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Abstract 

Some theories from cognitive psychology and mathematics education suggest that 

children’s understanding of mathematical concepts develops together with their knowledge of 

mathematical procedures. However, previous research into children’s understanding of the 

inverse relationship between addition and subtraction suggests that there are individual 

differences in the way this concept develops. To determine whether these differences are 

reliable and reflect alternative paths of development, we examined data from 14 studies of 

children’s understanding of inversion. Cluster analyses and meta-analytic techniques were 

used to quantify the size of the inversion effect and examine factors influencing its size and 

to test the stability of patterns of individual differences across the studies. Evidence was 

found for reliable patterns of individual differences, which have implications for current 

theories of concept development. 
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Patterns of Individual Differences in Conceptual Understanding and Arithmetical Skill: A 

Meta-Analysis 

An enduring question in mathematical cognition concerns how children develop 

understanding of mathematical concepts. This has attracted attention from researchers in both 

cognitive psychology and mathematics education. One of the key questions for both fields is 

how children’s understanding of mathematical concepts develops in relation to their ability to 

perform mathematical procedures. 

Within cognitive psychology, there has been a move from earlier debates over whether 

mathematical concepts or mathematical skills develop first (e.g., Briars & Siegler, 1984; 

Riley, Greeno, & Heller, 1983) to the proposal that mathematical concepts and skills develop 

iteratively, each building on the other (e.g., Baroody & Ginsburg, 1986; Hiebert & Wearne, 

1996) or develop simultaneously (Baroody, 1992, 2003; Rittle-Johnson & Siegler, 1998). 

These iterative- or simultaneous-development theories propose that conceptual and 

procedural knowledge are closely related, with developments in procedural knowledge 

leading to improvement in conceptual knowledge and vice-versa. 

Similarly, process-object theories from mathematics education research have proposed a 

close relationship between the development of mathematics procedures and concepts (e.g., 

Cottrill, Dubinsky, Nichols, Schwingendorf, Thomas, & Vidakovic, 1996; Gray & Tall, 

1994; Sfard, 1991). According to these theories, mathematics concepts, or objects, are 

developed through the encapsulation or reification of a process, or procedure. This can take 

place at a number of levels, so that procedures performed on existing concepts may lead to 

the development of new concepts. Thus, procedural knowledge plays an integral role in the 

development of conceptual understanding. In this way, individuals can develop flexible 

thinking in which processes and concepts are tied together (proceptual thinking; Gray & Tall, 

1994). 
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Many cognitive psychology and mathematics education theories therefore suggest that 

knowledge of procedures plays an important role in the development of conceptual 

understanding. Although the details of these theories differ somewhat, they emphasise that 

procedural knowledge is necessary for the development of a full conceptual understanding 

(e.g., Baroody, Feil, & Johnson, 2007). Thus to develop flexible understanding of concepts, 

children also develop proficient procedural skills (Gray & Tall, 1994). It is important, 

however, to examine alternative ways in which children may learn about arithmetic concepts. 

Although some theorists have suggested that concept development may follow different 

routes in different mathematical domains (Rittle-Johnson & Siegler, 1998), there has been 

little examination of the ways in which concept development differs across individuals. 

Recent work has begun to examine individual differences in the development of 

mathematical understanding (see Clements & Sarama, 2004; Dowker, 2005, for reviews). 

This work has attempted to measure, and in a few cases account for, individual differences in 

children’s arithmetic performance (Hecht, Close, & Santisi, 2003; Swanson & Kim, 2007), 

conceptual understanding (Canobi, 2004, 2005; Canobi, Reeve, & Pattison, 1998; Dowker, 

1998) and strategy use (Imbo & Vandierendonck, 2007; Kerkman & Siegler, 1997). These 

studies reveal the importance of considering the variety of ways in which children develop 

understanding of arithmetic. 

Children’s understanding of the relationship between addition and subtraction provides 

an example of these individual differences. Understanding that addition and subtraction are 

inversely related is an important step in children’s development of arithmetic. Previous 

research has examined the development of this concept and highlighted three types of 

individual differences relating to children’s understanding and use of this principle. First, 

there is wide variation in the age at which children may use the inverse principle in problem 

solving (e.g., Bisanz & LeFevre, 1990). If children understand that addition and subtraction 
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are inversely related, they can solve problems involving addition and subtraction of the same 

quantity (a + b - b) without using calculation. This is demonstrated through higher accuracy 

for problems involving inversion (e.g., 9 + 7 – 7) than for those that require calculation (e.g., 

