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Patternsofpopulationepigenomicdiversity
Robert J. Schmitz1,2*,MatthewD. Schultz2,3*,MarkA.Urich1,2, JosephR.Nery2,Mattia Pelizzola2{, Ondrej Libiger4, AndrewAlix1,
Richard B. McCosh1, Huaming Chen2, Nicholas J. Schork4 & Joseph R. Ecker1,2,5

Natural epigenetic variation provides a source for the generation of phenotypic diversity, but to understand its con-
tribution to such diversity, its interaction with genetic variation requires further investigation. Here we report
population-wide DNA sequencing of genomes, transcriptomes and methylomes of wild Arabidopsis thaliana accessions.
Single cytosinemethylationpolymorphismsarenot linked togenotype.However, the rateof linkagedisequilibriumdecay
amongst differentially methylated regions targeted by RNA-directed DNA methylation is similar to the rate for single
nucleotide polymorphisms. Association analyses of these RNA-directed DNA methylation regions with genetic variants
identified thousands of methylation quantitative trait loci, which revealed the population estimate of genetically
dependent methylation variation. Analysis of invariably methylated transposons and genes across this population
indicates that loci targeted by RNA-directed DNA methylation are epigenetically activated in pollen and seeds, which
facilitates proper development of these structures.

DNA methylation is a covalent base modification of plant nuclear
genomes that is accurately inherited through bothmitotic andmeiotic1

cell divisions. However, similarly to spontaneous mutations in DNA,
errors in themaintenance ofmethylation states result in the accumula-
tion of single methylation polymorphisms (SMPs) over an evolution-
ary timescale2,3. The rates of SMP formation are orders of magnitude
greater than those of spontaneous mutations, which are in part, prob-
ably due to the lower fidelity of maintenance DNAmethyltransferases
and accompanying silencing machinery2–5. Epiallele formation in the
absence of genetic variation can result in phenotypic variation,which is
most evident in the plant kingdom, as exemplified by the peloric and
colorless non-ripening variants from Linaria vulgaris and Solanum
lycopersicum, respectively6,7. Although rates of spontaneous variation
in DNA methylation and mutation can be decoupled in the labor-
atory8–11, in natural settings, these two features of genomes co-evolve
to create phenotypic diversity on which natural selection can act. In
plant genomes, DNA methylation is present in the symmetrical CG
and CHG contexts (where H5A, C or T) as well as the asymmetrical
CHH context. CG gene-body methylation is a common feature of
animal and plant genomes12,13. Regions of plant genomes that contain
methylation in the CG, CHG and CHH contexts are indicative of loci
that are under control of RNA-directed DNA methylation (RdDM)14.
Similarly to the limited examples of pure epialleles (methylation

variants that form independent of genetic variation), few examples of
DNA methylation variants linked to genetic variants are known15–17.
Previous studies comparing two accessions ofA. thaliana or Zeamays
revealed genome-wide natural variation in DNAmethylation18–21, but
the dependence of these methylation variants on genetic variants
at the population level remains unaddressed. To understand the
types and extent of natural DNA methylation variants in A. tha-
liana, epigenomes for genotypically distinct, wild accessions, isolated
from throughout the Northern Hemisphere, were determined using
MethylC-sequencing18, (152 methylomes, Supplementary Table 1),
RNA-sequencing (144 transcriptomes, Supplementary Table 2) and
genomic DNA-sequencing (217 genomes, Supplementary Table 3)18.
Integration of genomic and epigenomic data allowed investigation

into variable methylation states of both CG gene-body methylation
and loci targeted by RdDM along with their interactions with genetic
variants at the population level.

Population-wide patterns of SMPs

Recent reports of SMPs in a population of essentially isogenic plants
indicated that they are major contributors to epigenomic variation2,3.
Therefore, we assessed SMP diversity to understand their frequency
and patterns throughout a population of genetically distinct acces-
sions.Amedianof 390,255 SMPs ranging from92,646 to 527,393 (Sup-
plementary Table 4) were found in the sequenced accessions when
compared to the Col-0 reference methylome. On average, CG-,
CHG- and CHH-SMPs accounted for 23%, 13% and 64% of all
SMPs, respectively. These newly identified SMPs were used to con-
struct an epigenome-based phylogeny and then were compared to a
genome-based (single nucleotide polymorphism (SNP)) phylogeny
(Supplementary Figs 1–4). A high correlation in the tree structures
was specifically observed between CG-SMPs and SNPs as compared
to CHG-SMPs or CHH-SMPs and SNPs (Supplementary Table 5).
To determine patterns of SMP diversity, chromosome-wide con-

