is 1, and 0 if not. It is assumed that the right answer
for item j is obtained if and only if all attributes involved in item j are suc-
cessfully applied. Furthermore, the probability of answering item j correctly
is assumed to be calculated by multiplying the probabilities of correct use of
the involved attributes for item j.

K. Tatsuoka (1991) described an algorithm that generates all possible
knowledge states from a given Q matrix, incorporated in a program called
BUGSHELL (C. Tatsuoka, Varadi, & K. Tatsuoka, 1992). These possible knowl-
edge states generate a set of expected or “ideal” item score patterns, so called
in order to differentiate them from students’ observed item response patterns.
The knowledge states, or equivalently the ideal item score patterns, form
a set of predetermined classification groups in RSM. The unobservable
attribute patterns correspond to ideal item score patterns, which are directly
observable.

One of the unique characteristics of RSM is that it entails developing a
one-to-one correspondence between a subject’s observed item response pat-
tern and the corresponding ideal item score pattern(s). By so doing, we can
make an inference about how well an individual has performed on latent
attributes from his or her performance on observable item responses. Given
a student’s observed item response pattern, statistical classifiers estimate his
or her knowledge state by estimating a mastery probability for each attribute.
In this way a student’s observed item responses are transformed into esti-
mated attribute mastery probabilities. In other words, RSM transforms a data
set of students by item scores into a data set of students by attribute mastery
probabilities. The benefit of this approach is that it allows diagnosis of stu-
dents in terms of very detailed content knowledge and processing skills.

In the present study we apply the RSM to investigate student mastery of
critical knowledge and cognitive processing skills underlying performance on
the TIMSS-R Mathematics achievement test. These skills, including domain
knowledge, cognitive processing skills, and mathematical thinking skills, are
referred to as attributes in applications of the RSM. The attributes used in
the present analyses were developed specifically for the TIMSS-R eighth-
grade mathematics test (Corter & Tatsuoka, 2002).

The present article includes analyses of how well students in different
countries, with different cultures and educational environments, perform on
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the TIMSS math items, and recast this performance in terms of mastery lev-
els on the knowledge, skill, and process attributes. The organization of the
article is as follows. First, the present rule-space analysis is briefly described.
Then, a list of 20 countries to be studied is introduced, and descriptive sta-
tistics on mastery of specific attributes in these countries are presented. Some
of the results are discussed and explored in more detail, for example, evi-
dence concerning particular weaknesses in the U.S. students in geometry and
certain process attributes. Third, a number of composite variable subscales
are defined to summarize patterns of mastery on conceptually related spe-
cific attributes, and used to explore the performance characteristics of several
top-ranked countries. Finally, we discuss how our results relate to findings of
previous researchers, for example, international comparisons of classroom
practices derived from TIMSS video studies.

Method

The present analyses use the rule-space methodology (K. Tatsuoka, 1983,
1985, 1990, 1995, 1997, in press; K. Tatsuoka & M. Tatsuoka, 1987; M. Tatsuoka
& K. Tatsuoka, 1989) to diagnose each student in terms of inferred mastery
of specific “attributes” (knowledge and subskill components) assumed to
underlie test performance. The present work followed the general outline of
any rule-space analysis, as follows. First, a set of underlying cognitive pro-
cessing skills and knowledge believed to be involved in solution of the
TIMSS-R “population 2” (eighth-grade) mathematics test items was identified.
Then, a team of experts coded the test items in terms of which attributes are
required for successful solution of each item, a process that defines the 
Q matrix. After preparation of the data set, the rule-space analysis was per-
formed using special purpose software developed for this purpose. Results
of the RSM include diagnosis of each student in terms of a vector of attribute
mastery probabilities, as well as classification of each student into a closest
knowledge state. In the present article, we used these results of the RSM to
compare mathematics achievement across a sample of 20 countries partici-
pating in TIMSS-R. These steps are described in more detail below.

Identifying Attributes

In order to identify the specific knowledge and subskill attributes required
for successful performance on the TIMSS-R eighth-grade math test items, we
gathered and analyzed written student protocols. In addition, all items were
solved by a team of domain experts. These experts were professors or gradu-
ate students in measurement, all of whom had experience teaching secondary-
school mathematics or college-level introductory statistics courses. Finally, we
interviewed two secondary-school mathematics teachers about the attributes
in an attempt to gauge their validity and usefulness to educators, and used their
feedback to revise the coding scheme. Further detail on the development and
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validation of these attributes is given in Corter and K. Tatsuoka (2002) and
K. Tatsuoka, Corter, & Guerrero (2004).

