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Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems

via the architecture of their attractors and basins, we investigate the patterns of switching between

distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear

amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is

simple and connects directly to experimental realizations. We seek to understand how the multiple

stable synchronized states connect to each other in state space by applying Gaussian white noise to

each of the oscillators’ phases. To do this, we first analytically identify a set of locally stable limit

cycles at any given coupling strength. For each of these attracting states, we analyze the effect of

weak noise via the covariance matrix of deviations around those attractors. We then explore

the noise-induced attractor switching behavior via numerical investigations. For a ring of three

oscillators, we find that an attractor-switching event is always accompanied by the crossing of two

adjacent oscillators’ phases. For larger numbers of oscillators, we find that the distribution of

times required to stochastically leave a given state falls off exponentially, and we build an

attractor switching network out of the destination states as a coarse-grained description of the

high-dimensional attractor-basin architecture. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4960191]

Proper functioning of large-scale complex systems, from
metabolism to global economics, relies on the coordina-
tion of interdependent systems. Such coordination—the
emergence of synchronization in coupled systems—is
itself an important and widely studied collective behav-
ior. However, predicting system behavior and controlling
it to maintain function or mitigate failure present severe
challenges to contemporary science and engineering.
Prediction and control depend most directly on knowing
the architecture of the stable and unstable behaviors of
such high-dimensional dynamical systems. To make pro-
gress, here we explore limit-cycle attractors arising when
ring networks of nonlinear oscillators synchronize, dem-
onstrating how synchronization emerges and stabilizes,
and laying out the combinatorial diversity of possible
synchronized states. We capture the global attractor-
basin architecture of how the distinct synchronized states
can be reached from each other via attractor switching
networks.

I. INTRODUCTION

From the gene regulatory networks that control organis-

mal development1 and the coherent oscillations between

brain regions responsible for cognition2 to the connected

technologies that support critical infrastructure,3–5 systems at

many scales of nature and modern society rely on the coordi-

nated the dynamics of interdependent systems. Analyzing

the mechanisms driving such complex networks presents

serious challenges to dynamical systems, statistical mechan-

ics, and control theory, in large measure due to the overtly

high dimension of their state spaces. This precludes directly

identifying and visualizing their attractors and attractor-

basin organization. Moreover, without knowledge of the lat-

ter large-scale architecture, predicting network behavior, let

alone developing control strategies to maintain function or

mitigate failure, is impossible.

To shed light on these challenges, we explore limit-

cycle attractors arising when rings of coupled nonlinear

oscillators synchronize. We demonstrate how synchroniza-

tion emerges and stabilizes, and identify the diversity of syn-

chronized states. We probe the global attractor-basin

architecture by driving the networks with noise, capturing

how the distinct synchronized states can be reached from

each other via what we call attractor switching networks

(ASNs). The analysis relies on the use of limit-cycle attrac-

tors to define coarse-grained units of system state space.

In this way, our study of attractor-basin architecture falls

in line with the methods of qualitative dynamics introduced

by Poincare.6 Confronted with unsolvable nonlinear
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dynamics in the three-body problem, Poincare showed that

system behaviors are guided and constrained by invariant

state space structures—fixed point, limit cycle, and chaotic

attractors—and their arrangement in state space—basins of

attraction and their separatrices. The power of his qualitative

approach came in providing a concise description of all pos-

sible behaviors of a system, without requiring detailed sys-

tem solutions. His architectural approach is more recently

expressed in terms of Smale basic sets7,8 and Conley’s index

theory.9,10 These show that any system decomposes into

recurrent and wandering subspaces in which the behavior is

a gradient flow. In short, there is a kind of Lyapunov func-

tion over the entire state space, underlying the architectural

view of attractors and their basins. This view is so basic to

our modern understanding of nonlinear complex systems

that it has been rechristened as the “Fundamental Theorem

of Dynamical Systems.”11 As we will see, our analytical

study of oscillator arrays appeals to Lyapunov functions to

locally analyze limit cycle stability and noise robustness,

while our numerical explorations allow us to knit together

the stable attractors into a network of stable oscillations, con-

nected by particular pathways that facilitate switching

between them.

Practically, complicated attractor-connectivity architec-

tures can be probed via external controls or added noise. We

focus on the latter here, following recent successful explora-

tions of noise-driven large-scale systems. For example, the

analysis of bistable gene transcription networks showed that

attractor switches can be induced by periodic pulses of

noise.12 Another recent study of networks of pulse-coupled

oscillators showed that unstable attractors become prevalent

with increasing network size, and the attractors are closely

approached by basin tendrils of other attractors. Thus, arbi-

trarily small noise can lead to switching between attractors.13

Our explorations illustrate the theoretical foundations and

complement the newer works by focusing on the dynamics

of synchronization.

Synchronization between oscillators is itself an impor-

tant and widely studied collective behavior of coupled sys-

tems,14 with examples ranging from neural networks15 to

power grids,16 clapping audiences,17 and fireflies flashing in

unison.18 Although different in scope and nature, all of these

examples can be modeled as coupled oscillators. Decades of

research has revealed that a system of coupled oscillators

may produce a rich variety of behaviors; in addition to full

synchronization, more complex patterns may emerge, includ-

ing chaos,19 chimera states,20,21 and cluster synchroniza-

tion.22,23 Here, we study rings of oscillators—a system

that exhibits multiple stable synchronized patterns called

rotating waves.24 Rings of oscillators have been extensively

studied;25–30 our contribution in this respect focuses on

reactively coupled amplitude-phase oscillators and the orga-

nization of their attractors, basins, and noise-driven basin

transitions.

Reactive coupling, in the context of electromechanical

oscillators, is that which does not dissipate energy, such as

ideal elastic and electrostatic interactions between devices.31

A primary motivation of this work is to connect with experi-

ment, using reactive coupling to characterize systems of

nearest-neighbor coupled rings of nanoscale piezoelectric

oscillators.32 Recent experiments investigated synchronous

behavior of two such nanoelectromechanical systems

(NEMS),33 and it is expected that in the near future, larger

rings and more complex arrangements will be realized.34 In

the context of the complex values used to model these oscil-

lators, reactive coupling means that the coefficient of the

Laplacian coupling terms is purely imaginary. This coupling,

between Landau–Stuart oscillators, is a special case of the

coupling in the complex Ginzburg–Landau equation, which

describes a wide range of physical phenomena.35,36

If no noise is present, the system settles at one of its

stable steady states. Exactly which stable state depends on

initial conditions. In the presence of noise, the long-term

behavior of the system is no longer characterized by deter-

ministic attractors. Depending on the level of noise, three

possible scenarios may emerge: (i) if the noise is small, the

system fluctuates around an attractor; (ii) if the noise is

strong, the system is randomly pushed around in the state

space suppressing the deterministic dynamics; and (iii) inter-

mediate levels of noise cause the system to fluctuate around

an attractor and occasionally jump to the basin of attraction

of a different attractor. The latter scenario suggests a coarse-

grained description of the system’s global organization: we

specify the effective “macrostate” of the system by the attrac-

tor it fluctuates around, and we map out the likelihood of tran-

sitions to other attractors. These transitions form an attractor

switching network (ASN) capturing the coarse-grained

dynamics of the system. Noise and external perturbation-

induced jumps in the ASN have been suggested as a feasible

strategy to control large-scale nonlinear systems.37–39

Our goal is to study the fluctuations of the system and

attractor switching in the presence of additive uncorrelated

Gaussian noise in the phases of oscillators. Setting up the

analysis, we introduce the system in Sec. II, finding the

available patterns of synchronization in Sec. II A and their

local stability in Sec. II B. We introduce noisy dynamics in

Sec. III. Based on the linearized dynamics, we derive a

closed-form expression that predicts the system’s response to

small noise in Sec. III A. We demonstrate that attractor

switching occurs via a phase-crossing mechanism in Sec.

