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Abstract Because water isotope ratios respond to phase changes during evaporation (E) and precipitation

(P), they are candidate fingerprints of changing atmospheric hydrology. Moreover, through preservation in

ice cores and other paleoproxies, they provide important insight into the past. Still, there is disagreement

over what specific attributes of hydroclimate variability isotopes reveal. Here we argue that variations in zonal

mean isotope ratios of water vapor and precipitation are largely a response to geographically shifting

patterns of E and P. Differences in the relative importance of local versus remote changes in these moisture

variables explain the apparent distinct isotopic sensitivities to temperature and precipitation amount in high

and low latitudes, respectively. Not only does our work provide a unified framework for interpreting water

isotopic measurements globally, but it also presents a novel approach for diagnosing water cycle changes in

a warmer world.

Plain Language Summary Observations that track changes in the water cycle are critical for

improving our understanding of the climate system. Particularly important are measurements that can

verify whether imbalances in evaporation and precipitation increase in response to global warming. Because

the isotope ratios of hydrogen and oxygen in water vapor and precipitation vary with rates of evaporation

and precipitation, they are candidate fingerprints of water cycle changes. Here we use a simple mass balance

model to evaluate the isotopic response of water vapor in the atmosphere to spatial variations in evaporation

and precipitation.We find that these spatial patterns shape the isotope ratios by changing two critical factors: the

efficiency with which precipitation dries the atmosphere and the probability that moisture is transported

downwind (rather than rained out). These two factors suggest that isotope ratios are influenced both by local

and by remote changes in evaporation and precipitation. Low-latitude isotope ratios respond largely to local

imbalances in evaporation and precipitation, while high-latitude isotope ratios depend more on what

happens “upstream.” These findings provide key guidance for interpreting climate changes of the past and

offer a novel approach for diagnosing water cycle changes in a warmer future.

1. Introduction

Thermodynamic arguments predict that regional imbalances in evaporation (E) and precipitation (P) enlarge

(diminish) in response to increasing (decreasing) global temperature (Held & Soden, 2006). The isotope ratios

of hydrogen (D/H) and oxygen (18O/16O) in water vapor and precipitation are potentially important diagnos-

tics of such changes. Because of their distinct saturation vapor pressures, isotopically heavy water molecules

(e.g., HDO and H2
18O) preferentially condense, while isotopically light molecules (e.g., H2

16O) preferentially

evaporate. It is this sensitivity to phase changes that suggests isotope ratios might trace shifting imbalances

in E and P in a changing climate (Bailey et al., 2017). Furthermore, because the isotopic signal of precipitation

is transferred to paleoproxies, such as ice cores and speleothems (e.g., Dee et al., 2015), isotope ratios are one

of a limited number of constraints on hydroclimate variability before the instrumental period. However, their

use poses a classic geochemical inverse problem, and so a method for extracting quantitative global informa-

tion about shifts in hydrologic balance from isotopic records is needed.

Historically, isotopic variations in low latitudes have been interpreted as an indicator of changing local pre-

cipitation amount, while variations in high latitudes have been considered a reflection of changing tempera-

ture (e.g., Dansgaard, 1964; Johnsen et al., 1989, 1995; Lorius & Merlivat, 1977; Masson-Delmotte et al., 2008;

Niedermeyer et al., 2010; Rozanski et al., 1993; Tierney et al., 2008). Yet empirically derived relationships

between isotopes and local meteorological variables of interest vary widely geographically and have
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proven insufficient for describing isotopic variability at many locations (Aggarwal et al., 2012; Boyle, 1997;

Conroy et al., 2013; Fisher et al., 2004; Krinner et al., 1997; Kurita et al., 2009; Masson-Delmotte et al., 2008;

Sime et al., 2009; Sodemann et al., 2008; Sturm et al., 2010). Indeed, precipitation and ice cores in Alaska

sometimes show stronger correlations between water isotope ratios and moisture source region than tem-

perature (Fisher et al., 2004; Putman et al., 2017), and modern precipitation measurements in the tropical

Pacific suggest that isotope ratios respond more sensitively to variations in the intensity and organization

of convection regionally than to the amount of local precipitation (Conroy et al., 2016; Kurita, 2013; Kurita

et al., 2009; Moerman et al., 2013). More recently, studies have shown correlations between isotope ratios

and regional imbalances in E and P (Feng et al., 2009; Lee et al., 2007; Moore et al., 2014) or associated varia-

tions in atmospheric residence time and moisture transport (Aggarwal et al., 2012; Bailey et al., 2017; Putman

et al., 2017). Nevertheless, to decipher changes in hydrologic balance from isotope ratios, a strong theoretical

framework that can explain these correlations is necessary.

