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dominance in hybrids
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Are first-generation (F1) hybrids typically intermediate for all

traits that differentiate their parents? Or are they similar to one

parent for most traits, or even mismatched for divergent traits?

Although the phenotype of otherwise viable and fertile hybrids

determines their fate, little is known about the general patterns,

predictors, and consequences of phenotype expression in hy-

brids. To address this empirical gap, we compiled data from

nearly 200 studies where traits were measured in a common en-

vironment for two parent populations and F1 hybrids. We find

that individual traits are typically halfway between the parental

midpoint and one parental value (i.e., hybrid trait values are

typically 0.25 or 0.75 if parents’ values are 0 & 1). When con-

sidering pairs of traits together, a hybrid’s multivariate pheno-

type tends to resemble one parent (pairwise parent-bias) about

50 % more than the other while also exhibiting a similar mag-

nitude of trait mismatch due to different traits having domi-

nance in conflicting directions. We detect no phylogenetic sig-

nal nor an effect of parental genetic distance on dominance or

mismatch. Using data from an experimental field planting of re-

combinant hybrid sunflowers—where there is among-individual

variation in dominance and mismatch due to segregation of

divergent alleles—we illustrate that pairwise parent-bias im-

proves fitness while mismatch reduces fitness. Importantly, the

effect of mismatch on fitness was stronger than that of pairwise

parent-bias. In sum, our study has three major conclusions.

First, hybrids between ecologically divergent natural popula-

tions are typically not phenotypically intermediate but rather

exhibit substantial mismatch while also resembling one parent

more than the other. Second, dominance and mismatch are

likely determined by population-specific processes rather than

general rules. Finally, selection against hybrids likely results

from both selection against somewhat intermediate phenotypes

and against mismatched trait combinations.

hybridization | speciation | phenotypic mismatch | opposing dominance

Correspondence: ken.thompson@zoology.ubc.ca

Introduction

When divergent populations occur in sympatry, they might

mate and form hybrids (Mallet 2005). If those hybrids are vi-

able and fertile, whether they survive and reproduce depends

on their ability to persist under prevailing ecological con-

ditions. Because selection against hybrids limits gene flow

between parents (Harrison 1993), understanding the mech-

anisms underlying hybrid performance under ecologically-

relevant conditions is key to understanding post-zygotic iso-

lation (Barton and Hewitt 1985; Gompert et al. 2017). Quan-

tifying general patterns of phenotype expression in hybrids is

of interest because such patterns can shed light on the mech-

anisms underlying selection against hybrids. For example,

if hybrids resemble one parent they could thrive in that par-

ent’s niche and readily back-cross (Mallet 1986). Alterna-

tively, if hybrids are phenotypically intermediate for all traits,

or possess mismatched trait combinations due to dominance

in opposing directions, they might be unable to survive and

reproduce in the available niche space (Arnegard et al. 2014;

Cooper et al. 2018; Hatfield and Schluter 1999; Matsubayashi

et al. 2010). Currently, little is known about general patterns

of trait expression in hybrids.

Previous synthetic studies investigating hybrid pheno-

types have mixed conclusions. Some authors suggest that

hybrid intermediacy is the rule (Hubbs 1940) whereas others

find that hybrids are better described as mosaics of parental

and intermediate characters (Rieseberg and Ellstrand 1993).

Such previous studies typically lacked a quantitative frame-

work and/or focused on a single taxon (e.g., fish or plants),

limiting our ability to arrive at general conclusions. In ad-

dition, previous studies of hybrid phenotype expression tend

to use mostly data from domesticated taxa, wherein domi-

nance is expected to be elevated compared to natural popula-

tions (Crnokrak and Roff 1995; Fisher 1931). Here, we use

a geometric approach to quantify patterns of hybrid pheno-

types in a way that is comparable across studies. By quan-

tifying the ‘parent-bias’ across each pair of traits we deter-

mine the extent to which hybrids are intermediate or tend to

resemble one parent more than the other. And by quantifying

the ‘mismatch’ (also termed ‘opposing dominance’ [Matsub-

ayashi et al. 2010; Nosil 2012]) we can determine the extent

to which hybrids have mismatched combinations of divergent

parental traits (i.e., resemble parent 1 for trait x but parent 2

for trait y).

In this article, we systematically document patterns of

phenotype expression in hybrids, investigate the possible pre-

dictors of these patterns, and use experimental data to explore

the fitness consequences of trait interactions in the field. We

first summarize the results of a systematic literature review of

nearly 200 studies that compared the phenotypes of hybrids

and parents in a common environment. We then ask whether

features of a cross—such as the genetic distance between, or

taxon of, the parents—are associated with dominance. We

then use data from an experimental planting of recombinant

hybrid sunflowers to evaluate whether patterns of pairwise

parent-bias and mismatch predict fitness in hypothesized di-
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rections. Our results provide insight into the mechanisms that

might commonly underlie selection against hybrids in nature.

Methods

In this section, we provide a brief summary of, and rationale

for, our methodology. A detailed explanation of all methods,

including a summary of the data sources, is given in the sup-

plementary methods.

Systematic review of dominance patterns in F1 hy-

brids. We conducted a systematic literature search and iden-

tified 198 studies from which we could collect data of at least

one phenotypic trait measured in two parent taxa and their

F1 hybrids in a common environment. We included studies

that conducted crosses between wild-collected parental pop-

ulations or laboratory populations with fewer than ten gen-

erations of captivity. Data from wild hybrids (i.e., not from

controlled crosses) were only included if hybrids were geno-

typed. We aimed to include only traits with environment-

dependent effects on fitness—traits plausibly under diver-

gent, rather than directional, selection (sometimes called

‘non-fitness’ traits [Merilä and Sheldon 1999] or ‘ordinary’

traits [Orr and Betancourt 2001]). For example, traits such

as ‘embryo viability’ are almost certainly under directional

selection and were not included in our database. We ex-

cluded likely fitness components because developmental dif-

ficulties resulting from hybrid incompatibilities, or heterosis

resulting from outbreeding, often affects such traits in hy-

brids (Coyne and Orr 2004). This choice to exclude fitness

traits likely renders our analysis on dominance more conser-

vative, since hybrid breakdown or heterosis would manifest

as a transgressive phenotype. By contrast, traits such as ‘limb

length’ might have particular values best suited to some en-

vironments and genetic backgrounds—it is implausible that

such traits would always be selected to a maximum or mini-

mum value. Data from back-cross (BC1 only) and F2 hybrids

were collected when available, but primarily used to address

a different question (see Thompson 2019).