III B. This motivates the coarse-graining of state space such

that we finally compile an ASN for a network of N¼ 11

oscillators in Sec. III C.

II. DETERMINISTIC DYNAMICS

We study rings of reactively coupled oscillators that are

governed by

dAi

dt
¼�1

2
Aiþ jajAij2Aiþ

Ai

2jAij
þ jb

2
Aiþ1�2AiþAi�1½ �; (1)

where Ai 2 C describes the amplitude and phase of the i th

oscillator ði ¼ 1; 2; :::;NÞ and j ¼
ffiffiffiffiffiffiffi

�1
p

. The first three terms

describe the oscillators in isolation: the first is the linear

restoring force, the second term is the first nonlinear correc-

tion known as the Duffing nonlinearity, and the third term is

a saturated feedback that allows the system to sustain
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oscillatory motion. The fourth term expresses the inter-

oscillator feedback: the oscillators are diffusively coupled to

their nearest neighbors with purely imaginary coefficients.

Equation (1) was derived to describe the slow modulation of

rapid oscillations of a system of NEMS—sometimes referred

to as an envelope or modulational equation.31

Although Eq. (1) is a compact representation of the

dynamics, it is in our setting more insightful, and useful, to

isolate the amplitude and phase components of the complex

state. We therefore separate the dynamics of the amplitudes

ai in vector a 2 RN and those of the phases /i in vector / 2
RN according to Ai ¼ aie

j/i . The system then evolves

according to

dai

dt
¼�ai�1

2
�b

2
aiþ1 sin /iþ1�/ið Þþai�1 sin /i�1�/ið Þ
� �

;

(2)

d/i

dt
¼aa2i þ

b

2

aiþ1

ai
cos /iþ1�/ið Þþai�1

ai
cos /i�1�/ið Þ�2

� �

:

(3)

These equations make it clear that in the absence of cou-

pling (b ¼ 0), each amplitude ai will settle to unity, and all

phases oscillate with constant frequency a. This frequency,

proportional to the square of the oscillator’s amplitude,

comes from the system’s nonlinear restoring force—the

Duffing nonlinearity. This effect is accordingly referred to as

nonlinear frequency pulling. We now proceed to find solu-

tions of the dynamics with nonzero coupling.

A. Analytic solutions: Rotating waves

To view self-organized patterns of synchronization of

these nonlinear oscillators, we consider only the weak cou-

pling regime, with positive nonlinear frequency pulling:

jbj � a � 1. This selection is heavily motivated by upcom-

ing experimental realizations of the system34 and ensures

that the internal nodal dynamics are not dominated by cou-

pling terms. With zero coupling (b ¼ 0), each oscillator will

follow its own limit cycle, and the composite attractor will

have N dimensions—one corresponding to the phase of each

oscillator. For small but nonzero coupling (b ! 0), we

expect the leading order effect to be in the dynamics of

phases. As these are limit cycles, displacements along the

phase are not restored except through the coupling edges.

Solving Eqs. (2) and (3) for sets of stationary phase differ-

ences with fixed unit amplitudes gives

dai

dt

�

�

�

a¼1
¼ 0 ¼ �b

2
sinDi � sinDi�1½ �; (4)

d/iþ1

dt
� d/i

dt

� 	

�

�

�

a¼1
¼ 0 ¼ b

2
cosDiþ1 � cosDi�1½ �; (5)

where Di � /iþ1 � /i is the (signed) phase difference

between adjacent oscillators i and iþ 1. These conditions

are satisfied if and only if every other phase difference is

equal to some D, where the other phase differences are

together either p� D or also D. Note that these conditions

are independent of b, so the solutions are valid for all

coupling strengths. Since the ring is a periodic lattice and the

sum of all N phase differences must be an integer multiple of

2p, limit cycles that satisfy the p� D condition for alternat-

ing phase differences may exist if and only if the number of

nodes is an integer multiple of four. To ease comparison of

attractors in systems with various numbers of nodes, we limit

our subsequent discussion to the solutions defined wholly by

a single phase difference D supported across all edges,

implying that N may not be a multiple of four.

For limit cycles where all phase differences are identi-

cal, i.e., Di ¼ D for all i, the periodic boundary condition

requires D to be an integer multiple of 2p=N, giving

precisely N unique states of this sort. These states follow the

trajectory

aiðtÞ ¼ 1; (6)

/i tð Þ ¼ /i 0ð Þ þ aþ b cos
2kp

N
� 1

� 	� 	

t; (7)

specific to a particular wavenumber k. These are the

expected rotating wave solutions. Each rotating wave has a

fixed phase configuration, with phase differences of 2pk=N,
represented in Eq. (7) as initial phases /ið0Þ. The form of

reactive coupling causes the frequency of oscillation also to

be dependent upon the wavenumber. Noting that the phase

difference D is invariant under k ! N þ k, we choose to

make the restriction 0 � k < N.

Relative phase diagrams representing the N unique con-

figurations for N ¼ 3 and N ¼ 5 oscillator rings are shown in

Fig. 1. In these, each oscillator is represented as a point on

the unit circle in the complex plane, with edges connecting

adjacent, coupled oscillators. Each edge connects oscillators

with an arc length separation equal to the phase difference

D ¼ 2pk=N. We see that, for instance, N ¼ 5 and k ¼ 2 or 3

results in next nearest neighbors being closer in phase than

nearest neighbors. This is a general result; as k=N ! 1=2,
neighboring oscillators will have a phase difference of p and

next nearest oscillators have nearly equivalent phases. This

is locally out-of-phase sychronization, in contrast to k ¼ 0,

which is completely in-phase synchronization, i.e., zero

phase difference between neighboring oscillators. We also

see a symmetry in wave numbers k and N � k. These waves

travel in opposite directions around the ring; the phase con-

figurations amount to a relabeling of oscillators, represented

in Fig. 1 by arrows indicating the direction of labeling. Just

as the wavenumber represents the number of wavelengths of

the rotating wave along the length of the ring, it may be

interpreted as the winding number of the ring about the

origin when represented in the complex plane as in Fig. 1.

