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Abstract  To provide basic information for orchid conservation, we surveyed the plant 20 

allozyme literature to summarize genetic diversity and structure data for (i) rare orchids 21 

native to the Korean Peninsula, and (ii) their congeners irrespective of being common and 22 

rare or Korean or not. A total of 68 taxa (32 taxa in Korea and 37 outside Korea; Goodyera 23 

repens being included in both datasets) were considered in this study. Overall, rare Korean 24 

orchid species had significantly lower levels of genetic diversity than their common 25 

congeners and common orchids in general at both population and species levels. However, 26 

mean values of GST (or FST) for rare and common orchids (Korean or not) did not differ 27 

significantly from each other. We found patterns of both low and high genetic diversity in 28 

rare Korean orchids. Many rare orchids harbored a complete lack of allozyme variation or 29 

extremely low within-population variation, perhaps due to rarity associated with random 30 

genetic drift and/or, for the case of warm-temperate orchids, to founder effects during post-31 

glacial re-colonization. In contrast, high levels of genetic variation were found for a few 32 

orchids that have become recently rare (due to over-collection during the past several 33 

decades), probably because there have not been sufficient generations for the initial diversity 34 

to be substantially eroded. In addition, several orchids occurring in the main mountain system 35 

of the Korean Peninsula (the Baekdudaegan), that served as a glacial refugium, maintained 36 

moderate to high levels of within-population genetic diversity. Based on our genetic data, 37 

conservation priority should be given to rare orchid species. Particularly, urgent measures 38 

should be implemented on Jeju Island, a popular vacation spot, because it also a hotspot for 39 

threatened orchids with low levels of genetic diversity. 40 

 41 
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Introduction 44 

 45 

It is generally agreed that a complex network of factors shapes genetic diversity in plant 46 

populations and species, and these can be classified into two large categories (Gray, 1996): (i) 47 

‘intrinsic’ biological properties of the species (mainly the life-history traits such as mode of 48 

pollination, breeding system, seed dispersal mechanism, habit, or  life-form) and (ii) 49 

‘extrinsic’ dynamic processes that affect species’ distributions, existence or persistence 50 

(mainly historical factors that include occurrence of bottlenecks, divergence events, or 51 

Quaternary expansions/retreats). Other traits that may influence genetic diversity patterns are 52 

the biogeographical affinities (boreal, temperate, etc.), the historical and/or contemporary 53 

geographic range. Geographic range is known to be one of the major factors determining the 54 

levels of genetic variation of plant species on the basis of a series of meta-analyses. Perhaps 55 

the best known example is the compilation of Hamrick & Godt (1989), who gathered 56 

allozyme data from 653 studies (449 species representing 165 genera) at the global level and 57 

found that species with widespread ranges had significantly higher levels of genetic diversity 58 

than range-restricted ones. A further compilation of species studied by means of another 59 

codominant marker (microsatellites) yielded similar results (95 species; Nybom, 2004); in 60 

addition, a recent compilation carried out in the western Mediterranean Basin also reported 61 

significantly higher levels of allozyme diversity in widespread species compared to endemic 62 

ones (33 species; López-Pujol et al., 2009). 63 

These heterospecific (mixed species) compilations, despite having the advantage of 64 

including a large number of species, have been criticized for the absence of a congruent 65 

statistical approach. Given that life-history traits often show strong phylogenetic inertia (i.e., 66 

a tendency of close-related species to share them; Morales, 2000; Losos, 2008), analyzing the 67 

species independently (as is done in the abovementioned compilations) may lead to statistical 68 
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pseudo-replication (Silvertown & Dodd, 1996; Aguinagalde et al., 2005). Although not as 69 

effective as using phylogenetically independent contrasts (Felsenstein, 1985), limiting 70 

comparisons to congeneric pairs would be a reliable alternative, as we can be quite confident 71 

that these share a more recent common ancestor than species in other genera (Silvertown & 72 

Dodd, 1996). Congeneric comparisons have been employed by Karron (1987), who compared 73 

11 pairs of rare and widespread congeneric plants (48 species) in relation to their genetic 74 

diversity; in 10 pairs, rare species had lower genetic diversity than their widespread 75 

congeners. Later, Gitzendanner & Soltis (2000) performed a similar study with 36 congeneric 76 

pairs (107 taxa), generally obtaining lower diversity for rare species. More recently, Cole 77 

(2003) extended this approach to a total of 247 plant species representing 57 genera, whose 78 

results were close to those reported by Gitzendanner & Soltis (2000). 79 

 Although they are not strictly comparisons between widespread and range-restricted 80 

species, those comparisons between threatened and non-threatened taxa can be regarded as a 81 

relatively accurate surrogate, given the well-known correlation between extent of species’ 82 

range and extinction risk (e.g., Purvis et al., 2000; Payne & Finnegan, 2007; Cardillo et al., 83 

2008). Indeed, geographic range plays a key role in listing the species on the IUCN Red List, 84 

and for most of the cases it is the only criterion used to classify a given species as threatened 85 

(Gaston & Fuller, 2009). Spielman et al. (2004) compared the heterozygosity in 170 86 

threatened/non-threatened pairs of taxa (taxonomically related but not necessarily 87 

congeneric), from which 36 were plant species. The authors found that in 27 pairs the 88 

threatened taxa had lower heterozygosity than the non-threatened species. 89 

 Orchidaceae are one of the largest families of flowering plants (ca. 26,000 species; 90 

Chase et al., 2015). Considerable variation in life forms is known in the family, with 91 

approximately 30% of the species being terrestrial and the majority of the remainder growing 92 

as epiphytes or lithophytes (Gravendeel et al., 2004). Orchids are also among the most 93 
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endangered plant taxa (Pillon & Chase, 2007; Swarts & Dixon, 2009; Vogt-Schilb et al., 2015; 94 

Zhang et al., 2015); clearly, more attention is needed to preserve the biodiversity of wild 95 

orchids for several reasons. Many orchid species rely on a complex set of interactions with 96 

other organisms (e.g., the need of host trees for ephiphytes and mycorrhizal fungi for 97 

terrestrial orchids, or the existence of intricate pollination syndromes) for their survival 98 

(Bronstein et al., 2014). These requirements make them extremely sensitive to environmental 99 

changes (Swarts & Dixon, 2009). Environmental human-mediated changes (e.g., 100 

deforestation, overharvesting, urbanization, changes in agricultural practices, trampling, 101 

pollution, soil disturbance, etc.) have been reported as the most important drivers for orchid 102 

decline (Swarts & Dixon, 2009, Liu et al., 2014; Fay et al., 2015; Vogt-Schilb et al., 2015; 103 

but see Catling & Kostiuk, 2011 who found that trail disturbance benefited some wild 104 

orchids); in fact, orchids are often the first biological indicators of ecosystem decay (Roberts 105 

& Dixon, 2008). Direct impacts on orchids, such as mass collections by orchid hunters 106 

(because of their high commercial value), are of serious concern (Swarts & Dixon, 2009). 107 

The uses of orchids as ornamental, medicinal (especially in traditional Chinese medicine), 108 

and even alimentary plants (such as the salep in Iran) have brought many species to the brink 109 

of extinction in the wild (Ghorbani et al., 2014; Liu et al., 2015). In addition, orchids are 110 

typically characterized by small, spatially isolated populations (e.g., Vásquez et al., 2003; 111 

Tremblay et al., 2005; Phillips et al., 2011), mainly a consequence of ecological 112 

specialization and low reproductive success (Roberts & Dixon, 2008); thus, orchid 113 

populations often have small effective population size, which makes them particularly 114 

susceptible to the effects of random genetic drift (Chung et al., 2004a; Roberts & Dixon, 115 

2008). 116 

 On the Korean Peninsula, 97 orchid species [103 taxa (species plus subspecies and 117 

varieties) in 42 genera] are known (Lee et al., 2007; Lee, 2011). Thirty five and 48 species 118 
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are listed as threatened by the Ministry of Environment (MOE, 2012, 2014) and Korea 119 

