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Abstract

Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific
emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed
around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project
(www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal
gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e.,
proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural
influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod,
sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences
(with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the
natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither
neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these
assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show
the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal
assemblages to stimulate continued sampling and analyses.
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Introduction

The study of biological diversity or biodiversity has gained

strong scientific interest in recent decades (13,029 and 31,691

references, respectively, in Web of Science in the last decade), due

to the consequences that diversity loss might have on humanity

[1]. Compelling evidence signals that our climate is changing [2]

and is driving important shifts in the composition and structure of

a diverse array of natural assemblages: terrestrial [3], marine [4–

6], aquatic [7] and pathogens [8]. Given the close relationship

between biodiversity and the ecosystem function [9–11], any

diversity loss will be negatively reflected in the number and quality

of services that a particular system might provide [12–14].

Consequently, it is of paramount importance to be able to detect

these types of changes in natural ecosystems.

To detect changes in natural communities, and unequivocally

relate them to anthropogenic impacts or climate disruptions,

proper biological baseline data are of utmost importance. Very few

long-term/large-scale data sets are currently available (but see [15]

as an example), and comparison of other existing data is often

hampered by differing methodologies. Consequently, standardized

global monitoring programs need to be implemented to assess

changes in biodiversity and relate those changes to possible causes.

Out of this need, the Census of Marine Life (CoML) NaGISA

project (Natural Geography in Shore Areas, [16]) was initiated in

2002 with the main objective of inventorying coastal biodiversity
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on a global scale. NaGISA’s strength is the use of a standardized

sampling protocol by a closely interconnected global network of

scientists that can allow for comparisons at different spatial scales

across the globe [17]. The NaGISA project focuses on assemblages

associated with rocky shores and on those associated with soft-

sediment seagrass beds. The present study focused on intertidal

assemblages associated with rocky shores.

Intertidal rocky shores assemblages are appropriate to study

changes driven by global-scale anthropogenic impacts and climate

change effects due to their ecological characteristics and

accessibility [18,19]. Nevertheless, few studies have examined

anthropogenic impacts on intertidal rocky shore assemblages at

broad scales, (e.g., [20–23]). Most were limited to regional scales

including the US west coast (e.g., [23]), United Kingdom [15],

Portugal [24], Japan [21], and Mediterranean Sea [16]. Given

that strong differences exist among regions in terms of anthropo-

genic and climate change impacts, e.g., different warming rates

[25,26] and human influence [27], a global-scale approach is

warranted. Consequently, the main objective of this study was to

quantitatively describe the distribution and diversity patterns of

intertidal rocky shores assemblages at globally distributed sampling

locations as a baseline that might be used in the future to detect

changes, and to relate these changes to possible drivers of change.

Current paradigms of latitudinal diversity gradients postulate an

increasing number of species increases from the pole to the

equator [28]. Although recent meta-analysis suggests that this

trend can be viewed as a generalized pattern in marine taxa

[29,30], there are exceptions for particular taxa and ecosystems,

e.g., for macroalgae [31–33] and for soft-sediment shelf commu-

nities [34]. Consequently, the first objective of this study was to

asses latitudinal trends in species richness of assemblages

associated with intertidal rocky shores. Description of such large-

scale trends alone does not, however, elucidate the potential

mechanisms that might be responsible for the described patterns.

Three different models may explain the spatial distribution

patterns of natural assemblages at large scales. One model

postulates that biological interactions at small spatial scales (e.g.,

meters) influence communities, and as such, under these so-called

null models it is hypothesized that species composition is uniform

over large areas (i.e., [35]). The second model postulates that

larval dispersal and supply are the driving mechanisms; therefore,

neutral models predict that species composition fluctuates in a

random, autocorrelated way [36–38]. The third model postulates

that abiotic factors structure communities, and these environmen-

tal models hypothesize that species distributions are related to

environmental conditions [39,40] and/or sources of human

impact [41,42]. Therefore, in an attempt to elucidate the

relevance of these alternative models, the second objective of this

study was to relate rocky intertidal assemblage structure with

several environmental variables linked to anthropogenic or natural

influences.

