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Abstract. Southern California experiences earthquakes or/the San Andreas system of 
vertical fight-lateral predominantly strike-slip faults and on a second system of faults 
that includes thrusts, oblique-slip, left-lateral, and other faults. Pattern recognition and 
cluster analysis are used to analyze the catalog of earthquakes with magnitudes ->5.5 
from 1915 to 1994. We use pattern recognition to find a suite of traits that would 
characterize each of these two systems and distinguish them from each other. Both 
pattern recognition and cluster analysis show that epochs of seismic release occur in 
which one or the other system is the predominant form of earthquake activity. For the 
past 2 decades the second system has been the active one. Small changes in the 
direction of plate movements could account for this phenomenon. Seismic release on 
the San Andreas system is preceded by episodes of activity in the Great Basin or in the 
Gulf of California. Presumably, these episodes would represent extension in the former 
region and spreading and slip on transform faults in the latter. 

Introduction 

California's San Andreas fault and its system of subparal- 

lel faults are generally recognized as the modern plate 

boundary between the Pacific and North American plates. 

Right-lateral, strike-slip faulting on the San Andreas (SA) 

fault system is a major source of California earthquakes (SA 

earthquakes), including some with magnitudes exceeding 8. 
The magnitude 6.7 Northridge earthquake that occurred on 

January 17, 1994, is the most recent in a series of earth- 

quakes near Los Angeles with non-San Andreas (NSA) 
attributes, in this case a reverse fault mechanism. If one 

defines a category of earthquakes (NSA earthquakes) with 

non-San Andreas characteristics having significant reverse 

or oblique-slip faulting, left-lateral faulting, or faulting with 

large obliquity to the strike of the San Andreas system, then 

an interesting trend is discerned from a cursory examination 
of the southern California catalog of earthquakes with mag- 

nitudes reported as greater than 5.5 on any magnitude scale 
and with unambiguous classification. For the California 

region between the latitudes of Parkfield and northern Baja 

California more than twice as many SA as NSA earthquakes 

occurred from 1915 to 1970. During this period the bent 

segment of the San Andreas fault has been quiet, and SA 

earthquakes occurred primarily on the San Andreas system 

of faults north and south of the bent segment. From 1971 to 

1994, twice as many NSA as SA earthquakes occurred. In 

this paper we apply the methods of pattern recognition and a 
form of multivariate data analysis called cluster analysis to 
discern traits that characterize SA and NSA events. We then 

offer hypotheses that might explain these traits. 

Computers have been programmed to analyze data and 

then reproduce classical scientific discoveries. The motiva- 
tion for these studies was to understand how humans formu- 
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late scientific theories [Simon, 1992]. Computers have also 

been used to advance new hypotheses that explain complex 

data. For example, Press and Briggs [1975] used pattern 

recognition to analyze data and formulate an hypothesis 
relating the Chandler Wobble to other geophysical phenom- 

ena. For this paper we choose an older recognition algorithm 
because it was designed specifically for application to geo- 

logical data [Bongard et al., 1966; Bongard, 1970]. Keilis- 
Borok et al. [1988] have extended the older recognition 

algorithm and used it as a new approach to earthquake 
prediction. In addition, we have used a more recently 
developed cluster analysis algorithm as an alternate ap- 

proach to analyzing the data [Murtagh and Heck, 1987]. 
We agree with others [Oreskes et al., 1994] who urge 

caution in interpreting the results of numerical models in the 
earth sciences and ascribing significance to hypotheses for- 

mulated by procedures such as ours, based on incomplete 
access to natural phenomena. The results are nonunique and 
may have little relation to the physical world. However, they 
have heuristic value and may even ring true. On occasion, as 

in the case of this paper, the hypotheses can be tested 
against reality over a period of years. 

Earthquake Catalog 

In our approach, data for the pattern recognition and 
cluster analysis programs are drawn from a catalog of 
earthquakes in the southern California region with magni- 
tudes ->5.5, with aftershocks removed (Table t and Figure 

1). Each earthquake has been placed in the SA, NSA, or 

questionable category. Although we have relied heavily on 
surface fault rupture and aftershock distribution to deter- 
mine fault type, some judgment has necessarily been exer- 
cised in assigning a fault plane to an earthquake for which 
only a focal mechanism exists. In a few cases, even in the 
absence of a focal mechanism, the local geological environ- 

ment points persuasively to a particular fault type, such as 
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Table 1. Earthquakes in the Southern California Region, M -> 5.5, 1915-1994 

Earthquake Type Date Magnitude Area References 

A ? June 23, 1915 5.5 Imperial Valley 
1 SA Nov. 21, 1915 6.6 Volcano Lake 

B ? Oct. 23, 1916 6 Tejon Pass 
2 SA April 21, 1918 6.8 San Jacinto Valley 
3 SA March 10, 1922 6.0 Parkfield 

4 SA July 23, 1923 6.2 San Bernardino 
5 NSA June 29, 1925 6.8 Santa Barbara 

6 NSA Nov. 4, 1927 6.8 Point Arguello 
7 SA March 11, 1933 6.4 Long Beach 

8 SA June 7, 1934 6.0 Parkfield 

9 SA Dec. 30, 1934 6.5 Laguna Salada 
10 SA Dec. 31, 1934 7.0 Colorado River delta 

C ? Feb. 24, 1935 6.0 Laguna Salada 
11 SA March 25, 1937 5.6 Buck Ridge 
12 SA May 19, 1940 6.9 E1 Centro 
D ? Dec. 7, 1940 6.0 Colorado River delta 