We have thus discovered N synchronized states that are

possible nodes of the global attractor switching network and

which the system might visit once noise is included in the

dynamics. Although motivated by the weak coupling limit,

these rotating waves are valid solutions at all coupling mag-

nitudes. Note that there can be solutions that do not converge

to the unit amplitude states enumerated here. With suffi-

ciently weak coupling, however, oscillator amplitudes in

attractors are in fact confined to stay within a distance of
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order b from unity. This is shown in Appendix A using a

Lyapunov-like potential function. Having enumerated such

candidate synchronized limit cycles, we need to determine

their stability in order to identify those that we expect the

noisy system to visit for extended times.

B. Local stability: Attracting patterns

Here, we show that the stability of each rotating wave

(pattern of synchronization) to small perturbations is equiva-

lent to finding the sign of b cosð2pk=NÞ. We then

characterize the linear response of these waves to uncorre-

lated, white Gaussian noise on the oscillator phases and find

that the k ¼ 0 and k � N=2 waves amplify noise least in

their respective stable regimes.

Linearizing Eqs. (2) and (3) around any point on the limit

cycle defined by wavenumber k, we find the 2N � 2N matrix

F that governs the linear evolution of small deviations from

that limit cycle. We write this matrix in block form, such that

Fij is the 2� 2 matrix corresponding to the dependence of

deviations in oscillator i on deviations in oscillator j.

d

dt

dai

d/i

" #

¼
X

j

Fij

daj

d/j

" #

¼ 1

2

X

N

j¼0

�Iij �Mijb sin 2pk=Nð Þ Lijb cos 2pk=Nð Þ
4aIij � Lijb cos 2pk=Nð Þ �Mijb sin 2pk=Nð Þ

" #

daj

d/j

" #

; (8)

where I is the N � N identity matrix, L is the N � N

unweighted ring Laplacian matrix, and M is an N � N next-

nearest-neighbor oriented incidence matrix of the ring

Lij ¼
2 i ¼ j

�1 i ¼ j61

0 otherwise

Mij ¼
1 i ¼ jþ 1

�1 i ¼ j� 1

0 otherwise :

8

>

<

>

:

8

>

<

>

:

(9)

The local stability of each rotating wave is then deter-

mined by the signs of the eigenvalues of F. While this is

straightforward to do numerically, we find that exclusion of

terms varying with M do not affect any changes of sign, as

detailed in Appendix B. We denote this simplified matrix ~F

and transform ~F by a matrix U to diagonalize the Laplacian

L, leaving a 2� 2 linear dynamics for each Laplacian mode.

The matrices L and M are not mutually diagonalizable, so

this cannot be done with the full linearization F. Deviations

in these Laplacian modes are then governed by

U ~FU�1ð Þ
ii ¼

1

2

�1 qib cos 2pk=Nð Þ
4a� qib cos 2pk=Nð Þ 0

" #

;

(10)

where qi ¼ 4 sin2
bi=2cp

N


 �

are the eigenvalues of L for the

ring coupling topology (and b	c is the floor operation).
Defining xi ¼ qib cosð2pk=NÞ, we see that ~F represents

stable trajectories if and only if all its eigenvalues l
6;i ¼

� 1
4

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16axi � 4x2i þ 1
p


 �

have negative real part. That is,

the rotating wave is stable if and only if 4axi � x2i < 0 for all

Laplacian modes. The mode associated with q1 ¼ 0, giving

l�;1 ¼ 0, may in fact be ignored. This zero eigenvalue corre-

sponds to the freedom of deviations along the limit cycle and

is explicitly removed in Appendix B by stabilizing this

allowed nullspace of ~F. Then, there are two regimes in which

a mode of the modified dynamics is stable: xi < 0 and

xi > 4a.

Now, we see that all qi>1 are strictly positive, and, there-

fore, all xi>1 are of the same sign as b cosð2pk=NÞ. With a

given sign of coupling b, all wavenumbers k satisfying

b cosð2pk=NÞ < 0 correspond to stable rotating waves for all

coupling magnitudes jbj.
A wave solution is also stable if b cosð2kp=NÞ is large

enough such that the smallest nonzero Laplacian eigenvalue q2
corresponds to x2 > 4a. This occurs when b cosð2kp=NÞ >

FIG. 1. Rotating wave solutions. Relative phase diagrams representing the N rotating wave solutions for systems of N¼ 3 and N¼ 5 oscillators. The blue

circles represent the unit circle in the complex plane, and each red circle represents a value of an oscillator envelope Ai ¼ aie
j/i labeled by its index. The black

lines indicate coupling between neighboring oscillators on the ring network. Since the oscillator positions are repeated, the black arrows indicate in which

direction the oscillators are numbered. All rings are represented as if the first oscillator has zero phase, on the far right of the unit circle. The k ¼ 0 diagrams

have only one red circle and no black lines, because all oscillators have the same phase and are thus all represented by the single red circle.
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acsc2ðp=NÞ (and requires b cosð2pk=NÞ > 0). This scenario

clearly corresponds to large coupling magnitudes, which we

are not considering here.

Figure 2 portrays the above stability conditions in ða; bÞ
parameter space of the N ¼ 3 oscillator ring. There are four

distinct regions: large or small coupling-to-nonlinearity ratio,

with positive or negative coupling. The more nearly in- (out-

of-) phase adjacent node oscillations are stable with small,

negative (positive) coupling and become stable with positive

(negative) coupling at some critical coupling magnitude pro-

portional to the nonlinear coefficient a. Each rotating wave

has a critical ratio jbj=a, proportional to sin2ðp=NÞ, above
which the wave is stable for either sign of b. As such, the

required coupling magnitudes for this regime increase with

N. These boundaries were found analytically as described

above and corroborated by diagonalizing the original lineari-

zation F numerically, validating the process of studying the

modified dynamics in ~F.

III. STOCHASTIC DYNAMICS

So far, we found attractors in the deterministic dynamics

of rings of reactively coupled nonlinear oscillators. This

identifies orbits that may have global importance in the sys-

tem, but gives little indication of the higher-level state space

architecture. We investigate this organization by applying

noise to the oscillator phases, first weakly and then strongly

enough to induce distinct jumps between attracting limit

cycles.

Specifically, we focus on the analysis of one of the most

ubiquitous and well-modelled forms of disturbances, namely,

white Gaussian noise. The injection point is assumed to be

an additive time-varying signal on the phases. This generates

a perturbed dynamics of the form

dai

dt
¼�ai�1

2
�b

2
aiþ1 sin /iþ1�/ið Þþai�1 sin /i�1�/ið Þ
� �

;

(11)

d/i

dt
¼ aa2i þ

b

2

aiþ1

ai
cos /iþ1 � /ið Þ

�

þ ai�1

ai
cos /i�1 � /ið Þ � 2

�

þ wiðtÞ; (12)

where wiðtÞ is an element of wðtÞ 2 RN: an uncorrelated

zero mean i.i.d. Gaussian random process with covariance

matrix r2IN .

A. Weak noise response

Having identified attractors—the stable rotating

waves—we begin to study the basin architecture by charac-

terizing the system’s response to weak noise at each of the

stable rotating waves, finding that k ¼ 0 has the least ampli-

fication of noise when b < 0 and k � N=2 has the least for

b > 0.