National Arboretum (KNA, 2012), respectively, which highlights the critical status of wild 120 

orchids in the Peninsula (Lee & Choi, 2006). As a part of a larger project on conservation 121 

biology on the Korean orchids, we have conducted allozyme studies in the Orchidaceae from 122 

South Korea since the mid-1990s; at present, genetic data on 32 taxa (31 species plus one 123 

variety; ca. one third of the Korean orchid flora) in 21 genera which are broadly 124 

representative of the Korean orchid flora (covering 11 out of 14 tribes in the four subfamilies) 125 

are available. In this study, we summarize current information on allozyme-based genetic 126 

diversity in South Korean orchids. We also summarize the available genetic information on 127 

congeners (of the studied Korean orchids) from other parts of the world, in order to get 128 

additional insights into the patterns of genetic diversity of Korean orchids and to provide 129 

insights into associations between rarity and genetic diversity in plants. Specific aims of the 130 

present study are the following: (i) to describe the patterns of genetic variability (within and 131 

among populations) of Korean orchids; (ii) to determine whether rare Korean orchids differ 132 

in the patterns of genetic diversity from common ones; (iii) to see whether the empirical 133 

observation of lower genetic diversity for rare species compared to their widespread 134 

congeners is also applicable to our species’ dataset, and (iv) to provide recommendations for 135 

the conservation of Korean orchids. 136 

 137 

Materials and Methods 138 

 139 

Data Collection 140 

 141 

We gathered all published (and several unpublished) allozyme analyses of orchids in the 142 

Korean Peninsula. A total of 32 taxa (that are indicated by “S. Korea” after taxa names in 143 
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Table 1) from Korea (plus Cymbidium goeringii in Japan) have been analyzed at the same 144 

laboratory by MY Chung & MG Chung since the mid-1990s. In addition, studies of 37 145 

congeneric taxa of the Korean orchids sampled from outside Korea (i.e., 37 taxa outside 146 

Korea), that were conducted at different laboratories, were included in this study to make 147 

comparisons between rare and common taxa (with a total of 46 entries; Table 1). Given that 148 

Goodyera repens was included in both datasets (‘in’ and ‘outside’ Korea; Table 1), a total of 149 

68 taxa were considered in this study. For those studies from which allozyme data were 150 

reused for subsequent papers by the same authors, and for studies examining conspecific 151 

populations occurring on close locations, we only included data from a single study that 152 

involved the largest number of populations to avoid data duplication (Karron, 1987). On the 153 

contrary, all genetic data for widespread taxa examined on more than one occasion (e.g., 154 

Epipactis helleborine, G. repens) were included when these studies involved geographically 155 

very separated populations (i.e., from different countries). 156 

 In this work we followed plant names according to “The Plant List (2013)” except for 157 

Neolindleya (= Gymnadenia) camtschatica and Amitostigma gracile for which we used the 158 

names Galearis camtschatica and Hemipilia gracile provided by Jin et al. (2014) and Tang et 159 

al. (2015) based on molecular systematics studies, respectively (Table 1). 160 

 161 

Designations of Rare vs. Common Orchids 162 

 163 

Although there is no widely accepted threshold or a definition by which a taxon is termed 164 

“rare” or “common”, for Korean orchids we considered that a given taxon was rare if it was 165 

included in either Rare plants in Korea (KNA, 2012) or Korean Red List of Threatened 166 

Species (MOE, 2014) except for two species. The two newly recorded terrestrial orchids 167 

Habenaria dentata in Hapcheon County, Gyeongsangnam Province (Lee et al., 2013a) and 168 
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Liparis pterosepala on Jeju Island (Lee et al., 2010) were not listed in KNA (2012) and MOE 169 

(2014), but they are extremely rare in South Korea. For other orchids outside the Korean 170 

Peninsula, we have mostly relied on authors’ descriptions about abundance, population sizes 171 

or geographic ranges when included within papers. For example, in North America, as 172 

Cypripedium parviflorum is more ecologically diverse and shows a wider geographical 173 

distribution (although in many cases, local US populations are quite scattered and limited, 174 

and many populations have undergone dramatic declines) than its congeners C. arietinum, C. 175 

candidum, C. fasciculatum, C. kentuckiense, and C. reginae, we considered the former as 176 

“common” whereas the latter species were regarded as “rare” (Case, 1994; Aagaard et al., 177 

1999; Kennedy & Walker, 2007). Although C. acaule is not as widely distributed as C. 178 

parviflorum, it is common in parts of the eastern US and Canada, and most populations 179 

remain stable in size and distribution 180 

(http://explorer.natureserve.org/servlet/NatureServe?searchName=Cypripedium+acaule). 181 

When the information was not provided in the gathered studies, we referred to various 182 

sources of information (e.g., http://www.efloras.org, http://www.iucnredlist.org, 183 

http://plants.usda.gov, or http://www.orchidspecies.com). It should be noted that, for the case 184 

of widespread species, they can be “common” in some parts of their distribution area but 185 

“rare” in others. This occurs in two cases: Cymbidium goeringii and Goodyera repens. As 186 

mentioned above, the former is relatively common in South Korea, but it is a rare orchid in 187 

Japan. In Japan C. goeringii was listed as critically endangered species in the 1997 list (EAJ, 188 

2000), but later it was delisted in the 2012 list (EAJ, 2015). As in Japan it is a relatively rare 189 

species compared to southern Korea (mainly due to over-collection; M.Y. Chung & M. G. 190 

Chung, pers. obs.; T. Yahara, pers. comm.), we still consider it a rare orchid in the former 191 

country. In contrast, G. repens is extremely rare in South Korea (KNA, 2012), but it is 192 
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common in NE Poland, where conifer forest communities suitable for this species are 193 

abundant (Brzosko et al., 2013; Table 1). 194 

 195 

Data Analysis 196 

 197 

As done by Hamrick & Godt (1989, 1996) and Godt & Hamrick (2001), standard parameters 198 

that describe genetic diversity and structure were extracted from these studies; these 199 

parameters include percent polymorphic loci (%P), mean number of alleles per locus (A), and 200 

gene or genetic diversity (i.e., Hardy–Weinberg expected heterozygosity, He). We used the 201 

subscripts “P” or “S” to denote population means or species’ (or pooled samples) values, 202 

respectively. Since these values were not reported in all orchid studies, we calculated some of 203 

the measures (in particular measures at the species level) from allele frequency data provided 204 

in the papers. Following Hamrick & Godt (1989, 1996), we also compiled data on population 205 

structuring (GST or FST). 206 

 We compared levels of genetic diversity between rare orchids in Korea and their 207 

common congeners if available. To do this, we averaged all entries for those taxa examined 208 

by different authors (e.g., Cephalanthera rubra, Cypripedium parviflorum var. pubescens and 209 

Epipactis helleborine) to obtain a single estimate per taxon. We thus obtained average values 210 

from rare taxa in South Korea and from their congeners (where more than one was available; 211 

e.g., Cypripedium); in total, comparisons were possible for nine congeneric pairs (39 taxa; 212 

see the numbers 2, 4, 6, 7, 8, 10, 13, 15, and 19; Table 1) for this dataset. 213 

 Following Karron (1987) and Gitzendanner & Soltis (2000), we plotted each measure 214 

of diversity in rare taxa against that of the widespread congener. We further conducted 215 

Wilcoxon signed-rank tests between rare and common congeners for each genetic parameter 216 

to determine whether differences between two groups were statistically significant. We also 217 
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performed a Spearman’s rank correlation analysis between rare and common congeners for 218 

each measure; the higher correlation between the rare and common species for each genetic 219 

measure, the smaller the differences in the measurements between two groups. 220 

 As heterospecific comparisons, we compared rare Korean orchids (24 taxa or entries) 221 

with common ones (32 entries) provided in Table 1. To do this, we used a single entry per 222 

taxon by averaging all entries of the same taxa with the exception of Cymbidium goeringii 223 

and Goodyera repens. For the former, South Korean and Japanese ranges were treated as a 224 

common taxon and a rare one, respectively; for the latter South Korean and NE Polish ranges 225 

were treated as a rare taxon and a common one, respectively (Table 1). Similarly, we 226 

compared rare orchids (38 entries) with common ones (32 entries) provided in Table 1. We 227 

used a Wilcoxon rank-sum test (or Mann-Whitney U-test) to assess the significance of 228 

differences in all measured parameters of diversity between rare and common taxa. 229 