The studies in our analysis spanned a range of taxa but

included mostly vascular plants (34 %), arthropods (29 %),

and vertebrates (30 %). We do not use formal phylogenetic

comparative methods for our main inferences because we are

not testing or proposing a causal model (Uyeda et al. 2018),

and we generally do not use formal meta-analysis tools be-

cause we are not synthesizing experimental data.

Because our interest is specifically in quantifying pat-

terns of dominance for traits that differentiate species, we

first restricted our dataset to putatively divergent traits. We

did this by retaining traits for which parents had statistically

divergent phenotypes (t-test P < 0.05). In addition, we re-

tained a small number of traits for which the parents were

greater than 1 SD apart but not statistically distinguishable

(using the smaller parental SD; see Fig. S1). After filter-

ing traits, we converted all trait data that were published with

a transformation (i.e., ln, square-root) to their original mea-

surement scale because expectations are not the same on a

log or square-root scale as for raw units. We then put all
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Fig. 1. Visual overview of how 2-dimensional dominance metrics were calcu-

lated. When studies contained two or more divergent traits we calculated pairwise
parent-bias (dparent-bias) and mismatch (dmismatch) of the hybrid (here F1 but could in
principle be any hybrid generation) phenotype with respect to the line connecting
the two parent phenotypes (P1 & P2). This procedure was repeated for every pair
of traits. k is a scaling factor that renders the maximum value observed without
transgression (i.e., dmismatch when F1 trait values are [0, 1]; or pairwise dparent-bias

when F1 trait values are [0, 0]) equal to 1. For two traits, k =
√

2. Values > 1 can
result when traits are transgressive.

traits in all studies on a common scale where one (arbitrarily

determined) parent had a value of 0 for all traits and the other

had a value of 1 (see Fig. 1). Because we do not make any

assumptions about which trait value is ancestral or derived,

dominance and recessivity of traits is indistinguishable. For

example, a trait’s degree of dominance is the same whether

the hybrid trait value is 0.2 or 0.8. Under an expectation of

additivity, a hybrid would have a trait value of 0.5 for all

traits. Importantly, however, if a hybrid had two traits with

values [0.2, 0.8], the arithmetic mean phenotype is indeed 0.5

but the hybrid is not intermediate but rather mismatched. The

hybrid in this case resembles one parent for the first trait and

resembles the other parent for the second trait. This failure

of simple averaging highlights the need dominance metrics

based on the geometry of phenotype space.

Quantifying dominance in F1 hybrids. We quantified

three types of dominance in the data (see Fig. 1). Within a

cross, each dominance metric was scaled such that values of

0 indicate no dominance, values of 1 indicate the maximum

dominance without transgressing the parental trait range, and

values greater than 1 result from transgression.

The first dominance metric is ‘univariate’ dominance

(dunivariate), which considers traits individually. Specifically,

dunivariate is the average deviation of trait values from 0.5 (the

additive expectation) regardless of direction. For a single

trait, this was calculated as:

dunivariate = 2(|zi −0.5|), (1)

where zi is the scaled mean phenotype of trait i. A dunivariate

value of 0 results only when all traits have values of exactly
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0.5. We calculated dunivariate for each trait within a cross and

then took the mean of all traits within a cross.

The remaining two dominance metrics consider pairs of

traits at a time and are calculated in 2-dimensions. We con-

sider pairs of traits to increase the comparability of dom-

inance values among crosses—dimensionality affects Eu-

clidean distance metrics and therefore it is not possible to di-

rectly compare studies measuring different numbers of traits.

For crosses where three or more divergent traits were mea-

sured, we calculated 2-dimensional dominance for each trait

pair and then took the mean of all pairwise estimates as the

value for that cross. For each pair of traits, we first deter-

mined the scalar projection, b, of the hybrid phenotype onto

the line connecting parents (dashed line in Fig. 1). This pro-

jection is calculated as:

b =
z1 +z2

k
, (2)

where z1 and z2 are the hybrid values for trait 1 and 2.

The second metric of dominance is pairwise parent-bias

(dparent-bias), which captures deviation from bivariate interme-

diacy in the direction of either parent. This value is less than

dunivariate when dominance values are variable among traits.

For example, if a hybrid’s standardized phenotype is [0, 1]

for traits 1 and 2, respectively, then the mean dunivariate = 1

but pairwise dparent-bias = 0. Pairwise dparent-bias has a mini-

mum value of zero when dominance is equally strong in the

direction of both parents and increases indefinitely as domi-

nance increases in a manner that is biased toward one parent.

For each pair of traits, pairwise parent-bias was calculated as:

dparent-bias = k ·
∣

∣

∣

k

2
− b

∣

∣

∣
, (3)

where b is the scalar projection from eqn. 2, k is a scaling fac-

tor (k =
√

2) used to give a hybrid a phenotype with parental

values for both traits a value of 1.

The final metric of dominance is pairwise mismatch,

(dmismatch), which captures the perpendicular distance be-

tween the mean hybrid phenotype and the line connecting

parental mean phenotypes. dmismatch has a minimum value of

zero when the hybrid phenotype is on the line connecting par-

ents and increases indefinitely as the variance in dominance

among traits increases. This metric captures what Rieseberg

et al. (2003) describe as ‘mosaicism’, but on a continuous

scale. For each pair of traits, mismatch was calculated as:

dmismatch = k ·
√

z2

1
+z2

2
− b2, (4)

where, z1 and z2 are as in eqn. 1, and b and k are as in eqn. 3.

Within each cross, both pairwise dparent-bias and dmismatch were

calculated for every pair of traits and then averaged across all

pairs.