The incorporation of water isotopic tracers in state-of-the-art general circulation models (GCMs; Galewsky

et al., 2016; Sturm et al., 2010, and references therein) has created new opportunities to evaluate isotopic

responses to a broad suite of large- and small-scale hydrological perturbations (e.g., Bailey et al., 2017;

Bony et al., 2008; Caley et al., 2014; Hurley et al., 2012; Noone & Simmonds, 2002; Risi et al., 2008; Sutanto

et al., 2015; Wright et al., 2009). Yet because of the complexity of these models, and their difficulties in repre-

senting evaporation and precipitation accurately (Nusbaumer et al., 2017), GCMs are not necessarily ideal for

elucidating the sensitivity of isotope ratios to variations in E and P. In contrast, zonal models offer a vastly sim-

pler framework for evaluating isotopic sensitivities to the integrated effects of atmospheric moisture removal

and recharge (Fisher, 1990; Hendricks et al., 2000; Kavanaugh & Cuffey, 2003; Noone, 2008). Suchmodels have

proven useful for testing isotopic responses to local and remote variations in climate. They have demon-

strated, for instance, that high-latitude isotope ratios incorporate information about lower-latitude tempera-

ture changes, with distillation along the moisture pathway influencing the strength of the low-latitude signal.

Here we use the zonal model framework and principles of mass balance to simulate the isotopic response to

meridional shifts in E and P. This simple design allows us to evaluate latitudinal differences in the sensitivity of

isotope ratios to local and remote changes in hydrologic balance. The approach provides a consistent meth-

odology for integrated interpretation of isotope ratios in low- and high-latitude environments. Moreover, it

identifies key features of global hydroclimate variability that isotope ratios in water vapor and precipitation

uniquely reveal, providing a new lens for examining current and past hydrological change.

2. A One-Dimensional Steady State Mass Balance Model

To test whether water isotope ratios are robust indicators of changes in hydrologic balance, we construct a

one-dimensional (1-D) steady state model that resolves the volume-averaged climate in 36 zones of 5° latitude

(index i = 1… 36 from south to north). Zonal mean E and P are the only specified variables. Estimates of E and P

for December, January, February and June, July, August are obtained from an isotopically enabled version of the

National Center for Atmospheric Research’s Community Atmosphere Model (CAM) version 5 (i.e., isoCAM;

Nusbaumer et al., 2017; supporting information). The moisture fluxes simulated by isoCAM (kg·m�2·year�1)

are converted to mass flow rates (kg/year) by accounting for differences in area among zonal bands.

Defining Fi as the northward mass flow of water (kg/year) across the boundary between zones i and i + 1,

conservation of mass for the ith zone in steady state requires that

F i�1 � F i þ Ei � Pi ¼ 0; (1)

where the difference in northward atmospheric transport (Fi-1 � Fi) represents moisture convergence.

Mass conservation for an individual isotope can be derived by multiplying each total water flow by its appro-

priate isotopic composition:

δi�1F i�1 � δiF i þ �10ð ÞEi � δi þ 10ð ÞPi ¼ 0: (2)

Here the isotopic composition of evaporation is assumed fixed at�10‰ and the isotopic composition of pre-

cipitation is offset +10‰ from the zone’s water vapor isotope ratio. Throughout the paper δwill be evaluated
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exclusively as the oxygen isotope ratio of water vapor expressed in conventional delta notation

(supporting information).

Equation (2) is strictly valid only for Fi-1, Fi ≥ 0. If either F is negative, the subscript of the corresponding δmust

be incremented by 1. With this exception, the assumptions incorporated into equation (2) may be summar-

ized as follows:

1. Sea surface water has an oxygen isotope ratio of 0‰.

2. Sea surface evaporative fractionation for oxygen is 10‰.

3. Fractionation during condensation is 10‰ (cf. Lee et al., 2007).

By adopting these assumptions, the model does not consider any direct effects of temperature, relative

humidity, or wind speed on the isotope ratio of water vapor evaporated from the sea surface.

Furthermore, it ignores the dependence of isotopic fractionation on temperature during condensation.