8 + 6 – 3) – the inversion effect. When inverse and control problems are matched for 

computational difficulty, higher accuracy for inversion problems can indicate use of a 

conceptually-based shortcut. Use of this shortcut reveals that children have some 

understanding of the inverse nature of the transformations involved. Use of this shortcut does 

not, however, necessarily imply conscious awareness of this relationship, or full 

understanding of the abstract logical principle. Although some children appear to show 

evidence of an inversion effect during the preschool period, other children fail to use this 

principle by the end of primary school. For example, around three-quarters of preschoolers 

(age 4) in a study by Rasmussen, Ho, and Bisanz (2003) had response and behaviour patterns 

that showed better performance for inverse problems such as 4 + 2 – 2 than matched control 

problems. In contrast, less than half of the 7- and 9-year-olds tested by Bisanz and LeFevre 

(1990) and 60% of the 10-year-olds tested by Stern (1992) showed an advantage for inverse 

problems. Although differences in methodology and problem-size may account in part for the 

different findings of these studies, there remains a wide variation in the age at which children 

seem able to use understanding of inverse relations when solving problems. 

The second type of individual differences concerns the route through which children may 

develop understanding of the relationship between addition and subtraction. Canobi (2005) 

gave 5- to 7-year-old children two tasks to assess use of inversion and the related 

complement principle: three-term inversion and control problems of the type described above 

(e.g., 5 + 8 – 8 = ?); and pairs of related addition and subtraction complement problems (e.g., 

3 + 5 = 8, 8 – 5 = ?). Children’s use of the inverse or complement principles rather than 

calculation to solve these problems was recorded. Using cluster analysis, Canobi (2005) 



 Individual Differences Meta-Analysis 

 6 

revealed that some children use the relationship between addition and subtraction first in 

terms of the complementary relationship between separate addition and subtraction problems, 

whereas other children use this relationship first in terms of the inverse addition and 

subtraction of the same number. This finding suggests that children take different routes to 

understanding the relationship between addition and subtraction. 

Finally, a third type of individual differences concerns the relationship between 

children’s understanding of inversion and their procedural calculation skills. A number of 

studies have found that children’s performance on inversion tasks is not related to their 

numerical or calculation skills with similar sized quantities (Bryant, Christie, & Rendu, 1999; 

Rasmussen et al., 2003; Sherman & Bisanz, 2007). For example, children’s ability to add 9 is 

not related to their use of a computational shortcut on problems involving + 9 – 9. These 

findings seem to suggest that development of inversion understanding is not closely tied to 

development in calculation skills with similar-sized items. Recent research indicates that, in 

fact, there may be differences among children in the relationship between inversion 

understanding and calculation skills. Using cluster analysis to examine subgroups in a sample 

of 6- and 8-year-olds, Gilmore and Bryant (2006) found three subgroups of children. One 

group demonstrated good inversion performance and good calculation skills; a second group 

had poor understanding of inversion and poor calculation skills; the final group, in contrast, 

had good understanding of inversion despite poor calculation skills. These children 

demonstrated understanding of the relationship between addition and subtraction that far 

outstripped their proficiency with these operations. 

The pattern of individual differences found by Gilmore and Bryant (2006) appears to 

suggest that children differ in the relationship between their conceptual understanding and 

calculation skill. The implications of this finding are difficult to judge, however, since there 

are three possible empirical interpretations. First, this may be a replicable pattern of 
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individual differences that is found at all stages of children’s development of inversion 

understanding. In this case, some children are able to show conceptual understanding in the 

absence of proficient calculation skills with similar-sized control items. Second, this may be a 

replicable pattern of individual differences but that only applies to children at a particular 

age, or stage of learning about inversion. In this case, some children may go through a period 

of showing more advanced understanding of inversion than calculation skills, but before and 

after this their conceptual understanding may be more closely tied to their procedural skills. 

Finally, the pattern of individual differences may simply reflect chance variation in a 

particular sample, or a particular methodology. In this case the pattern will not be replicable 

in other studies. 

In summary, there appears to be evidence for differences in the age at which children 

may understand inversion, the context in which they first show this understanding, and the 

relationship between understanding of inversion and calculation skills. If found to be reliable, 

these differences suggest that there may be multiple routes in which children acquire this 

concept. In particular, the role of procedural knowledge in concept development may be 

called into question. 

