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Patterns of genomic and phenomic diversity in wine and

table grapes
Zoë Migicovsky1, Jason Sawler1,2, Kyle M Gardner1,3, Mallikarjuna K Aradhya4, Bernard H Prins4, Heidi R Schwaninger5,

Carlos D Bustamante6, Edward S Buckler7, Gan-Yuan Zhong5,8, Patrick J Brown9 and Sean Myles1

Grapes are one of the most economically and culturally important crops worldwide, and they have been bred for both winemaking

and fresh consumption. Here we evaluate patterns of diversity across 33 phenotypes collected over a 17-year period from 580 table

and wine grape accessions that belong to one of the world’s largest grape gene banks, the grape germplasm collection of the

United States Department of Agriculture. We find that phenological events throughout the growing season are correlated, and

quantify the marked difference in size between table and wine grapes. By pairing publicly available historical phenotype data with

genome-wide polymorphism data, we identify large effect loci controlling traits that have been targeted during domestication and

breeding, including hermaphroditism, lighter skin pigmentation and muscat aroma. Breeding for larger berries in table grapes was

traditionally concentrated in geographic regions where Islam predominates and alcohol was prohibited, whereas wine grapes

retained the ancestral smaller size that is more desirable for winemaking in predominantly Christian regions. We uncover a novel

locus with a suggestive association with berry size that harbors a signature of positive selection for larger berries. Our results

suggest that religious rules concerning alcohol consumption have had a marked impact on patterns of phenomic and genomic

diversity in grapes.
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INTRODUCTION

Grapes (Vitis vinifera L.), one of the first domesticated perennials,
originated in the Near East 5000–8000 years ago1 and remain an
economically and culturally important crop. In 2015, grapevines
covered 7.5 million hectares and produced 76 million tons of
grapes globally.2 Over the past millennia, human selection for
traits of interest, especially those important to fruit production,
have shaped the appearance of grapes. In particular, selection for
hermaphroditic flowers increased grape production, as propagat-
ing both male and female plants was no longer required. While
nearly half of all grapes grown are vinified into wine, 36% are
consumed fresh and the rest are dried or used for juice.2 Desirable
berry traits differ depending on the use of the grapes, and, thus,
the different breeding targets for table and wine grapes have led
to differences in berry and bunch size.3,4,5 There is also evidence of
selection for white berry color.5

While grape breeding has resulted in selection for several traits
over the past millennia, current consumer preference is focused
on a small number of elite cultivars. As a result, most grape
cultivars have been grown for centuries—such as ‘Pinot Noir’,
which has existed for more than a millennium—using vegetative
propagation. These genetically frozen cultivars are highly suscep-
tible to continually evolving pathogens.6,7 Selection for new traits,
including disease resistance, is a slow and expensive process in

grapes. Breeding of new grape cultivars is hindered by high
inbreeding depression as well as a lengthy juvenile phase lasting
3–5 years. Even after fruit production, additional time may be
required to assess traits important for wine production.4,8

Developing a new grape cultivar using traditional breeding
techniques takes 25–30 years. Fortunately, using genetic markers
linked to phenotypes of interest can decrease the time required to
develop new cultivars by up to 10 years.8 In addition, recent work
estimated that use of marker-assisted selection (MAS) in grapes
offered a cost-saving of 16–34%.9

The ability to save time and money when breeding makes
grapes an attractive candidate for MAS.7,10 Using genetic markers,
individuals can be tested for a trait at the seed or seedling stage.
Thus, MAS offers the greatest potential for traits that are difficult
and expensive to phenotype, such as disease resistance, or
time-consuming to measure, such as fruit traits only visible after
several years.8 Wild Vitis relatives have been previously used for
hybrid grape breeding11 and are a promising source of resistance
loci for introgression through MAS.12 For example, V. arizonica was
used in the development of Pierce’s disease-resistant wine
grapes,13 while Muscadinia rotundifolia was used to pyramid resi-
stance from both powdery and downy mildew into V. vinifera.14

Markers have also been identified for many other traits in grape
including berry color,15,16 flower sex,17 seedlessness18 and muscat
aroma.19
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The discovery of markers for agriculturally important traits has
facilitated the use of MAS in grapes; however, the technique is
only worthwhile when the cost of phenotyping is higher than the
cost of discovering new markers and genotyping cultivars.20