Materials and Methods

This study was carried out as part of the research conducted by

the Laboratorio de Ecologı́a Experimental, approved by and

under the guidelines of the Departamento de Estudios Ambien-

tales, Universidad Simón Bolı́var, Caracas, Venezuela.

Study sites
Surveys were done at 72 rocky intertidal sites (Fig. 1) distributed

across the globe and were grouped into 13 Large Marine

Ecosystems (LMEs) as defined by [43] (Table 1). LMEs are large

areas of ocean space (< 200,000 km2 or greater) in coastal waters

where primary productivity is generally higher than in the open

ocean. LME boundaries are based on bathymetry, hydrography,

productivity regime and trophic relationships [43]. The LME

concept was selected because it is a tool that has enabled

ecosystem-based management in at least 16 international projects

across the world [43]. Sites were sampled between June 2004 and

Figure 1. Global distribution of sampling sites within Large Marine Ecosystems (LMEs). 1 = Gulf of Alaska, 2 = Gulf of California, 3 =
Northeast U.S. Continental Shelf, 4 = Scotian Shelf, 5 = Caribbean Sea, 6 = Patagonian Shelf, 7 = South Brazilian Shelf, 8 = Celtic-Biscay Shelf, 9 =
Mediterranean Sea, 10 = Benguela Current, 11 = Aghulas Current, 12 = South China Sea, 13 = Kuroshio Current.
doi:10.1371/journal.pone.0014354.g001
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January 2009 and included a variety of site-specific characteristics

(Table 1). Given that different regions were not sampled at the

same time, caution is warranted when comparing different sites

and LMEs because estimates of temporal variation are lacking.

Biological sampling
Data were collected following the standardized NaGISA

protocol [44]. This study only used data from the mid-low

intertidal zone to reduce the effects of the wide variation in tidal

amplitude among globally distributed sites, ranging from about 30

cm in the Caribbean to 7+ m in the Bay of Fundy and the Gulf of

Alaska. At each site, 5 to 10 randomly placed 1 m2 quadrats were

sampled with nondestructive methods along 30 m transects

positioned parallel to the waterline in the mid and/or low

intertidal zone. Abundance of macroalgae and colonial fauna were

estimated by percent cover and individuals (.2 cm) were counted.

Most identification were made in the field on living organisms,

although occasional problematic specimens were collected for

reference and sent to specialists for identification. All organisms

were identified to the lowest taxon possible, which in most cases

was species. Percentage cover and counts were restricted to visible

organisms living on the surface and not beneath rocks.

Environmental data
Fourteen environmental variables were examined to determine

the most important drivers for describing trends in species

numbers and composition of assemblages associated with intertidal

rocky shores. Variables were estimated for sampling site within

each LME using different sources and were grouped into variables

related to either ‘‘natural’’ or ‘‘anthropogenic’’ influences (Table 2).

This classification separates those variables that are directly
related with anthropogenic causes vs. those that are not directly
related to them.

Because of the coarse spatial resolution of the environmental

data and the land-mask imposed to the models from which data

were derived from, most variables were not predicted precisely for

the shore sampling sites. When a site was no farther than 50 km

from the model, a spline interpolation was used to the raster data

to compute its value at the coordinate of the sampling site.

Furthermore, LMEs were used as the scale of comparison in this

study because of the potential inaccuracy of satellite-derived data

from optical sea-surface properties (e.g., chlorophyll-a, primary

productivity) on small spatial scales [45]. Environmental variables

related to direct anthropogenic influences were collected at a 1 km

resolution; however, the nearshore environment is highly variable

and can be influenced by point sources. Combining site data by

LMEs allowed to concentrate on large-scale variability, which has

higher than the one found at smaller-scale, [Table S1, [46]].

Data analyses
Since different sampling efforts were used in different LMEs, the

number of taxa at each LME was interpolated using saturation

curves (i.e., UGE method [47] for 999 permutations) for a

standard sampling size of 20 replicates (1 m2 quadrats) per LME

[48]. The number of taxa at each site was estimated using the

same method of saturation curve, but in this case for a standard

sampling size of 5 replicates (1 m2 quadrats). These estimates

predict how many species would have been found in each LME or

site if 20 (LME) or 5 (site) quadrats were sampled. In LMEs or sites

where less than 20 or 5, respectively, quadrats were sampled (e.g.,

Vietnam and Japan, Table 1) these estimates were not calculated.