  230 

Results 231 

 232 

Congeneric Comparisons 233 

  234 

A different relationship for the levels of genetic diversity was observed between rare and 235 

common congeners (Fig. 1). The majority of the nine points on the graphs are away from the 236 

lines of equality (e.g., eight points for %PP, Fig. 1A), indicating different levels of diversity 237 

in rare and common congeners. A very similar pattern was observed at the species level (data 238 

not shown). These visual interpretations were supported by the correlation analyses that 239 

showed that for all measures of genetic diversity, at both population and species levels, there 240 

was neither high nor significant correlation between rare species and their common congeners 241 

(Table 2). Indeed, for both population and species level estimates, Wilcoxon signed-rank tests 242 
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revealed that rare species had significantly lower levels of genetic diversity than their 243 

common congeners (Table 2). We did not conduct statistical analysis for GST or FST values 244 

for the two groups because only data for three pairs were available (Table 1). 245 

 246 

Heterospecific Comparisons 247 

 248 

We expanded our analyses to mixed species (heterospecific) comparisons between rare (N = 249 

24 in Korea and N = 38 in Korea plus other countries) and common orchids (N = 32) 250 

compiled in Table 1. For both population and species level values, Wilcoxon rank-sum tests 251 

showed that rare Korean orchids had significantly lower levels of genetic diversity than 252 

common orchids (all cases P < 0.0001; Table 3). A very similar result was found between 253 

rare orchids (N = 38) and common orchids (N = 32) (again all cases P < 0.0001; Table 3). 254 

Finally, mean values of GST (or FST) for rare orchids and common congeners did not differ 255 

significantly from each other [rare orchids in Korea (N = 13) vs. common orchids (N = 25), 256 

mean GST = 0.169 vs. 0.194, P = 0.176; rare orchids (N = 22) vs. common orchids (N = 25), 257 

mean GST = 0.189 vs. 0.194, P = 0.412; Table 3). 258 

 259 

Discussion 260 

 261 

Congeneric Comparisons 262 

 263 

For both population and species level estimates, rare Korean orchid species have significantly 264 

lower levels of genetic diversity than their common congeners (Table 2), as expected (Karron, 265 

1987; Gitzendanner & Soltis, 2000; Cole, 2003; see also Spielman et al., 2004). The only 266 

exception is the pair Cymbidium goeringii/C. kanran, a common and a rare species studied 267 
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from Korea (Table 1). It is noteworthy that there is no allozyme-based genetic variation 268 

within and among populations in up to six Korean native rare species from our congeneric 269 

pairs dataset (Cephalanthera subaphylla, Cypripedium japonicum, Epipactis papillosa, 270 

Goodyera repens, Liparis pterosepala, and Oreorchis coreana) (Table 1), which significantly 271 

contributes to the observed differences for the pairwise comparisons. In addition, 272 

Bulbophyllum drymoglossum and Platanthera hologlottis show very low estimates of HeP 273 

(Table 1). As Chung et al. (2009) suggested, rare species with small population sizes 274 

(probably due to historical stochastic events) are susceptible to random genetic drift (RGD), 275 

leading to allelic fixation at many neutral loci within populations. Population genetic theory 276 

predicts that populations of species that have suffered RGD should exhibit low HeP and high 277 

GST due to the fixation of alternative alleles (e.g., Barrett & Kohn, 1991; Ellstrand & Elam, 278 

1993). Although allozyme-based GST estimates are not available in the six abovementioned 279 

species (as these are monomorphic), the other two species showing low levels of HeP 280 

(Bulbophyllum drymoglossum and Platanthera hologlottis) have moderate GST (0.253 and 281 

0.328, respectively; Table 1). In addition, low levels of microsatellite-based within-282 

population genetic variation (%PP = 35; AP = 1.53; Hep = 0.109 based on 10 polymorphic loci) 283 

but a much higher among-population divergence (ΦST = 0.81 including one Japanese 284 

population) have been detected in South Korean populations of Cypripedium japonicum (Son 285 

& Son, 2016). The low Hep values and the high ΦST values support the role played by RGD in 286 

shaping the patterns of genetic diversity of some rare Korean orchids. 287 

 One of the best examples where rarity reflects the lack of allozyme diversity is 288 

probably that of Goodyera repens in South Korea. This species is widely distributed in Asia, 289 

Europe, and North America (Chen et al., 2001) and may represent a relictual descendant of an 290 

alpine community that was more widespread during the late Pleistocene (Kallunki, 1976). 291 

Unlike Korean populations (that are monomorphic in three populations; Table 1), 11 292 
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populations from NE Poland maintain high levels allozyme diversity (%PP = 50; AP = 1.68; 293 

Hep = 0.197; Table 1; Brzosko et al., 2013); the authors attributed its common occurrence 294 

under pine and spruce forests as the main factor shaping levels of genetic diversity of Polish 295 

populations. Thus, lack of allozyme diversity of G. repens in three alpine Korean populations 296 

might be attributable to its rarity in the country [it is a species listed as “vulnerable” by MOE 297 

(2012, 2014) and “critically endangered” by KNA (2012) with only 10 populations occurring 298 

throughout Korea]. 299 

 Oreorchis coreana is another example of a very rare species in Korea, as it is found in 300 

a small area on Jeju Island and has only five low-density populations (MOE, 2014). It shows 301 

no genetic variation, in contrast to its close congener O. patens, a common orchid in East 302 

Asia that in Korea has high levels of genetic diversity (Chung et al., 2012 and Table 1). 303 

Oreorchis coreana was considered in the past endemic to Jeju Island, but it also occurs in 304 

Nasushiobara City, Tochigi Prefecture, Honshu (Japan) (Takashima et al., 2016). Unlike on 305 

Jeju Island, only ca. 10 individuals in a single population are known in Honshu. Although the 306 

levels of genetic diversity for the Nasushiobara population have not been surveyed, one 307 

would expect a lack of allozyme diversity in this population because there is no sequence 308 

divergence in the ITS regions between Jeju and Nasushiobara populations. This finding also 309 

suggests that the Japanese population is probably the result of recent long-distance dispersal 310 

from Jeju Island rather than an old relict population separated via vicariance (Takashima et 311 

al., 2016). 312 

 Finally, it should be also taken into account that a formerly common species could 313 

have become recently rare (e.g., due to over-collection by orchid hunters), a situation that has 314 

often been reported for orchids (Swarts & Dixon, 2009; Vogt-Schilb et al., 2015; Zhang et al., 315 

2015). However, when population reduction has taken place recently (e.g., several decades 316 

ago), little alteration in the levels of genetic diversity occurs because there have not been 317 
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sufficient generations for the initial diversity to be substantially eroded by RGD (Chung et al., 318 

2004a). Moreover, if population size reduction has been at random regarding individual 319 

genotypes, the loss of genetic variation should be even more limited (Chung & Chung, 1999). 320 

Thus, rare species that were formerly common but with most of their populations recently 321 

decimated [and, hence, that were treated as “rare” by KNA (2012) and/or MOE (2012, 2014)] 322 

might exhibit comparable levels of genetic diversity to common ones [e.g., Cymbidium 323 

goeringii in Japan (Chung & Chung, 2000); C. kanran on Jeju Island (MY Chung et al., 324 

unpubl. data); Cypripedium macranthos in South Korea (Chung et al., 2009); Table 1]. 325 

 326 

Heterospecific comparisons 327 

 328 

Regarding heterospecific (mixed species of orchids) comparisons, the rare orchids—329 

regardless of being Korean or not—have significantly lower levels of genetic diversity than 330 

the common orchids at both population and species levels, with the exception of a few cases 331 

