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Abstract—How do connected components evolve? What are
the regularities that govern the dynamic growth process and
the static snapshot of the connected components? In this work,
we study patterns in connected components of large, real-world
graphs. First, we study one of the largest static Web graphs
with billions of nodes and edges and analyze the regularities
among the connected components using GFD(Graph Fractal
Dimension) as our main tool. Second, we study several time
evolving graphs and find dynamic patterns and rules that
govern the dynamics of connected components. We analyze
the growth rates of top connected components and study
their relation over time. We also study the probability that
a newcomer absorbs to disconnected components as a function
of the current portion of the disconnected components and the
degree of the newcomer. Finally, we propose a generative model
that explains both the dynamic growth process and the static
regularities of connected components.

Keywords-Evolution of Connected Components, Communi-
tyConnection Model, Graph Mining

I. INTRODUCTION

Given a large, time-evolving network, what regularities

can we observe? Large network structures are ubiquitous,

including on-line social networks, the World Wide Web,

and more. The study of these networks has gained much at-

traction in recent years. However, computational difficulties

for analyzing Terabyte-scale graphs limited the analysis of

large networks. In this work, we study the structure of large

networks using HADOOP, an open-source implementation

of MAPREDUCE. We study both the static and dynamic

network properties, focusing on fractal dimensions and con-

nected components. To our knowledge, this is the first study

on the relationships of connected components of billion-

scale graphs. The main contributions are the following:

1) Graph Fractal Dimension (GFD) : We study the

connected components in the static snapshot of the

Web graph and introduce the concept of GFD. We find

they share statistical properties with the GCC(Giant

Connected Component), although there are some sur-

prising large star-like shapes (small GFD), and even

more surprising large full cliques (large GFD, and

possibly dangerous: with financial, or adult content,

which existed several years ago but non-existing now).

2) ERP pattern: We study the time evolution, and specif-

ically the merge process of connected components.

We discover the ERP (Exponential Rebel Probability)

pattern: the probability of a newcomer not to join the

GCC (‘rebel’ probability) is exponentially decaying

with the degree of the newcomer node (Equation (1)).

3) COMMUNITYCONNECTION model: We give a gener-

ative model that explains both the static and dynamic

regularities of connected components. We also show

the ERP pattern can be derived from our model.

The rest of the paper is organized as follows: Section II

studies patterns of the connected components in a static

WWW graph. In Section III, we describe the ERP finding,

and study the dynamics of components. We further explain

the underlying mechanisms by proposing a generative model

in Section IV with discussions in Section V. After describing

related works in Section VI, we conclude in Section VII.

Table I lists the symbols and terms used in this paper, and

Table II describes the networks we study.

Symbol Definition

G a graph

V set of nodes in a graph

E set of edges in a graph

AER Average effective radius

MER Maximum effective radius

CC Connected component

GCC Giant connected component

DC Disconnected(non-giant) component

Table I
SYMBOLS AND DEFINITIONS

Name |V | |E| Storage Time? Desc.

YahooWeb 1.4B 6.6B 120GB No Web pages crawled
by Yahoo in 2002

U.S. Patent 6M 10M 169MB Yes Patent citations

HEP-TH 27K 351K 8MB Yes Physics citations

HEP-PH 30K 347K 8MB Yes Physics citations

Table II
ORDER AND SIZE OF NETWORKS. M: MILLION, B:BILLION, K:

THOUSAND.

II. HOMOGENEITY OF COMPONENTS

Do small components have the same structural properties

as the giant connected component (GCC)? In this section,

we study the homogeneity of components in large networks.

The main questions are the following:

1) How can we characterize the density of a connected

component? Is there an intrinsic measure invariant to

the growth of the connected component?

2) Do connected components have same densities?



3) How can we characterize the connected components

in terms of radius?

For the study, we investigate the connected components

of YahooWeb graph. It is a static snapshot of the WWW

which was crawled by the Yahoo-Altavista search engine

in 2002. It contains 1.4 billion web pages and 6.6 billion

links among them. The giant connected component contains

690 million web pages (about 50% of the total pages). The

second and the third largest connected components contains

57,000 and 21,000 pages—much smaller than the GCC.