Testing possible predictors of dominance in F1 hy-

brids. We explored several possible predictors of dominance

motivated by previous results and theoretical predictions. For

example, previous studies have determined that genetic dis-

tance between the parents affects the frequency with which

traits transgress the parent range (Stelkens and Seehausen

2009), a pattern that should be captured by our dunivariate met-

ric. To determine if genetic distance affects dominance in our

analysis, we computed genetic distance using gene sequence

data and tested whether it was associated with any metric of

dominance. Because genetic distance was calculable for less

than one quarter of studies, we also compared dominance

metrics between intraspecific and interspecific crosses—the

underlying assumption being that genetic distance between

parents is less in the former than in the latter.

If there exist fundamental differences in the genetics of

adaptation among taxa, such differences could manifest as

dominance. For example, self-fertilisation, which is more

common in plants than animals, is expected to favour the fix-

ation of recessive alleles (Charlesworth 1992), which could

bias hybrid phenotypes away from intermediacy compared

to outcrossing animals. Various taxon-specific reviews have

arrived at different conclusions that suggest there might be

differences between groups (Hubbs 1955; Rieseberg and Ell-

strand 1993). To test whether there might be variation in

dominance between taxa, we built a phylogeny encompass-

ing nearly all studies in our dataset (Fig. S2) and tested for

phylogenetic signal in dominance metrics. We also tested

whether there are differences in dominance between prede-

fined taxonomic groups such as plants and animals.

We finally tested specific hypotheses about phenotypic

variation and parent-of-origin effects. If maternal effects are

common, for example, then hybrid trait values might tend

to resemble the maternal parent more than the paternal—this

is testable in the present dataset because many crosses (n =

96) were conducted in both directions. We also investigated

whether hybridization increases phenotypic variance. Vari-

ance in recombinant hybrids (BC1s and F2s) is expected to

exceed that of parents. By contrast, phenotypic variance in

F1 hybrids is expected to equal that of parents unless there

are interactions between divergent parental alleles that reduce

developmental stability in hybrids (Hochwender and Fritz

1999).

Fitness consequences of parent-bias and mismatch in

recombinant sunflowers. The above analyses were moti-

vated by the hypothesis that, compared to a hybrid that is a

perfect intermediate, hybrids resembling parents should fare

well and hybrids that are mismatched should fare poorly.

However, there is no way to test the fitness consequences of

parent-bias and mismatch in the data synthesized from the lit-

erature because no studies have both individual-level pheno-

type and fitness data in the field. The best way to investigate

the fitness effects of parent-bias and mismatch is to exam-

ine a population of recombinant hybrids—wherein individu-

als exhibit quantitative variation in the degree of parent-bias,

mismatch, and fitness—and then to use these resulting data to

test whether dominance metrics are associated with fitness.

To evaluate the fitness effects of parent-bias and mis-

match, we leveraged data from a field experiment in annual

sunflowers (Helianthus). Briefly, 475 H. a. annuus × H. de-
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Fig. 2. Patterns of dominance in F1 hybrids. The density plots (y -axis standardized across panels) show the three main dominance metrics contained herein, with each
cross contributing at most a single value per panel. Values of 0 indicate no dominance, values of 1 indicate the maximum without transgression, and values > 1 reflect
transgression. The x-axis is truncated at 1.5, but the means (black arrows) and medians (white arrows) are calculated from the whole dataset (see Fig. S5 for the same
figures with unconstrained axes and Fig. S4 for a summary of patterns when each cross contributes a median rather than mean value). Panel a shows the univariate
dominance (dunivariate; eqn. 1), panel b shows parent-bias (pairwise dparent-bias; eqn. 3), and panel c shows mismatch (pairwise dmismatch; eqn. 4). Panel a contains one value
from all crosses (n = 233) while panels (b) and (c) only contain information from crosses wherein two or more traits were measured (n = 165). Density plots were generated
using the geom_density function in ggplot2 with twice the default smoothing bandwidth.

bilis BC1 hybrids were planted alongside individuals of both

parental species in central Texas. Fitness (seed number) as

well as 30 architectural, floral, ecophysiological, phenolog-

ical, and herbivore resistance traits were measured. We ap-

plied the same trait selection and filtering criteria as in the

systematic review and retained 20 traits (see Table S1 for trait

details). The data from this experiment have been previously

published (Whitney et al. 2006, 2010).

For each plant, we calculated pairwise dparent-bias and

dmismatch and then took the average across all trait pairs. pair-

wise dparent-bias and dmismatch (r = 0.762, P < 0.001; Fig. S3)

because many traits in this dataset are transgressive and high

single-trait dominance is the cause of both parent-bias and

mismatch. Therefore, we investigated their respective effects

on fitness using multiple linear regressions of the form:

ln(Wi) = β0 +β1 · ln(dparent-bias) +β2 · ln(dmismatch), (5)

where in this case dparent-bias and dmismatch are the mean in-

dividual values averaged across each trait pair. We also ran

the same multiple regression for each pair of traits separately,

and asked whether the sign of regression coefficients (β1 and

β2) were consistent with those observed in the analysis of

mean pairwise parent-bias and mismatch.

Results

Patterns of dominance in F1 hybrids. Among unique

crosses in the dataset, the mean univariate dominance

(dunivariate ± 1 SE) measured in F1 hybrids was 0.791 ± 0.0776

(Fig. 2A; median = 0.549), which suggests that the average

trait is not intermediate but rather more than halfway between

intermediate and parental. In 20 % of crosses, the mean

dunivariate was > 1, indicating transgression. The mean pair-

wise parent-bias (dparent-bias among crosses was 0.679 ± 0.010

(Fig. 2B; median = 0.445), and the mean pairwise mismatch

(dmismatch) was 0.597 ± 0.101 (Fig. 2C; median = 0.311).

The above metrics of dominance are likely influenced

by sampling error. This is because sampling error around

an intermediate phenotype would appear as dominance when

taking the absolute value of the difference between the ob-

served mean phenotype and the mid-parent value. To deter-

mine the magnitude of dominance estimates caused by sam-

pling error alone, we generated 1000 simulated datasets with

identical structure, sample sizes, and standard deviations as

the real data but where the true mean of F1 hybrid traits was

exactly intermediate between the parents. We then calculated

the median of the three dominance metrics for each simu-

lated dataset. Across all simulations, the median dunivariate

was 0.200 (0.349 units less than observed), the median pair-

wise dparent-bias was 0.113 (0.332 units less than observed),

and the median pairwise dmismatch was 0.112 (0.200 units less

than observed). No simulation run ever returned a median

dominance metric as large as that observed in the real data

(see Fig. S6). The simulation results indicate that the major-

ity of our signal is biological rather than caused by sampling

error.