(Tables 1 and 3). Such results agree with former compilations and meta-analyses of 332 

heterospecific data (e.g., Hamrick & Godt, 1989, 1996; Godt & Hamrick, 2001; Nybom, 333 

2004; López-Pujol et al., 2009) and also with our congeneric comparisons. 334 

 It should be noted that a total lack of allozyme diversity is found in 10 (ca. 42%) of 24 335 

rare orchid species in South Korea [similarly, 14 (ca. 37%) out of 38 rare orchids provided in 336 

Table 1]. This observation may result from rarity associated with RGD. As seen in the two 337 

rare orchids Bulbophyllum drymoglossum and Platanthera hologlottis, Pelatantheria 338 

scolopendrifolius and Pogonia minor exhibit low HeP and moderate to high GST values, 339 

suggesting that populations of these species were historically rare; this pattern of genetic 340 

diversity would be the natural result of continued RGD (Barrett & Kohn, 1991). Another 341 

scenario, which is not mutually exclusive with the former, is more related to historical events. 342 
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Quaternary climatic cycles can often leave a distinctive signature on levels of genetic 343 

diversity found within populations or species (Hewitt, 1996, 2000; Soltis et al., 2006; Qiu et 344 

al., 2011). Warm-temperate plant elements on the Korean Peninsula, currently limited to 345 

southern coastal areas, shifted southwards during the Last Glacial Maximum (LGM, ca. 346 

21,000 yrs before present) towards glacial refugia putatively located in southern portions of 347 

Jeju Island, southern Japan, and/or southern China (Chung et al., 2013a; Lee et al., 2013b, 348 

2014; Chung et al., 2017). The low HeP found in the five warm-temperate orchid species 349 

(Bletilla striata, Habenaria dentata, Pecteilis radiata, Peristylus densus, and Tipularia 350 

japonica; Table 1) might be due to founder effects during post-glacial re-colonization from a 351 

single source population (Chung et al., 2013b); a pattern of continued small size over time of 352 

founding populations would enhance the loss of genetic diversity by processes of RGD 353 

(Frankham et al., 2002; Templeton, 2006). 354 

 The Baekdudaegan (BDDG, the main mountain system of the Korean Peninsula) 355 

served as a glacial refugium for a large assemblage of boreal and temperate plants during the 356 

LGM (Chung et al., 2017). In many cases (with the exception of Goodyera repens), plants 357 

from the BDDG maintain moderate to high levels of within-population genetic diversity 358 

(Table 3; Table 1 in Chung et al., 2017) because these mountains might provide relatively 359 

stable habitats, ensuring relatively large population sizes. Species belonging to this scenario 360 

might include Cypripedium macranthos, Galearis cyclochila, Liparis makinoana, and 361 

Oreorchis patens in South Korea (Chung et al., 2005a, 2005b, 2009, 2012; Chung, 2009a). 362 

Neottianthe cucullata, in spite of being located in the BDDG, has low levels of within-363 

population allozyme variation, which might be due to a relatively small scale of sampling 364 

(four populations were collected within a 1.2–km linear distance; Chung, 2009a). A total lack 365 

of allozyme diversity was also found in the autogamous Liparis kumokiri in South Korea, a 366 

common orchid that occurs on lowlands (K. Suetsugu, pers. comm.). In contrast, the self-367 
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incompatible and genetically-diverse congener L. makinoana mostly occurs in the BDDG and 368 

its vicinity (Oh et al., 2001), which illustrates the role of these mountains in preserving the 369 

genetic diversity of plant species. 370 

 There are five rare taxa in South Korea (Calanthe discolor, C. reflexa, C. sieboldii, 371 

Cremastra appendiculata var. variabilis, and Galearis cyclochila) and Cypripedium 372 

macranthos var. rebunense (endemic to Rebun Island, Japan) that, unexpectedly, exhibit 373 

moderate to high levels of genetic variation within populations (Table 1). Like Cymbidium 374 

kanran on Jeju Island, the three Calanthe species have been the target of orchid collectors 375 

during the past several decades (Chung et al., 2013c). As explained above, recent negative 376 

effects (i.e., human-mediated disturbance) could not have altered levels of genetic diversity in 377 

remnant populations. Even though their distributions are relatively narrow, locally common 378 

populations could maintain moderate levels of genetic variation. All these species, in addition 379 

to Cypripedium macranthos in South Korea and Cymbidium goeringii in Japan, appear to 380 

belong to this category. 381 

 As heterospecific comparisons, our mean estimates (N = 68) of genetic diversity for 382 

orchids are similar to those (N = 32 and 16, respectively) compiled by Case (2002) and 383 

Hamrick & Godt (1996) (Table 3), which are also comparable to the average values for all 384 

plants (N = 725: Hamrick & Godt, 1989), narrowly distributed plants (N = 101; Hamrick & 385 

Godt, 1989), short-lived herbaceous plants (N = 152; Hamrick & Godt, 1989), plants with 386 

outcrossing-animal breeding system  (N = 172, Hamrick & Godt, 1989), rare plants in the 387 

southeastern US (N = 52; Godt & Hamrick, 2001), and  plants from NW Mediterranean Basin 388 

(N = 36; López-Pujol et al., 2009), but somewhat higher than endemic plants (N = 81, 389 

Hamrick & Godt, 1989) (Table 3).  390 

 The degree of genetic differentiation among populations of orchids was once 391 

controversial (Forrest et al., 2004), due to the low mean value reported in one of the few 392 
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meta-analyses available at that time (GST = 0.087, N = 16; Hamrick & Godt, 1996). Our mean 393 

(GST = 0.190, N = 68) is comparable, nevertheless, to those averaged by most of the previous 394 

studies (GST = 0.146, 0.161, and 0.163; Phillips et al., 2012; Forrest et al., 2004; Case, 2002, 395 

respectively) (Table 3). The slightly higher GST value estimated in this study is partly due to 396 

the inclusion of Pelatantheria scolopendrifolius (GST = 0.899; Chung et al., 2007a) and 397 

Hemipilia gracile (GST = 0.781; Chung, 2009a), two orchids with disproportionate levels of 398 

genetic differentiation. The lack of significant differences in the mean GST values between 399 

rare and common orchids from our datasets are in agreement with the study of Hamrick & 400 

Godt (1989) for plants in general. However, Phillips et al. (2012) found that rare terrestrial 401 

orchid species had significantly higher population genetic differentiation than common ones 402 

(mean rare FST = 0.279, N = 13; mean common FST = 0.092, N = 22; Mann–Whitney U-test, 403 

P = < 0.001). These differences among studies might be due to different criteria for choosing 404 

papers for the meta-analyses and perhaps also different criteria for classifying species into 405 

rare and common (Phillips et al., 2012). We further test whether our results would change 406 

when six rare species of our dataset (that were formerly common but with most of their 407 

populations recently decreased) were considered, instead, as common ones (e.g., three 408 

Calanthe species, Cremastra appendiculata var. variabilis, Cymbidium goeringii in Japan, 409 

and Cypripedium macranthos); again, we did not detect significant differences between the 410 

groups regarding GST (data not shown). 411 

 412 

Conservation implications for rare orchids in Korea 413 

 414 

There are two main “hotspots” of orchids on the Korean Peninsula regarding species richness; 415 

the BDDG (that stretches ca. 1625 km), in which 40 taxa (38.8% of total orchids) occur, and 416 

Jeju Island (1848 km2, also a tourist hotspot), where 60 taxa (58.3%) can be found (Lee, 417 
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2011). Jeju Island is, however, much more significant as a hotspot for threatened species; for 418 

example, of the 48 orchid species designated by Korea National Arboretum (KNA) in 2012 419 

as rare/threatened plants (KNA, 2012), 37 occur on Jeju, whereas only seven are found in the 420 

main ridge (or in the immediate vicinity) of the BDDG. A similar trend is found in the 421 

Korean Red List of Threatened Species (MOE, 2014); out of 35 threatened orchid species, 422 

only five occur on the main ridge of the BDDG or its vicinity, whereas 29 grow on Jeju. 423 

 The BDDG has a high floristic richness of over 1500 taxa just in South Korea (Lim, 424 