13 NSA July 1, 1941 6.0 Santa Barbara 

14 SA Oct. 21, 1942 6.6 Borrego Valley 
E ? Aug. 15, 1945 5.7 Borrego Valley 
15 NSA March 15, 1946 6.0 Walker Pass 

F ? July 18, 1946 5.5 Amboy 
16 NSA April 10, 1947 6.5 Manix 

17 SA Dec. 4, 1948 6.0 Desert Hot Springs 
18 NSA May 2, 1949 5.8 Pinto Mountains 
G ? July 29, 1950 5.5 Calipatria 
19 SA Jan. 24, 1951 5.8 Superstition Hills 
H ? Dec. 26, 1951 5.9 San Clemente Island 

20 NSA July 21, 1952 7.5 Kern County 

I ? June 14, 1953 5.5 Superstition Hills 
J ? Feb. 1, 1954 5.6 Colorado River delta 

21 SA March 19, 1954 6.4 Arroyo Salada 
K ? Oct. 17, 1954 6.3 Baja California 
L ? Oct. 24, 1954 6.0 E1 Alamo 

M ? Nov. 12, 1954 6.3 E1 Alamo 

22 SA Feb. 9, 1956 6.7 San Miguel 
N ? Dec. 1, 1958 5.8 Laguna Salada 
23 SA June 28, 1966 5.6 Parkfield 

24 SA Aug. 7, 1966 6.4 E1 Golfo 
25 SA April 9, 1968 6.5 Borrego Mountain 
26 SA April 28, 1969 5.8 Coyote Mountain 

27 NSA Feb. 9, 1971 6.6 San Fernando 

28 NSA Feb. 21, 1973 6.0 Point Mugu 
29 NSA Aug. 13, 1978 6.0 Santa Barbara 
30 SA Oct. 15, 1979 6.4 Imperial Valley 
31 SA Feb. 25, 1980 5.5 Horse Canyon 
32 SA June 9, 1980 6.4 Victoria 

33 NSA April 26, 1981 5.7 Westmorland 
34 SA Sept. 4, 1981 5.5 Santa Barbara Island 

35 NSA May 2, 1983 6.4 Coalinga 
36 NSA Aug. 4, 1985 6.1 Kettleman Hills 
37 SA July 8, 1986 5.6 North Palm Springs 

38 NSA Oct. 1, 1987 5.9 Whittier Narrows 

39 NSA Nov. 24, 1987 6.2 Elmore Ranch 

40 SA Nov. 24, 1987 6.6 Superstition Hills 
O ? Jan. 25, 1988 5.6 San Miguel 
41 NSA June 28, 1991 5.6 Sierra Madre 

42 SA April 22, 1992 6.1 Joshua Tree 
43 SA June 28, 1992 7.5 Landers 

44 NSA June 28, 1992 6.6 Big Bear 
45 NSA July 11, 1992 5.7 Garlock 
46 NSA Jan. 17, 1994 6.7 Northridge 

Hanks et al. [1975] and Anderson and Bodin [1987] 

Doser [ 1994] 

Branner [1917] and Hanks et al. [1975] 

Doser [ 1992a] 

Tsai and Aki [ 1969] and Bakun and McEvilly [ 1984] 
Doser [1992a] and Hanks and Kanamori [1979] 

Hanks and Kanamori [1979] 

Helmberger et al. [1992] 
Hanks and Kanamori [1979] and Hauksson and Gross 

[1991] 

Tsai and Aki [ 1969], Bakun and McEvilly [ 1984], and 
Hutton and Jones [1993] 

Doser [1994] 

Doser [1994] 

Hileman et al. [1973] 

Doser [1990] and Hutton and Jones [1993] 

Ellsworth [ 1990] 

Hileman et al. [1973] 

Hanks and Kanamori [1979] and Hutton and Jones 

[1993] 

Hanks and Kanamori [1979] and Doser [1990] 

Hutton and Jones [1993] 

Hanks and Kanamori [1979] and Hileman et al. [1973] 

Hutton and Jones [1993] 

Richter [ 1947], Hanks and Kanamori [ 1979], and 
Doser [ 1990] 

Nicholson [1987] and Williams et al. [1990] 
Hutton and Jones [1993] 

Hutton and Jones [1993] 

Allen et al. [1965] and Hutton and Jones [1993] 

Hileman et al. [1973] 

Buwalda and St. Amand [1955] and Hanks and 

Kanamori [1979] and Stein and Thatcher [1981] 

Hutton and Jones [1993] 

Doser [1990] 

Hanks and Kanamori [ 1979] and Doser [ 1990] 

Thatcher [1972] 

Doser [1992b, 1994] and Thatcher [1972] 

Doser [1992b, 1994] and Thatcher [1972] 
Shor and Roberts [1958] and Doser [1992b] 

Hileman et al. [1973] 

Brown et al. [ 1967] and Bakun and McEvilly [ 1984] 
Ebel et al. [1978] 

Clark [1972] and Hanks and Kanamori [1979] 

Thatcher and Hamilton [1973], Petersen et al. [1991], 
and Hutton and Jones [1993] 

Whitcomb et al. [1973], Hanks and Kanamori [1979], 
and Heaton [1982] 

Ellsworth et al. [1973] 

Corbett and Johnson [1982] 

Sharp et al. [1982] and Hartzell and Heaton [1983] 
Hutton and Jones [1993] 