In this paper we examine evidence for differences in the way children learn about 

inversion by bringing together data from a range of studies on inversion understanding. These 

published and unpublished studies include a range of age groups, different methodologies and 

have been carried out in diverse geographical locations. To examine the effect of age and 

context in children’s use of inversion, a meta-analysis was used to quantify the size of the 

inversion effect (the difference in children’s scores on inverse and control problems) and 

reveal what factors influence the size of the effect. To examine individual differences in the 

relationship between understanding inversion and calculation skills and to discover whether 

the subgroups found by Gilmore and Bryant (2006) are replicable in other studies, cluster 
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analyses were performed on each data set and a meta-analysis of each cluster was used to 

quantify the differences in performance across the clusters. These analyses help to establish 

the robustness and basis for patterns of individual differences, with implications for theories 

of concept development. 

Method 

The analysis consisted of three phases: (a) a meta-analysis of studies to quantify the 

inversion effect and examine the effect of moderating variables; (b) cluster analysis for each 

data set to reveal subgroups of children; (c) meta-analyses of subgroups to reveal differences 

between the clusters in the size of the inversion effect. 

Meta-analysis of Inversion Effect  

Locating studies. The studies that entered the meta-analysis were located through the 

following procedure: first the computerized reference database "Web of Science" was 

searched using the search terms “invers* AND addition AND subtraction AND children” and 

“invers* AND arithmetic AND children”. The reference list for all studies eligible for 

inclusion was scanned and citation searches were further performed for all selected studies. 

All relevant studies in a doctoral thesis conducted in this area were included (Gilmore, 2005). 

Authors of published papers were contacted to request information on any unpublished 

studies as well as to request raw data. Data collection ended on 17th October 2006. 

Study selection. The following criteria were set for inclusion of an individual study in the 

meta-analysis: (a) participants under the age of 18, (b) studies using a method involving the 

presentation of two types of arithmetical problems: inverse problems that included an inverse 

transformation (e.g., a + b – b = a) and equivalent matched control problems that did not 

include an inverse transformation (e.g., a + b – c = d), (c) means and their standard deviations 

of accuracy scores reported for both types of problems, and (d) papers in English. A few 

studies included two or more samples from different age groups or using different 
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presentation types; in those cases the data sets were treated as separate (Bryant et al., 1999; 

Canobi, 2005; Gilmore, 2005; Gilmore & Bryant, 2006; Rasmussen et al., 2003; Robinson, 

Ninowski, & Gray, 2006; Rose, 2002).  

Moderator variables. Three variables were considered as potential moderators of the size 

of the inversion effect: (a) mean age in years; (b) school year: Coded as 0 = preschool 

children; 1 = children attending their 1st year at school; 2 = children in their 2nd school year; 

3 = children in their 3rd school year; 4 = children in their 4th school year; 5 = children in 

their 5th school year and 6 = children in their 6th year and beyond; and (c) type of 

presentation (digits, word problems, pictures and concrete materials). All of the studies 

included in the meta-analysis presented children with inversion and control problems to 

solve, but they differed in terms of how these problems were presented: as symbolically-

presented arithmetic problems; as verbally-presented word problems, using pictures and 

symbols to demonstrate actions; using concrete items such as counters or blocks to 

demonstrate actions. 

Statistical analysis. Data were analysed using Comprehensive Meta-Analysis (v. 2) 

software package. In order to perform a meta-analysis, an effect size is first calculated for 

each study. Here, we used the standardized mean difference d in children’s accuracy between 

inversion and control problems as the effect size, which is the difference between the two 

means divided by the within-group standard deviation. The meta-analytic procedure took the 

following steps. First the mean difference in accuracy between inversion and control 

problems was calculated and standardized for each data set with the corresponding 95% 

confidence intervals. Then, an average of the effect sizes across data sets was calculated and 

weighted according to sample size, using a fixed-effects model. The effect sizes were further 

tested to see if they come from a single population using two tests of homogeneity, the Q 

statistic and the I
2
 index. In the case of heterogeneity between the studies, the overall effect 
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size was calculated again using a random effects model. Weighting the effect sizes can 

therefore follow two models, depending on the absence or presence of between-study 

heterogeneity: the fixed effects model and the random effects model respectively. The fixed 

effects model assumes that all the data sets come from a single population; it asks what the 

best estimate of the effect size is. The random effects model assumes that the data sets are 

drawn from a distribution of populations; this model asks what the range of the effect sizes of 

the populations studied is. 

Whenever a subset is heterogeneous, the presence of moderator variables might be 

causing this heterogeneity. The possible moderating effect of the categorical moderator 

variable (i.e., presentation type) was examined by comparing the average effect sizes in the 

different subgroups that form the levels of the moderator. In examining the effects of interval 

moderator variables (i.e. age and school year) meta-regression was used. Meta-regression is 

similar in essence to regression: the moderator variable is predicted according to the weighted 

effect size of each data set. 