2003). It is mainly covered by temperate deciduous forests (with Quercus mongolica and 425 

Pinus densiflora as dominant species) in its southern and central sections, whereas mixed 426 

forests (Abies, Betula, Pinus, Tilia, Ulmus) are common in its northern section (Yi, 2011). 427 

Under relatively stable habitats along the BDDG, many plant species might have persisted 428 

with large population sizes and consequently maintained moderate to high levels of genetic 429 

diversity (Chung & Chung, 2014; Chung et al., 2017). This may partly account for why in the 430 

BDDG there are relatively few threatened orchid species. The floristic richness of the BDDG 431 

as well as its role as a Pleistocene glacial refugium has stressed the need to ensure effective 432 

and integral conservation of this mountain range. Although these mountains remain relatively 433 

well preserved, some conservation measures have been already undertaken, whereas others 434 

have been suggested in detail in Chung et al. (2016, 2017), including enlarging the current 435 

network of protected areas, stopping of deforestation activities (especially worrisome in 436 

North Korea), and increasing cooperation between the two Koreas. 437 

  Jeju Island was on the “crossroads” of several post-glacial colonization routes, 438 

consequently harboring different floristic elements including subtropical, temperate, boreal, 439 

and arctic-alpine species (Kong & Watts, 1993; Dolezal et al., 2012; Chung et al., 2013a). 440 

Currently, Jeju harbors 1990 taxa of vascular plants (Kim, 2009), with about 13% of native 441 

Korean orchid species exclusively occurring here (Lee, 2011). Some of the reasons why Jeju 442 
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has many rare orchids might be due to the island’s relatively small area (less than 2000 km2) 443 

and/or recent plant immigration (colonization) by a single or few dispersal events from 444 

adjacent regions (perhaps, from southern Japan; Eum et al., 2011).  Fortunately, Hallasan 445 

National Park (1950 m at peak) has been designated as an UNESCO Biosphere Reserve 446 

(covering 830.94 km2; Chung & Hwang, 2015) in 2002, and a World Heritage Site in 2007, 447 

for its pristine environments, unique altitudinal zonation of vegetation and high endemism 448 

(Kong & Watts, 1993; Dolezal et al., 2012). In addition, five wetlands have been included on 449 

the list of Ramsar Wetlands (http://www.ramsar.org/wetland/republic-of-korea), and the 450 

whole island was recognized as an UNESCO Global Geopark in 2010 (Chung & Hwang, 451 

2015). Although the biosphere reserve—that represents ca. 45% of the total land area of 452 

Jeju—is well preserved, large destruction is taking place in the low peripheral areas of 453 

Gotjawal, a forest often called the “lung” of Jeju (Kang et al., 2013), while several 454 

development projects (including the construction of a new airport, resorts and residential 455 

complexes; Bridger, 2016) have been planned. To protect and conserve plants and animals, 456 

further expansion of the biosphere reserve to the whole island has been suggested (Chung & 457 

Hwang, 2015). 458 

 To our best knowledge, this study is the first to summarize levels of genetic diversity 459 

focusing on the Korean orchids, although it also includes data from several orchid species 460 

outside the Korean Peninsula. As Godt & Hamrick (2001) stressed, empirical genetic studies 461 

of rare plants can provide insights that may guide conservation and management plans. We 462 

found that 24 rare Korean orchids maintain significantly lower within-population genetic 463 

variation than their common congeners and common orchid species at the global level. Of 464 

particular concern, we found that ten species exhibit a total lack of allozyme genetic diversity 465 

(Cephalanthera subaphylla, Cypripedium japonicum, Epipactis papillosa, Goodyera repens, 466 

Habenaria dentata, Liparis pterosepala, Oreorchis coreana, Pecteilis radiata, Peristylus 467 
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densus, and Tipularia japonica; Table 1). In addition, other six species (Bletilla striata, 468 

Galearis cyclochila, Neottianthe cucullata, Pelatantheria scolopendrifolius, Platanthera 469 

hologlottis, and Pogonia minor; Table 1) also harbor extremely low levels of within-470 

population genetic variation. 471 

 Based on the genetic data presented here, conservation priority should be given to rare 472 

orchid species on the Korean Peninsula. Particularly, special attention should be paid to Jeju, 473 

as a large part of the orchids that exhibit low levels of genetic diversity occur on this island 474 

(Cephalanthera subaphylla, Goodyera repens, Liparis pterosepala, Oreorchis coreana, 475 

Pelatantheria scolopendrifolius, Peristylus densus, Platanthera hologlottis, Pogonia minor, 476 

and Tipularia japonica). One of these species is endemic to Jeju (Liparis pterosepala), 477 

another is quasi-endemic (Oreorchis coreana), and a third species’ Korean occurrences are 478 

restricted to Jeju (Peristylus densus). In addition, the rare terrestrial orchid Nervilia nipponica 479 

(formerly known as an endemic orchid to southern Japan) was newly recorded on Jeju (Kim 480 

et al., 2009), exhibiting extremely low levels of nrDNA genetic diversity (Eum et al., 2011). 481 

We recommend periodic monitoring of the rare orchid species on Jeju to detect any declining 482 

trend in their populations. 483 

 Another take-home message from this study is that the results of genetic analyses of 484 

seven orchid species (three Calanthe species, Cymbidium kanran, Cypripedium macranthos, 485 

Galearis cyclochila, and Liparis kumokiri) could not have been predicted based on 486 

generalizations from the allozyme literature or on analyses of congeneric species with similar 487 

life history traits, again stressing the importance of empirical genetic studies (Godt & 488 

Hamrick, 2001). Such genetic studies would also be important to elucidate the evolutionary 489 

trajectories of rare and endangered orchids on the Korean Peninsula (including Jeju), 490 

especially if conspecific populations from adjacent countries are included. In addition, these 491 

studies are essential to design tailored conservation measures. For example, in the specific 492 
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case of warm-temperate orchids, individuals from their colonization sources (e.g., the former 493 

LGM refugial areas in southeastern Japan) could be used as source populations for their in 494 

situ (reinforcement and reintroduction) or ex situ conservation, if genetic analyses 495 

demonstrate that they are genetically similar to the Korean populations (combining two 496 

genetically-divergent populations may result in outbreeding depression; Fenster & Dudash, 497 

1994). 498 

 499 

Future perspectives 500 

 501 

In future studies, some issues on how natural and/or artificial habitat (population) 502 

fragmentation and gene flow (or lack of) impact the genetic diversity and demography of rare 503 

orchid species and also how global warming may impact some of these species must be 504 

studied in depth (Liu et al., 2010; Chung et al., 2014). In fact, recent studies have shown that 505 

many orchids are extremely susceptible to habitat destruction or disturbance compared to 506 

other plants because they have “above” and “below” ground limitations (i.e., pollinator 507 

specialization, limited recruitments, and mycorrhizal specificity; Cozzolino & Widmer, 2005; 508 

Wateman et al., 2011; McCormick & Jacquemyn, 2014). Thus, in parallel to genetic and 509 

phylogeographic surveys, long-term ecological studies (e.g., minimum viable population size 510 

and demographic dynamics, extent of seed dispersal, pollination biology and ecology, seed 511 

germination ecology, association of mycorrhizal fungi, processes of colonization and 512 

population growth) are also necessary before effective conservation strategies can be 513 

designed and implemented. Unfortunately, this suggestion is critical because only a few such 514 

works focused on Korean orchids are available to date. 515 

 516 
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Table 1  Comparisons of allozyme-based genetic diversity and genetic differentiation for 895 

orchids in South Korea (bold faced) and their available congeners. The number in the 896 

column represents an alphabetic order of 21 generaa  897 

 Species (country sampled) (R/C)b Ecol. affinityc/ GFf NPg Genetic parameterh Refi 

      Ranged (R/C)e     %PS %PP AS AP HeS HeP  GST  

1. Bletilla striata (S. Korea) (R) WT/CSC, MY, SJ, SK (R) T 16 15.0  12.8  1.15  1.13  0.060  0.049  0.130  1  

2. Bulbophyllum drymoglossum  WT/SC, SJ, SK, TW (R) E, L 2 4.8  2.4  1.05  1.03  0.016  0.011  0.253  2  

    (S. Korea) (R)            