Predictors of dominance in F1 hybrids. We next investi-

gated whether dominance patterns in F1 hybrids are associ-

ated with genetic distance and phylogeny. We found no sig-

nificant associations between any metric of dominance and

any metric of genetic distance (see detailed results in Figs.

S7–S9). In addition, there was no evidence for phylogenetic

signal in any dominance metrics (all λ < 0.00001, all P = 1),

and no difference in any dominance metrics in comparisons

of major clades (Fig. S9).

Because many crosses were conducted reciprocally (i.e.,

P1♀ × P2♂ and P1♂ × P2♀), we could evaluate whether hybrids

tend to resemble their maternal parent more than their pater-
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nal parent (or vice-versa). We found that 25.6 % of traits dif-

fered significantly (at P = 0.05) between cross directions. The

mean magnitude of phenotypic difference between cross di-

rections was 0.65 SDs (units of smaller parental SD). Within

each cross that was conducted in two directions, we calcu-

lated the fraction of traits that exhibited maternal bias. We

then used a one-sample t-test to test whether this fraction de-

viated significantly from 0.5. We found that traits of F1 hy-

brids tend to resemble the maternal parent about 57 % of the

time. (t94 = 2.034, P = 0.0447, 95 % CI = [0.502, 0.657]).

Various authors have speculated that dominance tends to

be in the direction of the higher trait value (e.g., Fisher 1931).

We found that dominance was biased toward the higher value

in 51.8 % of traits, which was not significantly different from

the random expectation of 50 % (binomial test; P = 0.265).

Last, we were interested in determining whether hybrids

had comparable or greater phenotypic variance compared to

parents. If F1 hybrids typically suffer difficulties during de-

velopment, they might have increased phenotypic variation

relative to parents. We found that phenotypic variation in F1

hybrids was statistically indistinguishable from the average

of the parental SDs (P = 0.271) (Fig. S11). F2 hybrids had,

on average, 2.3× the phenotypic SD of the mean-parent SD

(P < 0.0001) and first-generation back-crosses had 1.59× the

variance of parents (P = 0.0001).

Fitness effects of parent-bias and mismatch in re-

combinant sunflowers. We used data from an experimen-

tal planting of recombinant hybrid sunflowers to evaluate

whether our metrics of pairwise parent-bias and mismatch

explain variation in fitness in the field. We first asked if

the mean pairwise parent-bias and mismatch were associated

with fitness (eqn. 5). We found that parent-bias was posi-

tively associated with seed count (β̂1 = 1.622 ± 0.274 [SE],

P = 5.87 × 10−9; Fig. 3A), while mismatch had a nega-

tive association (β̂2 = −3.09 ± 0.273, P < 2.2 × 10−16;

Fig. 3B). We detected no significant interaction term (P >

0.8) in a separate multiple regression model that tested for

it. In this dataset, the fitness consequences of a unit change

in dmismatch were larger than the fitness consequences of an

equivalent unit change in pairwise dparent-bias (test of hypoth-

esis that |β̂1| = |β̂2|; P < 2.2 × 10−16). We note that pairwise

trait-correlations were typically quite low in these data (mean

|ρ| = 0.149; Fig. S10). Together, mean pairwise parent-bias

and mismatch explained 27.7 % of the total variation in seed

count. The fitness consequences of pairwise mismatch were

greater than selection on each of the 20 traits individually,

and the fitness consequences of pairwise parent-bias were

greater than 19 of 20 traits.

We also evaluated dominance-fitness relationships for

each pair of traits separately. This analysis is heuristic be-

cause pairs of traits are not independent, but we present it to

complement the above results. Considering only statistically

significant coefficients, pairwise dparent-bias improved fitness

for 62.3 % of trait pairs and dmismatch reduced fitness for 84

% of trait pairs (Fig. S12). Thus, the fitness and pairwise

dparent-bias and dmismatch is consistent between analyses of an

individual’s mean value averaged over all trait pairs and when

considering trait pairs individually.

Discussion

In this article, we compiled data from studies that measured

phenotypic traits in F1 hybrids to characterise general pat-

terns of hybrid trait expression. We then investigated whether

the observed dominance could be predicted by several vari-

ables including genetic distance and phylogeny. Last, we

tested whether parent-bias and mismatch were associated

with fitness in the field. From the data, it is clear that domi-

nance is common. This is most clearly demonstrated by our

finding that, in F1 hybrids, individual traits are, on average,

halfway between the parental midpoint and one parent’s phe-

notype. In addition, there was no association between dom-

inance and any predictor variable, suggesting that it will be

difficult to make accurate predictions about the patterns of

dominance for any individual cross. In the sunflower data,

both pairwise parent-bias and mismatch affected fitness in re-

combinant hybrid sunflowers in the predicted direction. We

discuss these results in the context of previous research on

dominance and trait expression in hybrids, and highlight the

implications for speciation research.

Genetic underpinnings of dominance and mismatch.

Why is dominance so commonly observed in F1 hybrids?

Unfortunately, because we do not know which trait values

are derived vs. ancestral, most theories on the evolution of

dominance (e.g., Haldane’s sieve [Haldane (1924, 1927)])

cannot be applied. In any case, inter-population phenotypic

divergence is likely underpinned by many quantitative trait

loci (QTL) and our results hint at two general features of

such QTL. First, the alleles used for adaptation do not ex-

hibit strict additivity. Supporting this, Miller et al. (2014)

quantified dominance of QTL underlying marine-freshwater

phenotypic divergence in threespine stickleback (Gasteros-

teus aculeatus) and found that the majority of QTL had some

dominance effects—although there was no directional bias

toward either derived or ancestral conditions, likely because

adaptation was from standing variation rather than de novo

mutation (Orr and Betancourt (2001)). And second, differ-

ent traits have imbalanced dominance coefficients, such that

some traits have QTL dominance effects favouring one parent

while other traits have effects biased toward the other. Such

patterns would result most readily when diverging popula-

tions experience selection on different traits in their respec-

tive populations—that is, when adaptive divergence proceeds

in orthogonal directions in phenotype space.