Pearson correlation analyses were done between the estimators of

species richness per site and latitude in order to detect possible

patterns of distribution across latitudinal gradients.

Biological data from each site were transformed to presence-

absence data and a similarity matrix was constructed based on the

taxonomic dissimilarity coefficient Theta defined by Clarke and

Warwick [49] and Clarke et al. [50]. This coefficient is particularly

suitable to compare samples across large geographical scales that

do not share many species. Theta takes into consideration the

taxonomic relationship of species found in each sample, and

consequently, two samples with no species in common, can have a

dissimilarity value ,100 [50]. Based on this dissimilarity matrix,

the distances among centroids of sampling sites [51] were

Table 1. Description of Large Marine Ecosystems (LME) indicating number of sites sampled per LME’s and general characteristics.

LMEs Abb. Sites Replicates per site Ocean Countries Bottom type

Gulf of Alaska GoA 11 5 Pacific USA, Canada Bedrock, Sandstone and
Boulders

Agulhas Current AgC 7 10 Indian South Africa Boulders and Sandstone

Celtic-Biscay Shelf CBS 2 5 Atlantic England Bedrock

Northeast U.S Continental
Shelf

NCS 2 5 Atlantic USA, Canada Cobbles and Bedrock

Caribbean Sea CbS 29 10 Atlantic Colombia, Venezuela,
Trinidad & Tobago

Bedrock

Benguela Current BgC 7 10 Atlantic South Africa Boulders, Sandstone and
Rocky reef

Mediterranean Sea MdS 3 5 Mediterranean Sea Italy Bedrock and Sandstone

Scotian Shelf StS 1 5 Atlantic Canada Cobbles

South China Sea SCS 1 3 Pacific Vietnam Bedrock

Patagonian Shelf PaS 5 10 Atlantic Argentina Bedrock

Kuroshio Current KuC 1 5 Pacific Japan Bedrock

South Brazil Shelf SBS 1 5 Atlantic Brazil Bedrock

Gulf of California GoC 2 5 Pacific Mexico Loose boulders

Abb = Abbreviation code for LMEs, SST = Sea Surface Temperature.
doi:10.1371/journal.pone.0014354.t001
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Table 2. List of environmental variables used in analysis.

Variable Short Description Reference

Natural

Sea-surface temperature SST Average of monthly values of the MODIS Aqua mission from July 2002 to December 2009

Chlorophyll-a CHA Average of monthly values of the MODIS Aqua mission from July 2002 to December 2009

Chlorophyll-a anomalies CHAa Numbers of events that surpassed 2 standard deviations of the average chlorophyll-a for a given year

Rainfall RAI Average of monthly accumulated rainfall from January 1979 through September 2009 obtained
using the TOVAS web-based application

Rainfall anomalies RAIa Numbers of events that surpassed 2 standard deviations of the average rainfall for a given year

Photoperiod PHO Common astronomical formulae were used to compute the difference between the sunrise and
sunset time

[92]

Anthropogenic

Inorganic pollution INP Urban runoff estimated from land-use categories, US Geologic Survey (http://edcsns17.cr.usgs.gov/glcc/) [45]

Organic pollution ORP FAO national pesticides statistics (1992–2001), (http://faostat.fao.org) [45]

Nutrient contamination NUTC FAO national fertilizers statistics (1993–2002), (http://faostat.fao.org) [45]

Acidification AC Aragonite saturation state 1870–2000/2009, 1 degree lat/long resolution [45]

Invasive species incidence INV Cargo traffic 1999–2003 [45]

Population pressure HUM Estimated as the sum of total population adjacent to the ocean within a 25 km radius.
LandScan 30 arc-second population data of 2005 were used.

[45]

Shipping activity SH Commercial ship traffic 2004–2005 [45]

Ocean-based pollution OBP Modelled as a combination of commercial shipping traffic data and port data [45]

doi:10.1371/journal.pone.0014354.t002

Table 3. General biological information for each LME.