 B. adiamantinum (Brazil) (C) TR/ BR (C) 
E, 

R 
2 100.0  92.9  na 2.95  na 0.439  0.018  3  

 B. bidentatum (Brazil) (C) TR/ BR (C) R 1 100.0  100.0  3.80  3.80  0.612  0.612  na 3  

 B. epiphytum (Brazil) (C) TR/ BR (C) E 2 100.0  92.7  na 3.20  na 0.466  0.166  3  

 B. exaltatum (Brazil) (C) TR/ BR, GU, VE (C) 
E, 

R 
20 100.0  66.1  4.11  2.07  0.338  0.266  0.230  4  

 B. insectiferum (Brazil) (C) TR/ BR (C) R 1 92.9  92.9  2.60  2.60  0.439  0.439  na 3  

 B. involutum (Brazil) (C) TR/ BR (C) R 7 100.0  69.9  3.33  2.00  0.333  0.267  0.232  4  

 B. plumosum (Brazil) (C) TR/ BR (C) E 4 100.0  92.9  na 2.95  na 0.439  0.008  3  

 B. regnellii (Brazil) (C) TR/ BR (C) E 1 92.9  92.9  3.40  3.40  0.481  0.481  na 3  

 B. rupicola (Brazil) (C) TR/ BR (C) R 1 100.0  100.0  3.40  3.40  0.490  0.490  na 3  

 B. sanderianum (Brazil) (C) TR/ BR (C) R 2 66.7  38.9  1.89  1.60  0.179  0.160  0.145  4  

 B. weddellii (Brazil) (C) TR/ BR (C) R 4 77.8  47.2  2.56  1.68  0.238  0.183  0.269  4  

3. Calanthe discolor (S. Korea) (R) WT/CSC, SJ, SK (C ) T 9 88.2  68.6  2.59  2.01  0.244  0.227  0.068  5  

 C. reflexa (Jeju Is. in S. Korea) (R) 
WT/CSC, JJ, MY, SJ, TW 

(C) 
T 2 47.1  47.1  1.53  1.50  0.186  0.185  0.006  5  

 C. sieboldii (S. Korea) (R) WT/HU, RY, SK, TW (C) T 3 76.5  66.7  2.35  1.96  0.293  0.280  0.072  5  

4. Cephalanthera longibracteata  T/K, J, NEC (C) T 3 30.0  18.0  1.45  1.27  0.097  0.036  0.247  6  

    (S. Korea) (C)            

 C. subaphylla (S. Korea) (R) B, T/BH, EH, K, J, T 2 0.0  0.0  1.00  1.00  0.000  0.000  na 7  

     NEC, RFE (R)           

 C. damasonium (C. Italy) (C) T, WT/BH, EU, IN, T 13 0.0  0.0  1.00  1.00  0.000  0.000  na 8  

     MY, NWY, SWA  (C)           

 C. longifolia (C. Italy) (C) B, T/BH, CC, EU, IN,  T 3 55.6  48.1  1.67  1.59  0.188  0.168  0.104  8  

     KAS, MY, NAF, NE,           

      PA, SWA, SWC (C)           

 C. rubra (C. Italy) (C) T/EU to CEA (C) T 7 66.7  33.3  1.67  1.33  0.180  0.127  0.247  8  

 C. rubra (NE Poland) (C)   T 9 53.9  13.9  1.54  1.14  0.125  0.059  0.267  9  

5. Cremastra appendiculata  T, WT/CSC, J, SK, T 12 50.0  48.1  1.77  1.70  0.231  0.215  0.066  10  

    var. variablis (S. Korea) (R)    NV, TH (C)               
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Table 1 Continued. 904 

 Species (country sampled) (R/C)b Ecol. affinityc/ GFf NPg Genetic parameterh Refi 

      Ranged (R/C)e     %PS %PP AS AP HeS HeP  GST  

6. Cymbidium goeringii (S. Korea) (C) WT/BH, CSC, J, SK, TW,   T 16 71.0  63.0  2.71  2.08  0.251  0.240  0.098  11  

       NWI (C)           

 C. goeringii (Japan) (R)   T 7 71.4  62.2  2.21  1.95  0.240  0.230  0.027  12  

 C. kanran (Jeju Is.in S. Korea) (R) WT/SC, SJ, TW (R) T 1 66.7  66.7  2.83  2.83  0.173  0.173  na 7  

7. Cypripedium japonicum (S. Korea) (R) T/CSC, J, K (R) T 6 0.0  0.0  1.00  1.00  0.000  0.000  na 13  

 C. macranthos (S. Korea) (R) B/J, K, NEC, R, TW (C) T 4 50.0  46.7  1.50  1.47  0.200  0.185  0.059  13  

 C. macranthos var.  B/RI (R) T 5 62.0  60.4  1.85  1.69  0.187  0.183  0.085  14  

    rebunense (Rebun Is. in Japan) (R)                 

 C. acaule (Michigan, USA) (C)                                                                 B, T/CEC, EUS (C) T 4 46.2  34.7  1.77  1.44  0.095  0.080  0.164  15  

 C. arietinum(Michigan, USA) (R) B, T/CEC, GL, NEUS (R) T 4 0.0  0.0  1.00  1.00  0.000  0.000  na 15  

 C. calceolus (Poland) (C) 
B, T/EU, J,  NEC, NK, R 

(C) 
T 32 54.6  36.4  2.36  1.58  0.228  0.151  0.137  16  

 C. candidum (Michigan, USA) (R) B, T/MWUS  (R) T 5 66.7  38.3  2.00  1.43  0.054  0.050  0.069  15  

 C. fasciculatum (Washington, USA) (R) T/WUS (R) T 3 25.0  19.5  na 1.20  0.040  0.030  0.040  17  

 C. kentuckiense (Arkansa, Oklahoma, T/SUS (R) T 8 25.0  12.5  1.33  1.15  0.050  0.042  0.182  18  

     Texas, Virginia in USA) (R)            

 C. parviflorum var. makasin  B, T/NECA, NUS, T 8 81.8  69.3  2.40  1.80  0.290  0.230  0.199  19  

    (Indiana, Michigan in USA) (C)    SUNA (C)           

 C. parviflorum (Georgia, Missouri,  T/SEUS (C) T 8 54.5  35.2  1.90  1.40  0.130  0.130  0.149  19  

     Oklahoma, Virgia in USA) (C)                 

 C. parviflorum var. pubescens  B, T/CAN, EUS,  T 12 81.8  65.2  2.50  1.70  0.220  0.200  0.137  19  

     (northern form) (Illinois, Indiana,     SUNA (C)                

      Michigan, Ohio in USA) (C)                 

 C. parviflorum var. pubescens  T/SEUS (C) T 12 81.8  50.8  2.50  1.60  0.190  0.160  0.209  19  

     (southern form) (SE USA,                  

      Ohio in USA) (C)                 

 C. reginae (Michigan, USA) (R) B, T/CEC, EUS (R)  T 3 18.2  15.2  1.27  1.15  0.037  0.024  0.349  15  

 C. reginae (SE USA, Ohio in USA) (R)   T 9 10.0  7.8  1.20  1.11  0.051  0.038  0.212  20  

8. Epipactis thunbergii (S. Korea) (C) T, WT/EZ, J, SK (C) T 8 4.3  3.8  1.04  1.04  0.020  0.013  0.388  21  

 E. papillosa (S. Korea) (R) T/ J,  K, SLF (R) T 8 0.0  0.0  1.00  1.00  0.000  0.000  na 22  

 E. atrorubens(NE Poland) (R) B, T/EU, ES, CEA (C) T 4 9.1  9.1  1.14  1.12  0.042  0.034  0.265  23  

 E. helleborine (NE Poland) (C) T/EUA, CEA to J (C) T 5 40.9  32.7  1.68  1.51  0.141  0.115  0.220  24  

 E. helleborine (Scotland, England) (C)   T 13 na 33.2  na 1.46  na 0.145  0.240  25  

 E. helleborine (Belgium, Denmark,  T 35 na 55.0  na 1.77  na 0.230  0.200  26  

    England, France, Germany,            

    Scotland, Switzerland) (C)            