Patterns and predictors of dominance. Our results cor-

roborate some previous findings but are inconsistent with oth-

ers. Hubbs (1940) suggested that fishes show additive inher-

itance “as a very general rule” whereas Rieseberg and Ell-

strand (1993) suggested plant hybrids are best characterised

as being “a mosaic of both parental and intermediate morpho-

logical characters rather than just intermediate ones”. Our

quantitative analysis paints a picture more akin to mosaicism
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t Fig. 3. Effect of parent-bias and mismatch

on fitness in H. a. annuus × H. de-

bilis BC1 hybrid sunflowers growing in

the field. The points are partial residuals
extracted from a multiple regression using
visreg. Each point represents one indi-
vidual hybrid plant (n = 475). Both axes are
log10 transformed. Panel a illustrates the ef-
fect of dominance via parent-bias and panel
b illustrates the effect of dominance via mis-
match.

than strict intermediacy. In addition, we find no evidence

for any major differences in dominance among taxonomic

groups, which suggests the choice of study taxon does not

bias estimates of dominance.

Stelkens and Seehausen (2009) found that the genetic

distance between parents in interspecific crosses was posi-

tively correlated with transgression frequency—the tendency

for traits to fall outside the range of parental values. We used

an almost entirely independent dataset and did not find such

a pattern. Perhaps the most likely cause of this discrepancy

is that Stelkens and Seehausen (2009) considered traits re-

flecting ‘intrinsic’ hybrid incompatibility (e.g., small body

size due to poor condition or low seed production due to in-

viable ovules) and F1 hybrid heterosis (e.g., larger body size

or high seed count due to overcoming inbreeding depression

in parents). Incompatibility increases with parental genetic

divergence Matute et al. 2010; Moyle and Nakazato 2010;

Orr 1995; Wang et al. 2015), and heterosis seems to as well

until inviability becomes substantial (Wei and Zhang 2018).

Importantly, such inviability and heterosis would manifest as

transgression using our approach. Because we only consider

wild outbred taxa and traits that are putatively under diver-

gent selection, and other studies considered mostly fitness

components in domesticated and lab-adapted populations, the

mechanisms linking genetic distance with transgression in

earlier studies do not apply to the present dataset.

Fitness consequences of mismatch. Our results clarify

the potential for dominance to have a role in driving progress

toward speciation. Our findings challenge the conjecture that

reduced F1 fitness is due only to phenotypic intermediacy and

hybrids ‘falling between parental niches’. This is simply be-

cause F1 hybrid trait values are typically not the mid-parent

value. Rather, F1 hybrids often possess novel multivariate

phenotypes that are best viewed as being more similar to

one parent than the other, and also as being moderately mis-

matched. In nature, the phenotype of an organism is an inte-

grated suite of traits that function together to influence per-

formance and ultimately fitness (Arnold 1983; Brodie 1992).

Because mismatch, caused by dominance in conflicting di-

rections among traits, breaks up suites of integrated traits,

this likely causes the resulting hybrids to be poorly suited to

any environment.

In the sunflower data, we found that pairwise parent-bias

improved fitness and mismatch reduced fitness. At present, it

is not clear how general this finding is. Importantly, mis-

match was more detrimental than parent-bias was benefi-

cial. To the extent that mismatched combinations are selected

against, and matched combinations are selected for, our re-

sults suggest that low F1 hybrid fitness in nature is caused

both by partial-intermediacy and partial-mismatch. F1 hy-

brids are likely closer in phenotype to one parent than the

other, and yet at the same time have some traits resembling

the less-similar parent which might render them unable to

survive and reproduce in the similar-parent’s niche. It would

be valuable to conduct more field experiments with recombi-

nant hybrids to arrive at generalities in the ways that parent-

bias and mismatch affect fitness.

Conclusion

In this study we synthesized data from nearly 200 studies and

over 230 crosses and described general patterns of pheno-

type expression in F1 hybrids. Compared to previous studies

with a similar goal, the distinguishing features of our anal-

ysis are that we used continuous trait data rather than cat-

egories, looked across several major clades, and examined

divergently-selected traits in wild organisms. For individ-

ual traits, reasonably high dominance is the rule rather than

the exception. Previous studies have documented the phe-

nomenon where dominance acts in opposite directions for

different traits (Matsubayashi et al. 2010). We built on these

previous studies by quantifying mismatch using simple 2D

geometry and demonstrating that such patterns affect most

hybrids to a fairly substantial degree.

Previous authors have qualitatively drawn a link be-

tween trait mismatches and hybrid fitness (e.g., Arnegard

et al. 2014; Cooper et al. 2018), and we built on these ear-

lier results to link individual-level mismatch metrics to fit-

ness. This result contributes to a growing literature on trait

interactions in hybrids, and we suggest that future studies use

our approach (or a complementary approach) to test the fit-

ness consequences of mismatch directly. Such trait interac-

tions are similar to Bateson-Dobzhansky-Muller hybrid in-

compatibilities (BDMIs) with fitness consequences mediated

via ecology. Ecological BDMIs have the opportunity to af-

fect many F1 hybrids and could be a major mechanism of

extrinsic post-zygotic isolation. Only field observations and
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experiments can provide the data that are necessary to test

this hypothesis.
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Supplementary material 1: Supplementary methods

Search strategy. We searched the literature for studies that made measurements of traits in F1 hybrids and their parents. To

identify studies for possible inclusion, we conducted a systematic literature search using Web of Science. We included all

papers that resulted from a general topic search of “Castle-Wright”, and from a topic search of “F1 OR hybrid OR inherit*” in

articles published (from any year) in Evolution, Proceedings of the Royal Society B, Journal of Evolutionary Biology, Heredity,

or Journal of Heredity. These journals were selected because a preliminary search indicated that they contained nearly half

of all suitable studies. These searches returned 82 of the 198 studies deemed suitable after screening. The literature search

included all studies published until the end of 2017.

To be more comprehensive, we conducted additional systematic searches using the same keywords in articles citing in-

fluential and highly-cited publications (Bradshaw et al. 1998; Churchill and Doerge 1994; Coyne and Orr 2004; Dobzhansky

1937; Grant 1981; Hatfield and Schluter 1999; Hubbs 1955; Lande 1981; Lynch and Walsh 1998; Mayr 1963; Schluter 2000;

Tave 1986). The full literature search results are available in the archived data. The initial search returned 14048 studies, and

after removing duplicates this left 11,287 studies to be screened for possible inclusion.