LMEs n S
UGE
(n = 20) Dominant group Grazers Other important species

Gulf of Alaska 110 106 45 Brown and red algae
(Phaeophyceae)

Littorinidae, limpets and
chitons (Lottiidae and Littorina)

Evasterias troscheli (sea star)
Katharina tunicata (chiton)

Agulhas Current 70 110 86 Red algae
(Spongites yendoi)

Littorinidae and limpets
(Afrolittorina knysnaensis)

Gunnarea capensis (polychaete)
Chthamalus dentatus (barnacle)
Tetraclita serrata (barnacle)

Celtic-Biscay Shelf 20 45 45 Brown and red algae
(Fucus spp)

Littorinidae, limpets and
snails (Gibbula umbilicalis)

Patella vulgata (limpet), Osilinus
lineatus (snail) Littorina spp (snail)

Northeast U.S
Continental Shelf

20 47 47 Brown algae
(Ascophyllum nodosum)

Littorinidae and limpets
(Littorina littorea)

Balanus balanoides (barnacle)
Tectura testudinalis (limpet)
Mytilus edulis (bivalve)

Caribbean Sea 154 261 120 Brown, red and green
algae (encrusting
coralline algae)

Littorinidae, sea urchins,
limpets, snails and chitons
(Echinometra lucunter)

Acmea antillarum (limpet)
Fissurella spp (limpet)

Benguela Current 70 97 75 Brown and red algae
(Spongites yendoi)

Littorinidae, limpets, snails
and chitons (Scutellastra
granularis)

Mytilus galloprovincialis (bivalve)
Gunnarea capensis (polychaete)
Dodecaceria pulchra (polychaete)

Mediterranean Sea 40 65 57 Brown and red algae
(Corrallinaceae)

Littorinidae, Sea urchins,
Limpets and Snails (Patella spp)

Phorcus mutabilis (snail) Osilinus
turbinatus (snail)

Scotian Shelf* 10 7 n/d Brown algae (Fucus spp)

South Chine Sea* 7 n/d Barnacle Limpets (Patellogastropoda) Saccostrea (bivalve)

Patagonian Shelf 59 35 30 Mussels (Brachidontes
rodriguezii)

Limpets (Siphonaria lessoni) Balanus glandula (barnacle) Mytilus sp.
(bivalve) Actiniidae (sea anemone)

Kuroshio Current* 5 4 n/d Sponges (Halichondria
japonica)

Limpets and chitons
(Lottia dorsuosa)

Patellogastropoda

South Brazil Shelf* 5 34 n/d Barnacles (Chthamalus
bisinuatus)

Gulf of California 20 8 8 Cyanophyceae Snails (Nerita funiculata) Chthamalus sp.(barnacle) Pilsbryspira
nymphia (snail)

Includes total number of quadrats (n), total number of observed taxa (S), estimators of number of taxa for a standard sampling size of 20 quadrats based on saturation
curves (UGE method) and most common species or taxa per LME. Asterisks denote LMEs with fewer than 20 quadrats (n,20), for which no UGE was calculated (n/d)
doi:10.1371/journal.pone.0014354.t003
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visualized using Canonical Analysis of Principal Coordinates

(CAP) ordinations [52] and considering LME groups as the

predictor variable. Families contributing the most to these

differences were detected using SIMPER analyses [53,54].

Similarity matrices on the species and family levels were correlated

at r= 0.78, indicating that the family level preserved taxonomic

dissimilarity patterns.

Environmental variables were normalized to a common scale.

Geographic coordinates were included in this matrix and

considered in further analyses in order to detect possible effects of

distances among sampling sites. Redundant variables were

identified using multiple correlation analysis (i.e., draftsman plots)

after square-root transformation of skewed variables and excluded

from the analysis. It is important to note that whenever latitude or

longitude were used, these variables conserved their sign. To select

the combination of variables that best matched the biological

distribution patterns, a similarity matrix of environmental variables

based on Euclidean distances was linked to the taxonomic

dissimilarities patterns (Theta matrix) among LMEs using the BEST

[55] routine. All procedures described here were done using the

PRIMER-e [54] and PERMANOVA add-on [51] software.

Results

A total of 801 taxa were identified from 1499 sample quadrats.