servation of methylation states at each SMP was examined by com-
puting a conservation score (Fig. 1a and Supplementary Fig. 5). The
methylation state of SMPs in the CG and CHG contexts is biased
towards the methylated form at the pericentromere and biased
towards the unmethylated form in gene-rich regions (Fig. 1a and
Supplementary Fig. 5). Next, the distribution of conservation scores
across different features and methylation contexts were plotted gen-
ome-wide (Fig. 1b–d). Like the pericentromeric regions, CG- and
CHG-SMPs in transposable elements tend to be faithfully methylated
throughout this population, whereas CHH-SMPs are largely unme-
thylated. Unlike CHG and CHH-SMPs, CG-SMPs have a signifi-
cantly larger amount of methylation at single-copy genes (Fig. 1b–d).
Because CG gene-body methylation is associated with moderately
expressed genes19, we postulated that these genes are more active
because of the lack of other genes redundant in function. We tested
this hypothesis by examiningRNA-seq data for 144 of these accessions
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at these loci, which revealed the fraction of transcripts where expres-
sion was detected—that is, FPKMs. 0, where FPKM indicates frag-
ments per kilobase of exon per million fragments mapped—was
higher in single-copy genes than non-single-copy genes (85% versus
71.8%). Moreover, the median expression level of single-copy genes
was also significantly greater (361,814.50 FPKMs of single-copy genes
versus 56,107.85 FPKMs of non-single-copy genes), supporting the
finding that single-copy genes across the population are more trans-
criptionally active.

Population-wide variation of DMRs

Spontaneous formation of SMPs represents one form of natural epi-
genetic variation, but variation also exists in the form of differentially
methylated regions (DMRs)2,3. Therefore, we scanned this population
for DMRs in the CG context (CG-DMRs) typically found in gene-
bodies or in the CG, CHG and CHH contexts (C-DMRs) typical of
regions targeted by RdDM. Because CG-DMRs and C-DMRs are
not mutually exclusive, only CG-DMRs that did not overlap with a
C-DMR were defined as CG-DMRs. Hierarchical clustering of acces-
sions based on weighted methylation levels20 (Supplementary Infor-
mation)—referred to as methylation levels throughout the rest of the
paper—of CG-DMRs or C-DMRs revealed patterns across the popu-
lation that were coincident with certain genomic features (Fig. 2a
and b). For example, CG-DMRs are enriched in gene bodies and
are present in both unmethylated and methylated states equally
throughout the population (Fig. 2a), whereas C-DMRs occur in both
gene bodies and transposons (Fig. 2b). Additionally, the C-DMRs in
genes are largely unmethylated, which contrasts with the heavy methy-
lation levels that occur in transposons (Fig. 2b). In total, 40,269 CG-
DMRs (Supplementary Table 6), with an average size of 321 base pairs
(bp; Supplementary Fig. 6) were identified across the population that
were enriched in gene bodies and depleted in transposons (Fig. 2a,

Supplementary Fig. 7 and Supplementary Table 7). We also identified
13,485C-DMRs (SupplementaryTable 8), with an average size of 221 bp
(Supplementary Fig. 6), that showed enrichment in transposons and
depletion in genes (Fig. 2b, Supplementary Fig. 7 and Supplementary
Table 7).
This distribution of both CG- andC-DMRs reflects the distribution

of genes and transposons along each chromosome and the type of
DNA methylation primarily associated with these features, namely
CG gene-body methylation versus RdDM. Furthermore, the distri-
bution of methylation levels of CG-DMRs is skewed towards lower
levels when the CG-DMR overlaps a gene and towards higher levels
when it overlaps a transposon (Fig. 2c, d). The distribution of methy-
lation levels in CG-DMRs resembles the patterns of CG-SMPs for
genes versus transposons, as the transposon sequences often con-
tained highly methylated sites or DMRs when compared to genes,
supporting the observation that these regions are faithfully repressed
by methylation across the population. A comparison of the dis-
tribution of methylation levels of the C-DMRs revealed that genes
are infrequently methylated at high levels in the population when
compared to C-DMRs overlapping transposons (Fig. 2c, d). In this
regard, C-DMRs overlapping genes are rare variants in the popu-
lation, whereas most transposon sequences are almost invariably
methylated. Clustering these accessions based on their methylation
levels of C-DMRs revealed that accessions that are geographically
separated are less likely to cluster together, indicating the potential
for underlying genetic structure (Fig. 2e, f). Alternatively, these results
could also be obtained for methylation variants that are not depen-
dent on genetic variants if they are stable. Therefore, the observation
that accessions cluster based on their geographical distribution is
probably due to a combination of both genetic structure and stable
methylation variants.
For a subset of accessions examined, methylation data were pro-

duced for two tissue types: leaf and mixed-stage inflorescence.
Regardless of the tissue used for methylome analysis, when hierar-
chical clustering was performed using methylation levels of either
CG-DMRs (Fig. 2g) or C-DMRs (Fig. 2h), these accessions grouped
by their genotype not their tissue type. When the same analysis was
applied to RNA-seq data from the same tissues of six accessions,
samples clustered on the basis of their tissue type not their genotype
(Fig. 2i). Collectively, these data indicate that DNAmethylation is less
dynamic than gene expression patterns in plants and only plays a role
during specific stages of development or cell types1,21,22. Although
DNA methylation is more static than transcription, it varies appre-
ciably over an evolutionary timescale, significantly affecting the trans-
criptional output of specific genes (Fig. 2j, k). Using CG-DMRs that
overlap with genes, a positive correlation (Spearman correlation;
P, 2.23 10216) between their methylation levels and gene expres-
sion levels were found (Fig. 2j), whereas the opposite was true for
C-DMRs that overlapped genes, supporting a role for RdDM in trans-
criptionally silencing these loci (Spearman correlation; P, 2.23 10216:
Fig. 2k, Supplementary Figs 8 and 9, and Supplementary Information).
Although the role of CG gene-body methylation is still unclear, these
data indicate that CG-DMRs that are heavilymethylated are associated
with higher gene expression levels and can possibly give rise to trans-
criptional variation.