The set of attributes we developed fall into three general categories:
content knowledge variables, cognitive process variables, and what we term
“skill” or “item-type” variables (Table 1). The content attributes we used are
not unlike the content categories used in the TIMSS-R test framework. The skill
attributes include certain context-specific and format-specific process skills.
This category of skills was deemed necessary because many specific skills
in arithmetic and mathematics are associated closely with certain types of
items. For example, skill attribute S3 involves reading data or understanding
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Table 1
Knowledge, Skill, and Process Attributes Derived to Explain
Performance on Mathematics Items From the TIMSS-R (1999) 

for Population 2 (Eighth Graders)

Content attributes
C1 Basic concepts and operations in whole numbers and integers
C2 Basic concepts and operations in fractions and decimals
C3 Basic concepts and operations in elementary algebra
C4 Basic concepts and operations in two-dimensional geometry
C5 Data, probability, and basic statistics
C6 Measuring or estimating: length, time, angle, temperature, etc.

Process attributes
P1 Translate/formulate equations and expressions to solve a problem
P2 Computational applications of knowledge in arithmetic and geometry
P3 Judgmental applications of knowledge in arithmetic and geometry
P4 Applying rules in algebra
P5 Logical reasoning—includes case reasoning, deductive thinking skills, if-then,

necessary and sufficient, generalization skills
P6 Problem search; analytic thinking, problem restructuring; inductive thinking
P7 Generating, visualizing, and reading figures and graphs
P8 Applying and evaluating mathematical correctness
P9 Management of data and procedures
P10 Quantitative and logical reading

Skill (item type) attributes
S1 Unit conversion
S2 Apply number properties and relationships; number sense/number line
S3 Using figures, tables, charts, and graphs
S4 Approximation/estimation
S5 Evaluate/verify/check options
S6 Patterns and relationships (inductive thinking skills)
S7 Using proportional reasoning
S8 Solving novel or unfamiliar problems
S9 Comparison of two/or more entities
S10 Open-ended items, in which an answer is not given
S11 Understanding verbally posed questions
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relationships from graphs and figures provided in the actual math item. As
another example, proportional reasoning (skill S7) is a process variable, but
this type of reasoning is often associated with a particular format of item. In
contrast, the process attributes are more general skills that may be used across
a wider variety of item types. For example, logical reasoning (process attribute
P5) is used in many types of items, and encompasses several varieties of
logical inference.

Developing the Q Matrix

Once the set of attributes thought to be involved in successful solution of the
items was identified, each actual math item used in the test had to be coded
for the attributes needed to solve it. Here, 163 different test items were used
across the eight forms of the mathematics test booklet. These 163 test items
were each coded by three raters, to specify the attributes involved in solution
of each item. The three coders consisted of two researchers with doctoral
degrees and college teaching experience in statistics and measurement and a
graduate student with a background in measurement. Each of the three raters
coded items independently first, then they met to discuss any discrepancies
(including reviewing student protocols), until a consensus was reached.

One complication that can arise in item coding arises if the raters (or a
single rater) identify several possible strategies for solving the item (e.g., an
algebraic strategy versus plug-in). For the present study, in these cases we
took the approach of coding both strategies, then comparing each solution
to student work and student performance, in an attempt to identify the dom-
inant strategy used by this population (cf. Tatsuoka, 1990).

After consensus was reached on an initial Q matrix, some iterative refine-
ment of the coding scheme was performed. As a start, a linear multiple regres-
sion analysis was performed predicting item difficulties from the coded binary
entries in the Q matrix (that is, using the coded attributes as predictors). Also,
a preliminary RSM analysis was performed using this Q matrix to derive esti-
mated attribute mastery probabilities for each student. Then, descriptive sta-
tistics (including a correlation matrix of the attribute mastery probabilities)
were computed and used to eliminate statistically weak attributes for the final
stage of RSM analysis. Some attributes that were highly correlated were merged
into single attributes. In this way, the final Q matrix was developed.

An example item involving attributes C4, S3, S5, P3, P5, P7, and P9
with the proportion correct of .1025 is given in Figure 1. This problem is
very difficult because it involves P3, P5, P9, and P7.

Selection of the Sample of Countries

For the comparative rule-space analyses, we chose to focus on the following
countries: the United States, Australia, Belgium-Flemish, Canada, Chile, Czech
Republic, England, Finland, Hong Kong, Indonesia, Israel, Italy, Japan, Jor-
dan, Korea, Netherlands, Philippine, Russia, and Turkey. Our selection was
based on several criteria, intended to achieve a diverse sample both cultur-
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ally and in terms of achievement levels. Specifically, the following countries
were selected because they were the six top-achieving countries based on
mean “plausible-value” total achievement scale score: Singapore, Korea,
Hong Kong, Japan, the Czech Republic, and Belgium-Flemish (Mullis et al.,
2001). The United States, Canada, and Australia were all included because
Canada and Australia are similar to the United States in being English-
speaking countries with heterogeneous populations, yet their math ranking
is considerably higher than that of the United States. Chile was selected as a
representative Spanish-speaking country. Several European countries were
selected, including Russia, Italy, Finland, Netherlands, and England. Finally,
Israel and several other Middle Eastern or Islamic countries were selected,
namely, Turkey, Jordan, Indonesia, and the Philippines.