The number of observed and standardized taxon richness varied

among LMEs (Table 3). Based on standardized measures of

richness (UGE), the highest values were found in the Caribbean

Sea followed by the Agulhas and Benguela Current LMEs

(Table 3). Most LMEs were dominated by algae. Exceptions were

the Patagonian Shelf, which was dominated by mussel beds of

Brachidontes rodriguezii and Perumytilus purpuratus, the South Brazil

Shelf, which was dominated by the barnacle Chthamalus bisinuatus,

and the site located in the Kuroshio Current, which was

dominated by the sponge Halichondria japonica (Table 3). Encrusting

coralline red algae dominated the Caribbean Sea, Agulhas

Current, Benguela Current and Mediterranean Sea LMEs. The

remaining LMEs were dominated by fucoid algae (Table 3). In

terms of grazers, all sites in all LMEs were dominated by

gastropods (mainly limpets), with the exception of the Caribbean

Sea, where the main grazer was the sea urchin Echinometra lucunter

(Table 3).

No latitudinal patterns were found using UGE-standardized

richness estimates as indicated by a low Pearson’s correlation

index (r= 20.12; Fig. 2). Variation in standardized richness

among sampling sites within the same latitudinal range was similar

to that observed across the latitudinal gradient. For example, in

the Caribbean Seas (<10u north) and the Gulf of Alaska (<60u
north), sites with low and high values of standardized richness

estimates occurred.

A constrained ordination (CAP) of sampling sites using LMEs as

predictor factor effectively showed that sites based on assemblage

Figure 2. Latitudinal variations for standardized richness estimates per site (n = 5).
doi:10.1371/journal.pone.0014354.g002
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information were strongly grouped by LME (Fig. 3). Sites within

the Caribbean Sea LME showed the most conspicuous separation

along the first axis, indicating very different taxonomic composi-

tion of species assemblages. In addition, sites were distributed

mainly according to CAP2 (d2 = 97.5%). This distribution along

the second axis followed a close association with their relative

latitudinal position. South African LME sites were plotted at the

bottom of the ordination whereas those of the Scotian shelf LME

were located at the top of the ordination (Fig. 3). In between, and

from north to south, sites in the Gulf of Maine Northeast US Shelf

and Celtic Shelf LMEs grouped together, and the Gulf of Alaska

sites formed a tight cluster. Sites in the Mediterranean were

ordered together with sites that were longitudinally very distant

(i.e., sites of the Kuroshi Current LME), but located at relatively

similar latitudes, around 38u to 41u north (Fig. 3). These results

clearly show that the taxonomic composition of assemblages

associated with intertidal rocky shores gradually changed in

relation to latitude, which contrasts the lack of a relationship

between standardized estimators of richness and latitude.

The latitudinal trend in taxonomic composition was largely due

to the presence of prominent taxonomic groups in the LMEs as

indicated by SIMPER analysis (Table 4). The Gulf of Alaska sites

differed from others LMEs by the presence of various families of

Phaeophyta, Rhodophyta and Chlorophyta (Table 4). Encrusting

forms of algal families (i.e., mainly Corallinaceae and Rhodome-

laceae) were more important in the South-African (Agulhas and

Benguela Current), Caribbean Sea and Mediterranean Sea LMEs

than elsewhere. These LMEs with abundant encrusting algae,

were dominated by different grazers, i.e., sea urchins in the

Caribbean, patellid gastropods in the Mediterranean Sea, and

both patellid and siphonarian gastropods in the South-African

LMEs. Fucoids were more important on the Northeast US Shelf,

Celtic-Biscay Shelf and Scotian Shelf compared to other LMEs.

Barnacles distinguished the Gulf of California and South China

Sea LMEs from the rest. (Table 4).

A constrained ordination (CAP) of sites based on the

environmental variables showed clear differences among sites

located in different LMEs (Fig. 4). In the environmental ordination

(Fig. 4), an important split over the second axis (d2 = 99.5%) was

not well related to any particular variable. Scores of the first axis

(d1 = 99.0%) were strongly and negatively correlated with SST

(r= 0.68), indicating that sampling sites were ordered from left to

right with decreasing SST (Fig. 4).

Correlation of the matrices of environmental variables with the

biological, by means of a BIOENV routine, indicated that the

variables that best explained patterns of spatial distribution of

LMEs, based on their biological information (r= 61.1%) were:

photoperiod, rain fall anomalies, SST, chlorophyll-a anomalies

and the index of inorganic pollution (Table 5).