Linking genetic and methylation variants

Genome sequencing was performed for 217 individuals of which 152
had a matching sequenced DNA methylome. We used the SHORE
analysis pipeline23 to identify SNPs between each accession and the
Col-0 genome (Supplementary Information). The identification of
SMPs and SNPs that were variable between at least two accessions
was used to determine the population-level frequency of these var-
iants, which revealed approximately 70% of CG-SMPs and 41% of
SNPs are present at ,1% allele frequency (Supplementary Table 9).
These results indicate that a large fraction of SMPs and SNPs are
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Figure 1 | Population-wide analyses of SMPs. a, A plot of the genome-wide
distribution of methylation conservation across chromosome I. Mb,
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rare variants similar to the results observed for C-DMRs and further
indicate that the high epimutation rate for SMPs results in greater
numbers of rare alleles. Therefore, even though the spontaneous
epimutation rate is at least four orders of magnitude greater than
SNPs, the reversible nature of certain SMPs governs their accumula-
tion within populations2,3,5.
Our analysis of gene families that contained the highest number of

major effect mutations (see Supplementary Information: NBS-LRR,
for defence response; F-box, for protein degradation; and MADS-box

transcription factor, for development) is consistent with previous
studies24,25, and these gene families also contained the highest fre-
quency of C-DMRs (Fig. 3a). Furthermore, gene ontology analysis
for genes overlapping with C-DMRs identified terms enriched in
protein degradation and immune response functions, indicating that
these three gene families are equally prone to hypervariable genetic
and epigenetic states (that is, they are hypermutable; Supplementary
Table 10). Although the frequency of major effect mutations and
C-DMRs was similar for these hypermutable families, the remaining
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Figure 2 | Population-wide analyses of DMRs. a, b, Heatmaps representing
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locus of DMR and columns indicate accessions. c, d, The density (y axis;
arbitrary units) and average methylation levels (x axis) of CG-DMRs and
C-DMRs in genes (c) and transposons (d). e, f, Asian (e) and North American

(f) methylome profiles reflected geographical distribution. g–i, Dendrograms
from hierarchical clustering of CG-DMRs (g), C-DMRs (h) and mRNA levels
(i) from accessions that had samples from two different tissues (y axis, height in
arbitrary units). Red stars and blue circles indicate leaf and mixed stage
inflorescence samples, respectively. j, Boxplot representation of transcriptional
variation reveals a positive association with higher levels of methylation levels
of CG-DMRs. k, Increasing methylation levels of C-DMRs are negatively
associated with gene expression.
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gene families tested revealed no such co-occurrence of genetic and
methylation variation as the frequency of C-DMRs approached zero,
whereas the frequency of major effect mutations reached a back-
ground rate (Fig. 3a). Apart from the hypermutable families discussed
above, there is little relationship between major effect mutations and
frequency of C-DMRs. Furthermore, there is no correlation between
methylation level and mutation rate in genes containing C-DMRs
(Supplementary Table 11). Therefore, the majority of genes targeted
by RdDM are functional, and silencing by this pathway may limit
their expression to specific stages of development (similar to observa-
tions made for transposons26) and/or limit their expression until
released from silencing by bacterial infection27, possibly explaining
the high frequency of C-DMRs in members of the NBS-LRR family.
To determine the extent to which variation in both DNA methyla-

tion and genotype are linked, diversity estimates were calculated for
SNPs, all forms of SMPs and C-DMRs (Fig. 3b and Supplemen-
tary Fig. 10). A known selective sweep on chromosome I (ref. 26)
was identified (Fig. 3b). However, no corresponding depletion was
observed for either CG-SMPs or C-DMRs. At this resolution, no
correlation between genotype and epigenotype was detected (Sup-
plementary Table 12). Therefore, to understand the relationship
and possible dependence of methylation variants on genotype, a
higher-resolution positional association and linkage disequilibrium
decay analysis was performed using SNPs, CG-SMPs, CHG-SMPs,
CHH-SMPs, CG-DMRs and C-DMRs (Fig. 3c, d). Similar to past
reports for SNPs, linkage disequilibrium decays within 10 kilobases

(kb), reaching 50% of its initial value at ,2 kb (refs 25, 28; Fig. 3c).
This value is similar to the rate of decay for the association amongst
C-DMRs (,10 kb), which reaches 50% of its initial value at ,1 kb
(Fig. 3c). Surprisingly, the rate of decay for association amongstmethy-
lation variants such asCG-SMPs andCG-DMRsoccurs rapidly, within
100 bp, which is especially true for genes when compared to transpo-
sons (Fig. 3d and Supplementary Figs 11 and 12). Collectively, these
data indicate that SMPs and CG-DMRs are truly epigenetic in nature,
as they occur largely independent of genetic variation. In contrast,
although spontaneous C-DMR formation can occur independent of
genetic variation2,3, the linkage disequilibrium and association decay
analysis revealed that the presence of C-DMRs may be due, in part, to
local genetic variants.

