
Patterns of Enterprise Application Architecture

Martin Fowler
The Addison-Wesley Signature Series
2003
525 pages
Ref: http://nida.se/patterns/poeaa/index.html

A. Domain Logic Patterns

1. Transaction Script (pp 100-115)

Goal: Organizes business logic by procedures where each procedure handles a single
request from the presentation.

How:
abstract class TransactionScript {
 abstract void run()
}

2. Domain Model (pp 116-124)

Goal: An object model of the domain that incorporates both behavior and data.

3. Table Module (pp 125-132)

Goal: A single instance that handles the business logic for all rows in a database table or
view.

4. Service Layer (pp 133-142)

Goal: Defines an application's boundary with a layer of services that establishes a set of
available operations and coordinates the application's response in each operation.

B. Data Source Architectural Patterns

 When the database is the master model.

CREATE TABLE PERSON (
 ID : INTEGER
 LAST_NAME : VARCHAR()
 ..
)

5. Table Data Gateway (pp 144-151)

Goal: An object that acts as a Gateway to a database table. One instance handles all the
rows in the table.

How:
class PersonGateway {
 find(int) : ResultSet
 findWithLastName(String) : ResultSet
 update(id, name)
 insert(id, name)
 delete(id)
}

6. Row Data Gateway (pp 145-159)

Goal: An object that acts as a Gateway to a single record in a data source. There is one
instance per row.

How:
class PersonFinder {
 find(id) : Person
 findWithLastName(String) : Person[]
}

class Person {
 int id;
 String lastName;
 insert()
 update()
 delete()
}

7. Active Record (pp 160-164)

Goal: An object that wraps a row in a database table or view, encapsulates the database
access, and adds domain logic on that data.

How:
class Person {
 int id;
 String lastName;

 //mapper methods
 insert();
 update();
 delete();

 //behavioral methods
 getExemption();
 isFlaggedForAudit();
 getTaxableEarnings();
}

Same as Row Data Gateway, but add behavioral methods. Good if domain logic is not
too complex.

8. Data Mapper (pp 164-181)

Goal: A layer of Mappers that movers data between objects and a database while keeping
them independent of each other and the mapper itself.

How:
class Person {
 int id;
 String lastName;

 //behavioral methods
 getExemption();
 isFlaggedForAudit();
 getTaxableEarnings();
}

abstract class AbstractMapper {
 //mapper methods
 public abstract insert();
 public abstract update();
 public abstract delete();
 protected find(id);
 protected load();
}

class PersonMapper extends AbstractMapper {
 Person person;
 String tablename;
}

Advantage: object model and database schema may evolve independently.

C. Object-Relational Behavioral Patterns

9. Unit of Work (Transaction) (pp 184-194)

Goal: Maintains a list of objects affected by a business transaction and coordinates the
writing out of changes and the resolution of concurrency problems.

Unit of works follow the ACID principles:
• A tomicity: everything is committed or everything is rolled back
• C onsistency: the system must be in a consistent, non-corrupt state just before the

start of the transaction and right after its completion.
• I solation: the changes are not visible to any other transaction until the transaction

successfully commits.
• D urability: after the commit, changes are persistent.

How:

Essential if objects are persisted in a DBMS; useful otherwise.

Instead of updating the DBMS table at each change in the object model (which leads to
lots of DB calls), register objects in a cache and perform the change at the commit time.

Advantages:
• Centralize the DB calls in one place, the commit() method
• Undo/Redo easy to implement once we have defined a "unit of work"

10. Identity Map (pp 195-199)

Goal: Ensures that each object gets loaded only once by keeping every loaded object in a
map. Looks for objects using the map when referring to them.

11. Lazy Load (pp 200-214)

Goal: An object that doesn't contain all the data you need but knows how to get it

D. Object-Relational Structural Patterns

 When the object model is the master model.

12. Identity Field (pp 216-235)

Goal: Saves a database ID in an object to maintain identity between an in-memory object
and a database row.

Variants:
• if Person() constructor is public, generates the key and stores in the DB.
• if Person() constructor is private, the find() method looks for a key generated by

the DBMS (e.g. Oracle SEQUENCE data type).