Forest plots were used to depict all the information visually. The studies were also tested 

for possible ascertainment bias, which can exist when significant results are produced by 

non-random sampling of the data-sets, using Egger’s t statistical test and the fail-safe N. 

Cluster Analyses of Individual Studies 

Following the initial meta-analysis, cluster analysis was used to test whether the pattern 

of individual differences found by Gilmore and Bryant (2006) was replicated across studies. 

Cluster analysis can be used to group individuals into clusters of relatively homogeneous 

cases. A hierarchical cluster analysis using Ward’s method was performed on each data set 

and the three-cluster solution was interpreted. The analysis was carried out on overall scores 

for inverse and control problems, combined across different presentation formats. 

Performance from problems that deviated substantially from the a + b – b = a problem type 
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was excluded (complex inverse and control problems in Gilmore & Bryant, in press; 

decomposition problems in Bryant et al, 1999). Where children from multiple age groups 

were included in a study, the cluster analysis was performed on the combined sample where 

children all received the same problem set, but performed on the samples separated by age 

where children received different problem sets. 

Meta-analysis of Cluster Structure 

A second set of meta-analyses were carried out for each of the three clusters separately, 

in order to quantify the inversion effect in each cluster. The same statistical procedures as in 

the meta-analysis of the overall inversion effect were followed to calculate the overall effect 

size. The differences between the inversion effects for each cluster were tested for 

significance using the Kruskal-Wallis and Mann-Whitney nonparametric tests. 

Results 

The results of the three phases of analysis are examined separately below. 

Meta-analysis of Inversion Effect  

A total of 25 data sets (from 14 separate studies) were included in the analysis, totaling 

745 subjects (357 male, 388 female). Table 1 shows the details of the studies included in the 

meta-analysis. 

Overall effect estimate. All but one data set had a standardized mean difference 

indicating better accuracy levels for inversion than control problems, 22 of these were 

statistically significant. Fixed effects analysis revealed significant heterogeneity among the 

data sets (Q (24) = 127.38, p < 0.01, I
2
 = 81.16%), indicating that one or more variables 

influenced the size of the inversion effect. A random effects model was therefore employed 

which gave a weighted average of the standardized mean difference across all data sets of 

1.24 with a confidence interval of 95%CI = 1.02 - 1.46 (Figure 1). In other words, the range 

of the effect sizes in the distribution of populations studied is 1.02 to 1.46. Thus, for all 
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populations included in the meta-analysis a randomly selected child would score at least one 

standard deviation higher on inversion problems than control problems. 

--Insert Figure 1 about here-- 

Ascertainment bias. The data sets that were included in the meta-analysis were tested for 

ascertainment bias. No ascertainment bias was detected using Egger’s Test (t (23) < 0.01, p = 

0.50). The fail-safe N was also calculated, N = 3,938. The fail-safe N is the number of data 

sets in which the odds ratio is zero that would be needed to increase the p-value of the meta-

analysis to above 0.05. These analyses indicate that there is no evidence for non-random 

sampling which would distort the estimates of effect sizes produced. 

Moderating variables. The possible moderating effects of age, school year and 

presentation type were examined. Meta-regressions run for age (Q (1) = 0.12, p = 0.73) and 

school year (Q (1) = 0.04, p = 0.83) did not show any significant relationship between the 

size of the inversion effect and age or school year. 

On the other hand, presentation type (Q (3) = 8.74, p = 0.03) did moderate children’s 

performance, albeit marginally. Table 2 presents details for each level of the categorical 

variable. The inversion effect was greatest with picture presentation, similar for word or 

concrete presentation and smallest for digit presentation of problems. 

--Insert Table 2 about here-- 

Cluster Analyses of Individual Studies 

The results of the cluster-analyses performed on each study are given in Table 3. This 

lists the proportion of variance in each data set accounted for by the three-cluster solution, the 

size of the individual clusters and the mean scores on the inverse and control problems (given 

as the proportion of correct responses). 

--Insert Table 3 about here-- 
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The percentage of variance in the data explained by the three-cluster solution ranged 

from 63.8% to 86.4% across the studies. Thus, it was acceptable to interpret the three-cluster 

solution in each of the studies. This indicates that, for each of the studies, the sample could 

meaningfully be split into three subgroups. 