Close to an attractor, the dynamics can be predominately

described by its linearization:

d

dt

da

d/

� �

¼ F
da

d/

� �

þ 0

I

� �

w; (13)

where F is the linearized state matrix of Eq. (8) associated

with the wavenumber k and weak coupling b, and the addi-

tive term describes injection of noise into the phase dynam-

ics. The local amplification of the noise can be described by

the steady state covariance. Specifically, the expectation of

the outer product of deviations from the attracting limit

cycles is

P ¼ lim
t!1

E
da

d/

� �

da

d/

� �T
( )

: (14)

Small entries in P indicate a good robustness of the attractor

to noise as the steady state variances and cross-covariances

of the dynamics are small, representing small deviations

around the equilibrium.

The eigenvalues of P represent the axis lengths of the

covariance ellipse. Large eigenvalues are associated with

directions of large noise amplification when compared to

eigenvalues which are close to zero.

For distinct pairs of rotating waves, k and N � k, the

covariance and associated eigenvalues are the same, exhibit-

ing a common robustness to noise. This underlying symme-

try indicates that equal time is spent between attractors Dk

and DN�k when driven by basin switching noise, to be dis-

cussed in the immediately following subsections.

As observed in the deterministic linearization, Eq. (8),

stable limit cycles have one neutrally stable mode that is

undamped by the dynamics and appear, in the presence of

noise, as a random walk along the limit cycle. The absence

of a restoring force in this mode manifests itself as an

unbounded eigenvalue of the covariance matrix.

FIG. 2. Regions of stability. The stable rotating waves on the N ¼ 3 ring in

each of four regions of nonlinearity and coupling parameter space ða; bÞ,
separated by solid black lines. The k ¼ 0 wave is locally stable for all b < 0

and for b > acsc2ðp=3Þ. The k ¼ 1; 2 waves are locally stable for all b > 0

and for b < �acsc2ðp=3Þ secðp=3Þ. The blue dotted line indicates the

parameters of likely experimental realizations. Our simulations discussed in

Sec. III were done at the endpoints a ¼ 1; b ¼ 60:1.
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In addition to the infinite eigenvalue, there is a zero

eigenvalue associated with the eigenvector 1
n
1; 0½ �T , which

represents the average amplitude of the dynamics. This indi-

cates that near the attractor, the average amplitude is invari-

ant to noise. This invariant feature is necessarily present

wherever the dynamics are well approximated by an attrac-

tor’s linear characterization. Even in the presence of attractor

switching behavior, the average amplitude remains largely

unchanged.

The remaining 2N � 2 eigenvalues and the associated

eigenmodes indicate the individual character of the attractor

basin. The average of these eigenvalues �g is given in closed

form as

�g ¼ r2 1� a N þ 1ð Þ

6b cos
2pk

N

1þ C N; k; a; bð Þ½ �
0

@

1

A

; (15)

where CðN; k; a; bÞ�1 2 16a½a; aþ jbj�, providing a metric

of the attractors’ robustness. (See Appendix C for details).

Dependence on the wavenumber k comes in as the inverse of

b cosð2pk=NÞ, indicating that as b cosð2pk=NÞ ! �jbj, the
basins are more robust to noise. Examining the metric as

N ! 1, with the total input variance r2T ¼ Nr2, wave frac-

tion kf ¼ k=N, and assuming large constant frequency a ð

1=4Þ then

lim
N!1

�g � ar2T
6 �b cos 2pkfð Þ
�  :

For large N, the attractor robustness scales (i) linearly with

oscillator frequency and total input variance and (ii) inversely

with the coupling strength and cosine of the phase differences.

The covariance matrix may be used to construct a qua-

dratic quasi-potential for each rotating wave, which is guar-

anteed to be decreasing along the deterministic system

trajectories for some finite neighborhood of the rotating

wave and can be used to place bounds on the basins. We can

build a global quasi-potential by piecewise stitching together

the local potentials associated with each rotating wave,

always selecting the one with the least value:

V ¼ min
k

da

d/

� �T

k

Pk
da

d/

� �

k

 !

: (16)

Slices of level sets of this potential for rings of N ¼ 3

oscillators are plotted in Fig. 3. Negative coupling gives a

single basin, but its locally motivated potential well is much

larger than the two equal potential wells of positive coupling.

To compare this to the full nonlinear system, we indicate the

time-to-convergence in color, which cleanly shows the two

basins of negative coupling, with the basin separatrix cover-

ing the set of points where one phase difference is zero.

The covariance matrix Pe associated with edge states

dei ¼ d/iþ1 � d/i can be formed from the covariance matrix

P. Due to the symmetry in the dynamics, the diagonal

elements of Pe are in common and correspond to the steady

state variance �r2 of each edge state with dei � Nð0; �r2Þ. A
probabilistic feature that follows is the steady state probabil-

ity pðel; euÞ that, for a single instant in time, all edge states

remain in the interval ½el; eu�. Appendix D includes an

approximation of the probability of interval containment

using the error function erfð	Þ, namely

p el; euð Þ �
1

2N
erf

eu

�r
ffiffiffi

2
p

� 	

� erf
el

�r
ffiffiffi

2
p

� 	� �N

;

where �r2 ¼ r2ð2� ð4bN cosð2pk=NÞÞ�1PN�1
i¼1 ða� b cos

ð2pk=NÞ sin2ðip=NÞÞ�1Þ. Similar noise robustness character-

istics can be observed over the edge states as the full states

da and d/ with wavenumbers associated with b cosð2pk=NÞ
close to �jbj providing more noise robustness and so higher

probabilities of maintaining interval containment. Extending

this concept into the time domain, the probability p½t1;t2�
ðel; euÞ of any edge state first exiting the interval ½el; eu� in

FIG. 3. Potential function and times to convergence. Level sets of the potential defined in Eq. (16) for N ¼ 3 nodes, across the two independent phase differ-

ences, D1;D2, with unit oscillator amplitudes. Shown are results for a ¼ 1 with (a) b ¼ 0:1, where there are two stable states, and (b) b ¼ �0:1, with one stable
state. As the potential functions are not guaranteed to be good indicators of the convergence time, results from direct implementation of the deterministic

dynamics are also shown. Here, the colormap background indicates the time for the deterministic system to converge to near a stable rotating wave.
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time span ½t1; t2� given a sampling interval Dt and the

expected exit time ETðel; euÞ of this interval are

p t1;t2½ � el; euð Þ ¼ p el; euð Þbt1=Dtc � p el; euð Þbt2=Dtc; and

ET el; euð Þ ¼ � Dt

log p el; euð Þð Þ
: (17)

B. Switching dynamics: Phase crossing

So far, we investigated the local properties of attractors

and the response to small noise such that the system remains

in the vicinity of stable rotating-wave attractors. In this sec-

tion, we consider larger noise levels in Eq. (12) at which the

system occasionally switches from the vicinity of one attrac-

tor to the vicinity of another. Our goal is to provide a coarse-

grained description of the global dynamics; we wish to

define an attractor switching network (ASN) in which each

node represents the neighborhood of an attractor and the

links connecting nodes represent the switches. To build an

ASN, we must first be able to distinguish the vicinities of

distinct attractors. It is computationally infeasible to capture

the precise deterministic basins of attraction, so we investi-

gate the characteristics of an attractor switch in a network of

N ¼ 3 oscillators to motivate a coarse-graining. Throughout,

we employ numerical simulations using a fourth order

Runge–Kutta algorithm with timestep tstep ¼ 0:01. At the

end of each Runge–Kutta step, we add a zero-mean, nor-

mally distributed random number with variance r2tstep to

the phase of each oscillator to capture the stochasticity of

Eq. (12).