Nakanishi and Kanamori [ 1984] 

Hutton and Johnson [1981] 

Corbett and Piper [1981] and Hutton and Jones [1993] 
Stein and Ekstr6m [1992] 

Ekstr6m et al. [1992] 

Jones et al. [1986], Nicholson [1987], and Williams 
et al. [1990] 

Hauksson et al. [1988] 

Magistrale et al. [1989] and Sharp et al. [1989] 
Magistrale et al. [1989] and Sharp et al. [1989] 

Dreger and Helmberger [1992] 
Sieh et al. [1993] 

Sieh et al. [1993] 

Sieh e.t al. [1993] 

Hall [ 1994] 

SA is San Andreas type, NSA is non-San Andreas type, and question mark is unknown. Magnitudes are Mw if available, otherwise Mr. 
Aftershocks are omitted. 
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Figure 1. Earthquakes of M -> 5.5 in the southern California region, 1915-1994. Solid circles are San 
Andreas type (SA), open circles are non-San Andreas type (NSA), and question marks are of unknown 
type. Numbers (SA or NSA type) and letters (unknown type) refer to Table 1. References pertain to 
magnitudes, locations, and source mechanisms. Note that events 17, 37, 42, and 43 were initially 
categorized as SA, as portrayed here, but were later changed to NSA (see text). Known faults are shown 
as fine lines. 

the Santa Barbara events of 1925 and 1941, which were in 

close proximity to the demonstrably NSA earthquake of 

1978. We have tried carefully to be unbiased in such assign- 

ments; thus 15 out of the 61 total events remain in the 

questionable category. 

Petersen et al. [1991] have pointed out that particularly 

within the San Jacinto fault zone, block rotations may lead to 

left-lateral displacements on conjugate faults perpendicular 

to the regional northwest trending, right-lateral faults. Ap- 

parent examples of this phenomenon, as indicated by after- 

shock trends, are illustrated by earthquakes 33 and 39 

(Figure 1 and Table 1). Because of their northeast fault 

strikes these earthquakes are herein classified as NSA, 

despite the fact that they may be caused by a stress system 

very close to that of their SA-type counterparts. Indeed, 

during the Elmore Ranch-Superstition Hills earthquake se- 

quence of 1987 (events 39 and 40), two intersecting perpen- 

dicular faults ruptured within 12 hours of one another, with 

opposing senses of strike-slip displacement. 

Pattern Recognition Algorithm 

We use pattern recognition to find a suite of traits that 

would characterize the SA and NSA systems and distinguish 

them from each other. Only a brief conceptual description of 
the algorithm we employ to find these traits is given here 

because it has been described in great detail elsewhere 

[Briggs et al., 1977]. The data we examine to find traits 
derive from a series of heuristic questions which are posed 

and whose answers might characterize the two systems of 

earthquakes. The questions are selected on the basis of being 

answerable by available data for the period covered by the 
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Table 2. Questions Used 

Question Number Question 

1 

2 

3 

4 

5 

6 

7 

8 

9 

lO 

SA earthquake 0-3 years before? 
SA earthquake 0-3 years after? 
NSA earthquake 0-3 years before? 
NSA earthquake 0-2 years after? 
earthquake occurs 1971-19947 
earthquake occurs within 100 km of bent segment of San Andreas fault? 
two or more earthquakes, M > 6.0, in Great Basin in prior 0-4 years? 
three or more earthquakes, M > 4.5, in Santa Barbara Block within 2 years? 
five or more earthquakes, M > 4.5, in Salton Sea Block within 2 years? 
five or more events in Gulf of California in prior 0-12 years? 

catalog and are heuristic in that they explore different 

possibilities that make reasonable geophysical sense. In this 

study the choice of questions reflects our interest in the time 

relationships of SA and NSA earthquake occurrences and in 

the possibility of relationships in seismicity extending to 

adjacent regions. Many trial questions have been posed and 

eliminated either because data are lacking or a cursory scan 

reveals that the they are not discriminatory between the two 

systems of earthquakes. If the questions involve specific 

parameters such as time intervals, numbers of earthquakes, 

or distances, the actual values used are assigned after a 

preliminary survey to find the best discriminants between 
SA and NSA events. 

We are particularly interested in patterns of answers 

revealed by the recognition algorithm that were not discern- 

able in the cursory scan, that is, combinations of questions 

whose answers link up and provide insights in addition to 

those provided by the individual questions. The questions 

(Table 2) are answered yes/no or 1/0 in binary code. If a 

question is unanswerable for a specific earthquake because 

of a lack of data (e.g., an earthquake whose mechanism is 

uncertain or a question which is otherwise unanswerable 

because of the time limits of the catalog), the answer 2 is 

assigned. In this manner each of m earthquakes is charac- 

terized by a string of digits, the answers to the n questions. 

The m x n array of earthquakes and answers constitute a 

matrix of zeros, ones, and twos for SA events and another 

for NSA events (Tables 3 and 4). These answer matrices are 

then examined to see if certain patterns emerge which are 

particularly characteristic of one system and not the other. 