Association-mapping methylation variants

Although there are many mechanisms that can give rise to DNA
methylation variation2,3,15,29, the extent to which each plays a role in
the formation of the observable methylation variation is unknown.
We noted that some sites of known transposition events possessed
C-DMRs and posited that these structural variants could be respon-
sible for these differences (Supplementary Fig. 13). To experimentally
determine the proportion of C-DMRs with a local structural variant,
regions surrounding 92 C-DMRs were PCR amplified and sequenced.
Most of these C-DMRs failed to overlap with structural variants;
however, structural variations were detected at ,17% (16/92) of the
C-DMRs assayed (Fig. 4a, Supplementary Table 13). To better inspect
any direct relationship between genetic variants and C-DMRs and to
identify potential methylation quantitative trait loci (mQTL)30, we
used a genome-wide association technique, EMMAX, as this meth-
odology was successfully used in another similarly sized Arabidopsis
population28,31 (Supplementary Information). Furthermore, we employed
two different methodologies to control for false discoveries and found
them highly concordant (Supplementary Information). To minimize
the number of false positives, we used SNPs that were significant in
both methodologies. Application of EMMAX to the 152 accessions
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with SNP and C-DMR data uncovered C-DMRs that associated with
local (Fig. 4b) and distant genetic variants (Fig. 4c) and identified the
well-characterized PAI epialleles (Supplementary Fig. 14)15. In total,
2,739 significant mQTL were associated with 1,045 of the 3,023 tested
C-DMRs (,35%; Supplementary Figs 15–24).
Of the tested C-DMRs, 377 (,12%) overlap with a genomic locus

withwhich they associate, which is a similar proportion to the number
of experimentally determined local variants. We grouped significant
mQTL into blocks and plotted the position of these blocks and the
corresponding C-DMR in Fig. 4d (Supplementary Information). An
enrichment of local mQTL is visible in particular at the pericentro-
meric regions (Fig. 4d). When corrected for the genome space in
which local events can occur, local mQTL account for a larger fraction
of the overall results, although the raw number of distant mQTL
exceeds the number of local mQTL (Fig. 4f). Furthermore, 61.3% of
the local mQTL occur within 30 kb of the C-DMR (Fig. 4e). These
association-mapping results also indicated that there were more
than twice as many mQTL as C-DMRs. To address whether or not
many of the C-DMRs are being controlled in a polygenic manner,
we applied the tool MLMM32 to the 1,045 C-DMRs with at least one
mQTL. Roughly half of the significant C-DMRs reported as poly-
genic by EMMAX were also reported as polygenic by MLMM (Sup-
plementary Fig. 25). Given these results, there are polygenic C-DMRs,
although it remains to be determined what types of mechanisms
lead to the methylation variation of these C-DMRs. Lastly, applying
EMMAX to CG-DMRs resulted in a much lower detection rate
of mQTL (Supplementary Table 14 and Supplementary Fig. 26).
Together, the above data demonstrate that a considerable fraction of
C-DMRs and to a much lesser extent CG-DMRs exist as a result of
genetic variation.
All C-DMRs randomly selected for Fig. 4a are rare in the popu-

lation and had been filtered out before association mapping. Conse-
quently, to determine potential causal variants that are associated with
the methylation variants, we PCR amplified 96 C-DMRs associated
with a local mQTL. Of these tested loci, 86 successfully amplified
and revealed 16 structural variants (Supplementary Table 15), which
are similar to the results from the randomly selected C-DMRs (16/92
versus 16/86). As an alternative to structural variation, distant mQTL
may result from SNPs, as reported for the VIM1 variant in the Bor-4
accession33. Analysis of components with known involvements in
DNA methylation within these distant mQTL regions (Supplemen-
tary Table 16) revealed VIM3 and AGO2 as possible causal loci.
Potential causal variants for the remaining local and distant mQTL
are likely to involve a combination of either SNPs or structural varia-
tions that will undoubtedly be uncovered with future whole-genome
assemblies.

RdDM targets are activated in pollen

ThemQTL that we have identified revealed that there is an association
between some genetic variants and DNA methylation variants, espe-
cially for C-DMRs. It is well established that other genetic features,
such as repeats, are important for guiding RdDM to target loci. For
example, the intergenic sub-telomeric repeats 39 to theMEDEA locus
and the repeated SINE elements and tandem repeats around the trans-
cription start site of FWA are key regulatory sequences for control-
ling gene expression of these loci34,35. Although these loci are under
transcriptional control by genetic elements, these specific elements are
present and invariably methylated in every accession examined.
Therefore, to understand the role of regions of the epigenome that
are less prone to natural epigenetic variation, we searched for loci that
containedmethylated alleles (methylation level$10%) in.90%of the
accessions and identified 283 genes and 255 transposons. The express-
ion of these loci was specifically activated in pollen (Fig. 5a and b). A
previous study demonstrated that transposons are activated in the
pollen vegetative nucleus, providing a substrate to generate mobile
small RNAs, which can be transmitted to the sperm cells (germ line)26.