 E. helleborine (Canada, naturalized) (C)   T 12 na 58.0  na 1.90  na 0.232  0.090  26  

 E. helleborine (C. Italy) (C)   T 4 62.5  59.0  2.00  1.82  0.238  0.233  0.033  27  

 E. helleborine (Denmark) (C)   T 13 88.9  73.6  2.78  2.63  0.302  0.274  0.087  28  
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Table 1 Continued. 907 

 Species (country sampled) (R/C)b Ecol. affinityc/ GFf NPg Genetic parameterh Refi 

      Ranged (R/C)e     %PS %PP AS AP HeS HeP  GST  

 E. leptochila (Scotland, England) (C) T/WEU (C) T 2 57.1  26.5  1.71  1.36  0.152  0.117  na 29  

 E. microphylla (C. Italy) (R) T/EUA (R) T 2 0.0  0.0  1.00  1.00  0.000  0.000  na 27  

 E. palustris (C. Italy) (R) B/CIB (R) T 1 29.0  29.0  1.29  1.29  0.085  0.085  na 27  

 E. phyllanthes (Denmark) (R) T/WEU (R) T 6 0.0  0.0  1.00  1.00  0.000  0.000  na 28  

 E. phyllanthes (Scotland, England) (R)   T 2 7.1  7.1  1.07  1.07  0.028  0.028  na 29  

 E. purpurata (Denmark) (R) T/WEU ( R) T 5 0.0  0.0  1.00  1.00  0.000  0.000  na 28  

9. Galearis (Orchis) cyclochila  B/J, K, NEC, NEQ, R (C) T 2 50.0  46.4  1.71  1.68  0.216  0.210  0.030  30  

  (S. Korea) (R)            

 G. (Gymnadenia) camtschatica B/J, K, NEC, RFE  (C) T 4 18.2  18.2  1.18  1.18  0.066  0.067  0.000  31  

   (Ulleung Is. in S. Korea) (R)            

10. Goodyera rosulacea (S. Korea) (C) T/SK (C) T 7 31.6  27.8  1.37  1.31  0.100  0.126  0.150  32  

 G. repens (S. Korea) (R) B/BH, C, EU, IN, T 3 0.0  0.0  1.00  1.00  0.000  0.000  na 7  

   J, K, KAS, MY,           

   NA, NE, R, TW (C)           

 G. repens (NE Poland) (C)   T 11 50.0  50.0  1.90  1.68  0.210  0.197  0.060  33  

 G. procera (Hong Kong) (C) TR, WT/BA, BH, CA,  T 15 33.3  21.8  1.33  1.22  na 0.073  0.523  34  

    HA, IN, IND, LA, MY,           

     NE, PH, RY, SC,            

     SR, TH, TW, VI, YT (C)           

11. Habenaria dentata (S. Korea) (R) T, WT, TR/CA, IN, LA, T 1 0.0  0.0  1.00  1.00  0.000  0.000  na 7  

   MY, NE, SC, SJ, SK, TH,           

   TW, VI (C)           

12. Hemipilia (Amitostigma) gracile  T/CSC, J, K, TW (R) L 17 5.3  2.5  1.11  1.03  0.026  0.009  0.781  31  

  (S. Korea) (C)            

13. Liparis kumokiri  (S. Korea) (C) B, T/J, K, RFE (C) T 17 0.0  0.0  1.00  1.00  0.000  0.000  na 35, 36 

 L. makinoana (S. Korea) (C) B, T/J, K, RFE (C) T 4 73.3  70.0  2.27  2.07  0.346  0.317  0.107  35, 36 

 L. pterosepala (Jeju Is., S. Korea) (R) WT/JJ (R) T 2 0.0  0.0  1.00  1.00  0.000  0.000  na 7  

14. Neottianthe (Gymnadenia) cucullata  B, T, WT/BH, C, EEU,   T 4 27.3  12.5  1.27  1.13  0.039  0.036  0.081  31  

    (S. Korea) (R)    J, K, MO, NE, R (C)           

15. Oreorchis  patens (S. Korea) (C) B/C, J,   K, RFE, TW (C) T 12 76.5  62.8  2.53  1.96  0.258  0.237  0.075  37  

 O. coreana (Jeju Is. in S. Korea) (R) WT/JJ, SJT (R),  T 4 0.0  0.0  1.00  1.00  0.000  0.000  na 37  

16. Pecteilis (Habenaria) radiata  T, WT/SK, J, WH (R) T 1 0.0  0.0  1.00  1.00  0.000  0.000  na 7  

   (S. Korea) (R)            

17. Pelatantheria (Sarcanthus) scolopendrifolius  WT/CC, SJ, SK (R) E, L 3 4.8  1.6  1.10  1.02  0.015  0.002  0.899  2  

   (S. Korea) (R)                 
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 910 

Table 1 Continued. 911 

  Species (country sampled) (R/C)b Ecol. affinityc/ GFf NPg Genetic parameterh Refi 

       Ranged (R/C)e     %PS %PP AS AP HeS HeP  GST  

18. Peristylus densus (Jeju Is.) (R) WT/JJ, SJ (R) T 1 0.0  0.0  1.00  1.00  0.000  0.000  na 7  

    (= Habenaria flagellifera)            

19. Platanthera hologlottis (S. Korea) (R) B/C, J, K, RFE (C) T 3 10.0  6.7  1.10  1.07  0.047  0.031  0.328  7  

 P. leucophaea  (NE USA) (R) T/NEUS (R) T 7 25.0  11.9  1.67  1.18  0.103  0.033  0.754  38  

 P. chlorantha  (NE Poland) (R) B, T/C, J, K, R, WA, EU (C) T 6 33.3  25.6  1.60  1.36  0.102  0.078  0.251  9  

 P. bifolia (NE Poland) (C) B, T/ EUA (C) T 14 33.3  22.3  na 1.48  na 0.093  0.048  39  

20. Pogonia minor (S. Korea) (R) T, TR, WT/J, SK, ST (C) T 11 14.3  2.7  1.14  1.04  0.010  0.008  0.211  31  

21. Tipularia japonica (S. Korea) (R) WT/SK, SJ (R) T 8 0.0  0.0  1.00  1.00  0.000  0.000  na 22  

a Abbreviations: %P, the percent polymorphic loci; A, mean number of alleles per locus, He, 912 

Hardy–Weinberg expected heterozygosity or genetic diversity; GST or FST, measures of 913 

among-population differentiation; na, not available; the subscripts “P” or “S” denote 914 

population means or species’ (or pooled samples) values, respectively. 915 

b R/C, rare or common in area, regions, country or countries that sampled for allozyme studies.  916 

c Ecological affinity: B, boreal; T, temperate; TR, tropical; WT, warm temperate (or subtropical).  917 

d Range: BA, Bangladesh; BH, Bhutan; BR, Brazil; C, China; CA, Cambodia; CAN, Canada; CC, 918 

central China; CEA, central Asia; CEC, central and eastern Canada; CIB, circumboreal regions; CSC, 919 

central and southern China; CUS, central United States of America; EC, eastern Canada; EH, eastern 920 

Himalayas; EEU, eastern Europe; ES, eastern Siberia; EU, Europe; EUA, Eurasia; EUS, eastern US; 921 

EZ, eastern Zhejiang, South China; GL, States around the Great Lakes in US; GU, Guyana; HA, 922 

Hainan Island, South China; HU, Hunan, southern China; IN, India; IND, Indonesia; J, Japan; JJ, Jeju 923 

Island, South Korea; K, Korea; KAS, Kashmir; LA, Laos; MO, Mongolia; MWUS, Midwest US; MY, 924 

Myanmar; NA, North America; NAF, northern Africa; NCUS, North Central US; NE, Nepal; NEC, 925 

northeastern China; NECA, northeastern California, US; NEQ, northeastern Qinghai, western China; 926 