Figure 4 plots a typical stochastic trajectory in a ring of

N¼ 3 oscillators with coupling b ¼ 0:1, nonlinearity a ¼ 1,

and noise level r2 ¼ 0:05. As discussed in Sec. II B, positive

b on the three-oscillator ring supports two stable attractors:

rotating waves with wavenumbers k¼ 1 and k¼ 2 (phase dif-

ferences D ¼ 2p=3 and D ¼ 4p=3). Figures 4(a) and 4(b)

show the amplitudes of the three oscillators at different tem-

poral resolutions; although noise is only directly added to the

phases of the oscillators, it causes fluctuations in the ampli-

tudes through the deterministic dynamics. However, as

shown in Appendix A, the amplitudes remain bounded

within ½1=ð1þ 2jbjÞ; 1=ð1� 2jbjÞ� (dashed lines in Figs. 4(a)

and 4(b)). Figure 4(c) shows the phase differences Di

¼ /i � /i�1 over time. The phase differences initially fluctu-

ate around D ¼ 2p=3, and at the time of the first switch

(t � 515), they rapidly reorganize around D ¼ 4p=3. Figure
4(d) zooms in on that first switch, revealing that one of the

phase differences passes through 0. Indeed, such phase cross-

ing necessarily happens if the system transitions from one

rotating wave to another with a different wavenumber. Thus,

the mechanism underlying the switching dynamics is associ-

ated with the phases of two neighboring oscillators crossing.

C. Patterns of patterns of synchronization: The ASN

Finally, we partition the state space into regions enclos-

ing each limit cycle according to wavenumber k and investi-

gate attractor switching phenomena as characterized by these

partition boundaries. In particular, we study the distribution

of time needed to escape an attractor, the average times for

such a switch to occur, and the overall organization of the

attractor switching network (ASN).

Driven by the observation that the attractor switching is

accompanied by a phase crossing, we choose to identify a

switch as an event when any Di becomes 0. More precisely,

we calculate

k ¼
P

iDi

2p
; (18)

where Di 2 ½0; 2pÞ. Since the oscillators are organized in a

ring, k is an integer. If the system is on a deterministic attrac-

tor, k is equal to the corresponding wavenumber. Thus, k

changes value only when a Di passes through zero. We there-

fore coarse grain the state space by assigning the system to

be in rotating-wave “state” k as defined by Eq. (18). The

magnitude of change in k is precisely equal to the number of

adjacent phase difference that passes through zero at a partic-

ular time. Note that this assigns different volumes of state

space to different rotating wave states. For example, k¼ 0

only if all Di ¼ 0, and small fluctuations in the phase differ-

ences cause discrete fluctuations in k. Hence, this choice of

coarse-graining is natural only if k¼ 0 is unstable, i.e., b > 0.

We perform measurements of switching by preparing

the system in a stable attractor of the deterministic dynamics,

letting it evolve until the system switches to another state

according to Eq. (18), and then recording the time tswitch
taken to switch and the new state. In Fig. 5, we show a histo-

gram of tswitch based on 10 000 independent runs for state

k¼ 50 of a ring of N¼ 101 oscillators with b ¼ 0:1 and noise
level r2 ¼ 0:1. We find that the tail of the histogram is con-

sistent with an exponential distribution; the typical time

needed to switch is therefore well characterized by the

FIG. 4. Attractor switching trajectories. A representative stochastic trajec-

tory of the N ¼ 3 oscillator ring prepared with k ¼ 1. (a) and (b) show the

three amplitudes at two different time scales. The dashed lines in these plots

indicate the amplitude bounds established in Appendix A. (c) shows the

phase difference across each of the three edges, showing groupings at 2p=3
and 4p=3, with rapid switches between them. (d) shows those same phase

differences over the same time as (b), revealing that one phase difference

passed through zero and rejoined the others at the other attracting state,

indicating a switching event. This trajectory was generated with

r2 ¼ 0:05; b ¼ 0:1, and a¼ 1.

094816-7 Emenheiser et al. Chaos 26, 094816 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  50.1.20.226 On: Wed, 03 Aug 2016

15:43:19



average htswitchi. The linear analysis prediction of switching

probabilities is described by p½t1;t2�ðel; euÞ in Eq. (17) with the

zero-cross condition corresponding to ½el; eu� ¼ ð�2pk=N;
2p� 2pk=NÞ. A similar exponential tail is noted between

both curves. The discrepancy for small htswitchi can be attrib-

uted to the linear regime assumption within the p½t1;t2�ðel; euÞ
calculation, specifically the independence of edge states over

time. For small htswitchi, the simulation is exhibiting a distri-

bution similar to the hitting time induced by Brownian

motion rather than the independent and identically distrib-

uted random variable sampling of the linear analysis.

In Fig. 6, we show htswitchi as a function of k for N

¼ 101, b ¼ 0:1, and r2 ¼ 0:1. We find that htswitchi is sharply
peaked at k¼ 50 and vanishes as the system approaches the

fully synchronized state k¼ 0 or, equivalently, k¼ 101. We

compare the nonlinear stability measure htswitchi to the

expected switching time ETðel; euÞ based on the steady state

covariance, where ½el; eu� ¼ ð�2pk=N; 2p� 2pk=NÞ, defined

by Eq. (17). The general shape and scale of the curves agree

with deviations occurring as the curves depart from k¼ 50.

As the dynamics are unstable about the rotating-wave states

k 62 ½26; 75�, the linear analysis indicates an instantaneous

switch compared to the nonlinear case where some time is

required to depart from the unstable limit cycle. Deviations

in the stable regime k 2 ½26; 75� can be attributed to uncap-

tured higher-order modes in the dynamics and variable size

of the linear regime across k.

Finally, we construct the ASN for a ring of N¼ 11 oscil-

lators, with b ¼ 0:1 and r2 ¼ 0:1 by preparing the system in

each k rotating-wave state 1000 times and recording to which

state it switches. We show the ASN in Fig. 7; red nodes rep-

resent stable rotating-wave states and gray nodes unstable

states. We draw a directed link from node k1 to node k2 if we

observed a switch from k1 to k2. The link weight is the count

of observed switches. It is unlikely that two Di’s become

zero simultaneously; therefore, typically switching happens

from state k to neighboring states k61. The most unstable

state k¼ 0 is an exception, because at k¼ 0, each Di ¼ 0 and

this allows switching to any state. In the few other cases

where this occurs, the system simply passed through the

intermediate partitions within a single time step of simula-

tion. That is, multiple Di’s became zero within one tstep incre-

ment. Overall, the system evolves towards states where the

adjacent oscillators are most out of phase—states k¼ 5 and

k¼ 6—and it rarely leaves these states.