This mechanism is not restricted to transposons, as we found that
protein-coding genes that are under control of RdDM and invariably
methylated across this population are also activated in pollen (Fig. 5b).
This activation is not a general feature of pollen, as a control set of genes
that are not targeted by RdDM are not activated in pollen (Fig. 5c). A
closer examination of these invariably methylated genes with gene
ontology revealed a significant enrichment for two major categories,
cell wall biology and translation (Supplementary Table 17), both
related to major functions of pollen development.
Although these invariably methylated loci are under similar epige-

netic control as transposons (Fig. 5a, b), it is likely that all RdDM-
targeted loci are under the control of this mechanism regardless of
their variability within this population. In fact, Col-0 genes targeted
by RdDM and their corresponding expression levels are positively
correlated (Spearman correlation; P5 5.813 10227) in pollen and
seed development (Fig. 5d), whereas all 55 other tissues tested revealed
either a negative correlation or no correlation (Fig. 5d, Supplementary
Table 18). Furthermore, categories of genes with positive correlations
are stronger for loci that overlap transposon sequences (Fig. 5d). These
data indicate that these loci have probably come under control of
sequences that are evolutionarily silenced, which acts to restrict their
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Figure 5 | Epigenetic reprogramming of genes targeted by the RdDM
pathway. a–c, A heatmap representation of mRNA expression levels
throughout a developmental time course37 for transposons (a) and genes
(b) that overlap with C-DMRswhere.90% of the alleles aremethylated across
the population, and genes not overlapping with C-DMRs (c). Each row
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expression to these specific stages of development (Fig. 5d: see Sup-
plementary Information for an expanded discussion of this topic).

Concluding remarks
Natural epigenomic variation is widespread within A. thaliana, and
the population-based epigenomics presented here has uncovered fea-
tures of the DNAmethylome that are not linked to underlying genetic
variation, such as all forms of SMPs and CG-DMRs. However,
C-DMRs have positional association decay patterns similar to linkage
disequilibrium decay patterns for SNPs and in some cases are assoc-
iated with genetic variants, but the majority of C-DMRs were not
tested by association mapping due to low allele frequencies and could
result from rare sequence variants. Our combined analyses of genetic
and methylation variation did not uncover a correlation between
major effect mutations and genes silenced by RdDM, suggesting that
this pathway may target these genes for another purpose. This pur-
pose could be to restrict expression from vegetative tissues similarly to
transposons. Another possible purpose of being targeted by RdDM
could be to coordinate expression specifically in pollen and in seed to
ensure proper gametophytic and embryonic development. Animals
also use small RNA-directed DNAmethylation and heterochromatin
formation mechanisms to maintain the epigenome of the germ line
through the use of Piwi-interacting RNAs36. In both plants and
animals these small RNAs are derived from the genome of companion
cells, which are terminal in nature and can afford widespread reacti-
vation of transposon and repeat sequences as they are not passed on
to the next generation. Our study provides evidence that RdDM-
targeted genes may have co-opted this transposon silencing mecha-
nism to maintain their silenced state in vegetative tissues and trans-
generationally, as well as to ensure proper expression important for
pollen, seed and germ line development.

METHODS SUMMARY
MethylC-seq library construction. Genomic DNA was sonicated to ,100 bp
using the Covaris S2 system and then purified using Qiagen DNeasy MinElute
columns (Qiagen). Each sequencing library was constructed similarly to genomic
DNA libraries except the ligation was performed with methylated adapters pro-
vided by Illumina. Ligation products were purified with AMPure XP beads
(Beckman). Ligated DNA was bisulphite treated using the MethylCode Kit
(Invitrogen) and then PCR amplified using Pfu Cx Turbo (Agilent).