RSM Diagnosis and Classification of Students

Rule-space analyses were run separately for each of the 20 countries. For
each analysis, we used data from only Booklets (i.e., forms) 1, 3, 5, and 7,
because the other booklets showed a “patchy” distribution of attributes (that
is, few or no items measuring certain attributes). Still, we found an insuffi-
cient number of items representing some of the attributes (C6, S1, S9, and
P8) described in Table 1. Because this data sparseness means we cannot esti-
mate these attributes reliably, they were not included in the RSM analysis.

909

    A°             III 
     I            II            

     IV 

(180 – B)° B°

Which two triangles are similar?

A. I and IV
B. I and II 
C. II and III 
D. II and IV 
E. III and IV 

This is a geometry problem….…….…………..….….. C4
Use figures.……..………….……….…….……….….. S4
Must evaluate options to get answer. ………………... S5 
Apply some property to judge “similar or not”...…….. P3
One angle in IV is (180 – B)° > 90°;  A° in I is 90°. 
Since I and II have 3 parallel sides, I and II have the 
same angles. Therefore, two triangles are similar…….. P5 
Any other pairs do not have this property…….………. P9
Comprehend the relationships of figures, such as 
which sides are parallel. Add a line to get (180 – B)°... P7

Figure 1. A sample TIMSS math item, with attribute coding.
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Results

Before comparing the results of estimated attribute mastery probabilities
across countries, we will report some overall descriptive statistics. For the
combined sample (N = 51,435) of students from all 20 countries, the mean
Mahalonobis distance (D 2) value of students’ attribute mastery vectors from
the closest knowledge state was less than .5. For the second closest knowl-
edge state, mean D 2 was approximately 1.0. These mean Mahalonobis dis-
tances are relatively small. Based on the following logic, we adopted a cutoff
criterion of 4.5, judging as a successful classification any Mahalonobis distance
of less than 4.5 from a student’s attribute mastery vector to the nearest knowl-
edge state. The logic behind this criterion is as follows. In general, D 2 may be
modeled by the gamma density function with expectation (β+1)/α = p and
variance (β+1)/α2 = 2p, where p is the dimensionality of the classification
space (Fukunaga, 1990; Hogg & Craig, 1978). Because a RSM analysis defines
a three-dimensional space with orthonormal coordinates, D 2 follows a special
case of gamma, namely the chi-square distribution with 3 degrees of freedom,
hence an expected value of 3 and a variance of 6. Thus, a cutoff of D 2 < 4.5
corresponds to accepting approximately 80% of the expected population
values as satisfactory or not unusual.

Using this criterion for successful classification resulted in an average
99.5% classification rate in these 20 countries. In other words, almost all
observed item response patterns were classified into one of the logically
derived knowledge states from our Q matrix. This finding can be seen as
providing one form of validation for the set of proposed attributes used here,
because it demonstrates that the attributes perform well in explaining eighth-
graders’ performance on the TIMSS-R math items.

Another check on the validity of the proposed attributes was performed
using ordinary multiple regression analysis. To do this, we tested whether the
variance in item difficulties (measured by mean proportion correct values
across all respondents) can be predicted using only information about which
attributes are involved in that item (as specified by the Q matrix). This can be
set up as a regression problem in which the observations are the N = 163
items, and the predictors are the columns of the Q matrix, namely 27 vectors
(attribute variables) with values equal to 1 if the corresponding attribute is
involved in the item being considered, and 0 otherwise. In this regression, we
obtained an adjusted R 2 value of .869 using the present set of attributes. This
result shows that the coded attribute composition of a math item does a good
job of predicting its difficulty.

Comparison of Performance on Single Attributes Across Countries

The descriptive statistics on attribute performance across countries showed
that the standard deviations of attribute mastery probabilities, calculated
within each of the 20 countries, vary greatly. For the most part these dis-
crepancies in variability seem explainable. For example, some countries
showing low standard deviations, such as Hong Kong and Korea, are very
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homogeneous in terms of students, teacher training, and schools, while other
countries showing much larger standard deviations for some attributes have
diversified cultures and distribution of resources.

In order to compare more easily attribute mastery probabilities across
countries, all attribute mastery probabilities were standardized by subtracting
their values from the grand means of each attribute (across the 20 countries)
and dividing by the pooled standard deviation. Since sample sizes range from
a minimum of 1,700 (for the Czech Republic) to a maximum of 4,500 (for the
United States), even small differences between two standardized attribute
scores tend to be significant.

The most difficult attribute (i.e., with the lowest mastery probability)
across the 20 countries is S6, inductive thinking skills. The easiest attributes
are S5 (evaluate and verify options), S3 (using figures and tables), and P1
(translate word expressions into equation or algebraic expressions). By look-
ing into which attributes the students in each of the 20 countries have suc-
cessfully mastered, one can form hypotheses about the skills and values that
countries emphasize in their teaching, curriculum, and culture.

The top five countries excel in the cognitive process variables. Japa-
nese students in particular have the highest mastery probabilities for the most
difficult cognitive processing variables, P5 (deductive thinking), P6 (analyt-
ical thinking), P3 (application of concepts, theories), P9 (management of
processes and data), and S6 (inductive thinking skills). This may be related
to the problem-solving approach used in math teaching in Japanese class-
rooms (Kawanaka & Stigler, 1999). Other examples of very high attribute mas-
tery probabilities can be seen by listing countries that had the maximum mean
performance on specific attributes (Table 2).