Comments on systematic nature of review. We attempted to follow PRISMA (Moher et al. 2009) guidelines to the best of our

ability. Most of the criteria have been addressed above but a few other comments are warranted. In particular, we have no

reason to suspect that any bias was introduced about dominance. This is because no studies seemed to have a priori hypotheses

about such patterns. Accordingly, we do not believe that our estimates suffer from a file drawer problem. We emphasise that a

formal meta-analytic framework—wherein data from multiple studies are aggregated with various weights—is not appropriate

because we are not comparing studies that had any experimental treatment. Because the studies in our dataset do not have

anything resembling an ‘effect size’, a simple summary across all of them is most appropriate.

Evaluation of studies. We required studies to meet several criteria to merit inclusion in the database. First, the study organ-

isms had to originate recently from a natural (i.e., ‘wild’) population. This is because dominance patterns in domestic species

differ substantially from non-domesticated species (Crnokrak and Roff 1995) and because we were explicitly interested in doc-

umenting patterns as they occur in nature. We therefore excluded studies of crops or horticultural varieties, domestic animals,

laboratory populations that were > 10 (sexual) generations removed from the wild, or where populations were subject to arti-

ficial selection in the lab. If populations were maintained in a lab for more than 10 generations but were found by comparison

to still strongly resemble the source population, we included the study (n = 2 studies). We also excluded studies where the

origin of the study populations was ambiguous. Hybrids had to be formed via the union of gametes from parental taxa, so we

excluded studies that used techniques like somatic fusion. The ancestry of individual hybrids also had to be clear. This was

always obvious in the case of laboratory crosses but was difficult in some studies of wild, naturally formed, hybrids. Many

studies reported phenotypes of natural hybrids, for example in hybrid zones, and we did not include these studies unless the

hybrid category (i.e., F1, F2, BC1) was confidently determined with molecular markers (typically over 95 % probability, unless

the authors themselves used a different cut-off in which case we went with their cut-off) or knowledge that hybrids were sterile

and thus could not be beyond the F1).

We are explicitly and exclusively interested only in divergently-selected traits. (A similar study of fitness components

would be interesting but is beyond the scope of the present study.) By definition, these so-called ‘ordinary’ traits (Orr 2001)

should be under stabilizing selection at their optimum, whereas traits that are direct fitness proxies are those that are likely

under directional selection and have no optimum (Merilä and Sheldon 1999; Schluter et al. 1991). Thus, we required studies

to report measurements of at least one ‘ordinary’ trait . In most cases it was possible to evaluate this distinction between

fitness proxies and ordinary traits (hereafter simply ‘traits’) objectively because authors specifically referred to their reported

traits as components of fitness, reproductive isolating barriers, or as being affected by (non-ecological; i.e., ‘intrinsic’) hybrid

incompatibilities. In some cases, however, we made the distinction ourselves. If particular trait values could be interpreted

as resulting in universally high fitness, for example resistance to herbivores or pathogens, this trait was not included. Said

another way, if particular trait values could be seen as ‘good’ and others as ‘bad’, we did not include this trait. The majority

of cases were not difficult to assess, but we have included reasons for excluding particular studies or traits in the database

screening notes (see Data accessibility). Since fitness component traits are likely to exhibit heterosis or incompatibilities, a

more inclusive approach would increase all of our metrics of dominance with the possible exception of pairwise dparent-bias.

Traits had to be measured in a quantitative manner to be included in the dataset. For example, if a trait was reported as

being in categories related to parents or intermediacy (‘parent-like’ or ‘intermediate’), we did not include it. Some traits such as

mate choice must often be scored discretely (in the absence of multiple trials per individual), even though the trait can vary on

independent trials. Accordingly, we included discretely scored traits—like mate choice—when it was possible in principle to

obtain a different outcome on independent trials. Such traits are recorded as 0s and 1s, but hybrids can be intermediate if both

outcomes occurred with equal frequencies. We included traits where authors devised their own discrete scale for quantification.

When suitable data were collected by the authors but not obtainable from the article, we wrote to the authors and requested

the data. If the author cited a dissertation as containing the data, we attempted to locate the data therein because dissertations
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are not indexed by Web Of Science. We included multivariate trait summaries (e.g., PC axis scores) when reported. If traits

reported both the raw trait values and the PC axis scores for a summary of those same traits, we collected both sets of data but

omitted the PCs in our main analyses.

Using the above criteria, we screened each article for suitability. As a first pass, we quickly assessed each article for

suitability by reading the title and abstract and, if necessary, consulting the main text. After this initial search, we retained 407

studies. Since the previous steps were done by a team of five, a single author (KAT) conducted an in-depth evaluation of each

study flagged for possible inclusion. If deemed suitable, we next evaluated whether the necessary data could be obtained. After

this second assessment, 198 studies remained. The reasons for exclusion of each study are documented the archived data (see

Data accessibility).

Data collection. For each study, we recorded several types of data. First, we recorded the mean, sample size, and an estimate

of uncertainty (if available; e.g., SD or variance) for each measured trait for each parental taxon and hybrid category (cross

generation and/or direction). In most cases, these data were included in tables or could be extracted from figures. For figure

data extraction, we used ‘WebPlotDigitizer’ (Rohatgi 2019). In some cases, we contacted authors for the raw data or summary

data.

Each study contributed a minimum of three records to the larger database: one trait measured in each parent and the F1

generation. Traits were categorized as one of: behaviour, chemical, life history, morphological, physiological, or pigmentation.

Patterns were generally similar across trait categories and we do not present analyses of the different categories herein. If the

same traits were measured over ontogeny, we used only the final data point. When data were reported from multiple ‘trials’ or

’sites’ we pooled them within and then across sites. If data were reported for different cross directions and/or sexes we recorded

data for each cross direction / sex combination separately. We recorded whether each variable was a linear measurement (1D),

area measurement (2D), volume measurement (3D; e.g., mass), categorical, or discrete. We did not find meaningful differences

in dominance among trait types (ANOVA, P = 0.998) and so these data do not factor in to the present analyses. We also recorded

the transformation that was applied to the variable, which was used to back-transform traits to the original measurement scale.