Recommendations:
• Prefer meaningless key (a surrogate ID) to meaningful key (eg: a U.S. Security

Number).
• Prefer simple key (one column) to compound key (on two or more columns).
• Prefer database-unique key to table-unique key.
• Prefer long integer type to String type.

13. Foreign Key Mapping (pp 236-247)

Goal: Maps an association between objects to a foreign key reference between tables.

How (with single-value association) :
//classes (the master model)
class Artist {
}

class Album {
 Artist artist;
}

//the schema generated from the OO model
create table ARTIST (
 long ID
)

create table ALBUM (
 long ID,
 long ARTIST_ID
)

With a collection of objects, the reference is reversed:
//classes (the master model)
class Track{
}

class Album {
 Track[] tracks;
}

create table TRACK (
 long ID,
 long ALBUM_ID
)

create table ALBUM (
 long ID,
)

Limitation: many-to-many association not supported (see Association Table Mapping)

14. Association Table Mapping (pp 248-261)

Goal: Saves an association as a table with foreign keys to the tables that are linked by the
association.

How:
//classes (the master model)
class Skill {
}

class Employee {
 //the same skill can be shared
 //among employees
 List<Skill> skills;
}

//the schema generated from the OO model
create table SKILL (
 long ID (PK)
)

create table EMPLOYEE (
 long ID (PK)
)

create table SKILL-EMPLOYEES (
 SKILL_ID long,
 EMPLOYEE_ID long,
 PK(SKILL_ID, EMPLOYEE_ID)
)

 No: the table SKILL-EMPLOYEES as no ID, because has no corresponding in-memory
object. The PK is the compound of the two FKs.

15. Dependent Mapping (pp 248-267)

Goal: Has one class perform the database mapping for a child class.

How:
//a track cannot exist w/o its album
class Track{
 protected Track(Album owner);
}

class Album {
 Track createTrack() {
 new Track(this);
 }
}

create table TRACK (
 long ID,
 long ALBUM_ID,
 PK(ID, ALBUM_ID)
)

create table ALBUM (
 long ID,
)

16. Embedded Value (pp 268-271)

Goal: Maps an object into several fields of another object's table.

How:
class Order{
 Address billTo,
 Address shipTo
}

class Address {
 int civicNumber,
 String streetName,
 String city,
 String ZIPCode
}

CREATE TABLE ORDER (
 BILL_TO_CIVIC_NUMBER,
 BILL_TO_STREET_NAME,
 BILL_TO_CITY,
 BILL_TO_ZIP_CODE,
 SHIP_TO_CIVIC_NUMBER,
 SHIP_TO_STREET_NAME,
 SHIP_TO_CITY,
 SHIP_TO_ZIP_CODE,
)

Advantage: eliminate joint operations in a relational database.

17. Serialized LOB (pp 272-277)

Goal: Saves a graph of objects by serializing them into a single large object (LOB),
which it stores in a database field.

How:
class Customer{
 Department[] getDepartments()
}

class Department {
 Department getParent()
 Department[] getChildren()
}

CREATE TABLE CUSTOMERS (
 DEPARTMENTS : BLOB
)

Advantage: eliminate a graph of small database rows:

Inconvenient: the department structure only visible in the object side (hidden in the
relational database).

18. Single Table Inheritance (pp 278-284)

Goal: Represents an inheritance hierarchy of classes as a single table that has columns for
all the fields of the various classes.

How:

Strengths:
• No joint in retrieving data (fast).
• Refactoring the class model by moving a field upward or downward in the

hierarchy does not affect the database.
Weaknesses:

• Some columns are irrelevant depending PLAYER_TYPE (wasted space).
• Table may have too many columns; name conflict may occur.

19. Class Table Inheritance (pp 285-292)

Goal: Represents an inheritance hierarchy of classes with one table for each class.

How:

Strengths:
• All columns are relevant for each row: no wasted space
• The database model reflects the OO model (easy to understand)

Weaknesses:
• You need to touch multiple tables to load an object: many joints (slow)
• Any refactoring in the OO model affects the database design
• The supertype (PLAYER) may become a bottleneck because they have to be

accessed frequently.

20. Concrete Table Inheritance (pp 293-301)

Goal: Represents an inheritance hierarchy of classes with one table per concrete class in
the hierarchy.