With only E and P as inputs, the 1-D steady state mass balance model broadly reproduces the key meridional

variations in isotope ratios observed in the Global Network of Isotopes in Precipitation (International Atomic

Energy Agency/World Meteorological Organization, 2018; supporting information) and simulated in isoCAM

(Figure 1), thus validating the mass balance approach. Water vapor and precipitation isotope ratios decrease

with latitude, except near the equator, where deep convection within the Intertropical Convergence Zone

(ITCZ) depletes the atmosphere of isotopically heavy water locally. This area of localized depletion shifts

between hemispheres as the ITCZ migrates annually. Interestingly, isotopic variations associated with the

ITCZ are stronger in the 1-D simulation than in the GCM. In this respect, they better represent the range of

tropical isotope ratios observed, particularly during December, January, February (Figure 1b). The GCM, in

contrast, resolves vertical circulations, which transport isotopically enriched moisture across the equator at

low altitudes while returning isotopically depleted moisture aloft. Such a circulation plausibly diminishes

low-latitude, total-column isotopic differences between hemispheres.

Localized depletion associated with the ITCZ is also consistent with the so-called “amount effect”—a negative

correlation between water isotope ratios and precipitation frequently invoked in the interpretation of paleo-

proxies (e.g., Cruz et al., 2005; Niedermeyer et al., 2010; Sano et al., 2012; Tierney et al., 2008) (Figure 2a).

Although this anticorrelation broadly characterizes the tropics (Dansgaard, 1964), its absence in many loca-

tions has motivated investigations into whether factors other than precipitation amount influence this

Figure 1. Zonal mean isotopic climatologies simulated by the one-dimensional steady state mass balance model com-

pared to (a) simulated water vapor isotope ratios from an isotopically enabled version of CAM5 (i.e., isoCAM, dashed

lines) and to (b) and (c) precipitation isotope ratios simulated (isoCAM) and observed (Global Network of Isotopes in

Precipitation, gray dots). Climatologies are shown separately for DJF (blue) and JJA (red). 1D = one-dimensional;

CAM = Community Atmosphere Model; DJF = December, January, February; JJA = June, July, August; GNIP = Global

Network of Isotopes in Precipitation.
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relationship. These factors have included the height—hence, condensation temperature (Scholl et al., 2009)

—of clouds, the mesoscale organization of convection, (Aggarwal et al., 2016; Kurita, 2013), the degree of rain

evaporation within downdrafts (Kurita, 2013; Risi et al., 2008), and the magnitude and altitude of moisture

convergence (Moore et al., 2014; Torri et al., 2017). The fact that our 1-D simulation reproduces an amount

effect using only principles of mass balance suggests an important role for evaporation—not just

precipitation—in setting tropical isotope ratios.

3. Local Versus Remote Hydrological Changes

As the difference between E and P in a zone i increases, hydrologic balance necessitates that moisture trans-

port readjust (equation (1)), requiring changes in E-P elsewhere. Since shifts in the relative balance of E and P

influence the isotopic composition of water vapor locally (equation (2)), changes in hydrologic balance

upwind of zone i must influence the isotopic composition of moisture transported into i. Consequently, iso-

topic records at any single location need not represent local changes in hydrologic balance.

This point is readily illustrated using a simple idealized simulation in which E and P are set equal everywhere

except in two zones: an evaporative source region and a precipitation sink region (Figure 3). A large positive

isotopic anomaly emerges locally where E/P > 1 and a large negative anomaly where E/P < 1. However,

isotopic enrichment also occurs immediately downwind of the source region, even though local moisture

supply (E) and demand (P) remain balanced. In these downwind regions, the isotope ratios increase due to

horizontal transport.

Given a more realistic hydrologic circulation, the exact dependence of the water vapor isotope ratio on both

local and remote imbalances in E and P can be calculated from equation (2) by redefining the isotopic con-

vergence (δi-1Fi-1� δiFi) as the difference between flows into and out of each zone (δin,iFin,i� δout,iFout,i). In this

reformulation, flow entering zone i (Fin,i) is, by definition, always positive regardless of the direction of trans-

port. The δin,i is the δ of the zone immediately upwind (e.g., δi + 1 for southward and δi � 1 for northward trans-

port). The reformulated version of equation (2) takes on more obvious meaning by incorporating two new

variables, the drying ratio (D*) and the remote fraction (R*). The former describes the efficacy with which P

dries the atmosphere (e.g., Smith & Evans, 2007), while the latter quantifies the proportion of moisture gained

through transport:

D�
i ¼ Pi= Ei þ F in;i

� �

; (3)

R�i ¼ F in;i= Ei þ F in;i
� �

: (4)

The water vapor isotope ratio for zone i is then

Figure 2. The so-called “amount effect” (a) appears in the one-dimensional simulation as a negative correlation between

water vapor isotope ratios and precipitation amount (i.e., flux in kg·m
�2

·year
�1

) in zones equatorward of 40° (red cir-

cles). Zones poleward of 40° are shown with black circles. Results from isoCAM are shown for comparison (insert). (b) This

relationship emerges in zones where the isotopic influence of the local drying ratio is much stronger than the combined

influence of drying ratios elsewhere (i.e., remote effects; see section 3). Results are shown for June, July, August only.
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δi ¼ �10� 10D�
i � �10� δin;i

� �

R�i ; (5)

which, solved recursively, yields

δi ¼ �10 1þ D�
i þ θi∑

N
n¼1D

�
iþn∏

n
m¼1R

�
i�1þm þ 1� θið Þ∑Ss¼1D

�
i�s∏

s
r¼1R

�
iþ1�r

� �

: (6)

N and S are the total numbers of zones to the north and south, respectively, that contribute moisture to zone

i, and θ is a weighting function that defines the relative contribution of northerly moisture transport to R*. In

our simulations, θ is either 0 or 1 for all but a single tropical zone. Thus, if zone i receives moisture from three

neighboring zones to the south, its isotope ratio is given by

δi ¼ �10 1þ D�
i þ D�

i�1R
�
i þ D�

i�2R
�
i R

�
i�1 þ D�

i�3R
�
i R

�
i�1R

�
i�2

� �

: (7)

This formulation not only demonstrates the existence of isotopic teleconnections (i.e., remote effects)—which

have been documented previously (Cuffey, 2000; Fisher, 1990; Hendricks et al., 2000; Noone, 2008; Noone &

Simmonds, 2002)—but also reveals that the quantitative contribution of each remote zone is proportional to

its drying ratio. This contribution may be more or less attenuated depending upon the characteristics of

atmospheric transport. Namely, the compound effects of R* along the moisture pathway represent the

probability that evaporation from a remote zone will reach zone i (cf. Fisher’s “survival distance” function;

Fisher, 1990).

Equation (6) provides critical insight into why precipitation isotope ratios in the tropics broadly correlate with

local precipitation amount. In tropical regions, the local drying ratio is often larger than the probability-

weighted sum of drying ratios upwind, either because the fractional contribution of moisture from remote

sources is small (e.g., subtropics) or because moisture is sourced from subtropical regions where D*

approaches 0 (e.g., deep tropics; Figure 4). Consequently, local hydrological effects dominate remote effects

in shaping the isotope ratios of water vapor and precipitation (Figure 2b). Since greater P causes D* to

increase, and δ is negatively correlated with D* (equation (5)), a negative correlation between local precipita-

tion and isotope ratios emerges (Figure 2a).

In comparison, higher latitudes depend not only on a larger proportion of remote moisture but also onmoist-

ure from regions with higher drying ratios (Figure 4). Energy constraints ultimately influence both factors,

which is why high-latitude isotope ratios tend to correlate with temperature (i.e., the temperature effect;

Dansgaard, 1964). Indeed, because low temperature reduces the energy available for evaporation and lowers

the atmosphere’s moisture-holding capacity, both E and P decrease toward the poles. However, since moist-

ure transported poleward is much less decremented by low temperatures, E decreases relative to Pwhile the

remote fraction (R*) increases (Figure 4a). Eventually, reductions in E sufficiently limit the moisture available

Figure 3. An idealized experiment in which (a) perturbations in E and P create an evaporative source region centered at

17.5°N and a precipitation sink region centered at 17.5°S, linked by a southward atmospheric moisture flow. (b) Water

vapor isotope ratios are enriched not only where E/P > 1 but also in zones downwind due to horizontal transport.

E = evaporation; P = precipitation.
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for transport so that Fin also decreases relative to P. This enlarges the drying ratio (D*, equation (3)), and,

together, larger D* and R* lower the isotope ratio at cold temperatures.