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Plant material. Leaf and mixed stage inflorescence tissue were flash frozen in
liquid nitrogen, and then the tissuewas ground to a fine powderwith amortar and
pestle. Leaf tissue was used for genomic and RNA-seq, and the tissues used for
each MethylC-seq experiment are listed in Supplementary Table 1. DNA was
isolated using a Plant DNeasy kit (Qiagen) following the manufacturer’s recom-
mendations. RNAwas isolated using the Plant RNeasy kit (Qiagen) following the
manufacturer’s instructions.
Genomic DNA sequencing library construction. Approximately two micro-
grams of genomic DNA was sonicated to ,250 bp using the Covaris S2 system
using the following parameters: cycle number, 2; duty cycle, 10%; intensity, 4;
cycles per burst, 200; and time, 40 s. Sonicated DNA was purified with a PCR
Purification MinElute column according to the manufacturer’s instructions
(Qiagen). Purified DNA was end repaired at room temperature for 45min using
the End-It Repair kit (Epicentre) and purified with a MinElute column (Qiagen).
Purified sampleswere thenA-tailedwith dATPandKlenow39–59 exominus (New
England Biolabs) for 30min at 37 uC and then purified with a MinElute column
(Qiagen). Purified DNA was then used for an overnight ligation to TruSeq
barcoded adapters (Illumina) with T4 DNA ligase at 16 uC (New England
Biolabs). Ligated fragments were purified twice using Ampure XP purification
beads (Beckman) at 1.33 ratio of beads to sample and then PCR amplified for
15 cycles using Phusion High Fidelity DNA Polymerase (New England Bioloabs).
MethylC-seq library construction. Approximately one to three micrograms of
genomic DNA was sonicated to ,100 bp using the Covaris S2 system using the
following parameters: cycle number, 6; duty cycle, 20%; intensity, 5; cycles per
burst, 200; and time, 60 s. Sonicated DNA was purified using DNeasy MinElute
columns (Qiagen). Each sequencing library was constructed similarly to genomic
DNA libraries except the ligation was performed with methylated adapters pro-
vided by Illumina. Ligation products were purified with AMPure XP beads
(Beckman) at a ratio of 1.8 of beads to sample. Up to 450 ng of ligated DNA
was bisulphite treated using theMethylCode kit (Invitrogen) following the manu-
facturer’s guidelines and then PCR amplified using Pfu Cx Turbo (Agilent) using
the followingPCRconditions (2min at 95 uC, 4 cycles of 15 s at 98 uC, 30 s at 60 uC,
4min at 72 uC and 10min at 72 uC).
RNA-seq library construction. RNA-seq libraries were prepared according to
described methods38 except for data collected for Fig. 2i. These libraries were
prepared using a TruSeq RNA Sample Kit v2 (Illumina).
Sequencing. Paired-end genomic DNA and single-end MethylC-seq libraries
were sequenced using the Illumina GAIIx as per manufacturer’s instructions.
Sequencing of genomic DNA and MethylC-seq libraries was performed up to
101 and 85 cycles, respectively. Image analysis and base calling were performed
with the standard Illumina pipeline. Sequencing of RNA-seq libraries was per-
formed on the SOLiD4 platform (Life Technologies) for 50 bp according to the
manufacturer’s instructions.
Variant identification. The SHORE package was used to call variants for all of
our accessions23. The following is a list of each submodule and arguments that we
ran for the strains: shore import ‘–v’ Fastq; ‘–e’ Shore; ‘–a’ genomic; ‘–x’ forward
reads; ‘–y’ reverse reads; ‘–o’ output directory; ‘–n’ 200, shore mapflowcell ‘–l’
TAIR10 Reference; ‘–f’ output directory; ‘–v’ bwa; ‘–n’ 5%; ‘–g’ 3; ‘–c’ 7; ‘–b’
500000, shore correct4pe ‘–l’ input directory; ‘–x’ 250; ‘–e’ 1001, shore merge
‘–P’ input directory; ‘–d’ output directory, shore consensus ‘–n’ accession_name;
‘–f’ TAIR10Reference; ‘–o’ output directory; ‘–i’ input directory; ‘–g’ 4; ‘–q’ 7; ‘–a’;
Arabidopsis default scoring matrix ‘–b’ 0.51; ‘–v’; ‘–r’. Any variant with a quality
score of 25 or above was deemed significant. These variants were then substituted
into the TAIR10 reference genome to create sample specific references (also
referred to as SNP-substituted references) for the mapping of other data sets.
In the case of the MethylC-seq mapping, we were able to map, on average, an
additional 943,182 reads and allowed us to call an additional 225,894 methylated
cytosines (Supplementary Table 19).
MethylC-seq sequencing analysis. Fastq files were aligned to SNP-substituted
reference genomes for each accession usingBowtie39, and customalgorithmswere
used for identification of mC sites as described previously40.
RNA-seq data analysis. Bioscope version 1.3 was used to align .csfasta and .qual
files to SNP-substituted reference genomes for each accession using default para-
meters; this allows up to 10 locations per sequenced read. Cufflinks version 1.1
was used to quantify gene expression values using the following parameters: ‘–F’
0; ‘–b’; ‘–N’; ‘–library-type’ fr-secondstrand; ‘–G’ TAIR10.gtf.
Identification of SMPs.We identified SMPs by looking for sites that either were
calledmethylated by our pipeline, or were covered by at least five reads, which we
defined as an unmethylated site. Any other site was listed as missing. A SMP was
defined as any site with an accession that had a methylation state different
between at least two accessions but contained the same sequence as the Col-0
reference genome.

Dendrogram construction.Throughout this work, we present various clustering
results of SMPs, SNPs and DMRs. In the cases where these dendrograms are
presented with a heatmap, we used the R function heatmap.2 in the gplots pack-
age with the default clustering parameters to produce the figure. The dendro-
grams that lack heatmaps were produced by first generating a distance matrix
with R’s dist function and passing this matrix to the hclust function, both with
their default parameters.

Clustering comparison. To compare the results of the clustering of SMPs and
SNPs, we generated distancematrices usingR’s dist functionwith themethylation
statuses of SMPs as well as the alleles of the SNPs and then compared the
Spearman correlation coefficients between the SNP distance matrix and each of
the SMP distance matrices (Supplementary Table 5).

Identification of DMRs. All classes of DMRs were identified as previously
reported3. CG-DMRs and C-DMRs are not mutually exclusive because C-DMRs
are a subset of CG-DMRs. Consequently, for any CG-DMR analyses the subset of
C-DMRs were removed.

Definition of methylation levels. Throughout this work, we refer to the level of
methylation of genomic regions. To compute this level for a given region, we
summed the number of sequenced C bases across all cytosines that were called
statistically significantly methylated by our pipeline and divided that sum by the
number of sequenced bases covering all cytosines in the given region.