Decreasing DNA sequencing costs will continue to accelerate both
marker discovery and the implementation of MAS in grape
breeding. While sequencing costs have decreased, phenotyping
remains a slow and expensive process.21 Fortunately, historical
phenotype information already available in gene banks can be
linked with genomic information for genetic mapping of
important traits. The ability to leverage historical data from gene
banks for genetic mapping has previously been demonstrated in
potato,22 barley23 and apple.24 Similarly, in grape, years of
phenotype information may already be available and exploitable
for the purposes of genetic mapping. Unfortunately, standardized
data formatting and annotation are not yet widely adopted in
grapevine and remain an essential goal.25

To investigate the history of selection in grape, as well as the
future potential of MAS, we evaluated associations between 33
phenotypes and 6114 genome-wide single-nucleotide polymorph-
isms (SNPs) in 580 V. vinifera accessions from the United States
Department of Agriculture (USDA) grape germplasm collection.
We report several significant genome-wide association study
(GWAS) results, demonstrate the use of signatures of selection as
complementary to GWAS and find that phenotype relationships as
well as patterns of genetic variation have been shaped by human
culture and geography.

MATERIALS AND METHODS

Sample collection and genotype calling

The sample collection and genotype calling for the accessions used in this
study were the result of previous work described in Myles et al.26 Briefly,
samples were collected from the USDA grape germplasm collections in
Davis, CA, and Geneva, NY. DNA was extracted using commercial
extraction kits. A custom Illumina Vitis9KSNP array (San Diego, CA, USA)
assaying 8898 SNPs was used to generate genotype data.27 Following
quality filters (GenTrain Score ⩾ 0.3 and GenCall ⩾ 0.2), 6114 SNPs with
o20% missing data in 1817 Vitis samples remained for analysis.26

Data management

Phenotype data were downloaded from the USDA Germplasm Resources
Information Network (GRIN; http://www.ars-grin.gov). Only accessions
reliably identified as V. vinifera in Myles et al.26 were included.
Measurements for flower sex were combined across years and samples
with discordant values for flower sex across years were removed.
Additional phenotype data including skin color, berry length, berry width,
berry size and cluster density were collected as part of the present study.
Our cluster density measures were merged with measurements available
from GRIN, and when discrepancies between measurements existed, those
values were removed. In some cases, phenotype data were recoded to
facilitate genetic mapping. A complete description of the phenotype data,
including recoding procedures, is available in Supplementary Table S1.
Phenotype data were only included in downstream analyses if

measurements existed for at least 100 accessions, resulting in a final set
of 33 unique phenotypes. While 2 years of data were available for four
phenotypes, the correlation of trait values between years was often poor.
The correlation between years was estimated using Pearson’s correlation
for binary and quantitative phenotypes and Kendall’s rank correlation for
ordinal phenotypes (Supplementary Table S2). For clarity, when 2 years of
data were available for a given phenotype, data from the year with the
greater sample size were included in the main portion of the manuscript.
However, results for each year are presented separately in the
Supplementary Material.
Pairs of accessions were considered to have a clonal relationship if π̂

(proportion identity-by-descent), calculated using PLINK,28 exceeded 0.95.
To avoid pseudoreplication, for each phenotype only the accession from a
clonal group with the least amount of missing genotype data was included
in downstream analyses. However, the accession’s phenotype was
calculated as the average across all accessions within its clonal group. A
Box–Cox transformation was applied to quantitatively measured traits

when the distribution of observed values differed significantly from
normality. The untransformed and transformed distributions for each
phenotype are shown in Supplementary Figure S1. The phenotype
distribution for ordinal traits is shown in Supplementary Figure S2. For
binary traits, the majority phenotype was used instead of the mean when
combining clones, and the distributions of these phenotypes are shown in
Supplementary Figure S3. After all filtering steps, the final data set
consisted of 33 phenotypes scored across 580 accessions and genotyped
for 6114 SNPs.

Patterns of phenotypic diversity

The correlations (r) between all pairwise phenotype comparisons were
computed using R v3.2.0.29 Correlations between binary/binary, quantita-
tive/quantitative and quantitative/binary phenotype pairs were tested
using Pearson’s correlation. Correlations between quantitative/ordinal and
binary/ordinal phenotype pairs were tested using Spearman's rank
correlation coefficient. Finally, correlations between ordinal/ordinal phe-
notype pairs were tested using Kendall’s rank correlation. To correct for
multiple comparisons, a Bonferroni correction was applied by multiplying
P-values by the number of pairwise comparisons (528).
Accessions were divided based on use (table and wine) as well as

geographic origin (East, Central and West; Supplementary Table S3). The East
geographic region includes the Middle East as well as Russia, while the
Central region includes Eastern Europe including Serbia, Hungary and
Greece. Finally, the West region includes Western Europe such as France,
Italy and Germany. A full list of the geographic origin of V. vinifera accessions
in the USDA collection can be found in Myles et al.26 For each phenotype,
we tested whether accessions with different uses and geography differed.
We used a Fisher’s Exact test for binary phenotypes, a Mann–Whitney U-test
for ordinal phenotypes and quantitative phenotypes. For the Fisher’s Exact
test, we report the odds ratios. For the Mann–Whitney U-test, we report the
W-test statistic. P-values were Bonferroni-corrected for multiple comparisons
and all analyses were performed in R.