Except the isolated (one node) connected components, there

are 2.6 million connected components. Our goal is to find

interesting patterns on the connected components of different

sizes to better understand the evolution of networks.

We first characterize the density of connected components.

Many different definitions can be possible: the most intuitive

one is arguably the ratio of the size (number of edges)

and the order (number of nodes) of the graph. However,

there is a power-law relationship between the size and the

order of the whole graph, and the exponent remains constant

over time [1]. Therefore, scaling it by log is more natural

and thus we propose the Graph Fractal Dimension(GFD) to

characterize the ‘density’ of a connected component.

Definition 1 (Graph Fractal Dimension): The graph

fractal dimension GFD(C) of a connected component C is

the ratio of the size and the order in log scale. That is,

GFD(C) = log|E(C)|
log|V (C)| .

For example, a clique will have GFD ≈ 2, because there

are n2 − n edges for n nodes. A chain will have GFD ≈ 1,

because there are n − 1 edges for n nodes. Several graphs

and their fractal dimensions are shown in Figure 1.

(a) Chain: (b) Star: (c) Bipartite-Core: (d) Clique:

GFD 1.27 GFD 1.27 GFD 1.64 GFD 1.94

Figure 1. Graphs, adjacency matrices and their fractal dimensions. Notice
that the GFD can be used as a measure of density of graphs: chain or star
graphs have smaller GFDs while cliques have higher GFDs.

A. Graph Fractal Dimension

How are the graph fractal dimensions of connected com-

ponents distributed? Do they share regularities? Figure 2

shows the graph fractal dimension of connected components

in YahooWeb graph. In Figure 2 (a), there exists various

components with wide range of the number of edges for a

fixed number of nodes, between the minimum (tree) and the

maximum (clique). However, after averaging the number of

edges in Figure 2 (b), we observe a striking pattern:

Observation 1 (Homogeneity of Components GFD):

Graph fractal dimensions of connected components in

YahooWeb graph are constant on average.

This observation implies that the connected components

of the Web graph are self-similar, regardless of the size

of the network. Then, it is important to have a graph

evolution model that produces this feature. Our proposed

COMMUNITYCONNECTION model, which is described in

Section IV, has the feature: see Figure 2 (c) and (d) which

shows the homogeneity of GFD in the synthetic graph

generated from our model.

B. Radius of Connected Components

Next, we look at the relation between the average effective

radius and the order of connected components. Recall the

effective radius of a node in a component is the 90th per-

centile of all distances to other nodes in the component. The

average effective radius (AER) of a connected component is

the average of the effective radius in the component.

Figure 3(a) shows the number of nodes and the AER of

connected components. We first see that there are many com-

ponents which form cliques (AER close to 1), stars (AER

close to 2), and chains (AER proportional to the number

of nodes). Since a component that behaves like a clique

seems suspicious, we looked at the top 4 largest clique-like

component, and found they all belong to Germany, they have

the same number of nodes (305), and have similar contents.

They seem to be phishing sites from the same owner, and

do not exist any more.

(a) AER vs. |V | (b) MER vs. AER

Figure 3. (a) Connected components map of the YahooWeb graph,
showing the Average Effective Radius(AER) vs. number of nodes in each
component. Notice the effective radii are bounded by the maximum(by
chains) and the minimum(by clique). (b) Maximum Effective Radius(MER)
vs. Average Effective Radius(AER). Each point represents a connected
component. We halted the computation at the effective radius 95. Notice
that small disconnected components behave like chains in terms of radius,
and the GCC is very different from others due to the large MER compared
to the AER.

Another observation is that the upper left boundary of Fig-

ure 3(a) forms a near-line at the maximum AER (indicating

these components are chains). We can prove the boundary

is a near-line since the AER and the number of nodes in

chains have the following near-linear relationship:

Lemma 1 (AER of Chain Graph): The average effective

radius of a n-node chain graph is 0.6525n − 0.45.

Proof: See the journal version of this paper [2].

Next, we look at the maximum effective radius versus the

average effective radius of each component in Figure 3(b).

We have the following observation.