The raw mean scores suggest that there is, on the whole, a similar pattern of clusters 

across the studies. The first cluster is characterized by very high means for inversion 

problems (all except three are more than 0.85) and reasonably high, although more varied, 

means for control problems. The second cluster is characterized by low means for both 

inversion and control problems (all except one less than 0.5). The third cluster is 

characterized by high means for inversion problems (all but two more than 0.5) and low 

means for control problems (less than 0.5). The one exception are the data from Canobi 

(2005). The children in Cluster 3 from this study had a mean score of 0.33 on inversion 

problems and 0.67 on control problems. This is the only group across all of the studies that 

showed a pattern of higher scores on control than inversion problems. The three-cluster 

solution appears to be identifying different subsets of individuals for this study compared to 

the other studies. The reason for this is unclear, however, only a small number of inversion 

problems (3) was included in this study, which may affect the reliability of estimates of 

inversion understanding. This group was therefore omitted from further analyses. 

Meta-analysis of Cluster Structure 

To quantify the inversion effect for each cluster, three separate meta-analyses were 

carried out. This procedure is more sensitive than simply examining mean scores, as it 

accounts for the different sample sizes across the data sets as well as for the between-study 

heterogeneity. The meta-analysis on Cluster 1 was performed on 15 data sets, totalling 256 

subjects. All data sets had standardized mean differences indicating better accuracy levels for 

inversion than control problems; all but one of these contrasts was statistically significant. 
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Fixed effects analysis revealed significant heterogeneity among the data sets (Q (14) = 

114.81, p < 0.01, I
2 
= 87.80%). A random effects model was therefore employed which gave 

a weighted average of the standardized mean difference of 2.65 with a confidence interval of 

95%CI = 1.94 – 3.36. 

The meta-analysis on Cluster 2 was performed on14 data sets, totalling 178 subjects 

(Rose, 2002, was not included as it had a mean score of zero with a standard deviation of 

zero on the control problems). Eight data sets had a significant standardized mean difference 

favouring inversion problems and six data sets had no significant difference between scores 

on inversion and control problems. Fixed effects analysis revealed significant heterogeneity 

among the data sets (Q (13) = 39.68, p < 0.01, I
2 
= 67.24%). A random effects model was 

therefore employed which gave a weighted average of the standardized mean difference of 

0.99 with a confidence interval of 95%CI = 0.56 – 1.40. 

The meta-analysis on Cluster 3 was performed on 13 data sets, totalling 208 subjects 

(Gilmore, 2005 Exp. 2 was not included as it had a mean score of zero with a standard 

deviation of zero on the control problems). All data sets had standardized mean differences 

indicating significantly higher accuracy for inversion problems than control problems. Fixed 

effects analysis revealed significant heterogeneity among the data sets (Q (12) = 85.50, p < 

0.01, I
2 
= 85.96%). A random effects model was therefore employed which gave a weighted 

average of the standardized mean difference of 4.80 with a confidence interval of 95%CI = 

3.80 – 5.80. 

The standardized mean differences for each cluster were compared using the Kruskal-

Wallis and Mann-Whitney tests. The size of the inversion effect was significantly different in 

each of the clusters (!
2
 = 23.87, p < .001). The inversion effect was larger in Cluster 3 than 

Cluster 2 (U = 0.00, p < 0.001) or Cluster 1 (U = 42.00, p = 0.011), and the inversion effect 

was larger in Cluster 1 than Cluster 2 (U = 32.00, p = 0.001). 



 Individual Differences Meta-Analysis 

 15 

Discussion 

We draw three main conclusions from the analyses. First, by bringing together, for the 

first time, data from a range of studies on children’s understanding of inversion we were able 

to produce a reliable estimate of the size of the inversion effect and to reveal what factors 

affect this. Second, we have revealed evidence for a robust pattern of individual differences 

across a range of studies in the relationship between children’s understanding of inversion 

and their calculation skills. Finally, we have shown a replicable subgroup of children with a 

performance profile that has implications for theories of concept development in general and 

inversion development in particular. Each of these issues will be considered in turn. 

The initial meta-analysis revealed that there was a reliable inversion effect, such that 

children in these studies scored on average 1.24 standard deviations higher on inverse than 

control problems. In only one study was there a trend in the opposite direction, with higher 

performance on control problems than inverse problems. This indicates that, on the whole, 

children can identify and use the inverse relationship between addition and subtraction when 

solving problems. Examination of the moderating variables revealed that only presentation 

type affected the size of the inversion effect. Relative performance on inversion and control 

problems did not change significantly with age or school year. The lack of a significant 

moderating effect of age group suggests that although arithmetic ability improves with age, 

the inversion effect does not appear to change. However, since the size of problems given to 

younger and older children tend to differ, this represents only stability in terms of the relative 

advantage for inversion problems over control problems.  