Genetic population structure

Before assessing population structure, the genotype data were pruned for
linkage-disequilibrium (LD) using PLINK by considering a window of 10
SNPs, removing 1 of a pair of SNPs if LD40.5, and then shifting the
window by 3 SNPs and repeating the procedure. Principal component
analysis was performed on the resulting 3196 SNPs genotyped in 580
accessions using the smartpca program in the EIGENSOFT package.30,31 To
investigate the degree to which population structure accounts for
phenotypic variance within V. vinifera, we conducted linear regression
for continuous and ordinal phenotypes, and logistic regression for binary
phenotypes using trait values as response variables and eigenvalues for
the first 10 principal components (PCs) as predictors. McFadden’s pseudo-
R2 was calculated for logistic regression using the ‘pscl’ package32 in R
v3.0.1. We define the phenotypic variance explained as the R2 of these
models, for PC1, PC2 and PCs 3–10.

Genomic prediction

To perform genomic prediction, SNPs with a MAF threshold of o0.01 were
removed using PLINK,28 resulting in 4602 SNPs genotyped in 580
accessions. Missing genotype data were then imputed using
LinkImpute33 with optimized values of 7 for parameter k and 23 for l,
resulting in an estimated accuracy of 88.8%. Genomic prediction was
performed on all phenotypes using imputed data and the x.val function in
the R package PopVar.34 We selected the rrBLUP model and assessed
prediction accuracy with a fivefold (nFold= 5) cross-validation procedure
repeated three times (nFold.reps= 3) and no further filtering (min.maf = 0).
All other default parameters were used. The seedlessness phenotype was
removed for this analysis because of an uneven binary trait distribution,
which did not allow for cross-validation. Genomic prediction accuracy was
calculated as the correlation (r) between the predicted phenotypes and the
observed values.

GWAS and selection scans

GWAS were performed using a linear mixed-model method, efficient
mixed-model association expedited (EMMAX)35 and an identity-by-state
kinship matrix calculated using the default EMMAX settings. The number of
accessions included for each GWAS varied based on the phenotype, and,
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thus, a minor allele frequency (MAF) threshold of 0.01 was applied for each

GWAS individually, resulting in 4409–4680 SNPs.
Haplotypes were inferred using fastPHASE36 as in Myles et al.26 SNPs

with a MAF40.05 and o10% missing data were included, resulting in

3397 SNPs. To identify potential regions of the V. vinfera genome under

selection during domestication and breeding, we calculated the xpEHH

statistic across the genome using selscan software.37 The xpEHH statistic

requires the user to divide the samples into two groups to identify regions

of the genome with unusually long stretches of low haplotype diversity in

one group compared with the other. As this pattern of haplotype diversity

is expected in regions subjected to positive selection, the identified

regions are considered candidate regions that may harbor functional

variants selected for during domestication or breeding. For berry size, we

compared accessions with large berries (that is, within the top 10% of the

berry size distribution) to accessions with small berries (that is, within the

bottom 10% of the berry size distribution). For skin color, we compared

dark-skinned accessions (that is, those with scores of 1 and 2) to light-

skinned accessions (that is, those with scores of 4 and 5). We also

compared groups divided based on several binary traits: Muscat versus

non-Muscat, dioecious accessions versus hermaphrodites, and table versus

wine grapes.

RESULTS AND DISCUSSION

Correlations between phenotypes

We analyzed each of the 33 phenotypes in this study to uncover
potential relationships between phenotypes, as well as confirm

the reliability of the data. A correlation matrix between all
phenotypes is shown in Figure 1.
We found that all measurements describing berry size were

significantly correlated, including berry length and width (r= 0.89,
Po1 × 10− 15) and berry size and weight (r= 0.79, Po1 × 10− 15).
Thus, berries that are large according to one measure, such as
length, also tend to be larger in other measures, such as width. In
addition, all berry size measurements were positively correlated
with berry firmness (for example, size: r= 0.54, Po1 × 10− 15,
weight: r= 0.48, Po1 × 10− 15). Both large size and berry firmness
are desirable traits in table grapes,38 and may have both been
targeted by table grape breeders.
In addition to larger berries being firmer, we found that all berry