(a) |E| vs. |V | (b) Avg. |E| vs. |V | (c) |E| vs. |V | (d) Avg. |E| vs. |V |
Figure 2. Homogeneity in the fractal dimension of components. (a)(b): YahooWeb graph. (c)(d): Synthetic data from our COMMUNITYCONNECTION

model in Section IV. In (a) and (c), each point corresponds to a connected component. In (b) and (d), Y axis represents the average number of edges
of components with the corresponding number of nodes. Notice the fractal dimension of components fits in a line, for both the real-world graph and the
synthetic graph generated from our model.

Observation 2 (Chain-like Disconnected Components):

Disconnected components have relatively small MER

(Maximum Effective Radius) vs. AER (Average Effective

Radius) ratio. Only the GCC has the high ratio.

The reason of the high MER vs. AER ratio of the GCC

can be explained by the thick cores containing majority of

nodes and several tendrils it has. The thick cores decrease the

AER, while the tendril increases the MER. On the contrary,

disconnected components of the YahooWeb graph do not

have enough number of nodes to form thick cores which

could have decreased the average effective radius. In terms

of MER vs. AER ratio, the disconnected components are

similar to chain graphs.

III. ABSORPTION OF COMPONENTS

In previous sections, we studied static web graphs without

timestamps. Next, we broaden our focus to time-evolving

graphs and study the dynamic aspects of the connected

components. The main questions are the following:

1) Will the connected components grow with the same

rate? Will there be a change of growth rate around

the “gelling” point[3] where the diameter of the graph

starts to shrink?

2) Given the degree of a newcomer, what is the probabil-

ity that it will be absorbed, or not absorbed to GCC?

To answer the first question, we look at the GFD of

top 3 largest connected components over time in Figure 4

and summarize findings in Observation 3. We refer to the

second and third largest connected components as the first

and second DC, as they are “disconnected” from the GCC.

Observation 3 (Evolution of Top 3 C.C.): The GCC,

the largest DC, and the second largest DC grow with the

same rate. Their GFDs remain the same until a deviation

point. The deviation point is close to the “gelling” point

where the diameter starts to shrink.

This observation is interesting: it implies that some barri-

ers between the nodes seem to collapse after the gelling

point, and the nodes in the network are connected with

higher rate than before the gelling point.

The next question is, what is the probability of newcomers

not joining to the GCC? We call this the “rebel” probability

and show its relation to the degree of newcomers and

the portion of nodes in the DCs. The relationship of the

rebel probability and the degree of newcomers is shown in

Figure 5. We see that the probability is linear to the degree in

log-lin scale where the slope decreases as the network grows.

In addition, we show the relationship of the rebel probability

and the portion of nodes in DC in Figure 6. From Figure 6,

we see the probability is linear to the portion of nodes in

DC in log-log scale, and the slope increases as the degree

increases. Given these two observations, we give empirical

rebel probability of newcomers as a function of the degree

d and the portion s of nodes in DC in Observation 4 which

we call the ERP (Exponential Rebel Probability) pattern.

Observation 4 (Exponential Rebel Probability): Given

the node portion s of DCs, the probability Prebel of a

newcomer to be absorbed in DCs is exponential to the

product of a constant α, the degree d of the newcomer, and

the log of the node portion s:

Prebel ∝ eαd(logs) (1)

IV. PROPOSED MODEL

In this section, we propose a generative model to explain

the static and dynamic aspects of connected components.

A. CommunityConnection Model

We propose COMMUNITYCONNECTION model for ex-

plaining the evolution of the connected component. The

model proceeds as follows. Given a network (starting with a

single node), nodes arrive one at a time, behaving as “social

connectors”. There are two main processes that a new node

nnew alternates between: choose_host and visit. At

the top level, in choose_host, a new node flips a phost

coin. If the result is negative, the node stops linking and

returns. If the result is positive, nnew chooses a random

node in the network as a “host”, and then enters the visit

process, which is a random walk within a component.