Although we have not proven that our list of limit cycles

captures all attractors of the deterministic system, the lack of

cycles with low htswitchi in the ASN provides indication that

any further attractors are contained within a single partition

and are therefore associated with a single wavenumber.

This example demonstrates that dynamical coarse-

graining of the state space is an informative and necessary

approach when constructing attractor switching networks for

systems with noisy dynamics. Moreover, ASNs provide an

insightful description of the complex and high-dimensional

dynamics of noisy, multistable systems.

IV. CONCLUSION

Our long-term goal is to understand the architecture of

basins of attraction in large-scale complex dynamical sys-

tems and to develop methods that reveal how state-space

structures facilitate driving between basins. Here, we took

several key steps toward these larger goals by analyzing in-

depth synchronization phenomena in a system of coupled

oscillators arranged in a ring topology. From the equations

governing the evolution of the system, we first predicted ana-

lytically the different patterns of synchronization that can

exist (i.e., rotating wave solutions) and analyzed their local

stability via the linearization of the governing equations. We

then analyzed the covariance matrix of deviations around the

attracting rotating waves and used this to construct a piece-

wise quadratic quasi-potential roughly describing the full

attractor space. We additionally used this covariance matrix

to make predictions about the fluctuations of phase differ-

ences. Although the covariance analysis allowed us to ana-

lytically calculate a metric for the robustness of each

FIG. 5. Switch time histogram. Distribution of the time needed to leave state

k¼ 50 for a ring of N¼ 101 oscillators based on 10 000 independent meas-

urements with average htswitchi ¼ 47:9360:36, where the error is the stan-

dard error of the mean. The distribution has an exponential tail: According

to the Kolmogorov–Smirnov test for tswitch � 57, the distribution is consis-

tent with an exponential distribution with 1=k ¼ 33:1860:63 (DKS ¼ 0:016,
p-value 0.40), where k is the maximum likelihood fit of the rate parameter

and the error corresponds to the 95% confidence interval. The variance of

the noise is r2 ¼ 0:1, b ¼ 0:1, and a¼ 1. The theoretical curve is the proba-

bility of a zero crossing p½t1 ;t2 �ð�2pk=N; 2p� 2pk=NÞ based on the linear

analysis.

FIG. 6. Average switch time. Average switch time as a function of wave

number k indexing the limit cycles states of a ring of N¼ 101 oscillators.

Each point is an average over 1000 independent measurements, and the error

bars represent the standard error of the mean. These simulations were run

with r2 ¼ 0:1; b ¼ 0:1, and a¼ 1. The solid black curve shows the analytic

prediction of the expected zero-crossing time ETð�2pk=N; 2p� 2pk=NÞ.
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attractor to noise, we turned to simulation to deal with the

impact of large noise. With this, we explored the mecha-

nisms associated with attractor switching and develop the

attractor switching network. Doing so revealed a clear and

strong drive towards those rotating waves with wavenumber

approximately half the number of nodes, such that adjacent

oscillators are nearly out of phase.

The techniques developed here should generalize to

other systems and provide a systematic and analytic advance

for developing the underlying theory of attractor switching

networks. We intend to further this study by carefully inves-

tigating the dynamics of single switches in larger rings,

extending our methods to complex networks with richer

attractor types, and validating them in NEMS nanoscale

device experiments.

ACKNOWLEDGMENTS

We thank Mike Cross, Leonardo Due~nas-Osorio,

Warren Fon, Matt Matheny, Michael Roukes, and Sam

Stanton for helpful discussions. This material is based upon

work supported by, or in part by, the U.S. Army Research

Laboratory and the U.S. Army Research Office under

Multidisciplinary University Research Initiative Award No.

W911NF-13-1-0340.

APPENDIX A: AMPLITUDE BOUNDS ON ATTRACTORS

Consider the quasi-potential V ¼Pn
i¼1 jai � 1j and

assume that jbj < 1=2 then

dV

dt
¼
X

n

i¼1

sgn ai � 1ð Þ _ai

¼
X

n

i¼1

sgn ai � 1ð Þ � 1

2
ai � 1ð Þ þ b

2
aiþ1 sin /iþ1 � /ið Þð

�

þ ai�1 sin /i�1 � /ið ÞÞ
�

�
X

n

i¼1

� 1

2
sgn ai � 1ð Þ ai � 1ð Þ þ jbj

2
jaiþ1j þ jai�1jð Þ

¼
X

n

i¼1

� 1

2
jai � 1j þ jbjjaij;

and so for jja� 1jj1 � 2jbjjjajj1 then dV=dt � 0. Hence, the

dynamics will converge to the invariant set B ¼ fajjja
�1jj1 � 2jbjjjajj1g.40 The smallest annulus containing B is

ai 2 1
1þ2jbj ;

1
1�2jbj

h i

, and so the dynamics will converge to

this annulus.

APPENDIX B: LINEARIZATION STABILITY
EQUIVALENCE

The linearized dynamics state matrix can be formalized

as a series of Kronecker sums as

F ¼ 1

2

�1 0

4a 0

" #

� I þ
0 bc

�bc 0

" #

� L

 

þ
�bs 0

0 �bs

" #

�M

!

;

where c ¼ cos ð2pk=NÞ and s ¼ sin ð2pk=NÞ. Now, 0

1

� �

�

1=
ffiffiffi

n
p

is a right eigenvector of F, with associated left eigen-

vector
4a

1

� �

� 1=
ffiffiffi

n
p

and unique eigenvalue 0. This follows

from L1 ¼ 1TL ¼ 0 and M1 ¼ 1TM ¼ 0, and by examining

the eigenvectors and eigenvalues of the matrix
�1 0

4a 0

� �

.

Denoting the eigenvalues of an arbitrary matrix Z as

l1ðZÞ; l2ðZÞ;…, where jReðl1ðZÞÞj � jReðl2ðZÞÞj � …,

then l1ðFÞ ¼ 0.

Consider the matrices

F1 ¼ F� y
0 0

4a 1

" #

� 11T=n; (B1)

F2 ¼ F1 �
1

2

�bs 0

0 �bs

" #

�M; and (B2)

~F ¼ lim
y!0

F2; (B3)

then

FIG. 7. Attractor switching network.