size measurements were negatively correlated with cluster density
including length (r=− 0.43, Po1 × 10− 15) and size (r=− 0.41,
Po1 × 10− 15), indicating that larger berries were found in less
dense clusters. This observation may have arisen from the
divergent breeding targets of table and wine grape breeders: less
dense clusters of large grapes are preferred in table grapes and
smaller more densely packed berries are preferred in wine
grapes.38 As expected, larger berries also tend to be found on
larger clusters.
Titratable acidity, or the concentration of tartaric acid, was

negatively correlated with berry size measurements including
length (r=− 0.42, Po1 × 10− 15) and width (r=− 0.44,
Po1 × 10− 15). Tartrate synthesis stops at veraison, the onset of

Figure 1. Correlations among grape phenotypes. Correlations were calculated using Pearson’s, Spearman’s or Kendall’s correlations depending
on phenotypes compared (see Materials and methods). Values above the diagonal are colored to indicate the correlation results (r) and those
below the diagonal indicate Bonferroni-corrected P-values.
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ripening; therefore, an increase in berry size post veraison dilutes
the amount of tartaric acid in the berry.39 Similarly, larger berries
also tend to have a lower concentration of sugar.40 We found a
negative correlation between lab brix and berry size (r=− 0.32,
P= 6.50 × 10− 9), as well as all other berry size measurements,
providing further evidence that sugar concentration decreases as
berry size increases.
Several phenological events, describing the timing of develop-

ment, were assessed by various researchers and deposited into
the USDA-GRIN database. Despite the noise expected from data
collection across multiple years by multiple observers, many
phenology traits are correlated with each other. For example, bud
burst date and leaf date (r= 0.44, Po1 × 10− 15), leaf date and
bloom date (r= 0.61, Po1 × 10− 15), bloom date and veraison
(r= 0.45, P= 2.74 × 10− 7) are all significantly correlated. Thus, the
timing of a grapevine’s escape from dormancy is predictive of
subsequent developmental milestones, like bud break, leaf
production and the onset of veraison. This observation suggests
that the genetic control of grapevine phenology may be at least
partially coordinated by a single regulatory mechanism, rather
than independent mechanisms for each developmental event.

Phenotypic variance based on use and origin

In addition to the relationships between phenotypes, we
examined differences between accessions based on use (table
and wine) and geographic origin (East and West; Figure 2). Unlike
wine grapes, which are pressed and fermented prior to
consumption, table grapes are consumed directly and their
desirability relies heavily on a visual assessment by the consumer.
As a result, most well-known table grapes have large berries.38 Our
results confirm that table grapes generally have berries that are
greater in length (W= 41 804.5, Po1 × 10− 15), width
(W= 39 407.5, Po1 × 10− 15), size (W= 41 150, Po1 × 10− 15) and
weight (W= 38 921.5, Po1 × 10− 15) when compared with wine
grapes. Smaller berries may be beneficial for winemaking, as
smaller berries often have more desirable characteristics for
vinification, including higher sugar concentration.40,41 Consistent
with previous work, we also found that titratable acidity
(W= 23 250.5, P= 2.67 × 10− 8) and sugar content (W= 23 792,
P= 5.09 × 10− 8) were significantly higher in wine grapes.42–45

In addition to berry size, cluster density is important for table
grapes, as very compact clusters are often damaged during
packing and transport. Broken berries leak juice, which may spoil

Figure 2. Relationship between grape phenotype and use or origin. Each phenotype was divided into two groups according use (table or
wine) and origin (East or West) and compared. Significant increases are indicated by the direction of the arrow. P-values are Bonferroni-
corrected.
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the entire cluster. A firm pulp texture that is not easily broken is
therefore essential for table grapes.38 Table grapes were
significantly firmer (W= 45218, P= 2.04 × 10− 14) and had signifi-
cantly less dense clusters (W= 18006, Po1 × 10− 15) than wine
grapes, indicating that selective breeding likely created a
divergence in these traits between table and wine grapes.
We also compared each phenotype for grapes originating in the