In the algorithm a trait is a particular pattern that is found to 

occur more frequently in one than the other. The pattern can 

involve a combination of answers to questions taken three at 

a time, two at a time, or one at a time (triplet, doublet, or 

singlet traits, respectively). For example, a doublet trait that 

characterizes NSA earthquakes may state that such earth- 

quakes tend to occur after 1971 and are further characterized 

by small earthquake inactivity in the southern California 

region surrounding the Salton Sea, where the SA system of 

faults is a principal tectonic feature. This might suggest the 

hypothesis that the years following 1971 represent an epoch 

in which the seismic release is predominantly NSA, one in 

which the San Andreas fault system becomes relatively 

quiet. In a sense, a trait mimics the way a scientist might 

combine multiple observations and merge them into a hy- 

pothesis. 
For the answer matrices in Tables 3 and 4 there are 1160 

possible traits. Of these, 15 traits which are particularly 

characteristic of the SA system are selected by the algo- 

rithm. Similarly, 23 NSA traits are found by the procedures 
followed. The traits are found at more than half the earth- 

quakes in the system they characterize, and most occurred 

at least 3 times as much in that category than in the other and 

never less than twice as much. The use of the digit 2 where 

data are not available to answer a question allows a degree of 

"fuzzy logic" in that it is considered as both a 0 and 1 

answer in the analysis. 

In a sense we have used pattern recognition as an hypoth- 

esis selector and have checked 1160 possible combinations 

of answers to see if novel and reasonable hypotheses can 

explain the few traits that emerge. An alternative way of 

looking at the procedure is to think of the computer asking 

the investigator about a singlet, doublet, or triplet trait: 

"Have you thought of this combination of phenomena and 

its meaning?" 

In a procedure such as this there are concerns about the 

uniqueness of the results. It may be possible to discriminate 

by chance between SA and NSA events even if the questions 

posed were answered on the basis of false data. In a control 

experiment we used the bootstrap method [Press et al., 

1992] to test against this possibility. One thousand spurious 

Table 3. Answer Matrix of San Andreas Type Events 

Question 

Earthquake 1 2 3 4 5 6 7 8 9 10 

1 2 1 2 2 0 0 1 2 2 2 

2 1 0 2 0 0 1 1 2 2 2 

3 0 1 0 0 0 0 1 2 2 2 

4 1 0 0 1 0 1 0 2 2 2 

7 0 1 0 2 0 1 1 1 1 1 

8 1 1 0 2 0 0 1 1 1 1 

9 1 1 0 2 0 0 1 1 1 1 

10 1 1 0 2 0 0 1 1 1 1 

11 1 1 2 0 0 0 1 1 1 1 

12 1 1 0 1 0 0 0 0 1 1 

14 1 2 1 0 0 0 1 1 1 1 

19 0 1 1 1 0 0 0 0 1 1 

21 1 1 1 2 0 0 1 0 1 1 

22 1 2 2 2 0 0 1 1 1 1 

23 0 1 0 0 0 0 1 0 0 1 

24 1 1 0 0 0 0 1 0 0 1 

25 1 1 0 0 0 0 1 0 1 0 

26 1 0 0 1 0 0 1 0 1 0 

30 0 1 1 1 1 0 0 1 0 1 

31 1 1 1 1 1 1 0 0 0 1 

32 1 1 1 1 1 0 0 0 0 1 

34 1 0 1 1 1 0 0 0 0 1 

40 0 2 1 2 1 0 1 1 0 0 

Binary code is 1 for yes, 0 for no, and 2 for uncertain. 
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SA and NSA answer matrices were synthesized by randomly 

mixing the questions and answers in the real answer matri- 

ces. In this way, synthetic answer matrices were generated 

with roughly the same underlying distribution of answers as 

the real data but which have no other basis in reality. Each 

of the synthetic matrices was analyzed by our program. Only 

0.1% yielded 10 or more discriminatory traits compared to 

the 38 traits that resulted from the real answers. This gives 

us good reason to believe that our results were not obtained 

by chance and implies that the traits found with real data 

may carry real physical information, although this cannot be 

proved. 

Cluster Analysis 

We have used pattern recognition to analyze the 46 x 10 

array of earthquakes and answers. Another approach is to 

examine the same data using cluster analysis [Murtagh and 

Heck, 1987]. This is an automatic procedure for grouping a 

set of objects according to their mutual similarity and 

thereby revealing fundamental features and interrelation- 

ships which may be present. Cluster analysis is used today in 

biology, astronomy, and other fields to find natural group- 

ings of objects such as plant species or stars based on 

attributes of the individual objects. This is a more formal 

procedure than pattern recognition and should provide a 

check of any categorization or grouping of earthquakes 

revealed by that method. 

In this application each of the 46 earthquakes is treated as 

a vector in a hyperspace of 10 dimensions with each dimen- 

sion represented by an answer to one of the 10 questions. 

Thus the components of the 10-dimensional vector have 
values of 0 or 1 or the intermediate value 0.5 in those cases 

where the answer is unknown. The clustering algorithm 

groups the 46 earthquakes (vectors) into clusters depending 
on the Euclidean distances of the vectors from each other. It 

seeks groups with maximum homogeneity within the cluster 

and maximum separation or isolation among the clusters. In 

this manner a hierarchy of groups and subgroups is estab- 

lished proceeding from large separations to smaller ones. 

Unlike the pattern recognition method, no prior knowledge 
of the earthquakes as SA or NSA was assumed in applying 

cluster analysis. The methods also differ in that pattern 
recognition looks for combinations of answers taken one, 

two, or three at a time that have significance because of their 

frequency of occurrence in one system and not the other, 

whereas cluster analysis classifies each earthquake by the 

relative position of a 10-dimensional vector whose compo- 

nents are the answers to all 10 questions. 