Each node represents a limit cycle state

of a ring of N¼ 11 oscillators; grey

nodes represent unstable limit cycles

and red nodes represent stable limit

cycles. The system is prepared in each

k state 1000 times and we record to

which state it switches. The labels and

the width of the links represent the

transition counts. Links with less than

5 transitions are not shown. These sim-

ulations were run with r2 ¼ 0:1; b

¼ 0:1, and a¼ 1.
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ReðliðFÞÞ < 0 for i 6¼ 1

() ReðliðF1ÞÞ < 0 for all i ðBy shifting the null space associatedwith l1ðFÞÞ
() ReðliðF2ÞÞ < 0 for all iðByProposition 1Þ
() Reðlið ~FÞÞ < 0 for i 6¼ 1 ðBy shifting the null space associated with l1ð ~FÞÞ:
() Reð�16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16axi � 4x2i þ 1
p

Þ < 0 for i 6¼ 1ðByProposition 2Þ
() 4axi � x2i < 0 for i 6¼ 1:

Proposition 1. Consider Q positive semidefinite, P positive definite, y> 0, and Hurwitz matrix F2. The matrix P satisfies

F2Pþ PFT
2 ¼ �Q� I if and only if F1Pþ PFT

1 ¼ �Q� I.

Proof. Consider the permutation matrix E 2 Rn�n defined as En;i ¼ 1; Ei;iþ1 ¼ 1 for i ¼ 1;…; n� 1 and Eij¼ 0 other-

wise. The action of the permutation matrix E on a vector corresponds to a mapping of element i to element i � 1 (mod n) and

corresponds to the rotational automorphism on an n node ring graph.41 As E represents an automorphism of the graph, ELET ¼
L and EMET ¼ M.

From the Lyapunov equation F2Pþ PFT
2 ¼ �Q� I; as E is a permutation matrix on L, then ðI � EÞF2 ¼ F2ðI � EÞ; and

ðI � EÞðF2Pþ PFT
2 ÞðI � ETÞ ¼ �ðI � EÞQ� IðI � ETÞ

F2ðI � EÞPðI � ETÞ þ ðI � EÞPðI � ETÞFT
2 ¼ �Q� I

F2
~P þ ~PFT

2 ¼ �Q� I:

As F2 is Hurwitz, the solution to the Lyapunov equation is unique.42 Hence, ~P ¼ P and ðI � EÞP ¼ PðI � EÞ and

ðI � ETÞP ¼ PðI � ETÞ. Therefore
ðI �MÞP ¼ ðI � ðE� ETÞÞP ¼ PðI � ðE� ETÞÞ ¼ PðI �MÞ;

and

FT
1Pþ PF1 ¼ F2 þ

1

2
bsI �M

� 	T

Pþ P F2 þ
1

2
bsI �M

� 	

¼ FT
2Pþ PF2 þ

1

2
bs I �Mð ÞTPþ P I �Mð Þ
h i

¼ �I þ 1

2
bs � I �Mð ÞPþ I �Mð ÞP½ � ¼ �I:

�

Proposition 2. The eigenvectors of ~F are of the form v1i � wi and v2i � wi where wi is a unit eigenvector of L, and v1i and

v2i are the eigenvectors of the matrix

1

2

�1 0

4a 0

� �

þ xi
0 1

�1 0

� �� 	

: (B4)

The associated eigenvalues of ~F are l11 ¼ 0; l21 ¼ � 1
2
, and

l1i;2i ¼
1

4
�16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16axi � 4x2i þ 1

q

� 	

; (B5)

for i 6¼ 1. Here, xi ¼ bcki where 0 � k1 � … � kn are the eigenvalues of L.

Proof. This result follows as

~F v1i � wið Þ ¼ 1

2

�1 0

4a 0

" #

� I þ 0 bc

�bc 0

" #

� L

 !

v1i � wi ¼
1

2

�1 0

4a 0

" #

v1i � wi þ
0 1

�1 0

" #

v1i � bcLð Þwi

 !

¼ 1

2

�1 0

4a 0

" #

v1i � wi þ xi
0 1

�1 0

" #

v1i � wi

 !

¼ 1

2

�1 0

4a 0

" #

þ xi
0 1

�1 0

" # !

v1i � wi ¼ l1iv1i � wi:

Hence, by solving for the eigenvalues of matrix (B4), the eigenvalues of ~F in closed form follow. �

APPENDIX C: SMALL NOISE COVARIANCE

The covariance matrix P0 associated with noise driven dynamics (13) with w � Nð0; r2IÞ can be found using the

Lyapunov equation

FT
1Pþ PF1 þ Q� I ¼ 0;
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where Q ¼ 0 0

0 r2

� �

43 and then taking the limit of P0 ¼ limy!0P. From Proposition 1, P satisfies FT
2Pþ PF2 ¼ �Q� I: Let

F2 ¼ ðV �WÞKðV�1 �W�1Þ, where V �W represents the eigenvectors of F2 and K is the diagonal matrix of its eigenvalues.

Further, as L is symmetric, then WWT ¼ I. Hence

0 ¼ FT
2Pþ PF2 þ Q� I ¼ ðV�T �W�TÞKðVT �WTÞPþ PðV �WÞKðV�1 �W�1Þ þ Q� I:

Multiplying on the left and right by I �WT and I �W, respectively, and applying the condition WT ¼ W�1, we have

0 ¼ ½I �WT �ðV�T �W�TÞKðVT �WTÞP½I �W� þ ½I �WT �PðV �WÞKðV�1 �W�1Þ½I �W� þ ½I �WT �Q� I½I �W�
¼ ðV�T � IÞKðVT � IÞ½I �WT �P½I �W� þ ½I �WT �P½I �W�ðV � IÞKðV�1 � IÞ þ Q� I:

Let ~P ¼ ½I �WT �P½I �W� then

ðV�T � IÞKðVT � IÞ ~P þ ~PðV � IÞKðV�1 � IÞ ¼ �Q� I;

equivalently after row/column permutations then

D½Fis�TD½ ~Pis� þ D½ ~Pis�D½Fis� ¼ �Q� I;

where D½Fis� ¼
F1s 0

F2s

0 .
.

.

2

6

4

3

7

5
. From Prop. 2, the eigenvectors of F2 are v1i � wi and v2i � wi with Lwi ¼ kiwi.

Consequently, for i 6¼ 1 with ki 6¼ 0 then Fis ¼ 1
2

�1 xi
4a� xi 0

� �

and for i¼ 1 with k1 ¼ 0 then Fis ¼ 1
2

�1 0

�4að1� yÞ �y

� �

.

For ki 6¼ 0, then

FT
is
~Pis þ ~PisFis ¼ � 0 0

0 r2

" #

1

2

�1 4a� xi

xi 0

" #

p11 p12

p12 p22

" #

þ 1

2

p11 p12

p12 p22

" #

�1 xi

4a� xi 0

" #

¼ � 0 0

0 r2

" #

;

so

~Pis ¼ �r2

xi

4a� xi 1

1 1� 4axi þ x2i
� 

= 4a� xið Þ

" #

:

Similarly, for i¼ 1 then

~P1s ¼
r2

y 1þ yð Þ
16a2 y� 1ð Þ2 4a y� 1ð Þ
4a y� 1ð Þ 1þ yð Þ

" #

;

with limy!0
~P1s ¼ 0 0

0 1

� �

; and its associated eigenvalue is f0;1g:
The trace of P without the modes associated with f0;1g denoted as trP is

trP ¼ tr I �W½ � ~P I �WT½ � ¼ tr I �WT½ � I �W½ � ~P ¼ tr ~P

¼
X

N

i¼2

tr ~Pis

� 

¼ �
X

N

i¼2

r2

xi
4a� xi þ

1� 4axi þ x2i
4a� xi

� 	

¼ �
X

N

i¼2

r2

xi
4a� xi � xi þ

1

4a� xi

� 	

¼ 2r2
X

N

i¼2

1� 2a

xi
� 1

2xi 4a� xið Þ

� 	

¼ 2r2 N � 1�
X

N

i¼2

2a

xi
þ 1

2xi 4a� xið Þ

� 	

 !