East, primarily the Middle East, to those accessions originating in
the West, primarily Western Europe (Figure 2b). Grapes from the
East were significantly firmer (W= 10564.5, P= 4.65 × 10− 8)
and larger in size including length (W= 9004, P= 4.01 × 10− 9),
width (W= 8832.5, P= 3.14 × 10− 8) and weight (W= 8505,
P= 5.05 × 10− 8). Eastern accessions also had less dense
(W= 4364, P= 3.62 × 10− 8), longer (W= 10502.5, P= 1.96 × 10− 7)
and heavier (W= 7014, P= 2.80 × 10− 4) clusters when compared
with the West.
The similarities between phenotype comparisons based on use

and geography are expected, given that most table grapes are
from the East and most wine grapes are from the West. In our data
set there are 282 accessions with use, geography and phenotype
information: 30% are Eastern table grapes but only 16% are
Western table grapes. In comparison, 51% of the accessions are
Western wine grapes and only 4% are Eastern wine grapes
(Figure 3a). The paucity of Eastern wine grapes observed here is
likely driven by religion. Islam is the dominant religion in the

Eastern geographic area defined here and the consumption of
alcohol has been prohibited among Muslims for over a
millennium. Grape breeding in the East has therefore focused
on the development of table grapes with desirable traits like large
berry and bunch size.4,6 Conversely, as Christianity does not
prohibit alcohol consumption and it has been the dominant
religion in Western Europe, grapes from the West have generally
been selected for their ability to produce high-quality wine. Thus,
an analysis of the phenotype data alone reveals the strong
influence of religion on shaping global patterns of grape
phenotypic diversity.

Genetic structure and genomic prediction

We investigated the genetic structure of grape accessions by
performing principal component analysis using genome-wide SNP
data. Accessions were labeled according to use (table or wine) and
origin (East, Central or West) and plotted along PC1 and PC2
(Figure 3b). The primary axis of genetic structure (PC1) distin-
guished grapes from the East and West (W= 1819, Po1 × 10− 15)
as well as table and wine grapes (W= 17019, Po1 × 10− 15;
Figure 3c). Such grouping according to use and geography was
also found in previous work that examined 2000 grape accessions
from 52 countries.3 Given that most table grapes are from the East
and most wine grapes are from the West (Figure 3a), it is not
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surprising to find similar population structure differences when
comparing accessions based on geography and use. In addition,
we found a significant relationship between berry size and PC1
(r2= 0.30, Po1 × 10− 15; Figure 3d). Table grapes have significantly
larger berries than wine grapes (Figure 2), and the strong selection
by table grape breeders for large size has likely been a significant
factor in the genetic differentiation between table and wine
grapes.
Phenotypes that are strongly correlated with population

structure are more likely to have been targeted by selection.
Moreover, as population structure is a confounding effect in
GWAS, phenotypes strongly correlated with population structure
can be problematic to map using association mapping. We
therefore examined the degree to which each phenotype is
correlated with population structure. We found that the propor-
tion of the phenotypic variance explained by genetic PCs 1
through 10 ranged from 2 to 43% across phenotypes (Figure 4).
Most notably, PC1 explained a large proportion of the variance for
berry shape and size measurements. This relationship is expected,
given that PC1 is significantly correlated with berry size (Figure 3d)
and all berry size and shape measurements are significantly
correlated with each other (Figure 1). These observations suggest
that selection for table grapes in the East and wine grapes in the
West has resulted in berry size being strongly correlated with the
overall genetic structure of grapes.
In addition to berry traits, the only other phenotype for which

the first 10 genotypic PCs explain over 30% of the phenotypic
variance is seedlessness (38%). In contrast to berry phenotypes,
only a small proportion of the variance in seedlessness is
explained by PC1 (5%). Instead, PCs 3–10 explain 31% of the
total variance. Seedlessness is a valued trait in commercially
grown table grapes.46 A single grape cultivar ‘Sultanina’ is a
primary source of seedlessness in table grapes and is a parent of
many commercial seedless table grape varieties.47,48 Consistent
with these observations, previous work on the accessions studied
here found that Sultanina has 28 first-degree relationships (that is,
sibling or parent–offspring) with other accessions in our dataset.26

The repeated use of ‘Sultanina’ in the breeding of seedless

accessions, and the resulting high degree of relatedness among all
seedless accessions, is a likely contributor to the correlation
between seedlessness and population structure observed here.
An extension of using PCs to explain phenotypic variance is to

perform genomic prediction, which uses all markers to predict
phenotypes. Especially for complex traits controlled by numerous
small effect loci, genomic prediction is emerging as a powerful
tool in genomics-assisted breeding.49 Using fivefold cross-valida-
tion, we calculated prediction accuracies for all phenotypes
(Figure 5 and Supplementary Table S4). Prediction accuracies (r)
range from 0.10 for leaf size to 0.76 for berry length. We detected
the highest prediction accuracies for phenotypes describing berry
traits including berry length (0.76), size (0.74), shape (0.68), width
(0.66), skin color (0.65), weight (0.63) and firmness (0.58). These
prediction accuracies are slightly higher than those previously
reported in apple and rice, which had a maximum value of 0.55 for
harvest season and 0.63 for flowering time, respectively.24,50