The significant moderating effect of presentation type indicates that children can gain 

additional benefit in identifying conceptual relations when problems are presented with more 

context. The inversion effect was largest when problems were presented using pictures to 

describe actions and smallest when problems were presented using digits. It has been 
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suggested that additional context can help improve children’s problem-solving and 

calculation skills (e.g., Hughes, 1981). The current analysis suggests that increased context 

also has a benefit in allowing children to recognize conceptual relations. 

It is difficult, however, to disentangle the effects of the moderating variables since they 

are largely confounded. School year and age are closely related (but not identical) and 

different presentation methods were used for younger and older children. Furthermore, when 

examining the effects of moderating variables in meta-analytic data the crucial characteristic 

is the number of data sets (25 in this case) and not the number of subjects (745). This can 

result in a surprisingly low power of meta-analytic studies when it comes to examining 

moderating effects, in spite of their big subject numbers (Hunter & Schmidt, 1990). 

The cluster analyses and meta-analyses of each cluster established that there is a 

replicable pattern of individual differences across the majority of the studies. In all cases the 

three-group cluster analysis accounted for a substantial proportion of the variance in scores 

and in most cases these clusters replicated the findings of Gilmore and Bryant (2006). The 

same pattern of subgroups was found across studies involving children of a range of ages (5 -

13 years) and using somewhat differing methods. This reveals that the pattern of individual 

differences observed by Gilmore and Bryant (2006) was not due to chance variation in a 

particular sample, neither does this only apply to children at a particular age, or stage of 

learning about inversion. Rather, the evidence from these studies suggests it may be a 

replicable pattern of individual differences that is found at all stages of children’s 

development of inversion understanding. 

We found evidence for three subgroups with different performance profiles. Two of these 

groups match the developmental model suggested by Gray and Tall (1994). The children with 

good understanding of inversion and good calculation skills match the proceptual thinkers 

described by Gray and Tall (1994). These children have developed flexible thinking in which 
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procedural knowledge and conceptual understanding are used as appropriate in different 

problem situations. The children with poor understanding of inversion and poor calculation 

skills appear to demonstrate procedural thinking (Gray & Tall, 1994). They have not 

developed understanding of arithmetical concepts and their procedural knowledge is 

inflexible and unreliable. In addition to these groups, we found evidence for children with 

good understanding of inversion but poor calculation skills. With the exception of one study 

(Canobi, 2005), there was no evidence for a reliable group of children with good calculation 

skills but poor understanding of inversion. The lack of evidence for such a fourth group may 

in part be due to the nature of the methodology used in each study that contributed to this 

analysis. The children’s performance on control problems serves both as a measure of their 

calculation skills, and is compared with performance on inversion problems to give a 

measure of conceptual understanding. This may have affected the profiles of performance 

that were revealed using cluster analysis. Indeed, recent research that examined children’s 

understanding of inversion and used separate measures of calculation skills, found four 

subgroups of children (Watchorn et al., 2007). Thus, a key finding of the present analysis is 

the demonstration that children show different profiles of performance, these are not the only 

profiles of performance that may be found. 

The existence of a replicable subgroup of children at all ages who have good 

understanding of inversion but poor calculation skills, has implications for theories of 

conceptual development in general and the development of inversion understanding in 

particular. As outlined above, theories from both cognitive psychology and mathematics 

education propose that procedural skill plays an important role in the development of 

conceptual understanding. Iterative development theories (e.g., Hiebert & Wearne, 1996; 

Rittle-Johnson & Siegler, 1998) suggest that procedural knowledge and conceptual 

knowledge build on each other iteratively with advances in one leading to developments in 
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the other. Similarly, process-object theories (e.g., Cottrill et al., 1996; Gray & Tall, 1994; 

Sfard, 1991) suggest that mathematical concepts are developed out of a related mathematical 

process. Although these proposed developmental models may hold for many children (i.e., 

those in Clusters 1 & 2), theories that propose that procedural knowledge plays an integral 

role in the development of conceptual understanding cannot easily account for the 

performance of children in Cluster 3. Theories of concept development need to account for 

ways in which children develop conceptual understanding in the absence of proficient 

procedural skill. 

As with all research in this area, the nature of the relationships between conceptual and 

procedural knowledge found here are affected by the operationalisation of these terms. The 

studies reviewed here examined the relationship between children’s use of a conceptually-

based shortcut and their general computation skills. This approach can be distinguished from 

studies in which children’s understanding of a concept is compared to their use of procedures 

that rely on understanding of this concept. Both approaches examine the relationship between 

aspects of children’s knowledge of arithmetic, however, they do so at different levels of 

generality. To discover how all aspects of arithmetic are related across development, it would 

be informative to conduct studies that cut across this distinction. 