Questionnaire 

Ten questions were selected from a larger number that 
were tested in trial exercises to find those that show the 

potential to discriminate between the SA and NSA groups. 

Question 7 was selected to see if a neighboring seismic 

region (in this case the Great Basin) was influenced by or 

exerted influence on the timing and mechanisms of seismic 
release in southern California. The Great Basin itself is 

characterized by active extensional tectonics with earth- 

quakes showing normal and strike-slip faulting. 

Similarly, question 10 was included to ascertain the influ- 

ence of activity in the Gulf of California, which is a system 

Table 4. Answer Matrix of Non-San Andreas Type 
Events 

Question 

Earthquake 1 2 3 4 5 6 7 8 9 10 

5 1 0 0 1 0 1 0 2 2 2 

6 0 0 1 0 0 0 0 2 2 0 

13 1 1 2 0 0 1 1 0 1 1 

15 2 2 2 1 0 0 0 1 0 0 

16 2 2 1 1 0 0 0 1 0 0 

17 2 1 1 1 0 0 0 1 0 0 

18 0 1 1 2 0 0 0 1 1 1 

20 1 1 1 2 0 1 0 0 1 1 

27 1 0 0 1 1 1 0 0 0 0 

28 0 0 1 0 1 1 0 1 0 0 

29 0 1 0 0 1 1 0 1 0 1 

33 1 1 1 1 1 0 0 0 0 1 

35 1 0 1 1 1 0 0 0 0 0 

36 0 1 1 1 1 0 0 0 0 0 

37 0 1 1 1 1 1 1 1 0 0 

38 0 1 1 1 1 1 1 1 0 0 

39 0 1 1 2 1 0 1 1 0 0 

41 2 0 2 1 1 1 0 1 0 0 

42 0 2 1 1 1 0 0 1 0 0 

43 0 2 1 1 1 1 0 1 0 0 

44 0 2 1 1 1 1 0 1 0 0 

45 0 2 1 1 1 1 0 1 0 0 

46 0 2 1 2 1 1 0 2 2 0 

Binary code is 1 for yes, 0 for no, and 2 for uncertain. 

of active transform faults offset by small centers of spreading 
as indicated by earthquake distributions and mechanisms, 

submarine geology, and volcanism. Including gulf events in 

the preceding 0-12 years reflects the large range of distances 

between epicenters in the gulf and the• southern California 

region and the slow rate of propagation of strain waves 

emanating from earthquakes (roughly tens to hundreds of 

kilometers per year, as reported by others [Mogi, 1968; 

Rydelek and Sacks, 1988]). Although it might be argued that 

the Gulf of California should be considered as a geologic 
extension of southern California and therefore included in 

the same province, we were persuaded that the larger 

number of centers of spreading and the evolution of oceanic 

depths and oceanic crust warranted separate treatment of 

the gulf for the purposes of this study. 

We do not believe that individual earthquakes in the Gulf 

of California or in the Great Basin can change the local stress 

field or by themselves act as triggers of earthquakes in 

southern California. The distances are too large for the 

extent of the faults. Rather, we view these earthquakes as 

indicators of episodes of regional activity, such as slip on 

transform faults or spreading in the gulf, or extension in the 
Great Basin. 

Two regions, more localized in extent, were defined by 

their geological structures and seismic mechanisms to be 

prototypical of San Andreas earthquakes and non-San An- 

dreas (thrust fault) earthquakes, as shown in Figure 1. We 
call these the Salton Sea Block and the Santa Barbara Block, 

respectively. Earthquakes with magnitudes ->4.5 (after- 

shocks excepted) were counted for each of these blocks in 

obtaining the answers to questions 8 and 9. The purpose of 

these questions was to see if smaller SA or NSA earthquakes 

mirror patterns that characterize larger events. 

Question 6 is used to see if the change in trend of the San 

Andreas fault between Tejon Pass and San Bernardino (the 
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Big Bend) plays a role as a discriminant. The distance 100 
km was selected because the effect of a weak fault would 

extend out a distance equal to the fault's vertical extent 

(presumably the thickness of the lithosphere) [Zoback et al., 
1987]. This distance also contains almost all of the earth- 

quakes, reverse faults, and folds adjacent to the bent seg- 
ment of the San Andreas. 

Question 5 was formulated in two ways. In the first the 

catalog was divided into two equal halves, 1915-1954 and 

1955-1994, to see if the mechanisms of seismic release 

differed over these epochs. They did, but even better dis- 

crimination was found when the intervals were partitioned 

1915-1970 and 1971-1994. The major thrust earthquakes San 

Fernando (1971) and Northridge (1994) punctuate the period 

1971-1994. Results for the latter partition are presented here, 

although the principal conclusions are unchanged if the first 
formulation is used. 

Questions 1-4 were posed to see if earthquakes in one 

category or the other occur in subepochs of certain duration; 

the values selected for the number of years preceding or 

following an earthquake were found by preliminary scans to 

find those which show the best promise of being discrimi- 
nants. 

To answer the questions, we have used the earthquake 

regional catalogs compiled for the Decade of North Ameri- 

can Geology [Engdahl and Rinehart, 1991]. To fill gaps, we 

have also used the catalogs of the U.S. Geological Survey, 

the California Institute of Technology, and the International 

Seismological Summary. 