How:

 Strengths:
• Each table is self-contained and has no irrelevant fields (no wasted space)
• There are no joins to do when reading the data (fast)

Weaknesses:
• PKs can be difficult to handle.
• You can't enforce database relationship to abstract classes.
• If superclass field changes, you need to change each table that has this field

because the superclass field is duplicated across the tables.
• A find on the superclass forces you to query all the tables (e.g. Select * from

<tables> where name equals "Smith").

21. Inheritance Mappers (pp 302-304)

Goal: A structure to organize database mappers that handle inheritance hierarchies.

E. Object-Relational Metadata Mapping Patterns

22. Metadata Mapping (pp 306-304)

Goal: Holds details of object-relational mapping in metadata.

How:
class DataMap {
 Class domainClass,
 String tableName,
 ColumnMap[] columns,
}

class ColumnMap {
 String fieldName,
 String columnName,
}

23. Query Object (pp 316-321)

Goal: An object that represents a database query.

How:
class Query {
 Criterion[] criteria; //linked by AND

 addCriterion(criterion);
}

class Criterion{
 String operator = "<",
 String field = "salary",
 Object value = 50;
}

How (most sophisticated):
class Query {
 ICriterion criterion;

}

interface ICriterion{
}

class SimpleCriterion -> ICriterion {
 String operator = "<",
 String field = "salary",
 Object value = 50;
}

class CompoundCriterion -> ICriterion {
 booleanOperator {OR, AND, XOR}
 leftOperand: ICriterion,
 rightOperand: ICriterion,
}

Advantage: hides SQL queries, changing column names does not affect Java code.

24. Repository (pp 322-327)

Goal: Mediates between the domain and the data mapping layers using a collection-like
interface for accessing domain objects.

How:
abstract class Repository {
 protected List matching(Criteria);
}

class RelationalStrategy extends Repository {
}

class InMemoryStrategy extends Repository {
}

F. Web Presentation Patterns

25. Model View Controller (pp 330-332)

Goal: Splits user interface interaction into three distinct roles.

 Advantages:
• Different concerns. Often people prefer one area to another and they specialize in

one side of the line.
• Multiple presentations (rich client, web browser, command-line interface) for the

same model.
• Nonvisual objects easier to test than visual ones; test domain logic w/o awkward

GUI scripting tools.

26. Page Controller (pp 333-343)

Goal: An object that handles a request for a specific page or action on a Web site.

How:
client (web browser) class PageController {

 //handle HTTP get and post

 //decide which model and
 //view to use
}

class Model {
}

class View {
 //generate HTML
}

27. Front Controller (pp 344-349)

Goal: A controller that handles all requests for a Web site.

How:
class Handler {
 doGet();
 doPost();
}

interface ICommand {
 process()
}

class Command -> ICommand {
}

28. Template View (pp 350-360)

Goal: Renders information into HTML by embedding markers in an HTML page.

29. Transform View (pp 361-364)

Goal: A view that processes domain data element by element and transforms it into
HTML.

30. Two Step View (pp 365-378)

Goal: Turns domain data into HTML in two steps: first by forming some kind of logical
page, then rendering the logical page into HTML.

31. Application Controller (pp 379-386)

Goal: A centralized point for handling screen navigation and the flow of an application.

G. Distribution Patterns

32. Remote Facade (pp 388-400)
Goal: Provides a coarse-grained facade on fine-grained objects to improve efficiency
over a network.

33. Data Transfer Object (pp 401-413)
Goal: An object that carries data between processes in order to reduce the number of
method calls.

H. Offline Concurrency Patterns

34. Optimistic Offline Lock (pp 416-425)
Goal: Prevents conflicts between concurrent business transactions by detecting a conflict
and rolling back the transaction.

Optimistic assumes that the chances of conflict is low: it is not likely that multiple users
to work with the same data in the same time.

How:
WriteTransaction tx = session.createWriteTransaction();

try {
 data.write(tx, newvalue); //throw exception if data is being written by another user
 tx.commit();
} catch (DbException ex) {
 tx.rollback(); //data set back to oldvalue
}

35. Pessimistic Offline Lock (pp 426-437)
Goal: Prevents conflicts between concurrent business transactions by allowing only one
business transaction at a time to access data.

Pessimistic assumes that the chances of conflict is low: it is likely that multiple users to
work with the same data in the same time.