NEUS, North Eastern US; NI, northern India; NK, northern Korea; NUS, northern US; NV, North 927 

Vietnam; NWI, Northwest India; NWY, northwestern Yunnan, South China; PA, Pakistan; PH, 928 

Philippines; R, Russia; RFE, Russian Far East; RI, Rebun Island, Japan; RY, Ryukyu Islands, 929 
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southern Japan; SA, Sakhalin; SC, South China; SCUS, South Central US; SEUS, southeastern US; 930 

SJ, southern Japan; SJT, Tochigi Prefecture in southern Japan; SK, southern Korea; SLF, Fengcheng 931 

in southern Liaoning, northeastern China; SR, Sri Lanka; ST, southern Taiwan; SUNA, subarctic 932 

North America; SUS, South US; SWA, South Western Asia; SWC, South Western China; TH, 933 

Thailand; TW, Taiwan; TX, Texas, USA; VE, Venezuela; VI, Vietnam; WA, Western Asia; WEU, 934 

Western Europe; WH, Western Henan, South China; WUS, West US; WCUS, West Central US; YT, 935 

Yakushima and Tanekashima Islands, southern Japan.  936 

e R/C, rare or common at regional or global levels (at the species level). See more explanations in 937 

Materials and Methods section.  938 

f Growth form: E, epiphytic; L, lithophytic, R, rupicolous (inhabiting the rock areas or in rock 939 

crevices); T, terrestrial. 940 

g  NP, number of populations examined. 941 

h  %P, percentage of polymorphic loci; A, mean number of allele per locus; He, genetic diversity. 942 

Allozyme-based genetic diversity parameters are well described in Berg & Hamrick (1997).The 943 

subscript “S” denotes species’ (or pooled samples) values, while the subscript “P” indicates 944 

population means. GST (FST), measures of among-population differentiation.   945 

i Source references: 1, Chung et al. (2013b); 2, Chung et al. (2007a); 3, Azevedo et al. (2007); 4, 946 

Ribeiro et al. (2008); 5, Chung et al. (2013c); 6. Chung et al. (2004b); 7. M.Y. Chung & M. G. Chung 947 

(unpubl. data); 8, Scacchi et al. (1991); 9, Brzosko & Wróblewska (2013); 10, Chung et al. (2013d); 948 

11, Chung & Chung (1999); 12, Chung & Chung (2000); 13, Chung et al. (2009); 14, Izawa et al. 949 

(2007); 15, Case (1994); 16, Brzosko et al. (2011); 17, Aagaard  et al. (1999); 18, Case et al. (1998); 950 

19, Wallace & Case (2000); 20, Kennedy & Walker (2007); 21, Chung & Chung (2007); 22, Chung 951 

(2009b); 23, Brzosko et al. (2006); 24, Brzosko et al. (2004); 25, Hollingsworth & Dickson (1997); 26, 952 

Squirrell et al. (2001); 27, Scacchi et al. (1987); 28, Ehlers & Pedersen (2000); 29, Harris & Abbott 953 

(1997); 30, Chung et al. (2005a); 31, Chung (2009a); 32. Chung & Chung (2010); 33. Brzosko et al. 954 
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(2013); 34, Wong & Sun (1999); 35, Chung et al. (2005b); 36, Chung et al. (2007b); 37, Chung et al. 955 

(2012); 38, Wallace (2002); 39, Brzosko et al. (2009).956 
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Table 2  Summary statistics of the genetic diversity for rare orchids in Korea and their 957 

common congeners at the global scale (nine pairs)a  958 

  Mean values (SE)  Wilcoxon signed-rank  test  Rare vs. common orchid correlation 

Parameter Rare Common  Z P  Corr. coef. (rS) P 

%PP 11.04 45.00  -2.547 0.006  0.347 0.359  

 (7.41) (6.68)       

AP 1.24 1.74  -1.836 0.038  0.402 0.291 

 (0.20)  (0.15)       

HeP 0.031 0.181  -2.666 0.005  0.237  0.552  

 (0.019)  (0.032)       

%PS 12.43 54.88  -2.666 0.005  0.237 0.552 

 (7.39) (7.33)       

AS 1.28 2.11  -2.380  0.010  0.682 0.069 

 (0.21)  (0.21)       

HeS 0.033 0.209  -2.520  0.007  0.546 0.171 

  (0.021)  (0.029)           

a Wilcoxon signed-rank tests were conducted for comparing both population (subscript “P”)  959 

and species (subscript “S”) level values for each measure.  960 

961 
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Table 3  Summary of allozyme-based genetic parameters for rare, common orchids, plants 962 

having similar life history-traits, and species from two areas largely recognized as harboring 963 

glacial refugia [i.e., the Baekdudaegan (BDDG, the main mountain system of the Korean 964 

Peninsula), the southeastern US, northwestern Mediterranean Basin]a  965 

Category %PS %PP AS AP HeS HeP  GST Refb 

Rare orchids in Korea (N = 24) 21.8 18.6 1.34 1.22 0.075 0.070  0.169 (N = 12) 1 

Rare orchids in Table 1 (N = 38) 23.3 19.2 1.37 1.27 0.073 0.066 0.189 (N = 21) 1 

Common orchids in Table 1 ( N = 32) 62.3 50.4 2.17 1.90 0.225 0.217 0.194 (N = 25) 1 

Means for orchids (NS = 68; NP = 68) 41.0  33.2 1.71 1.55 0.135 0.134 0.190 (N = 68) 1 

Means for orchids (NS = 32; NP = 36) 46.2 33.7 1.83 1.46 0.119 0.107 0.163 (N = 32) 2 

Means for orchids (NS = 16) 44.8 na na na 0.137 na 0.087 (N = 16) 3 

Means for orchids (NS = 71) na na na na na na 0.161 (N = 71) 4 

Means for orchids (NS = 52) na na na na na na 0.146 (N = 52) 5 

All plants (NS =725; NP = 725) 52.2 35.1 1.99 1.53 0.153 0.116 0.225 (N = 830) 6 

Endemic plants (NS = 81; NP = 100) 40.0  26.3  1.80  1.39  0.096  0.063  0.248 (N = 52) 6 

Plants narrowly-distributed (NS = 101; NP = 115) 45.1  30.6  1.83  1.45  0.137  0.105  0.242 (N = 82) 6 

Short-lived herbaceous perennials  41.3  28.0  1.70  1.40  0.116  0.096  0.233 (N = 119) 6 

   (NS = 152; NP = 159)         

Plants with outcrossing-animal breeding system 51.1  35.9  1.99  1.54  0.167  0.124  0.197 (N= 124) 6 

   (NS = 172; Np = 164)         

Plants occurring mainly in the BDDG in Koreac 64.3  46.0  2.20  1.72  0.193  0.159  0.175 (N = 16) 7 

   (NS =16, NP = 16)         

Rare plants in the southeastern US (NS = 52; NP = 52) 46.7 33.3 1.87  1.53  0.123  0.100  0.187 (N = 52) 8 

Plants from NW Mediterranean Basin (NP = 36)  na 34.2 na 1.53 na 0.113  0.248 (N = 36) 9 

a Na, not available.  966 

b Source references: 1, present study; 2, Case (2002); 3, Hamrick & Godt (1996); 4, 967 

Forrest et al. (2004); 5, Phillips et al. (2012); 6, Hamrick & Godt (1989); 7, Chung et al. 968 

(2017); 8, Godt & Hamrick (2001); 9, López-Pujol et al. (2009).  969 

c Only species with most of their populations in Korea (more than half) occurring on main 970 

ridge or on immediate vicinity of the BDDG. 971 

972 
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 973 

Figure legends 974 

 975 

Fig. 1  Plots of genetic variation in rare Korean orchid species vs. their common 976 

congeners (nine pairs) at the population level. The line in each graph represents the 977 

portion of the graph where rare and common congeners have the same levels of genetic 978 

parameters. (A), %PP; (B), AP; (C), HeP 979 
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Fig. 1 984 