In keeping with theories of concept development, some researchers (e.g., Baroody & Lai, 

2007; Canobi, 2005) have proposed that children develop understanding of inversion from 

experience and expertise in solving addition and subtraction problems. For example, Canobi 

suggests that “children may reach an understanding of the inverse relation between addition 

and subtraction after they become sufficiently experienced in problem solving to be able to 

reflect on the outcomes of the additions and subtractions they have carried out” (Canobi, 

2005; p. 22). However, the results of the present analysis show that in the vast majority of 

studies examined there was a group of children with good understanding of inversion despite 
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poor calculation skills. Therefore, some children can show inversion understanding with 

numerbers for which they cannot consistently perform calculations. As discussed next, 

further research is needed to establish whether these children require a lower level of 

procedural skill prior to developing inversion understanding. 

How else might children develop understanding of inversion? Other researchers have 

proposed that children’s quantitative understanding of this concept may arise out of earlier 

qualitative forms (Bisanz, Sherman, Rasmussen, & Ho, 2005; Bryant & Nunes, 2007; 

Rasmussen et al., 2003). If children use mental models to represent numbers of external 

objects and the transformations on them, they may notice the equivalence of sets before and 

after transformations with the same number. Social experience may play a role in this as 

children take part in give-and-take games with other children and adults (Klein & Bisanz, 

2000). Children’s experience with small quantities (e.g., 1, 2, 3) might allow children to infer 

localized informal knowledge of inversion, that becomes more general with experience of 

larger quantities (Baroody & Lai, 2007). Recent evidence also suggests that a system of 

approximate non-symbolic representation of number may play a role in children’s developing 

understanding of quantitative inversion. Five-year-old children can identify and use inverse 

relationships for large numbers with approximate symbolic or nonsymbolic (dot array) 

quantities before they can do so for exact symbolic quantities (Gilmore & Spelke, 2008). 

Children can recognize inverse relationships with approximate representations of quantity 

(i.e., those that are not distinguishable as different). They may do this by building on a 

mechanism for representing, comparing and manipulating approximate quantities (see 

Dehaene, 1997). Thus, one route by which children may develop understanding of 

quantitative inversion relating to exact numbers is out of a pre-existing ability to recognize 

this relationship in terms of approximate numerosity. 
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In conclusion, when describing how children develop understanding of mathematical 

concepts, it is important to consider multiple ways in which children may come to this 

understanding. The challenge for theorists from both cognitive psychology and mathematics 

education is to account for the variety of ways in which children might discover and integrate 

conceptual knowledge with their knowledge of mathematical procedures. 
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Footnote 

1
 For one study it was not possible to obtain the raw data to perform this analysis, and 

thus this study was not included in the subsequent analyses.
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Table 1  

Studies Included in the Meta-analysis of Inversion Effect 

Study Source N Mean age(s)  

(years; months) 

Location Presentation Notes 

Bryant, Christie & 

Rendu (1999) 

Journal of Experimental Child 

Psychology (Exp. 1) 

38 5;8 & 6;9 UK Concrete, 

word, abstract 

Separated by age into 2 datasets 

Bryant, Christie & 

Rendu (1999) 

Journal of Experimental Child 

Psychology (Exp. 2) 

55 6;10, 7;7 & 8;9 UK Concrete Separated by age into 3 datasets 

Rose (2002) Unpublished student study 62 8;4, 9;6, & 10;6 UK Verbal Separated by age into 3 datasets 

Rasmussen, Ho & 

Bisanz (2003) 

Journal of Experimental Child 

Psychology  

48 4;7 & 6;10 Canada Concrete Separated by age into 2 datasets 

Canobi (2005) Journal of Experimental Child 

Psychology 

60 5;8, 6;7, & 7;9 Australia Digit Separated by age into 3 datasets 

Gilmore (2005) Doctoral thesis (Exp. 2) 23 6;3 UK Picture  

Gilmore (2005) Doctoral thesis (Exp. 5) 53 8;11 & 9;10 UK Digit Separated by age into 2 datasets. 

Order of operators also varied 
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Gilmore (2006) Cognitive Development (Exp. 1) 49 9;2 UK Digit, Word  

Gilmore (2006) Cognitive Development (Exp. 2) 51 9;5 UK Digit Order of elements also varied 

Gilmore & Bryant 

(2006) 

British Journal of Educational 

Psychology (Exp. 1) 

66 8;11 UK Digit, Word, 

Picture 

 

Gilmore & Bryant 

(2006) 

British Journal of Educational 

Psychology (Exp. 2) 

59 6;6 & 8;8 UK Picture Separated by age into 2 datasets 

Robinson, 

Ninowski & Gray 

(2006) 

Journal of Experimental Child 

Psychology 

90 11;6 & 13;6 Canada Digit Separated by age into 2 datasets. 