Another way to compare attribute performance across countries is to
compare how well a country does on a specific attribute to how well it per-
forms overall as measured by the mean item percent-correct (PC) score. Dis-
crepancies between the specific attribute performance and the general PC
measure may give clues to problems or strengths in a country’s typical
approach to teaching a specific skill or topic. For example, Figure 2 (p. 913)
shows the profile plot across countries for performance on the specific
attribute C4 (geometry) as well as on the mean of standardized item pro-
portion correct (PC) score. Geometry seems to be a relatively weak content
skill area for U.S. students at this grade level, as shown by the fact that the
profile trend for this attribute dips sharply below the relative mean achieve-
ment (PC) line for the United States. In contrast, Russia and Italy are doing
very well on geometry at the eighth-grade level because the profile trend
rises sharply there above the PC curve there.

Figure 3 (p. 914) shows the profile curves of three other content variables:
C1, C2, and C3. The United States performed much better on these than in
geometry. Hong Kong, Netherlands, and Russia performed especially well on
C3 (algebra). The top 11 countries performed nearly equally well on C1 (whole
numbers/integers) and C2 (fractions) but not on C3 (algebra). In contrast,
students in Indonesia, Chile, and the Philippines are doing relatively poorly

Patterns of Diagnosed Mathematical Content and Process Skills in TIMSS-R

911
 at COLUMBIA UNIV on November 19, 2011http://aerj.aera.netDownloaded from 

http://aerj.aera.net


on C2. The students in the four Asian countries (especially Hong Kong) per-
formed well on C3 (algebra). Russia and the United States also had relatively
strong scores in algebra, but Finland, Italy, and England are doing less well.

Defining Composite Attribute Variables to Compare Achievement 
Across Countries

The diagnosis of students in terms of these very detailed content and process
attributes is one of the primary benefits of a rule-space analysis. However,
in order to see larger patterns in the data across a large number of countries,
it can be useful to create composite variables comprised of several specific
attributes that are related either conceptually or statistically. Countries may
then be compared on these composite or summary variables.
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Table 2
Countries With Maximal Mean Achievement on Specific Attributes

Country Maximal on attribute(s)

Aus S4 Approximation/estimation
Bfl C1 Basic concepts, properties, and operations in whole numbers and

integers
C2 Basic concepts, properties, and operations in fractions and decimals
S11 Understanding verbally posed questions

Czk S8 Solving novel or unfamiliar problems
Fin S2 Apply number properties/relationships; number sense/number line
Hkg C3 Basic concepts and operations in elementary algebra

C4 Basic concepts and operations in two-dimensional geometry
Jpn C5 Data, probability, and basic statistics

S6 Patterns and relationships (inductive thinking skills)
P3 Judgmental applications of knowledge in arithmetic and geometry
P5 Logical reasoning—includes case reasoning, deductive thinking

skills, if-then, necessary and sufficient, generalization skills
P6 Problem search: Analytic thinking, problem restructuring, and induc-

tive thinking
Kor C4 Basic concepts and properties of two-dimensional geometry

S3 Using figures, tables, charts, and graphs
P9 Management of data and procedures
P10 Quantitative and logical reading

Nld S5 Evaluate/verify/check options
P7 Generating, visualizing, and reading figures and graphs

Sgr S7 Using proportional reasoning
P1 Translate/formulate equations and expressions to solve a problem
P2 Computational applications of knowledge in arithmetic and geometry
P4 Applying rules in algebra
S10 Open-ended item, in which an answer is not given

Note. Aus = Australia, Bfl = Belgium-Flemish, Czk = Czech Republic, Fin = Finland, 
Hkg = Hong Kong, Jpn = Japan, Kor = Korea, Nld = Netherlands, Sgr = Singapore.
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We created three composite variables based on theoretical grounds and
three based on statistical evidence (i.e., correlations of attributes). The three
conceptually based composite variables consisted of the sum of all nine
process skills (“Process”), the sum of three spatial skills (“Spatial”), and the
sum of three reading skills (“Reading”). These composite variables have obvi-
ous interpretations. We investigated if the Process attribute was too broadly
defined by computing correlations among the nine process skills and exam-
ining them via a principal components analysis with Varimax rotation. This
analysis resulted in the extraction of three components: p1 = (P1, P2, P6, P7,
P10), p2 = (P3, P5), and p3 = (P4, P9). They are summarized as follows:

Process: P1 + P2 + P3 + P4 + P5 + P6 + P7 + P9 + P10
Spatial: C4 + S3 + P7
Reading: S11 + P1 + P10
p1: P1 + P2 + P6 + P7 + P10 (application skills P1, P2; verbal skills P1, P10;

problem search P6; spatial skill P7)
p2: P3 + P5 (logical and abstract reasoning skills)
p3: P4 + P9 (algebraic skills; plus data and complex process management)
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Figure 2. Profile across 20 countries of geometry knowledge (C4)
achievement, with the standardized item proportion correct (PC). Coun-
try codes (alphabetical): Aus = Australia, Bfl = Belgium-Flemish, Can =
Canada, Chl = Chile, Czk = Czech Republic, Eng = England, Fin = Finland,
Hkg = Hong Kong, Ind = Indonesia, Isr = Israel, Ita = Italy, Jor = Jordan,
Jpn = Japan, Kor = Korea, Nld = Netherlands, Phl = Philippines, Rus =
Russia, Sgr = Singapore, Tur = Turkey, USA = United States.
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Table 3 reports the means for these summary variables by country. Profiles
of the summary variables across countries are shown in the following figures.