Data processing was greatly aided by the functions implemented in the tidyverse (Wickham 2017).

For each paper we recorded whether the phenotypes were measured in the lab or field, the number of generations of

captivity for the parents, and whether a trait correlation matrix (preferably in recombinant—F2 or BC1—hybrids) was available

or calculable from the raw data or figures. We collected trait correlations from every study where they were available, but do

not use these data in the present study. Occasionally, different studies analysed different traits of individuals from the same

crosses. In these cases, we simply grouped them as being the same cross before analysis.

Calculation of dominance metrics is detailed in the main text. Our main inferences rely on one summary value of each

metric per cross. We first calculated dominance for each trait (dunivariate) or each pair of traits (pairwise dparent-bias and dmismatch).

We then took the average of these across traits, then across different sexes, and finally across different cross directions.

Estimating genetic divergence and divergence time. We estimated genetic distance for crosses where sequence data

were available for both parents. A preliminary screening revealed that the internal transcribed spacer (ITS I and II) was the

most commonly available gene for plants and cytochrome b (cytb) was the most available gene for animals in our dataset.

We downloaded sequences in R using the rentrez package (Winter 2017), and retained up to 40 sequences per species.

Sequences were then aligned with the profile hidden Markov models implemented in the align function in the package,

aphid (Wilkinson 2018). After aligning sequences we calculated genetic distance by simply counting the number of sites that

differed between two aligned sequences, implemented using the the raw model option in the dist.dna function within ape

(Paradis and Schliep 2018). We made this computation for each pair of sequences and then calculated the average over all pairs

for one summary estimate of parental genetic divergence per cross.

We also used timetree (Kumar et al. 2017) to obtain estimates of divergence time for each species pair in their database in

years. After obtaining estimates of divergence time we regressed divergence time against the response and predictor variables

used in the main analysis. The conclusions from the timetree data do not differ from those using genetic distance and we do

not discuss them further (see archived analysis code for these analyses).

Phylogenetic signal. In the data from the systematic review, we were interested in evaluating whether there was phylogenetic

signal in dominance. This might indicate that, for example, dominance was different in plants than in animals. We retrieved

NCBI taxonomy IDs for our species using the taxize R package (Chamberlain and Szöcs 2013), and used these IDs (one

arbitrarily chosen per cross) to generate a phylogeny using phyloT (https://phylot.biobyte.de/). Because branch lengths neg-

ligibly affect estimates of phylogenetic signal (Münkemüller et al. 2012), we assigned all branches equal lengths and used

the phylosig function implemented in phytools (Revell 2012) to test for phylogenetic signal via Pagel’s λ. Assigning

random branch lengths never affected our conclusions. Because we are not testing a causal model, and also because there was

no evidence of phylogenetic signal, we do not use the phylogeny in our main text analyses.
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Simulations with no dominance. Estimates of dominance in our analysis could deviate from zero for statistical reasons.

For example, any effect of sampling error will bias our estimates of dominance upwards because if the true (scaled) mean of

a hybrid is 0.5 then any variation due to sampling error leads to deviation from this value and therefore the appearance of

dominance. In addition, biologically real variation around a true mean of zero leads to absolute values greater than zero. We

accordingly wished to determine what sorts of values for dominance would be observed if there truly was no dominance.

To determine a null distribution of dominance values if the true dominance were zero, we conducted simulations. For each

trait, we generated a simulated vector of normally distributed values with a mean equivalent to the mid-parent value, and sample

size and standard deviation equal to the original data. This was done using the back-transformed data in original measurement

units. We then took the mean of each vector and used this as the F1 mean. Using these data, we regenerated estimates of

dunivariate, and pairwise dparent-bias and dmismatch in the exact same way that was done for the real data. After this, we calculated

the median of each dominance metric across all crosses in the simulation. We repeated this process 1000 times to generate 1000

estimates of median dominance values for all three metrics.

The results of these simulations are shown in Fig. S6. These analyses were aided greatly by the magicfor R package

(Makiyama 2016), which assists with the creation of output objects from for loops. By comparing our observed estimates

(thick red line in Fig. S6) to the distribution of values without dominance, it is clear that our results largely reflect biological

patterns of dominance rather than sampling or statistical artefacts. The simulated dominance values also result from biologi-

cally real variation among hybrid individuals due to segregation of heterozygous alleles in the parents and genotype-specific

dominance and epistasis.

Field experiment with sunflowers. Whitney et al. (2006, 2010) generated artificial hybrids to resemble the presumed early

ancestors of an existing natural hybrid sunflower, Helianthus annuus ssp. texanus, which grows in Texas, USA. For further

details on the cross, experimental setup and trait measurements, see Whitney et al. (2006, 2010). The BC1 generation was

obtained by first mating H. debilis ssp. cucumerifolius from Texas to wild H. annuus ssp. annuus from Oklahoma to produce

F1 progeny in the greenhouse. In order to produce enough BC1 seed for replicate field populations, a single progeny from the

F1 generation was propagated vegetatively to produce 14 F1 clones. A single H. a. annuus pollen donor was mated to the F1

clones to produce 3,758 BC1 seeds.

To obtain seedlings for the field experiment, seeds were germinated on damp filter paper in late February 2003. Approx-

imately six-day old seedlings were transplanted into peat pots containing field soil and grown in a greenhouse for four weeks

before transplanting to the field at the Lady Bird Johnson Wildflower Center, Austin, Texas (hereafter LBJ; 30°10.886’ N,

97°52.58’ W). Prior to planting, plots were tilled to remove standing vegetation. All plants were planted at 90 cm spacing.

Plots were fenced with plastic deer fencing to reduce disturbance by deer and rabbits. After planting, local vegetation was

allowed to colonise the plots unhindered. Here, we report on 475 BC1 individuals planted into a plot (a “selection plot” of

Whitney et al. (2006)), as well as individuals of the parental species, H. a. annuus (n = 44) and H. debilis (n = 37), planted

into a second common-garden plot approximately 500 m away from the BC1 plants but within the same site. A photograph of

the experiment is included as Fig. S13. A parallel experimenta at a second site, the Brackenridge Field Laboratory, Texas, was

analyzed and showed the same results as LBJ, but not included in the present analysis.