:

On the ring network, xi ¼ b cos 2pk
N
ki, where k2;…; kNf g ¼ 4 sin2 p

N
; 4 sin2 2p

N
;…; 4 sin2 p N�1ð Þ

N

n o

. Using the relation
PN�1

i¼1 csc2 ip
N
¼ ðN2 � 1Þ=3, this trace is further simplified as
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trP ¼ 2r2 N � 1� a N2 � 1ð Þ

6b cos
2pk

N

� 1

32b cos
2pk

N

X

N�1

i¼1

csc2
ip

N

1

a� b cos
2pk

N
sin2

ip

N

0

B

@

1

C

A

¼ 2r2 N � 1ð Þ 1� a N þ 1ð Þ

6b cos
2pk

N

� a N þ 1ð Þ

6b cos
2pk

N

C N; k; a; bð Þ
0

@

1

A

;

¼ 2r2 N � 1ð Þ 1� a N þ 1ð Þ

6b cos
2pk

N

1þ C N; k; a; bð Þ½ �
0

@

1

A

;

where CðN; k; a; bÞ ¼ 3
16aðN2�1Þ

PN�1
i¼1 csc2 ip

N
a� b cos 2pk

N
sin2 ip

N


 ��1

.

As b cos 2pk
N

2 �1; 0½ �; a� b cos 2pk
N

sin2 ip
N


 ��1

2 a� b cos 2pk
N

� �1
; a�1

h i

and
PN�1

i¼1 csc2 ip
N
¼ ðN2 � 1Þ=3; then

CðN; k; a; bÞ 2 16a a� b cos 2pk
N

� � �1
; 16a2ð Þ�1

h i

� 16að Þ�1
aþ jbjð Þ�1; að Þ�1

h i

:

APPENDIX D: INTERVAL EXIT PROBABILITY

The perturbed edge states on a ring about an equilibrium with phase offsets Dk are defined by the states

dei ¼ /iþ1 � /i � Dk ¼ d/iþ1 � d/i;

or compactly by de ¼ ½ 0 E� I � da

d/

� �

, where E is defined in Appendix C. Consequently, the covariance matrix Pe ¼

EðdedeTÞ can be found by a projection of the covariance matrix P0 ¼ E
da

d/

� �

da

d/

� �T
 !

as

Pe ¼ ½ 0 E� I �P0½ 0 E� I �T :

The trace of Pe without the mode associated with the undamped subspace spanned by de ¼ 1 is denoted as trPe. From

Appendix C, noting that ðET � IÞðE� IÞ ¼ L, trð½ 0 E� I �P0½ 0 E� I �TÞ ¼ trð½ 0 E� I �P½ 0 E� I �TÞ and applying

the closed form solution for P then

trPe ¼ tr 0 E� I
� �

P
0

ET � I

" # !

¼ tr
0 0

0 ET � Ið Þ E� Ið Þ

" #

I �Wð Þ ~P I �WTð Þ
 !

¼ tr
0 0

0 L

" #

I �Wð Þ ~P I �WTð Þ
 !

¼ tr I �WTð Þ 0 0

0 1

" #

� L

 !

I �Wð Þ ~P
 !

¼ tr
0 0

0 1

" #

� K

 !

~P

 !

¼
X

N

i¼2

� r2

xi
tr

0 0

0 ki

" #

4a� xi 1

1 1� 4axi þ x2i
� 

= 4a� xið Þ

" # !

¼
X

N

i¼2

� r2

xi
tr

0 0

ki ki 1� 4axi þ x2i
� 

= 4a� xið Þ

" # !

¼
X

N

i¼2

� r2

xi

ki 1� 4axi þ x2i
� 

4a� xi

¼ � r2

bc

X

N

i¼2

1� 4axi þ x2i
4a� xi

¼ r2

bc

X

N

i¼2

xi �
1

4a� xi
¼ r2

X

N

i¼2

ki �
1

bc

X

N

i¼2

1

4a� kibc

 !

:

For the ring graph due to the underlying symmetry in the dei states, then �r2
:¼ Eðe21Þ ¼ Eðe22Þ ¼ 	 	 	 ¼ Eðe2NÞ and so

�r2 ¼ trPe=N. For a ring graph, then k2;…; kNf g ¼ 4 sin2 p
N
; 4 sin2 2p

N
;…; 4 sin2 p N�1ð Þ

N

n o

and
PN

i¼2 ki ¼ 2N, so

�r2 ¼ r2 2� 1

4bN cos
2pk

N

X

N�1

i¼1

1

a� b cos
2pk

N
sin2

ip

N

0

B

@

1

C

A

:

Let the probability that the random variable dei � Nð0; �r2Þ remains in the bounded interval ½el; eu� be piðel; euÞ. This probabil-
ity can be calculated using the cumulative distribution function Fð	Þ of the Gaussian distribution and the error function erfð	Þ
as
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pi el; euð Þ ¼ F euð Þ � F elð Þ ¼
1

2
1þ erf

eu

�r
ffiffiffi

2
p

� 	� �

� 1

2
1þ erf

el

�rk

ffiffiffi

2
p

� 	� �

¼ 1

2
erf

eu

�r
ffiffiffi

2
p

� 	

� erf
el

�r
ffiffiffi

2
p

� 	� �

:

Assuming that the cross-coupling between dei’s is small, the

probability of all edge states remaining bounded pðel; euÞ can
be approximated as

p el; euð Þ � pi el; euð ÞN ¼ 1

2N
erf

eu

�r
ffiffiffi

2
p

� 	

� erf
el

�r
ffiffiffi

2
p

� 	� �N

:

The probability of exiting the interval ½el; eu� by time T given

a sampling interval Dt is then

p½0;T�ðel; euÞ ¼
X

bT=Dtc

k¼1

pðel; euÞk�1
pðel; euÞ

¼ 1� pðel; euÞbT=Dtc;

and consequently, the probability of first exiting in the time

span ½t1; t2� is

p½t1;t2�ðel; euÞ ¼ p½0;t2�ðel; euÞ � p½0;t1�ðel; euÞ
¼ pðel; euÞbt1=Dtc � pðel; euÞbt2=Dtc:

Noting that the cumulative distribution function for this

event is therefore FðTÞ ¼ p½0;T�ðel; euÞ, the expected switch-

ing time is

ET el; euð Þ ¼
ð1

0

t
d

dt
F tð Þdt ¼

ð1

0

t
d

dt
1� p el; euð Þt=Dt

 �

dt

¼ � Dt

log p el; euð Þð Þ
:
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