Characteristic Traits for SA and NSA Events 

Tables 5 and 6 show all the characteristic traits for SA and 

NSA events, respectively. All of the traits suggest interest- 

ing concepts worthy of consideration. In particular, we call 

attention to the following traits: 

1. The San Andreas system is the primary mechanism of 

seismic release in the years 1915-1970, and NSA events 

predominate in the period 1971-1994 (SA trait 6 and NSA 

trait 12). The durations of these periods, which we call San 

Andreas and non-San Andreas epochs, are uncertain be- 

cause of the limits set by the beginning and end of our 

catalog. Epochal changes in alternating cycles of 20-30 years 

in global seismic release between strike-slip and thrust 

earthquakes have been reported by Romanowicz [1993]. 

A.M. Dziewonski (personal communication, 1994) has 

observed spatio-temporal changes in seismic release from 

thrust to strike slip in the Fiji Plateau and the adjacent 

subduction regions. Both studies postulate slowly propagat- 

ing strain waves as the agent of change. Their explanations 

would also apply to the results of this paper. Presumably, a 

distant event such as a major episode of subduction or 

midocean ridge spreading is the source of strain waves which 

arrive years later to influence interactions in the plate 

boundary zones where these changes in earthquake regimes 
occur. 

2. Activity (extension?) in the Great Basin precedes a 

typical SA event by 0-4 years (SA trait 13). This was 

evidenced by a yes answer to question 7 for 16 out of 23 SA 

events and only four out of 23 NSA events, as can be seen in 

Tables 3 and 4. Independently, activity in the Gulf of 

California precedes typical SA earthquakes by 0-12 years 

(SA trait 15). In this case, question 10 was answered yes for 

Table 5. Characteristic San Andreas Type Traits 

Question 

Trait 1 2 3 4 5 6 7 8 9 10 

2 1 ........ 1 

3 ß 1 ß ß 0 ..... 

4 ß 1 ß ß ß 0 .... 

5 ß 1 ....... 1 

6 .... 0 ..... 

7 .... 0 0 .... 

8 .... 0 ß 1 ß ß ß 

9 .... 0 ß ß ß 1 ß 

10 .... 0 .... 1 

11 ..... 0 1 ß ß ß 

12 ..... 0 ß ß ß 1 

13 ...... 1 ß ß ß 

14 ........ 1 ' 

15 ......... 1 

Binary code is 1 for yes and 0 for no. 

16 out of 19 SA events, with four answers uncertain; only 

five out of 22 NSA events received a yes answer, with one 

answer uncertain. These adjacent regions tend to be quiet in 

the periods before typical NSA earthquakes (NSA traits 14 

and 23). 

3. There is a tendency for clustering to occur, suggesting 

subepochs for each group. A SA earthquake is typically 

preceded by a similar event within 3 years (SA trait 1) and 

prior to 1971 tends to be followed by a similar event within 

3 years (SA trait 3). Similarly, a NSA event is preceded and 
followed by NSA events within 3 years or 2 years, respec- 

tively, but is not preceded by a SA event (NSA traits 3 and 

1). 

4. During the San Andreas epoch the Salton Sea Block 

(Figure 1) was active within 2 years of a SA earthquake (SA 

Table 6. Characteristic Non-San Andreas Type Traits 

Question 

Trait 1 2 3 4 5 6 7 8 9 10 

2 0 ß 1 ....... 

3 ß ß 1 1 ...... 

4 ß ß 1 ß ß ß 0 ß ß ß 

5 ß ß 1 ..... 0 ß 

6 ß ß 1 ..... 0 0 

7 ß ß 1 ...... 0 

8 ß ß ß 1 ß ß 0 ß ß ß 

9 ß ß ß 1 .... 0 ß 

10 ß ß ß 1 .... 0 0 

11 ß ß ß 1 ..... 0 

12 .... 1 ..... 

13 .... 1 ß ß ß 0 ß 

14 ...... 0 ß ß ß 

15 ...... 0 ß 0 ß 

16 ...... 0 ß 0 0 

17 ...... 0 ß ß 0 

18 ....... 1 0 ß 

19 ....... 1 0 0 

20 ....... 1 ß 0 

21 ........ 0 ß 

22 ........ 0 0 

23 ......... 0 

Binary code is 1 for yes and 0 for no. 
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traits 9 and 14). This block tends to be quiet within 2 years of 

a NSA earthquake (NSA traits 13 and 21). 

5. Within 2 years of a NSA earthquake the Santa Bar- 

bara Block was active and the Salton Sea Block was quiet 
(NSA trait 18). 

6. NSA traits 8 and 10 are examples of doublet and 

triplet traits, respectively. They report that NSA events tend 

to be followed by NSA events within 2 years and occur when 

the Great Basin, the Gulf of California, and the Salton Sea 

Block have been quiet. 

7. The zero answers to question 6 among several SA 

traits verify what is well known that large earthquakes on the 

San Andreas system of faults have mostly occurred on such 

faults as the San Jacinto, Cerro Prieto, Imperial, and others 

well to the south of the Big Bend, which has not ruptured 
since 1857. 

8. NSA subepochs of a few years duration can occur in 

the SA epoch and vice versa (neither SA trait 1 nor NSA trait 

3 show an entry for question 5 which would assign a SA or 

NSA epoch). 