Plant traits and fitness were measured from March–September 2003. Viable seed production was chosen as the measure

of fitness in these annual plants. Bags made from plastic mesh (DelStar Technologies, Delaware, USA) were secured onto

flowerheads with twist-ties to prevent seed loss in the field. Flowerheads were bagged throughout the season (June to Septem-

ber) to obtain a representative sample. Seed production was estimated by multiplying the total number of heads (bagged &

unbagged) by the average number of viable seeds per head in a pooled sample of the bagged heads. In addition to fitness, 30

traits comprising architectural, floral, ecophysiological, phenological, and herbivore resistance traits were measured on each

plant, and those traits included herein after filtering are described in Table S1. Further details on trait measurement protocols

and the relevance of individual traits to plant performance are given by Whitney et al. (2006, 2010).
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Table S1. Table of sunflower traits used to quantify parent-bias and mismatch

Trait Name Trait Description and units Trait Category

Height of uppermost branch cm Architectural

Height of lowest branch cm Architectural

Bushiness Mean flowerhead position, stem = 1, prim. branch = 2, second. branch = 3 Architectural

Relative Branch Diameter Mean primary branch basal diameter / stem diameter Architectural

Plant Volume volume of the main stem (cm3) Architectural

Seed weight Avg mass of individual seed Architectural

Specific leaf area ratio of leaf area to mass, cm2 g−1 Ecophysiological

Water-use efficiency δ 13C Ecophysiological

Leaf shape Leaf length : width ratio Ecophysiological

Leaf Carbon:Nitrogen ratio Ecophys. & palat.

Disk Diameter Diameter of the inflorescence disk (mm) Floral

Ligule number Floral

Ligule length cm Floral

Ligule width cm Floral

Phyllary length mm Floral

Phyllary width mm Floral

Bud initiation time Time between planting and initiation of first inflorescence bud (days) Phenological

Seed maturation time Period between pollination and seed maturity (days) Phenological

Glandular trichome density On bottom surface of leaf; these contain sesquiterpene lactones (mm2) Palatability

Nonglandular trichome density On bottom surface of leaf; physical rather than chemical defenses (mm2) Palatability
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Supplementary material 2: Supplementary figures
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Fig. S1. Relationship between SD divergence and P-value of t-test. Horizontal line is at P = 0.05 and the vertical line is at SD = 1.
All values except for those in the upper-left quadrant were included in the study. This graph is meant to show that very few traits with >
1 SD divergence have non-significant P-values (upper right quadrat).
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Fig. S2. Phylogeny of all species used in this study. For phylogenetic signal analyses, we randomly chose one of the parent species
from each pair.
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Fig. S3. Relationship between mean pairwise parent-bias and mismatch dominance in systematic review and sunflower data.

Panel a shows the distribution of pairwise dparent-bias and dmismatch in the systematic review data (F1s). Panel B shows the same metrics
calculated at the individual level in the sunflower field experiment data. Both relationships are statistically significant.
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Fig. S4. Summary of cross median dominance metrics with each cross contributing a single value. Everything is the same as
Fig. 2 of the main text, except here each cross contributed the median value instead of the mean for each dominance metric. The
density plots (y -axis standardized across panels) show the three main dominance metrics contained herein, with each cross contributing
at most a single value per panel. Values of 0 indicate no dominance, values of 1 indicate the maximum without transgression, and
values > 1 reflect transgression. The x-axis is truncated at 1.5, but the mean of cross medians (black arrows) and median of cross
medians (white arrows) are calculated from the whole dataset. Panel a shows the univariate dominance (dunivariate; eqn. 1), panel b

shows parent-bias (pairwise dparent-bias; eqn. 3), and panel c shows mismatch (pairwise dmismatch; eqn. 4). Panel a contains one value
from all crosses (n = 233) while panels (b) and (c) only contain information from crosses wherein two or more traits were measured (n
= 165). Density plots were generated using the geom_density function in ggplot2 with twice the default smoothing bandwidth.
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Fig. S5. Figure 2 from main text with unconstrained axes. Exactly the same data as in Fig. 2, but without the truncation of x-axes
at 1.5.
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Fig. S6. Expected patterns based on sampling error alone (from simulations). Red vertical lines are the median values observed
in the main text. We conducted simulations where the true mean was 0 for each trait and individuals were with phenotypes determined
by the SD and with identical sample sizes to the real data. The distribution of median estimates, with each simulation (n = 1000)
contributing one value to each plot are shown as density plots. It is clear that the patterns observed are not just due to sampling error.
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Fig. S7. No difference in any dominance metrics between intra-specific and inter-specific crosses across the entire dataset.

Each point is the mean dominance metric for dunivariate (panel a), pairwise dparent-bias (panel b), and pairwise dmismatch (panel c). All P

> 0.5.
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Fig. S8. No association between any dominance metrics and genetic distance between the parents. Divergence time was
calculated from nucleotide sequences. Each point is the dominance metric for a cross (calculated following eqns 1–4 in the main text).
Green points are plants, and brown points are animals. All P > 0.5.
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Fig. S9. No differences in dominance between plants and animals. Each point is the dominance metric for a cross (calculated
following eqns 1–4 in the main text). All P > 0.3. Green density plot represents plants, and brown represents animals.
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Fig. S10. Distribution of pairwise trait correlations in the sunflower data (BC1s only). Since most correlations are weak, we
conclude that it is unlikely issues caused by trait correlations underlie any of our conclusions.
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Fig. S11. Phenotypic variance in hybrid cross categories relative to mean of parents. The relative SDs are log transformed, so
equal variance would be ln(1) = 0. When the difference in phenotypic SD is analyzed in a formal meta-analysis, only the BC1 and F2

are significantly different compared to parents.
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Fig. S12. Distribution of regression coefficients in multiple regression analyses (see equation 5). The vertical line demarcates
a slope of zero. The black arrows show the mean of pairwise regression coefficients (plotted in the density plot).
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Fig. S13. Photograph of sunflower experiment at the Lady Bird Johnson Wildflower Center, in Austin, Texas, USA.
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