Mean of small and large problems 

Gilmore & Bryant 

(in press) 

British Journal of 

Developmental Psychology 

67 8;7 UK Digit Problems also varied order of 

elements; excluded complex 

problems. 

Sherman & Bisanz 

(2007) 

Journal of Cognition and 

Development 

24 3;6 Canada Concrete  
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Table 2 

Mean Standardized Difference in Accuracy between Inversion and Control Problems for all Levels of the Presentation Type Moderator 

Variable. 

Presentation type  Number of data sets Standardized mean difference  95% Confidence Interval  

Concrete 4 1.42 1.18-1.66 

Digit 8 0.91 0.56-1.25 

Picture 3 1.61 1.26-1.97 

Word 3 1.40 0.90-1.89 
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Table 3 

Results of Cluster Analyses (Split by Age Group Only Where Separate Problem Sets Used) 

Cluster 1 Cluster 2 Cluster 3 Study Variance 

explained (%) N Inverse Control N Inverse Control N Inverse Control 

Bryant, Christie & 

Rendu (1999) Exp. 1 

75.6 10 0.86 (.23) 0.76 (.12) 16 0.33 (.22) 0.05 (.07) 12 0.87 (.10) 0.24 (.18) 

Bryant, Christie & 

Rendu (1999) Exp. 2 

74.3 35 0.89 (.11) 0.43 (.12) 6 0.08 (.10) 0.04 (.10) 14 0.54 (.17) 0.16 (.17) 

Rose (2002) 77.2 36 0.94 (.11) 0.63 (.17) 4 0.03 (.06) 0 (0) 21 0.93 (.10) 0.15 (.12) 

Rasmussen, Ho & 

Bisanz (2003) Age 4 

63.8 12 0.62 (.08) 0.44 (.10) 9 0.34 (.11) 0.38 (.07) 3 0.42 (.01) 0.14 (.13) 

Rasmussen, Ho & 

Bisanz (2003) Age 6 

83.6 4 0.98 (.04) 0.60 (.08) 8 0.31 (.19) 0.17 (.11) 12 0.92 (.09) 0.11 (.10) 

Canobi (2005) 68.6 26 0.94 (.13) 0.77 (.30) 22 0.24 (.29) 0.05 (.12) 12 0.33 (.28) 0.67 (.20) 

Gilmore (2005) Exp. 2 78.8 10 0.90 (.13) 0.38 (.13) 7 0.11 (.13) 0.11 (.20) 6 0.63 (.21) 0 (0) 

Gilmore (2005) Exp. 5 81.3 17 0.91 (.08) 0.79 (.13) 17 0.25 (.15) 0.15 (.13) 19 0.81 (.12) 0.33 (.18) 
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Gilmore (2006) Exp. 1 73.5 11 0.93 (.08) 0.66 (.13) 14 0.39 (.20) 0.12 (.07) 24 0.82 (.11) 0.31 (.13) 

Gilmore (2006) Exp. 2 73.6 17 0.91 (.08) 0.63 (.15) 6 0.15 (.09) 0.03 (.02) 28 0.64 (.19) 0.25 (.11) 

Gilmore & Bryant 

(2006) Exp. 1 

70.9 30 0.92 (.09) 0.46 (.14) 26 0.40 (.18) 0.19 (.13) 10 0.84 (.09) 0.16 (.06) 

Gilmore & Bryant 

(2006) Exp. 2 Age 8 

75.8 7 0.77 (.13) 0.56 (.17) 4 0.21 (.16) 0.10 (.08) 18 0.96 (.08) 0.30 (.14) 

Gilmore & Bryant 

(2006) Exp 2 Age 6 

86.4 11 0.94 (.07) 0.19 (.14) 14 0.24 (.12) 0.04 (.05) 5 0.63 (.10) 0.02 (.04) 

Gilmore & Bryant (in 

press) 

68.4 26 0.95 (.07) 0.73 (.12) 21 0.58 (.21) 0.21 (.20) 20 0.94 (.08) 0.38 (.11) 

Sherman & Bisanz 

(2007) 

69.1 4 0.54 (.05) 0.29 (.05) 4 0.06 (.08) 0.17 (.12) 16 0.37 (.08) 0.10 (.08) 
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Figure Captions 

Figure 1. Forest plot revealing the mean difference in accuracy scores between inversion and 

control problems. 
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