Reclassification of Four Events 

Four events were considered ambiguous with respect to 

classification as SA or NSA and were grouped initially with 
SA as indicated in Table 1. These were the Desert Hot 

Springs earthquake of 1948, the North Palm Springs earth- 

quake of 1986, and the Landers and Joshua Tree earthquakes 
of 1992. All of these events occurred in an area where the 

strike and dip of the San Andreas fault are changing rapidly 

and progressively as the fault approaches the Big Bend from 

the southeast. The first two earthquakes occurred on mod- 

erately dipping faults with significant components of thrust 

displacement, and the latter two earthquakes occurred with 

right-lateral strike slip along faults in the east California 

shear zone, at a significant angle to the strike of the nearby 

San Andreas fault. All four events showed many more NSA 

than SA traits in the computer runs, comparable to earth- 

quakes which were clearly NSA. In the case of Landers and 

Joshua Tree, all of the NSA traits and none of the SA traits 
occurred. These four events were reclassified as NSA in 

deriving the traits described above. This change yielded 

many more traits. However, traits on which some major 

conclusions of this paper are based emerge even without the 

reclassification: SA and NSA epochs, SA events preceded 

by activity in the Great Basin and Gulf, and inactivity of the 

Salton Sea Block during NSA activity. 

One can make a case on geological grounds alone for the 

classification of these four events as NSA, independent of 

the computer indications. However, the pronounced associ- 
ations of NSA traits with the Landers and Joshua Tree 

events warrants some speculation, and we offer the follow- 

ing possibilities: (1) The strength of the Landers and related 
faults in the eastern California shear zone differ from those 

on the SA system, and they are responding to regional stress 

in a different manner than the response of the SA system, for 

example, in the recurrence of activity. (2) Others [e.g., 

Sauber, 1988] propose that Landers and related faults are 

kinematically related to Great Basin tectonics rather than the 

San Andreas system. (3) Reclassification carries no physical 

significance and is simply a statement that an occasional 

"contrarian" event falls in the epoch of the other system. (4) 

Landers and related faults represent an incipient new plate 

boundary between the Pacific and North American plates 

replacing the San Andreas system as proposed by Nur et al. 

[1993]. The interval covered by our study just happened to 

"catch" an event in this long-term process. 

Classification by Cluster Analysis 

Figure 2 shows the results in the form of a dendrogram 

depicting the four clusters with the largest separation, the 

separation decreasing with increasing cluster number. Thus 

the separation between clusters 1 and 2 is the largest, and 
that between 3 and 4 is the smallest of the four clusters. 

Cluster 1 and its subgroups 3 and 4 includes all of the 

earthquakes that occurred from 1915 to 1973, and cluster 2 

includes all earthquakes from 1978 to 1994. In the first 

period, SA events are predominant (19 SA and 9 NSA in 

Table 1). In the second period, NSA events outnumber SA 

events, even more so if Landers and Joshua are labeled 

uncertain (6 SA and 10 NSA) or reclassified as NSA (6 SA 

and 12 NSA). This automatic bifurcation of the catalog by 

cluster analysis, the highest in the hierarchy of separation, is 

close to the result from pattern analysis (SA trait 6 and NSA 

trait 12), which divided the catalog into SA and NSA epochs 

of seismic release, and over similar time periods. Since the 

methods differ, this may be viewed as additional support for 

the conclusions reached about distinct epochs of SA and 

NSA seismic release even though both procedures analyze 
the same answer matrices. 

However, the cluster algorithm provides an additional 

insight. Cluster 3 and its subgroup 4 branch from cluster 1 

(Figure 2). They are made up of earthquakes 15-28 which 

occurred over the time period 1946-1973 when 8 SA and 6 

NSA events occurred. It is reasonable to view this period of 
mixed events as a transition in which the seismic release 

changes from an SA epoch (cluster 1, earthquakes 1-14 from 

1-46 

1-28 

15-28 

1-14 

22-28 

15-21 

29-46 

1 3 4 2 

CLUSTERS 1 TO 4 

Figure 2. Dendogram derived from cluster analysis show- 
ing the top four clusters with the most separation in the 
hierarchy of clusters. Cluster 1 represents a SA epoch and 
includes earthquakes with catalog numbers 1-14 over the 
period 1915-1942. Cluster 2 is a NSA epoch made up of 
earthquakes 29-46 over the period 1978-1994. Cluster 3 and 
its subbranch 4 cover the period 1946-1973 during which a 
mixture of the two types occurred (earthquakes 15-28). It is 
interpreted as a transition period between the two epochs. 
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1915 to 1942, 11 SA and 3 NSA events) to the current NSA 

epoch (cluster 2). 

Hypotheses That Derive From the Characteristic 
Traits 

With the disclaimers mentioned earlier we speculate on 

the meaning of the characteristic traits. Several independent 
lines of evidence indicate that the faults of the San Andreas 

system are weak. A consequence is that the principal hori- 

zontal stress in the Pacific plate, which is oblique to the trend 

of the San Andreas a few hundred kilometers distant, 
becomes the fault-normal stress within about 100 km of the 

fault. This accounts for basin compression and thrust faults 

with strikes subparallel to the San Andreas and within about 
100 km of it [Zoback and Zoback, 1991]. 

The magnitude of the fault-normal stress is sensitive to the 

angle between the direction of principal horizontal stress of 

the Pacific plate and the strike of the San Andreas (obliqui- 

ty). It diminishes from the maximum principal horizontal 

stress and approaches least horizontal compression as the 

obliquity decreases below 45 ø [Zoback and Zoback, 1991]. 