The first summary variable, Process, represents the sum of the attribute
mastery probabilities for the nine process-skill attributes. Interestingly, this
summary score carries much of the variance of the original total mean item
scores of the test, as seen by the fact that the ordering of the highest countries
is the same by both types of summary score. Specifically, by either mean item
PC score or by the process variables, summary variable, the ordering of the
top six countries is: Singapore, followed by Hong Kong, Korea, Japan,
Belgium-Flemish, and the Czech Republic. This ordering can be seen in Fig-
ure 4 (p. 916), which plots mean item PC across the countries, ordered by this
score. The trend line for the Process composite across the 20 countries is
monotonic with the line for PC.

Figure 5 (p. 916) shows the spatial skills composite variable, Spatial,
which consists of C4 (geometry), S3 (using figures/graphs), and P7 (gener-
ating figures/graphs). Hong Kong shows the highest mean performance on
this composite. The seven top-ranking countries performed this skill equally
well, followed by Australia, Canada, Russia, Finland, and England. The United
States dips sharply on this composite variable, like Israel and Jordan. The
profile curve for this composite variable is almost identical to that of geometry
alone. On the composite skill, Reading, Japan dips sharply and Russia dips
moderately.
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codes, see Figure 2.

 at COLUMBIA UNIV on November 19, 2011http://aerj.aera.netDownloaded from 

http://aerj.aera.net


Figure 6 (p. 917) shows the profiles of the three process subcomponents:
p1 = (P1, P2, P6, P7, P10), p2 = (P3, P5), and p3 = (P4, P9). The curve for the
overall Process composite is also given for reference. It is clear from the fig-
ure that students in Singapore, Korea, and Hong Kong performed at a high
level on p3, consisting of algebraic skills and complex data/procedure man-
agement skills. However, they performed relatively less strongly on p1 (con-
sisting of P1, P2, P6, P7, P10) and p2 (consisting of P3, P5). We can conclude
that Singapore, Korea, and Hong Kong students achieve their high mean per-
formance mainly by mastering algebraic skills and complex management skills.
England, Finland, Australia, Canada, and Netherlands were weaker on p3
(algebra/complex management) than on p1. On p2, abstract judgment and
logical reasoning skills, Japanese students achieved the highest. The U.S. stu-
dents did not do well on p2, in fact ranking 17th in the sample of countries. It
is important to note that U.S. students did relatively well on C3 (algebra),
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Table 3
Standardized Means, by Country, of Defined 

Composite Achievement Variables

Country Process Spatial Reading F1 F2 F3

Sgr .48 .43 .38 .45 .37 .70
Kor .45 .49 .32 .40 .40 .64
Hkg .44 .51 .30 .39 .37 .66
Jpn .39 .45 .12 .31 .51 .49
Bfl .38 .50 .34 .38 .37 .39
Czk .28 .45 .25 .34 .20 .23
Nld .26 .45 .29 .32 .23 .13
Aus .17 .25 .20 .28 .09 −.03
Can .16 .24 .21 .26 .03 .04
Rus .12 .24 .13 .11 .09 .18
Fin .10 .28 .32 .32 −.02 −.32
Eng .00 .19 .11 .22 −.10 −.46
USA −.03 −.16 .15 .11 −.33 −.07
Ita −.06 .08 −.11 −.06 −.02 −.13
Isr −.14 −.15 .01 −.09 −.15 −.24
Jor −.30 −.15 −.38 −.42 −.10 −.22
Tur −.36 −.60 −.26 −.50 −.11 −.27
Ind −.48 −.67 −.48 −.51 −.70 −.21
Chl −.50 −.62 −.48 −.45 −.39 −.71
Phl −.74 −.94 −.83 −.98 −.18 −.67

Top country Sgr Hkg Sgr Sgr Jpn Sgr

Note. Process = sum of all nine cognitive process variables; Spatial = C4 + S3 + P7; 
Reading = S11 + P1 + P10; F1 = P1 + P2 + P6 + P7 + P10; F2 = P3 + P5; F3 = P4 + P9. Country
codes (alphabetical): Aus = Australia, Bfl = Belgium-Flemish, Can = Canada, Chl = Chile, 
Czk = Czech Republic, Eng = England, Fin = Finland, Hkg = Hong Kong, Ind = Indonesia, 
Isr = Israel, Ita = Italy, Jor = Jordan, Jpn = Japan, Kor = Korea, Nld = Netherlands, 
Phl = Philippines, Rus = Russia, Sgr = Singapore, Tur = Turkey, USA = United States.
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-1.20