Different strategies:
• Exclusive write lock: no more than one write transaction in the same time.

Acceptable for non-critical operations.
• Exclusive read-lock: no more than one transaction (read or write) in the same

time.
• Read/write lock: a write lock blocks either write or read transactions; concurrent

read locks are acceptable (the best strategy, but the most complicated to
implement).

How:
try {
 //throw ConcurrencyException if Data.class locked by another user
 WriteTransaction tx = session.createWriteTransaction(data.class);
 data.write(tx, newvalue);
 tx.commit();
} catch (ConcurrencyException ex) {
 //report exception
}

36. Coarse-Grained Lock (pp 438-448)
Goal: Locks a set of related objects with a single lock.

How:
class Version {
 int ID;
 static Version create(); //increment id
 static Version load(id);
}

class Customer {
 Version version;
 Address[] addresses;
}

class Address {
 Customer owner;
 Version version = owner.version;
}

37. Implicit Lock (pp 449-453)
Goal: Allows framework or layer supertype code to acquire offline locks.

How:
class BusinessTransaction {
 HibernateTransaction tx_m;

 BusinessTransaction() {
 tx_m = new HibernateTransaction();
 }
 ..

 void commit() {
 tx_m.commit();
 }
}

HibernateTransaction {
 ...
}

I. Session State Patterns

38. Client Session State (pp 456-461)
Goal: Stores session state on the client.

39. Database Session State (pp 462-464)
Goal: Stores session data as committed data in the database.

J. Base Patterns

40. Gateway (pp 466-472)
Goal: An object that encapsulates access to an external system or resource.

41. Mapper (pp 473-474)
Goal: An object that sets up a communication between two independent objects.

42. Layer Supertype (p 475)
Goal: A type that acts as the supertype of all types in its layer.

43. Separate interface (pp 476-479)
Goal: Defines an interface in a separate package from its implementation.

44. Registry (pp 480-485)
Goal: A well-known object that other objects can use to find common objects and
services.

45. Value Object (pp 486-487)
Goal: A small simple object, like money or a date range, whose equality isn't based on
identity.

How:
class Address {
 //fields: civic number, street name, etc..

 public boolean equals(Object other) { //overrides java.lang.Object
 return (other instanceof Address) && (equals(Address)other);
 }

 public boolean equals(Address addr) {
 compare fields..
 }

 public int hash() { //everytime we define equals(), we must redefine hash()
 }
}

46. Money (pp 488-495)
Goal: Represents a monetary value.

How:
class Money {
 //amount of cents, or the smaller base unit, enough to store 92 223 720 G$..
 long amount_m;
 Currency currency;

 //amount in dollars
 Money(long amount, currency) {
 amount_m = amount * centFactor();
 }

 Money(double amount, currency) {
 amount_m = Math.round(amount * centFactor());
 }

 Money(double amount) {
 this(amount, Currency.USD);
 }

 //compareTo
 public int compareTo(Object other) {
 return compareTo(Money)other);
 }
 public int compareTo(Money other) {
 assertSameCurrencyAs(other);
 if (amount < other.amount) return -1;
 else if (amount == other.amount) return 0;
 else return 1;
 }

 public boolean greaterThan(Moner other) { return (compareTo(other) > 0); }

 //define equals() & hashCode()

 //monetary operations
 Money add(Moner other) {
 assertSameCurrency(other);
 return new Money(amount + other.amount);
 }

 Money multiply(double factor, int roundingMode) { //to solve Foemmel's Conundrum
 }
}

47. Special Case (pp 496-498)
Goal: A subclass that provides special behavior for particular class.

48. Plugin (pp 499-503)
Goal: Links classes during configuration rather than compilation.

49. Service Stub (pp 504-507)
Goal: Removes dependence upon problematic services during testing.

50. Record Set (pp 508-510)
Goal: An in-memory representation of tabular data.

Missing:
 nullable,
 indexes

	A. Domain Logic Patterns
	B. Data Source Architectural Patterns
	C. Object-Relational Behavioral Patterns
	D. Object-Relational Structural Patterns
	E. Object-Relational Metadata Mapping Patterns
	F. Web Presentation Patterns
	G. Distribution Patterns
	H. Offline Concurrency Patterns
	I. Session State Patterns
	J. Base Patterns