4. Mean Moisture Source Distances

As E/P decreases poleward, the remote fraction must increase to provide moisture. This requires that the

mean source distance—or mean distance moisture travels from evaporative source regions to a zone of

interest—increase (Figure 4b). Since each remote term in equation (6) scales nearly linearly with mean source

distance (supporting information), the latter provides a compact and close approximation for remote hydro-

logical effects on the water vapor isotope ratio. Linearly combining information about the local drying ratio

(D*) and mean source distance (L, i.e., a length scale) in the form

δ ¼ β0 þ β1D
� þ β2L; (8)

thus robustly reproduces the meridional variations in zonal mean isotope ratios simulated by the 1-D

model (Figure 5a) without needing to distinguish tropical versus high-latitude regions. A least squares fit

for June, July, August produces values of �6.19‰ (�7.78‰, �4.61‰), �15.00‰ (�18.96‰, �11.04‰),

and �1.09‰ per degree latitude (�1.19‰ per degree latitude, �0.99‰ per degree latitude) for β0, β1,

and β2, respectively, with 95% confidence intervals reported parenthetically.

A prominent outcome of this linear approximation is that it allows one to predict water isotope ratios from

just two state variables. Moreover, coefficients β1 and β2 accurately predict isotopic changes with time on

interseasonal timescales (Figure 5b). This result contrasts with the different spatial versus temporal sensitiv-

ities of isotope ratios to temperature observed and modeled at high latitudes (e.g., Jouzel et al., 1997).

5. Implications

The demonstrated dependence of isotope ratios on local and remote imbalances in E and P has important

implications for interpretation of isotopic records. After all, the degree to which individual ice cores and

speleothems record local versus nonlocal climatic changes has long been a question of interest (e.g., Caley

et al., 2014; Cheng et al., 2012; Fisher et al., 2004; Goldsmith et al., 2017; Masson-Delmotte et al., 2008;

Pausata et al., 2011). Our analysis provides a framework for understanding why paleoproxies distant in

space can share strong isotopic signals while those nearby may not. The outcome depends both on the

Figure 4. Latitudinal variations in drying ratio (D*), remote fraction (R*), and mean source distance (L). (a) D* (orange) and R*

(blue) are plotted alongside E/P (dotted orange) and Fin/P (dotted blue) as a function of latitude. (b) Frequency distributions

show the geographic distribution of source regions for each modeled zone and indicate their fractional moisture

contributions. In the tropics and midlatitudes, the largest fraction of moisture gained is locally evaporated. A case in point is

the bright blue curve, which equals 1 in the zonal band 25–30°S and 0 elsewhere, indicating that 100% of moisture gained is

local E. Mean source distances are shown to scale and reported in degrees latitude for the four highlighted distributions.

Results are shown for June, July, August only. E = evaporation; P = precipitation; Fin = moisture gained by transport;

MSD = mean source distance.
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nature of local hydrological perturbations and on the strength of regional linkages through the

atmospheric circulation.

Consistent with previous findings (e.g., Hendricks et al., 2000), our results suggest that high-latitude isotope

ratios will tend to reveal more about changing moisture transport than local meteorology, while the opposite

should be true at latitudes equatorward of ~40° (Figure 2b). Nevertheless, to truly disentangle these factors,

isotopic records from a single location will be insufficient. Instead, data from a spatially broad network of

measurements, such as the Global Network of Isotopes in Precipitation, need to be analyzed for their spatial

distributions. These spatial patterns should be examined in the context of forward modeling approaches,

such as demonstrated here and advocated previously (Sturm et al., 2010). In the absence of such spatial cov-

erage, additional tracers will be necessary to constrain either the drying ratio or mean source distance at the

site of the individual isotopic record. Over the recent instrumental period, in situ or remote estimates of E, P,

and Finmay allow one to calculate the drying ratio, so that changes in mean source distance can be extracted

from isotopic measurements. Paleoclimate analyses, on the other hand, will require a second tracer—sensi-

tive either to precipitation processes or transport distance—that is also preserved in the proxy record.

As global temperatures continue to rise, broad networks of water vapor and precipitation isotopic measure-

ments can be used to answer several pressing questions about current hydroclimate change, including (1)

whether the efficiency with which precipitation dries the atmosphere is decreasing, resulting in longer moist-

ure residence times in the atmosphere (cf. Aggarwal et al., 2012), (2) whether distances between moisture

sources and sinks are lengthening in response to longer residence times (Singh et al., 2016), and (3) whether,

contrastingly, mean moisture source distances for some regions are shortening in response to the Hadley cell

expanding poleward (Collins et al., 2013). The ability to distinguish and quantify these trends has key implica-

tions for predicting future climate.
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