-1.00

-.80

-.60

-.40

-.20

.00

.20

.40

.60

sgr kor hkg jpn bfl czk nld aus can rus fin eng usa ita isr jor tur ind chl phl

Spatial Reading

Figure 5. Profiles across 20 countries of the composite variables Spa-
tial, representing the sum of skills C4, S3, and P7, and Reading, repre-
senting the sum of S11, P1, and P10. For country codes, see Figure 2.

 at COLUMBIA UNIV on November 19, 2011http://aerj.aera.netDownloaded from 

http://aerj.aera.net


C1 (numbers), and p1, but not well on C4 (geometry) and p2 (the logical rea-
soning skills). A natural question arises—is there a connection between the
relative weakness of U.S. students on geometry and on higher order thinking
skills, or are these two areas that just happen to be less effectively taught at or
before this grade level in the United States? We will return to this issue later.

Principal Components Analysis of All Attribute Means

The dimensionality of the set of attributes was explored via a principal com-
ponents analysis of the matrix of mean standardized attribute mastery proba-
bility scores across the 20 countries. Because the results are based on the
correlations between mean attribute vectors across the 20 countries, the results
are affected by profile shape but not by overall difficulty level. Evidence was
found for four dimensions using the criterion of number of eigenvalues greater
than 1. A Varimax rotation with Kaiser normalization converged in 12 itera-
tions. The resulting components matrix is given in Table 4. Using a cutoff of
.55 for interpretation purposes, the first component consists of attributes C2,

917

-1.20

-1.00

-.80

-.60

-.40

-.20

.00

.20

.40

.60

.80

sgr kor hkg jpn bfl czk nld aus can rus fin eng usa ita isr jor tur ind chl phl

Process p1(1,2,6,7,10) p2(3,5) p3(4,9)

Figure 6. Profiles across 20 countries of the composite variable
Process representing the sum of all process skills, with the mean stan-
dardized scores of three components obtained from a principal compo-
nents analysis with Varimax rotation performed on the nine process
variables. For country codes, see Figure 2.

 at COLUMBIA UNIV on November 19, 2011http://aerj.aera.netDownloaded from 

http://aerj.aera.net


S3, P1, P6, and S10, with large coefficients for P6 (problem search) and P1
(translating words to algebraic equations). The second component consists of
attributes C1, C3, C5, S6, P2, and P4. It can be characterized by C3 (algebra),
P4 (algebraic skills), and C5 (data, probability, statistics). The third component
consists of C4, S7, P3, P5, and P9, with larger coefficients for P3 (judgmental
applications of knowledge) and S7 (proportional reasoning). The fourth and
last component consists of S2, S4, S5, and P10. Attribute S11 did not show up
in any component with a coefficient larger than .55, but it appeared with a
coefficient of .54, loading on the first component. The first component includes
P1 (translate equations and expressions), and the third component includes
C4 (geometry) and P5 (logical reasoning). Geometry (C4) also appears in the
first component (with a weaker coefficient than in component 3), which is
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Table 4
Rotated Component Matrix From the Principal Components Analysis of

All Attributes, Performed on Mean Attribute Mastery Probability 
Profiles Across a Sample of 20 Countries

Attribute description F1 F2 F3 F4

C2: Fractions 0.66
S3: Figures, tables, and graphs 0.68
P6: Problem search, analytical thinking skills 0.73
P1: Translate words to equations and expressions 0.76
S11: Understanding verbally posed problems 0.54
S10: Open-ended items 0.57 0.56

C1: Whole numbers and integers 0.75
C3: Elementary algebra 0.71
C5: Data, probability, and statistics 0.75
S6: Recognize patterns and their relations 0.62
P2: Computational applications 0.74
P4: Apply rules to solve equations, derive algebraic 

expressions 0.61

C4: Geometry 0.57 0.65
S7: Proportional reasoning 0.78
P3: Judgmental applications of knowledge and concepts 0.73
P9: Executive control, manage data, process 0.71
P5: Logical reasoning skills 0.65

S2: Number properties and relations 0.84
S3: Figures, tables, and graphs 0.59 0.68
S4: Approximation and estimation 0.91
S5: Evaluate and verify options 0.75
P7: Generating, visualizing and reading graphs, 0.59 0.62

figures, tables
P10: Quantitative and logical reading 0.80

Note. Only component loadings above a cutoff of .50 are shown.
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characterized by S3 (using figures, tables, and graphs). S3 also appeared in the
fourth component with P7 (spatial skills). The fourth component includes
number sense and properties (S2) and the approximation/estimation attribute
(S4), evaluation skills (S5), and quantitative and logical reading skills (P10).