Complex quantitative traits such as those describing berry shape
and size are better targets for improvement through genomic
prediction than from single marker MAS. A genomics-assisted
breeding scheme in which both MAS and GS are incorporated has
been proposed in apple and may be a viable option in order to
select for both monogenic and polygenic traits in grape.51

Finally, similar to previous work in apple by Migicovsky et al.,24

genomic prediction accuracy was also highly correlated with the
proportion of phenotypic variance explained by genetic PCs 1–10
(r= 0.87, P= 4.23 × 10− 11; Supplementary Figure S4). Given that
both methods capture genetic relatedness among accessions, a
significant relationship between these two methods is expected.

GWAS and selection scans

Principal component analysis (Figure 3b) revealed significant
population structure defined by geography and use, but strong
signals of genetic structure also exist at the level of pedigree
relatedness. Previous work determined that 75% of the accessions
evaluated here are related to at least one other accession by a
first-degree relationship, and over half of the accessions are inter-
related and form a single, complex pedigree network.26 Both the
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strong population-level and pedigree-level signals of genetic
structure in our sample present challenges in genetic mapping as
these are significant confounding factors when performing GWAS.
Moreover, the rapid LD decay previously described for this and
other diverse populations of V. vinifera suggests that millions of
SNPs are required for well-powered GWAS in grapes.26,52 Despite
our relatively low marker density and the challenges presented by
strong genetic structure, we performed GWAS for all 33
phenotypes. For most traits, we found no convincing GWAS
signals (Supplementary Table S5 and Supplementary Figure S5).
However, we reasoned that we may find SNPs associated with key
traits that experienced strong selection during domestication and
breeding because selection results in extended LD surrounding
the targeted loci, thereby requiring a lower SNP density than that
required to map-unselected traits. We hypothesized that, by
combining association mapping (GWAS) with selective sweep
mapping (xpEHH), we may identify loci associated with traits
targeted during grape domestication and breeding.
A key transition in grapevine domestication was the switch from

dioecy to hermaphroditism: all wild Vitis species, including the
ancestor of V. vinifera, are dioecious, and nearly all V. vinifera are
hermaphroditic. Hermaphroditism was likely the first, and
arguably the most important, transition from wild vines to
cultivated grapes: it enables self-pollination and subsequent
clonal propagation of elite cultivars without the need for
pollinators.53 Dioecy is found at low frequency in our sample:
only 50 of the 550 accessions with flower sex data were labeled as
dioecious. Despite this low frequency, we identified SNPs
significantly associated with flower sex on chromosome 2
(Figure 6a). The most significantly associated SNP (chr2:4916490)

overlaps with the 1.5 Mb region repeatedly identified via linkage
mapping.17,54,55 This SNP is also found within the fine-mapped
143 kb region (4.91–5.05 Mb) believed to harbor the causal flower
sex locus.56 We therefore demonstrate that, even with only 50
accessions (9% of the sample) carrying the ancestral dioecy
phenotype, we successfully map the flower sex locus at relatively
high resolution using GWAS relative to traditional linkage-
mapping approaches.
A genome-wide Fst scan comparing dioecious to hermaphro-

ditic accessions also revealed that the SNP most strongly
associated with flower sex had the highest Fst value genome-
wide, consistent with the effect of selection for hermaphroditism
at this locus (Figure 6a). If grape domestication resulted in a rapid
increase in the frequency of the hermaphroditism allele, one
would expect extended haplotype homozygosity, and thus
extremely high xpEHH values, in and around the flower sex locus.
While none of the xpEHH values at the flower sex locus fall within
the top 1% most extreme values genome-wide, we do observe a
suggestive peak with xpEHH values within the top 2.6% of
genome-wide xpEHH values (Figure 6a). xpEHH values in the
bottom 1% of the genome-wide distribution are found directly
adjacent to the flower sex locus identified here. We have no
explanation for why a potential signature of selection could exist
for dioecy in such close proximity to the flower sex locus. There
are SNPs with extreme xpEHH and Fst values, indicating potential
selection for hermaphroditism, at the distal end of chromosome 1
ranging from positions 366 to 467 kb (Figure 6a). This genomic
region overlaps with the region previously associated with flower
sex in a bi-parental mapping population using the same
Vitis9KSNP microarray employed for this study.57 However, this