Discussion

The overall intertidal rocky shore assemblage descriptions

provided here correspond well with documented species lists for

some LME’s (e.g. Caribbean Sea, Gulf of Alaska, and the South

African Agulhas and Benguela Current), despite the often small

sampling effort in our study. For the Caribbean, for example,

similar assemblage description, based on dominant species, was

obtained from more detailed studies with more effort [56-59]. This

consistency is retained when spatial relationships were considered

between the more southern Caribbean descriptions from this study

(Fig. 1) with an intensive study of the British Virgin Island [56] in

the northern Caribbean. Similarly, the general descriptions for

Gulf of Alaska and the South African Agulhas and Benguela

Currents LME assemblages matched published records based on

more comprehensive sampling [60–66]. For some LMEs (e.g.,

Mediterranean Sea), three sites still produced a general description

similar to what has been reported, especially in the northern

Mediterranean Sea [25,67,68]. Hence, despite the low replication

number per site, overall regional patterns in intertidal community

structure seemed to be reasonable well captured in our study.

While we emphasize that our available data were limited, they still

seem to provide a useful database for this first-cut analysis of global

patterns.

The proposed cline in species diversity from low to high

latitudes for most terrestrial and some marine groups [69–72] is

less consistent in the marine environment [73–75] or non-existent

[31]. This study did not find a clear pattern in relation to latitude,

especially in estimated species richness, a result that contrasts

findings for algae [33] and intertidal echinoderms [76] from other

NaGISA-based analyses. Macroalgae [33] and small intertidal

echinoderms [76] had highest taxon richness in high northern

latitudes. In contrast, large intertidal echinoderms diversity and

abundance peaked in the Caribbean region [76]. It seems that

different taxa may be structured differently along latitude. The

complete assemblage may then not display any specific latitudinal

Figure 3. CAP on biological data. Canonical analysis of principal
coordinates (CAP) plots generated from taxonomic dissimilarity
coefficients (theta) of the biological data matrix, using LMEs as
predictor factor. Green triangle = Gulf of Alaska, Yellow square =
Agulhas Current, Red square = Mediterranean Sea, Blue triangle =
Celtic-Biscay Shelf, Green diamond = Gulf of California, Blue diamond
= Northeast US Continental Shelf, Inverted blue triangle = Caribbean
Sea, Blue circle = Benguela Current, Green square = South China Sea,
Green circle = Kuroshio Current, Blue square = Patagonian Shelf,
Empty blue circle = Scotian Shelf.
doi:10.1371/journal.pone.0014354.g003
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trend as different gradients of the individual taxonomic compo-

nents are averaged.

Alternatively, the lack of latitudinal patterns found in this study

might be due to low sample size in some LMEs. Small sample sizes

are likely to omit rare species in a given assemblage, which would

result in underestimations of species richness for those particular

LMEs.

In this study, despite the fact that no latitudinal gradient was

found in terms of the univariate estimator of taxon richness, a clear

latitudinal pattern was found for the multivariate aspect of

taxonomic composition of intertidal rocky shores assemblages

(Fig. 3). Similarity patterns among sampling sites were closely

related to latitude but not with longitude. For example, sampling

sites of the Kuroshio Current and South China Sea were grouped

with sites in the Mediterranean Sea, which were all situated at

similar latitudes (38u–40uN) yet on distinctly different longitudes.

While it has been suggested before that in rocky shore

environments, latitudinal patterns can be detected regionally

while local patterns might be obscured by smaller-scale environ-

mental variables or biological interactions [22,77], the idea that

latitudinal differences may be conserved across large longitudinal

distances is novel and warrants further testing.

Differences in taxonomic composition among LMEs demon-

strated that spatial distribution patterns of these assemblages were

not homogeneous over large spatial scales. Consequently, null

models, predicting uniform assemblage patterns over large spatial

scales, could be discarded [78]. This leaves two alternative models:

environmental models, where taxonomic composition is related to

environmental variables (anthropogenic and/or natural, Table 2),

and neutral models where taxonomic composition depends on

geography (e.g., [37,38]).