It is interesting that geometry skill loads on the same component as
some of the important mathematical thinking skills, namely P5, P3, and P9.
That suggests that the observation that U.S. students are relatively weak on
both these skills is not coincidence, but may be due to some meaningful cor-
relation between these skills. Geometry also relates closely to proportional
reasoning skills, which can be argued to be an important thinking skill in
everyday life, and also may be aided by spatial reasoning. On the other hand,
algebra (C3) loads on the same components as the important algebraic and
arithmetic computational skills, P2 and P4.

Figure 7 underscores that U.S. students did not perform well on geome-
try (C4) and the higher level mathematical thinking skills attributes P5, P3, P9,
and S7, although they had relatively high achievement in algebra (C3), approx-
imation and estimation (S4), and quantitative and logical reading (P10).

It was unexpected to find that algebra did not correlate with these impor-
tant mathematical thinking skills. However, it did correlate highly with C1, C5,
S6, P2, and P4, which involve the computational application of content knowl-
edge and algebraic computational skills. Along with the finding, described

Patterns of Diagnosed Mathematical Content and Process Skills in TIMSS-R
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above, that geometry does correlate highly with the attributes measuring
higher order mathematical thinking, this raises the question of whether geom-
etry might be a gateway skill to certain higher order mathematical and logi-
cal reasoning skills, just as algebra has long been considered a gateway skill
in applied mathematics and technical fields.

In order to explore this unanticipated result, we examined the items
requiring C3, C4, and P5, and found that the items involving geometry were
slightly more difficult than the items involving algebra, with mean proportions
correct of .44 (31 items) and .41 (38 items), respectively. However, the geom-
etry items that involve P5 (logical reasoning) were easier than the algebra
items that involve P5, .32 (14 items) versus .28 (11 items), respectively. These
statistics suggest that for middle-school students, geometry may be a better
topic than algebra with which to teach important mathematical thinking skills.
While it is obvious that algebra is important as a gateway to mathematics, the
content of elementary algebra suitable to this age group may not include
opportunities to teach challenging mathematical thinking skills. Since the
Asian and some European countries in this sample are teaching mathemati-
cal thinking skills very well (as can be seen in Figure 6), we may be able to
teach U.S. children these higher level mathematics thinking skills better than
we are doing now.

Cluster Analysis of Countries

As another way of finding general patterns of attribute mastery across coun-
tries, a type of cluster analysis was performed on the standardized attribute
mean vectors for the 20 countries. Specifically, the correlation between each
pair of countries was computed across the 23 attributes, plus the standardized
percent correct. Then, an additive tree was fit to the matrix of correlations
among countries, using the GTREE program (Corter, 1998). The resulting tree
accounts for 72% of the variance in the correlations and is shown in Figure 8.
The root for the tree in Figure 8 is selected so as to minimize the variance of
the distances from the root to the leaves.

Four distinct branches or clusters are apparent in the tree. At the top is
a cluster consisting at its core of Singapore, Korea, and Hong Kong. Japan
and Belgium-Flemish then join this cluster, followed by the Czech Republic
and then the Netherlands. These are the highest performing countries. The
next cluster consists of Italy and Jordan, joined by Russia, a cluster that has
no obvious interpretation. The third cluster consists of England and Finland,
joined by Australia, Canada, and then finally the United States. Note that all
of these except Finland have English as their national language and share
some historical and cultural ties. Finally, the fourth cluster consists of two
pairs: Turkey joins Indonesia (both predominately Muslim countries), and
Chile joins with the Philippines (both Catholic countries that are former Span-
ish colonies). These two pairs are then joined by Israel. Examination of these
patterns of similarity among countries’ achievement profiles suggest that pat-
terns of student achievement are influenced at least in part by shared culture

Tatsuoka, Corter, & Tatsuoka
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or language. Whether these cultural commonalities are also reflected in school
and curriculum practices may be a fruitful avenue for future investigations.

Summary and Discussion

The present results demonstrate that the investigation of microlevel cognitive
processing, mathematical thinking skills, and knowledge can lead us to new
findings and provide us with insights into problems in educational practice.
RSM is a method that researchers can use to implement and test their cogni-
tive models of educational skills, thereby providing information that can be
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Figure 8. Additive tree of the correlations of pairs of countries across
23 attribute means plus the standardized proportion correct (PC). Pro-
portion of variance accounted for (PVAF) = .72. For country codes, see
Figure 2.
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useful for diagnosis of students and the improvement of educational practice.
Since RSM, unlike other methods using statistical modeling approaches, is
a pattern analysis technique requiring only weak assumptions, the model
can be applied widely. RSM does incorporate the assumption that a student
obtains the correct answer to an item if and only if all attributes involved in
the item are applied correctly. RSM also assumes that the density function
of the knowledge states follows a normal distribution.

Note that a RSM analysis converts a data set of performance on specific
test items for each student into an output vector of attribute mastery proba-
bilities. One advantage to this transformation is that it allows merging the
performance data for several different tests to a single data set of students by
attributes, as long as tests share the same set of attributes. This property of
the RSM is particularly useful for the sampling design of the TIMSS studies,
because the RSM results from several booklets can be merged into a single
data set of students by attribute mastery probabilities.