Figure 5. Genomic prediction accuracy for each phenotype. r- values represent the correlation between observed and predicted phenotype
scores (+/− standard deviation) using a fivefold cross-validation procedure and rrBLUP model repeated three times.
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region is several Mb from the locus highlighted in Figure 6a that
has been repeatedly associated with flower sex. We hypothesize
that this distal signal of selection is due to inaccurate localization
of the array’s SNPs in the reference genome since, when this trait
is mapped using genotyping-by-sequencing in the same bi-
parental population, the flower sex colocalizes with the known
flower sex locus according to the reference genome.58 It is unclear
why such mismapping occurs with the Vitis9KSNP array data, but
unexpected hybridization of non-targeted paralogous regions
may possibly contribute to these observations.
Skin color in grapes is largely controlled by a single locus on

chromosome 2, where a retrotransposon insertion in the MYBA1
gene results in a loss in pigmentation by disrupting anthocyanin
biosynthesis.15,59 Although rare, white-skinned grapes have been
observed without this associated retrotransposon insertion,
suggesting that this phenotype has arisen via mutation elsewhere
in the genome.60 We find SNPs significantly associated with skin

color within a diffuse peak on chromosome 2 between 10 and
17 Mb (Figure 6b). Although the genomic region containing
significant GWAS hits for color overlaps the VvmybA1 gene, the
most significantly associated SNP found here is 3.6 Mb from the
known causal mutation. Our inability to map the known color
locus with precision is consistent with results from rice61 and
Arabidopsis62 where markers with the strongest association
signals were not found directly at known causative loci. Moreover,
this result is unsurprising given the relatively low marker density
of the SNP array employed here.
While the diffuse association signal for grape color spanning

nearly 7 Mb indicates that we have poor mapping resolution for
this phenotype, it also suggests the presence of long-range LD
potentially caused by selection. Dark skin is the ancestral state in
the genus Vitis, while white skin color likely arose after the
domestication of V. vinifera and was subsequently targeted during
the breeding of both wine and table grapes.1 We observe extreme

Figure 6. GWAS and selection scan results for (a) flower sex, (b) skin color and (c) muscat aroma. Full Manhattan plot of GWAS results and
Manhattan plot of GWAS results on chromosome with significant result only. P-values are log-transformed. The horizontal dotted line indicates
a Bonferroni-corrected P-value threshold for significance. Chromosome R indicates SNPs found on contigs that remain unanchored to the
reference genome. Fst and xpEHH selection scan profiles for corresponding GWAS results on the chromosome of interest. The horizontal
dotted lines indicate the top and bottom 1% values for each test across the entire genome. The known loci for flower sex (a), skin color (b) and
muscat aroma (c) in grapes are indicated by a vertical dotted line.
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Fst values and a significant reduction of haplotype diversity in
light-skinned grapes that overlap with our observed association
signals for skin color (Figure 6b). These observations confirm that
there was strong selection for lighter berry pigmentation during
grapevine breeding that had a significant impact on patterns of
nucleotide diversity at the grape skin color locus.1

In addition to flower sex and color, muscat aroma is a
phenotype that was likely targeted by breeders and is inherited
in a largely Mendelian manner. Grapes with the muscat aroma are
characterized by high concentrations of monoterpenoids whose
expression is largely controlled by a nonsynonymous mutation in
a transcription factor, DXS, on chromosome 5.19,63–65 We scored
muscat aroma as a binary trait by simply assigning the 29
accessions carrying the word ‘muscat’ in their names to one
group, and assigning the remaining 491 accessions to another
group. The two SNPs exceeding our GWAS significance threshold
did not colocate with the known locus, but were instead located
on chromosome 8 and an unanchored contig (Figure 6c).
However, we observe a suggestive GWAS peak at the muscat
locus that does not exceed the Bonferroni-corrected significance
threshold. Reasons for a lack of a significant GWAS signal at the
known locus may be due to a lack of SNPs in high LD with the
causal SNP, a low frequency of the muscat trait in our population
(5%) and/or confounding effects resulting from the high degree of
relatedness of the muscat varieties studied here.26 While GWAS
alone would not have allowed us to unequivocally identify the
muscat locus without prior knowledge of its location, the presence
of strong signals of positive selection for muscat aroma directly
adjacent to the DXS gene (Figure 6c) provides orthogonal
evidence that leads us to conclude that the GWAS peak on
chromosome 5 indeed reflects a meaningful genotype–phenotype
association.
Our detection of overlapping signals of association and positive