Through correlation analyses (i.e. BIOENV), six environmental

variables were identified as potential drivers of spatial distribution

patterns of intertidal rocky assemblages. Of those, five are

considered ‘‘natural’’ variables, and only one (inorganic pollution

index) was directly related to anthropogenic influences. There was

no evidence to unequivocally separate environmental models and

neutral models to explain taxonomic composition, because

assemblages were highly correlated with latitude (Fig. 3; neutral

model) as well as with SST and chlorophyll-a (environmental

models). Noting that SST in this study was not strongly correlated

with latitude (r= 0.38), it can be proposed that SST must play a

key role in the observed global distribution patterns of these

assemblages, as has been proposed on regional scales

[16,61,75,79]. The repercussions are of great importance since

future changes in SST from climate change or global warming

[17,19] may alter the structure of these assemblages and,

consequently, their functioning [80]. Another important environ-

mental variable related to the patterns of spatial distribution of the

natural assemblages was photoperiod, which might have a strong

influence on the primary producers of these assemblages.

Unfortunately, photoperiod is a function of latitude; consequently,

an unequivocal separation between neutral and environmental

models cannot be done. The direct effects of anthropogenic

impacts such as pollution [81], food harvesting [82], eutrophica-

tion [83] and introduced species [84] on marine communities have

been studied at regional and local scales. However, not many

studies have attempted to associate intertidal rocky shore

assemblage structure at a global scale with anthropogenic

variables, although a global pervasive effects of human has been

predicted for these environments (e.g., [83]). The lack of

relationship of rocky intertidal assemblages with variables related

to direct anthropogenic influences in this study might be due to the

resiliency of some rocky shore organisms to contaminants such as

high concentrations of heavy metals [85,86] and oil spills [87].

Alternatively, the absence of significant correlations with variables

related to direct anthropogenic influences could result from the

level of accuracy and/or precision of the models used to estimate

the different indexes (e.g., fisheries, invasive species, nutrients, etc.)

since all variables were taken from one source [45]. For example,

the model used to estimate impacts of the fisheries at a global scale

has received criticism [88].

Figure 4. CAP on environmental data. Canonical analysis of
principal coordinates (CAP) generated from Euclidian distances of the
environmental matrix using LMEs as predictor factors. Green triangle =
Gulf of Alaska, Yellow square = Agulhas Current, Red square =
Mediterranean Sea, Blue triangle = Celtic-Biscay Shelf, Green diamond
= Gulf of California, Blue diamond = Northeast US Continental Shelf,
Inverted blue triangle = Caribbean Sea, Blue circle = Benguela Current,
Green square = South China Sea, Green circle = Kuroshio Current, Blue
square = Patagonian Shelf, Empty blue circle = Scotian Shelf.
doi:10.1371/journal.pone.0014354.g004

Table 5. Bio-ENV results showing the environmental variable
combinations that best match the biotic similarity matrices
using the weighted Spearman rank correlation (rw).

Number of variables
considered Correlation Selections

5 0.611 PHO, RAla, SST, CHAa, INP

5 0.598 PHO, RAla, SST, CHAa, CHA

5 0.578 PHO, RAla, SST, CHA, INP

4 0.567 RAIa, SST, CHA, INP

doi:10.1371/journal.pone.0014354.t005
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Correlative analysis does not establish cause and effect.

However, the identification of correlated drivers can give us some

insight into which variables may be most influential. Actual cause-

consequences relationships between environmental (anthropogenic

or natural) drivers and rocky shore assemblages at global scales are

further complicated due to the inherent complexity of spatial and

temporal variation in which these assemblages naturally fluctuate

[89]. Furthermore, due to our current logistic limitations to do

manipulative experiments at regional or global scales, the best and

perhaps only way to understand the underlying processes that

affect coastal bio-geographic distribution patterns is through large-

scale and continuous monitoring programs. Therefore, it is

imperative to continue global-scale programs to detect and

characterize these changes over continued time series. Unfortu-

nately, monitoring programs are traditionally seen as ‘‘Science’s

Cinderella’’ [90] and, consequently, do not receive the needed

attention [91]. Despite the caveats of the data used in this study,

we have shown the importance of generating global databases of

biological information to gain a better understanding of the

structure and functioning of rocky shore assemblages.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0014354.s001 (0.03 MB

DOC)
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