Relationship betweenDNAmethylation andmutation. In an attempt to look at
the relationship between mutation and DNA methylation, we calculated the
weighted average of DNA methylation and mutation rates across all genes.
Genes were defined as entries in the TAIR10 reference GFF file having the word
‘‘gene’’ in the feature column. Methylation levels were calculated as described
above, and SNP effects were determined using the snpEff tool (http://www.
ncbi.nlm.nih.gov/pubmed/22728672) and its A. thaliana TAIR10 reference file.
We computed two mutation rates, the overall mutation rate and the major effect
mutation rate, which we obtained by calculating the fraction of mutations in that
gene out of the total number of mutations that were observed in that gene across
all accessions. Major effect mutations were defined as mutations that introduced
or removed a start or stop codon. The methylation level and mutation rates for
each locus were normalized to themaximum value observed at that locus for each
measurement type. This normalization yieldedmeasurements on a scale from0 to
1. We performed a correlation test on these measurements to try and detect a
relationship between methylation level and either of the mutation types. As we
had no reason to suspect a linear relationship between these variables, we chose to
use a Kendall statistic to evaluate the correlation. We detected small but statis-
tically significant relationships between all three of our measurements. Although
these results are statistically significant given the small magnitude of the correla-
tion coefficients, we believe that these relationships are at least difficult to inter-
pret but probably not biologically meaningful (Supplementary Table 11).

Enrichment of DMRs in genes and transposons. To determine if CG- and
C-DMRs were enriched or depleted in genes or transposons, we performed a
binomial test based on the proportions of these features throughout the genome.
The results of these tests can be found in Supplementary Table 7.

Linkage disequilibrium/positional association decay analysis. To determine
the rate of decay for C-DMRs and CG-DMRs we computed a Pearson correlation
coefficient between each pair of DMRs within 10 kb of one another. These coeffi-
cients were then separated into 1 kb or 200 bp bins based on the distances between
the midpoints of the DMRs. We took the median correlation coefficient of each
bin as the rate of decay at a particular distance. In the case of SMPs and SNPs, we
used the software package PLINK to determine the association/ linkage disequi-
librium between all pairs of sites with a minor allele frequency of 20% and that
were within 10 kb of one another. In the case of DMRs, we computed the minor
allele frequency by first scoring each accession’s DMR as methylated (methyla-
tion level$10%) or unmethylated (methylation level,10%). These scores were
binned as in the case of DMRs, and the median value of each bin was taken as the
decay rate for a particular distance.

DMR saturation analysis. We estimated how close we are to saturating the
discovery of DMRs by randomly subsetting our data and calling DMRs on those
subsets (Supplementary Fig. 27). For each of the sample sizes, five random subsets
were drawn from the samples and run using the same DMR calling pipeline
previously outlined. Although the discovery of new CHH-DMRs seems to be
saturated, DMRs in the other contexts remain to be found.

mQTL analysis. Given our small sample size, we made several efforts to control
for the number of false positives we undoubtedly found. To this end, we only
testedDMRs that had at least 75% (114 samples) of their observations present and
at least 10% of their observations over a 10% methylation level (that is, what we
defined as a methylated allele). Additionally, we only tested phenotypes that had
genomic inflation factors (GIFs) between 0.985 and 1.015. To obtain these GIFs,
we calculated the 50th percentile of each tested C-DMR’s distribution of P-values

ARTICLE RESEARCH

Macmillan Publishers Limited. All rights reserved©2013

http://www.ncbi.nlm.nih.gov/pubmed/22728672
http://www.ncbi.nlm.nih.gov/pubmed/22728672


as well as the 50th percentile of the distribution of P-values generated by ran-
domly permuting the phenotypes of 20 randomly chosen C-DMRs 10 times (200
permutations in total). These filtering steps left us with 3,023 C-DMRs and 1,877
CG-DMRs to test. We then randomly sampled 1% of the P-values tested and
input them to the R package Q-Value41. The P-value corresponding to a 1% false
discovery rate was then used as a cut-off to determine the significance of each
association test (we refer to this methodology as the ‘Q-value method’). The
results for significant SNPs are detailed in Supplementary Table 20. As further
validation to ensure that this methodology was working, we compared it to
the randomization method outlined elsewhere42 (we refer to the following
methodology as the ‘randomization method’). To this end, we randomized the
labels in our genotype matrix (that is, so every sample now had genotypes from a
different, randomly chosen sample) and ranEMMAXon theDMRs thathadpassed
our quality control thresholds. Specifically,we ran thoseDMRs thathad at least 10%
of their DMRs in the ‘methylated’ state, at least 75% of their observations present,
and a GIF between 0.985 and 1.015. For eachDMR tested, we attempted to find the
largest P-value that kept the false discovery rate (FDR) under 1%. In this case, we
defined the FDR of a given P-value cut-off as the fraction of significant (that is,
below the P-value cut-off in question) hits found in the randomized set out of the
total number of significant hits found in the randomized and non-randomized sets.
The results for significant SNPs are detailed in Supplementary Table 21.We found
that themethodology employing Q-value discovered fewermQTL than the rando-
mization method (Supplementary Table 22), but both methods found a similar
proportion of cis and trans mQTL (Supplementary Fig. 28). Furthermore, the
Q-value results are nearly a perfect subset of the randomization results (,93%
overlap). Consequently, to be conservative, we used the SNPs that overlapped in
both methodologies for the analysis in the paper. We grouped these significant
SNPs into blocks with the following method.
If a significant SNP lies within 10 kb of another significant SNP combine these