selection at the known loci underlying flower sex, color and
muscat aroma suggests that combining GWAS and selective
sweep mapping can reveal genomic regions underlying traits
targeted by grape breeders. Our observation of marked differ-
ences in berry size between table and wine grapes suggests that
large berry size was likely also a target of selection during table
grape breeding. A GWAS for berry size did not result in any SNPs
exceeding our significance threshold (Figure 7a). We reason,
however, that some of the observed GWAS peaks may represent
true genotype–phenotype associations that fail to reach signifi-
cance in the same manner as described above for muscat aroma.
In this case, it is likely that the strong correlation between berry
size and population structure (Figures 3d and 4) is largely
responsible for the lack of significant GWAS hits for berry size.
Without correcting for the confounding effects of population
structure, a naive GWAS for berry size (that is, a Pearson
correlation between genotypes and phenotypes) results in 75%
of SNPs being significantly associated with berry size after
Bonferonni correction (Supplementary Figure S4). Thus, when
correcting for this strong genotype–phenotype covariance, mixed-
model GWAS may, in fact, overcorrect and result in a lack of power
to detect true genotype–phenotype associations.
Given the difficulty of mapping berry size using GWAS, we

aimed to identify suggestive peaks that also show evidence of
positive selection. Of the peaks identified in Figure 7a, we
highlight a region on chromosome 11 where the association
signal overlaps with signatures of selection (Figures 7b–d). Within
this region, we find a reduction of haplotype diversity in large
grapes relative to small grapes. Similarly, table grapes show a
signature of selection relative to wine grapes (Figures 7e and f).
There are two genes that fall within 10 kb of the most significant
SNP at chr11:4887417 for berry size. Both GSVIVT00016927001 and
GSVIVT00016928001 have GO terms for copper ion binding,
electron transport and electron carrier activity. It is unclear what

Figure 7. GWAS results for berry size as well as selection scans
comparing accessions based on berry size and use. (a) Full
Manhattan plot of GWAS results for berry size. Chromosome R
indicates SNPs found on contigs that remain unanchored to the
reference genome. (b) Manhattan plot of GWAS results on
chromosome 11 only. P-values are log-transformed. The horizontal
dotted line on GWAS plots indicates a Bonferroni-corrected P-value
threshold for significance. (c) Fst and (d) xpEHH selection scan
profiles comparing top 10% of largest grapes to 10%
smallest grapes. (e) Fst and (f) xpEHH selection scan profiles
comparing table to wine grapes. The horizontal dotted lines for
selection scans indicate the top 1% of values for each test across the
entire genome.
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functional role, if any, these genes may have in berry size, but
these two candidates may be worthy of future investigation.
We demonstrated that the primary axis of genetic structure

differentiates wine from table grapes (Figures 3b and c), and that
berry size is also strongly correlated with the first genetic PC
(Figure 3d). It is clear that geographic isolation is at least partially
responsible for differences between Eastern table grapes and
Western wine grapes. However, the reduction in genetic diversity
at this locus on chromosome 11 provides evidence that the size
difference between table and wine grapes may not be due to
geography alone but may have been driven by selection for larger
table grapes in the East. Whether berry size became a breeding
target was largely a result of the predominant religion in the
geographic area in which the grapes were bred: table grapes were
bred to be large in the East where Islam predominates and alcohol
was prohibited, while wine grapes retained the ancestral smaller
size that is more desirable for winemaking in predominantly
Christian regions in the West. Thus, we demonstrate that religious
rules concerning alcohol consumption not only shaped genome-
wide patterns of genetic variation in grapes, but may have
shaped patterns of nucleotide diversity within a genomic region
associated with berry size.

CONCLUSION

Gene banks are often characterized phenotypically and the data
are frequently made publicly available. An analysis of historical
phenotype data collected over a 17-year period from the USDA
grape germplasm collection revealed novel insights into patterns
of grape phenotypic diversity, and enabled high-resolution
genetic mapping when paired with genomic data. LD decays
rapidly in grapes and the SNP density in the current study is
arguably inadequate for well-powered GWAS. However, we
demonstrate that a modest number of genetic markers is
sufficient to uncover loci targeted during domestication and
breeding because of the extended LD at these loci caused by
positive selection for hermaphroditism, lighter skin pigmentation
and muscat aroma. We extend this reasoning to uncover a novel
locus associated with berry size that harbors a signature of
selection, and suggest that patterns of nucleotide diversity at this
locus have been shaped by table grape breeders selecting for
larger berries predominantly in regions where alcohol consump-
tion has been prohibited. The present study reveals how religious
rules concerning alcohol consumption have had a marked impact
on patterns of phenotypic and genetic diversity in grapes, thus
highlighting the powerful role of human culture in shaping the
genomes and phenomes of agricultural species.
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