We speculate with Zoback and Zoback that small changes in 

the direction of plate motion can change the obliquity of the 

principal stress to the trend of the San Andreas fault system 

and increase or decrease the magnitude of the fault-normal 
stress. An increase in the fault-normal stress will increase 

frictional locking of the system of San Andreas faults and 

tend to activate NSA earthquakes, particularly those on 

thrust faults within 100 km of San Andreas system faults. 

This characterizes the current NSA epoch, which began with 

the San Fernando earthquake of 1971, or shortly thereafter 

according to cluster analysis. Alternatively, small changes in 

plate motion direction that decrease the obliquity of the 

principal horizontal stress to SA faults would decrease the 
fault-normal stress and shift the mechanism of seismic 

release to earthquakes on the San Andreas fault system. This 

concept applies less to the Big Bend segment of the San 

Andreas than to the faults in the SA system to the north and 

south because the segment strikes more westerly, and there- 

fore the obliquity and the fault normal compressive stress is 

larger. SA earthquakes removed from the Big Bend make up 

the principal SA events in our catalog since the Big Bend has 

been relatively inactive since the beginning of our catalog in 

1915. They occur on faults for which the obliquities are 

smaller than is the case for the Big Bend. Such faults would 

be more sensitive to changes in plate motion direction. This 

seems to be the case for the period covered in this study. It 

is relevant that a change in mechanism from thrust events to 

strike-slip events was correlated with measured strain 

changes from compression to extension in a local segment of 

the San Andreas fault [Sauber et al., 1983]. 

The premonitory episodes of transform slip and spreading 
in the Gulf of California and extension in the Great Basin 

support the hypothesis that action at a distance can affect the 

seismicity of southern California, a concept recognized by 

Keilis-Borok and his colleagues in their approach to earth- 

quake prediction [Gelfand et al., 1976]. This distant activity 

may be the cause of the changes in the direction or magni- 

tude of plate motion. Alternatively, they may be an earlier 

manifestation of such changes which subsequently initiate 

SA or NSA epochs or subepochs for southern California. 

An earthquake in the magnitude 6 range has been pre- 

dieted for Parkfield, which has been heavily instrumented to 

observe the event. It has not yet occurred. If the preceding 

discussion bears any semblance to reality, it is not likely to 

occur until activity picks up in the Great Basin or the Gulf of 
California. 

The Landers earthquake also invites speculation because 

of the extraordinary number of triggered earthquakes to 

distances of 1200 km. Many of the triggered events lie in a 

directivity lobe of more intense shear waves which radiated 

from the propagating rupture. There also seems to be a 

correlation of triggering with the occurrence of nearby 

subsurface magmatic reservoirs. Some investigators have 

connected the two phenomena in explaining the triggered 

events [Hill et al., 1993; Linde et al., 1994]. They propose 
that intense shear waves released bubbles or otherwise 

changed local stress patterns in the fluid reservoirs which 

triggered earthquakes. However, several sites of triggering 

lie well outside the lobe, and earthquakes with magnitudes 

comparable to that of Landers, and closer to some of the 

sites, apparently did not trigger earthquakes there. If the 

concept suggested by the results of this paper that the nature 

of seismic release over a region can be influenced by activity 

well beyond the region rather than by local changes in the 

stress field, then it occurs to us that a large region encom- 

passing Landers and the sites of triggered events was primed 

for earthquakes to occur by a strain wave which traversed 

the region. Landers was the first and largest event. It would 

have been easier for seismic waves emanating from Landers 

to stimulate triggering under these circumstances. 

None of these speculations can be proved on the basis of 

the data we have analyzed. However, they predict phenom- 

ena that can be checked in time. In a few years, arrays of 

Global Positioning System instruments will be installed at 

permanent sites and should be able to detect the slowly 

moving strain waves that take months or years to traverse a 

region and signal plate motion changes. It would then be 

possible to see if such changes affect the mechanism of 

seismic release. Over some period of time it will also be 

possible to check if heightened seismicity in the Great Basin 

or the Gulf of California precedes activity on the San 

Andreas system of southern California. 

Conclusions 

An examination of a catalog of southern California earth- 

quakes using pattern recognition and cluster analysis leads 

to the hypothesis that seismic release in this region occurs in 

epochs in which the earthquakes are predominantly SA or 
NSA. Both methods indicate that southern California is 

currently in a NSA epoch in which earthquakes on reverse 

faults predominate. The recent Northridge earthquake is an 

example, and the epoch may have been initiated in 1971 

when the San Fernando earthquake occurred or shortly 

thereafter. The prior years, extending to at least the begin- 

ning of the catalog in 1915, define an epoch of SA release. 

Cluster analysis further suggests that a transition between 

the SA and NSA epochs occurred in the years 1946-1973 in 

which the earthquake were a mix of the two types. 

The pattern recognition algorithm also finds traits that 

characterize the SA and NSA systems. These traits can be 

explained by the following additional hypotheses. Earth- 

quakes in southern California occur within a larger system 
that includes at least the Great Basin and the Gulf of 
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California. Episodes of activity in these adjacent regions 

signal subsequent release of the SA type. In the absence of 

activity in these adjacent regions, SA release is reduced, and 

NSA release occurs more frequently. 

We propose that small changes in the direction of relative 
motion between the Pacific and North American plates along 

the transform plate boundary in California may activate 

either the SA or NSA systems of faults. These changes could 

be caused by activity in the Great Basin or the Gulf of Baja 

California. Alternatively, the entire system discussed here 
could reflect more distant events which introduce small 

fluctuations in plate motion direction in this region by 

occasional arrivals of slowly traveling strain waves. 
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