Starting with a host, nnew flips a pstep coin. If the result

is positive, the node forms a directed edge to the visited

node and chooses a random neighbor to visit next. The

random walk continues until pstep coin-flip is false, and the

node returns back up to the choose_host procedure. In



(a) U.S. Patent: Top 3 CC (b) HEP-TH: Top 3 CC (c) HEP-PH: Top 3 CC

Figure 4. Growth of connected components in terms of the graph fractal dimension. Each point represents the snapshot of a connected component over
time. Notice that the slope remains constant until a ‘deviation point’(the second vertical line) close to a ‘gelling point’(the first vertical line), and starts to
increase after that. The deviation points are about one year after the gelling points.
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(a) U.S. Patent (b) HEP-TH (c) HEP-PH (d) Our Model

Figure 5. P(Absorption to DC) vs. Degree in log-lin scale. Notice the linear drop of the probability as the degree increases. Also notice that our
COMMUNITYCONNECTION model in (d), which will be described in Section IV, captures the same linear drop.
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Figure 6. P(Absorption to DC) vs. Portion of Nodes in DC in log-log scale. Notice that the slopes of curves increase as degree increases. Also notice
that our COMMUNITYCONNECTION model, which will be described in Section IV, captures the property as shown in (d).

short, an arriving node alternates between the “host” process

and the “random walk” process until there are no more

hosts chosen. Pseudocode of COMMUNITYCONNECTION is

shown in Figure 7.

Unlike many previous models, this produces disconnected

components due to the different number of hosts that are

chosen. Some nodes may choose 0 hosts and form a com-

ponent entirely disconnected from the others. Other nodes

may choose multiple hosts in different components, merging

components together.

We use the COMMUNITYCONNECTION model to generate

a series of edges, and then run analysis on those edges.

We find that many properties are replicated under the

COMMUNITYCONNECTION model. The component growth

resembles that found in real data, as shown in Figure 2(c)

and (d). These plots were generated with phost = 0.5; results

for other values are similar. Figure 5(d) shows the empirical

probability of “Rebelling” given degree. Since under the

model the percentage of nodes in the GCC remains constant

over time, we modified the phost parameter to show varying

behavior. Figure 6(d) shows the probability for different

degrees under varying the percent of nodes in DC.

B. Theoretical Analysis

We show that the ERP(Exponential Rebel Probability)

pattern of the growth of connected components can be

derived from our COMMUNITYCONNECTION model. In the

model, the probability of choosing to connect to a given

component is dependent on the number of nodes in the

component, since the hosts are picked at uniform. In order

for an arriving node to join a component, it must first choose

a host within that component. Noting the random walk can

access any node in the component, but not outside, we can

derive the probability of a node “rebelling” represented as

an event variable R, given the portion s of the graph’s nodes

in DCs and the degree d of the newcomer.

The algorithm gives us the following distributions: the

number of hosts chosen has a geometric distribution with

parameter 1− phost (the number of coin flips until “no new

host”). The length of the random walk after a given host has

a geometric distribution with parameter 1 − pstep . So the

total degree is the sum of the random walks. Now, we can

show the probability distribution of rebelling given degree.



function CommunityConnection(global p_host = 0.5,

global G = new_graph())

{

for n = 1:N

current=new_node()

p_step = SampleUniform(0,1)

G.add_node(current)

choose_hosts(current)

return(G)

}

// input: a new node

// effect: iteratively chooses hosts, starts visit process

// for each

function choose_hosts(current)

{

while (SampleUniform() < p_host)

host = G.random_node()

visit(current, host)

return

}

// input: a newcomer, and host node to visit

// effect: probabilistically links and recursively calls next

// step of random walk

function visit(current, host)

{

// with probability p_step, link and continue random walk

if (SampleUniform() < p_step)

G.add_directed_edge(current, host)

next_visit = chooseRandom(Union(host.neighbors(), host))

visit(current, next_visit)

return

}

Figure 7. Pseudocode for the COMMUNITYCONNECTION model.

Lemma 2 (Probability of “Rebelling”):

P (R = true|s,D = d > 0) =
∑

d
h=1

NBin(d,h,1−pstep)∗Geom(h+1,1−phost)∗sh

∑

d
h=1

NBin(d,h,1−pstep)∗Geom(h+1,1−phost)
(2)

where NBin and Geom are the PDF of negative binomial

and geometric distribution:

NBin(y, r, p) =
(

r+y−1
y

)

pr(1 − p)y and

Geom(x, p) = (1 − p)x−1p.