Our results show that high-achieving countries in the eighth-grade TIMSS-
99 mathematics assessment attained their level of performance in different
ways. For example, Singapore students obtained the top performance on
TIMSS mainly by showing excellence in reading and computational skills.
Japanese students demonstrated excellent higher level thinking skills, while
Belgian students achieved high scores through strength in fractions and pro-
portional reasoning skills. Hong Kong and Korean students show relatively
balanced knowledge and processing skills. In contrast, students in the indus-
trialized countries that were not grouped into the highest achieving cluster
(see Figure 8) tend to show weaker scores in these higher level mathemati-
cal thinking skills. These industrialized countries in lower-achieving sub-
groups include Russia, Italy (in the second cluster), Canada, Australia, Finland,
England, United States (in the third cluster), and Israel (in the fourth cluster).
These higher level skills are extremely important for students to master in order
to succeed at study or employment in science and technology fields.

Unlike most other industrialized countries, U.S. students also did not per-
form well on the content area of geometry. Since geometry here correlated
highly with the important mathematical skills S7 (proportional reasoning), P3
(judgmental application of knowledge, concepts, properties), and P9 (man-
aging data and processing skills), geometry may be something of a gateway
skill to the teaching of higher order mathematics thinking skills. This may be
because geometry is a domain that serves as an effective context in which to
teach logical reasoning and higher level judgmental skills.

These findings suggest that the curriculum in the United States should
put more emphasis on teaching geometry, because geometry may enable
teaching of important mathematical thinking skills needed in physical sci-
ence and engineering. These fields are of course extremely important in
maintaining a technological edge in global industries. Surprisingly, algebra
did not correlate with these mathematical thinking skills but was related to
computational skills. Thus, educators concerned with designing effective
mathematics curricula might ask: Is the emphasis on algebra in current U.S.

Tatsuoka, Corter, & Tatsuoka
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mathematics curricula sufficient to effectively teach logical reasoning and
higher level judgmental skills to this age group (eighth graders)? Also, can
aspects of U.S. curricula, textbooks, or teaching practices be found that seem
to be related to these weaknesses in U.S. students?

Analyses of the TIMSS video studies of international classroom practices
(e.g., Hiebert & Stigler, 2000; Kawanaka & Stigler, 1999; Schumer, 1999;
Stigler, Gonzales, Kawanaka, Knoll, & Serrano, 1999) offer some evidence
that these differences among countries in higher order mathematics thinking
skills may be due to differences in teaching practices. In addition, it has been
shown that learning which takes place outside of regular instruction hours
can have a dramatic influence on the learning processes and learning suc-
cess (Chen & Stevenson, 1995) of students.

Using the TIMSS video data, Kawanaka and Stigler (1999) investigated
teachers’ use of questions in eighth-grade mathematics classrooms in their
video study. They concluded that teachers dominated conversation in the
classroom in countries such as Japan, Germany, and the United States, and
students’ conversation was mostly in the form of responses to teacher ques-
tions. Interestingly, teachers in these three countries asked different kinds of
higher order questions, apparently reflecting differing pedagogical goals. Ger-
man teachers often asked students to explain what they know and what they
thought, but the information tended to be elicited and evaluated by teachers.
Japanese teachers emphasized divergent thinking in problem solving and the
solution of open-ended problems. For example, students were asked to solve
nonroutine problems entirely on their own, using any methods they want to
use. The students were encouraged to think about how to solve the prob-
lem rather than actually solving the problem. “(Japanese) teachers let stu-
dents go through the process of identifying a problem, investigating solution
methods, shared individual thoughts and correctively arriving at a conclusion”
(Kawanaka & Stigler, 1999, p. 277). Kawanaka and Stigler also concluded that
mathematics instruction in the United States emphasizes mastery of principles
and procedures and the production of correct answers, despite reform ideas
that encourage teachers to shift their instruction toward nonroutine problem
solving.

It is also true that curriculum studies have established that U.S. text-
books include far more topics than is typical internationally and are consid-
erably less focused than comparable textbooks in other countries (Schmidt
et al., 1999). The video studies by Stigler and his associates also concluded
that U.S. teachers tend to teach less advanced topics than Japan and Ger-
many, tend to splinter their lessons into many small activity components, and
spend more class time on homework (Jakwerth, 2004). Teaching geometry
may require more focus on a few carefully selected topics than current text-
books do, and may need to go conceptually deeper, in order to teach math-
ematical proof skills. Thus, it may be that geometry is an area in which such
higher order skills can easily be learned or applied. If this is true, then it
seems desirable that math curricula in junior high schools in the United States
be modified to increase the time devoted to teaching geometry.
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Broad surveys and investigations of math achievement across a large sam-
ple of countries, like the present one, can be interesting to illuminate patterns
of attribute achievement across countries. However, useful insights concern-
ing curricula, schools, and teaching practices may emerge more easily via in-
depth investigation of only a few countries at a time. By so doing, one can go
deeper into the effects of culture and educational systems, making it easier to
extract useful information to improve education internationally.
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