two SNPs into a block (that is, the block’s start and end are now the positions of
these two SNPs). Using this block as a starting point, look for other significant
SNPs that are within 10 kb of either end of the block. If such SNPs exist, add them
to the existing block, update the block ends with the new SNP, and look for
significant SNPs within 10 kb of these new block ends. Repeat this procedure
until no significant SNPs can be found within 10 kb of the block ends. These
blocks are what we refer to as mQTL throughout the paper. To prioritize can-
didate loci for follow up studies, we have listed all genes (that is, protein-coding
genes defined in the file here (ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_
genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff)) that fall within themQTL
blocks defined by these significant SNPs, the number of significant SNPs that
directly overlap these genes, and whether or not they have been implicated in
DNAmethylation processes (Supplementary Tables 16 and 23). To better address
the validity of mQTL that associated with more than one mQTL, we ran the 1,045
C-DMRs with at least one significant mQTL through the MLMM software pro-
vided in ref. 32. When evaluating results from this program, we chose the model
that minimized the EBIC criterion reported. We used the same P-value cut-off
given by the Q-value method above to determine which results were significant
and collapsed them in the same fashion asmentioned above.Wehave included the
individual results for the significant SNPs in Supplementary Table 24.
Expression of genes containing DMRs. The lists of C-DMRs and CG-DMRs
were used to find the overlap between themand a list of protein coding genes (that
is, genes with the ‘protein-coding gene’ descriptor in the TAIR10 reference
annotation file found here (ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR10_
genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff).We then compared the
methylation level of these DMRs with the expression levels of the genes they
overlapped. We created boxplots of the expression levels for various methylation
levels (for example, the expression values for all genes with a DMR that had a
methylation level greater than 0.2 but less than 0.3). All the expression values of a
locus were divided by the maximum observed value at that locus, so the express-
ion values plotted are the fraction of the maximum expression level observed at a

given locus. It is interesting to note that genes with no C methylation are
expressed at a lower level than those that have a methylation level between (but
excluding) 0 and 0.1. This dip is due to genes that have no gene body (that is, CG
methylation) as has been shown in ref. 20 and is also apparent in these loci
(Supplementary Fig. 8). Consequently, we plotted these data again excluding
those sites without gene body methylation (that is, 0 now represents loci with
no CHG or CHHmethylation) and saw the median expression rise to match the
median expression level at the 0 to 0.1 level (Supplementary Fig. 9). To make
the differences in the medians clearer, we have plotted the median values for the
boxplots in Fig. 2k and 2j along with the bootstrap confidence intervals in
Supplementary Figs 29 and 30.

Developmental gene expression profiling. Microarray analysis was previously
performed for a broad range of developmental stages throughout the plant life
cycle37. These data were downloaded fromhttp://www.weigelworld.org/resources/
microarray/AtGenExpress/AtGE_dev_gcRMA.txt.zip/at_download/file. These
lists of loci that are targeted by the RdDM pathway were matched against probe
IDs and the resulting information was extracted. Triplicate data for each develop-
mental time point was averaged and then row normalized according to the deve-
lopmental time point that displayed the highest expression level and then plotted
as a heatmap.

Analysis of local sequence variants at C-DMRs overlapping genes. Primer sets
were designed and used for PCR amplification of 92methylated C-DMRs and for
amplification of 86 C-DMRs with local mQTL. Individual PCR products were
purified with a PCR purification column (Qiagen) and then sequenced with
Sanger sequencing technology. All primer sets can be found in Supplementary
Tables 13 and 15.

SMP conservation. To get a global look at the diversity of methylation across
each chromosome, we binned cytosine positions into 10 kb windows. To examine
the conservation of methylation state at cytosines throughout the genome, we
computed a score for each site. Any cytosine that had less than five reads covering
it was excluded. We used the following formula to estimate the amount of con-
servation at each site that was missing data from no more than 50 samples:
(count(methylated accessions)2 count(unmethylated accessions)) / (count(methy-
lated accessions)1 count(unmethylated accessions)). This score reaches its max-
imumvalue of 1whenall accessions aremethylated andaminimumof21whenall
accessions are unmethylated. We computed this score for each site within a bin
(Fig. 1a and Supplementary Fig. 5) and then averaged those statistics together. The
distributions of these scores are plotted across features in Fig. 1b, d and e.

Genome-wide running correlation of SMP, SNP and C-DMR diversity mea-
sures. To evaluate how the correlation between the diversity measures calculated
for SMPs, SNPs and C-DMRs changed across the genome, we calculated diversity
measures in the same way as in Fig. 3b, but in 100 kb windows offset by 20 kb
instead of 500 kb windows offset by 100 kb. We changed the window size and
offset in order to generate more points with which to perform correlation tests.
First, we calculated the percentiles of all the diversity measures. Next, we per-
formed a Kendall tau correlation test on these percentiles for all windows that
started within 500 kb (upstream or downstream) of a genomic coordinate (listed
as the Window Center in Supplementary Table 25). The coefficients from these
tests as well as their P-values are listed in Supplementary Table 25.
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