Proof: See the journal version of this paper [2].

We can show numerically that, for degree 0 < d < 10, the

formula exhibits exponential decay for any values of pstep

and phost. In fact, we can give the intuitive explanation of

the rebel probability under COMMUNITYCONNECTION :

P (R = true|s,D = d) = s(1−pstep)d = e(1−pstep)d(logs)

(3)

Justification: A rough approximation to the degree of a

newcomer node under the COMMUNITYCONNECTION is

the number of hosts h it chooses, times the typical length

L of each random walk. Since P (L = l) ∼ Geom(l, 1 −
pstep) and E(L) = 1

1−pstep
, d ≈ h ∗ E(L) = h

1−pstep
.

Therefore, P (R = true|s,D = d) = sh ≈ s(1−pstep)d =
e(1−pstep)d(logs).

V. DISCUSSION

In this section, we discuss potential applications of our

findings and system issues for mining large graphs.

Potential Applications: We summarize the potential

applications of our results.

• Feature Extraction: Newly introduced features(e.g.,

GFD and MER) can be used for learning algorithms.

• Graph Generator: Our COMMUNITYCONNECTION

model and the ERP pattern can help improve graph

generators(e.g., [4], [5]).

• Extrapolation: Our patterns and observations can be

used to extrapolate unknown quantities.

System Issues: The main computational issue is to

extract features of graphs including diameter, degree, and

connected components of billions-scale graphs. We used

several HADOOP algorithms by Kang et al. [6], [7] for the

purpose and the algorithm scaled well for large graphs. We

ran our code in Yahoo!’s M45 HADOOP cluster which is

one of the top 50 supercomputers in the world, and have

1.5 Petabyte storage and 3.5 Terabyte memory in total.

VI. RELATED WORK

Related works form the following groups: the studies of

structural patterns of networks, graph mining, and parallel

graph mining using HADOOP.

Structural Patterns of Networks: There has been a

significant amount of work in the realm of structural patterns

in networks. Some well-known patterns include heavy-tailed

degree distributions [8], [9]; “densification,” or the super-

linear power law relationship between the edge count and

node count [1]; several power laws in terms of the edge

weights [4]; and the formation of the GCC (first suggested

in [10]) While much of the literature has focused on behavior

inside the GCC, there has been some work examining the

behavior of the smaller components, in terms of their power-

law size distribution [11] and their thresholded size before

merging with the GCC [3].

Graph Mining: There exists lots of “graph min-

ing” algorithms: subgraph discovery(e.g., [12], [13],

gPrune [14], gApprox [15], gSpan [16], Subdue [17],

ADI [18], CSV [19]), computing communities (eg., [20],

DENGRAPH [21], METIS [22]), attack detection [23], with

too many alternatives for each of the above tasks. They are

not directly related to the focus of this paper which is the

static and dynamic structures of real networks.

Parallel Graph Mining using HADOOP : MAPRE-

DUCE is a framework for processing web-scale data in

parallel. HADOOP is the open source implementation of

MAPREDUCE. Due to its scalability and the relatively cheap

cost of building clusters, HADOOP has been used for impor-

tant graph mining algorithms (see [24] [6] [7]).

VII. CONCLUSIONS

In this paper we found patterns on the evolution of

connected components and proposed a model to explain

the most striking of them, the ERP (exponential ‘rebel’

probability). The main contributions are the following:

• We proposed the graph fractal dimension (GFD) to

measure the density of connected components and



showed that the connected components in the static

snapshot of the large web graph have constant GFDs on

average. We also showed that the DCs have relatively

small maximum effective radius(MER) vs. average ef-

fective radius(AER) ratio. On the other hand, the GCC

has high MER vs. AER ratio due to enough number of

nodes to form cores and tendrils.

• We studied the ‘rebel’ probability that a newcomer will

avoid being absorbed into the GCC, and found that it

decays exponentially with the degree.

• We proposed the COMMUNITYCONNECTION model to

explain the growth process. We showed that the model

captures both the growth of GFD as well as the ‘rebel’

probability of real-world dataset.

Future research direction includes finding patterns and

evolutions in the community structures of large networks.
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