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Pauli blockade mechanisms — whereby carrier transport through quantum dots is blocked due to
selection rules even when energetically allowed — are a direct manifestation of the Pauli exclusion
principle, as well as a key mechanism for manipulating and reading out spin qubits. Pauli spin
blockade is well established for systems such as GaAs QDs, but is to be further explored for systems
with additional degrees of freedom, such as the valley quantum numbers in carbon-based materials or
silicon. Here we report experiments on coupled bilayer graphene double quantum dots, in which the
spin and valley states are precisely controlled, enabling the observation of the two-electron combined
blockade physics. We demonstrate that the doubly occupied single dot switches between two different
ground states with gate and magnetic-field tuning, allowing for the switching of selection rules: with
a spin-triplet–valley-singlet ground state, valley-blockade is observed; and with the spin-singlet–
valley-triplet ground state, robust spin blockade is shown.

Graphene quantum dots (QDs) have been proposed to
host spin qubits with long spin coherence times [1, 2],
especially promising in bilayer graphene (BLG) due to its
smaller spin–orbit coupling compared to that of carbon
nanotubes [3–7]. In BLG, a band-gap can be opened
by an electric field perpendicular to the BLG sheet [8–
10]. Together with recent advancements in fabrication
technology [11], the quality of state-of-the-art BLG QDs
has been raised to such a level that highly tunable QDs
[6, 7, 12–17] can now be fabricated.

Observation of Pauli blockade is a crucial step towards
qubit manipulation and read out. A coupled double QD
occupied by two carriers can be tuned to a regime where
two states coexist: one carrier on each dot, or both car-
riers on the same dot. Transitions between these states
can be blocked by selection rules based on Pauli exclusion
principle. Observation of two-electron Pauli spin block-
ade relies on the single-dot two-electron spin-singlet and
-triplet states to be well-separated in energy, with the
spin-singlet being the ground state (GS). This usually
arises naturally at zero magnetic field [4, 5, 18–20]. In
BLG QDs however, at low magnetic field, the single-dot
two-carrier GS is observed to be a spin-triplet [14, 15, 21]
due to the additional valley degrees of freedom K−/+.

Unlike the low-lying valleys in silicon, complicating
qubit control by providing additional coherence channels
[22–24], energy splittings of BLG valley states are reli-
ably tunable by perpendicular magnetic fields [12–15] and
by gate voltages [13, 25], and are themselves good quan-
tum numbers. Selection rules involving valleys have been
seen in carbon nanotubes and silicon [4, 5, 26], although
with limited control. In our coupled double QDs, val-
ley tunability allows us to study the combined spin and
valley blockade physics, demonstrating controlled switch-

ing between a spin-triplet–valley-singlet at low, and spin-
singlet–valley-triplet single-dot two-electron state at high
magnetic field. In this way, we show canonical two-
electron blockade physics by performing finite-bias mea-
surements, and observe valley blockade in the former and
spin blockade in the latter regime.

We utilized the tunable BLG bandgap [8–10] to form a
coupled electron double QD with n-type leads [Fig. 1(a),
see Supplemental Materials S1]. Barrier-gate (green)
voltages VLB,MB,RB provide individual control of the dot-
lead [13, 27], and inter-dot tunnel coupling [17]. Dots L,
R are independently controlled by the plunger-gate (yel-
low) voltages VL,R. A bias-voltage VSD is applied sym-
metrically between source (+VSD/2) and drain (−VSD/2),
and the current is measured.

The charge-stability map [Fig. 1(b)] displays honey-
comb patterns. Regions of low conductance suppressed
by Coulomb-blockade are labeled (NL, NR), with stable
electron numbers in the left (NL) and in the right (NR)
dot. Transport resumes at intersections of Coulomb res-
onances of the two dots and pairs of triple-points of high
conductance appear. Three double dot charge occupan-
cies coexist at the triple-point that they are adjacent
to, and allow for charge transport via these three states.
More negative plunger-gate voltages VL,R deplete the re-
spective dots down to the last electron.

A finite bias voltage VSD expands triple points into
finite-bias triangles, whose orientation depends on the
sign of VSD. Within the bias triangles, energies of the
relevant states are tuned into the bias window, such that
these states are accessible and allow for charge trans-
port. We look at the two-electron transport at the triple
points encircled in Fig. 1(b), where transitions between
the two-electron charge occupation (1, 1) (one electron
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FIG. 1. (a) Device illustration. Double electron dots are defined with plunger-gates L and R, and barrier-gates LB, MB and
RB. A magnetic field B is applied perpendicular to the BLG. (b) Charge-stability diagram at VBM = −5.76 V. (c) Finite-bias
triangles at VMB = −5.76 V, B = 800 mT with (i) negative, and (ii) positive source–drain bias VSD. ε is the total energy, and
detuning δ = εL−εR the inter-dot energy difference. (iii) Line-cuts along the dashed arrows, with VL,R converted into δ. δ = 0 at
the baseline of bias-triangles. Current peaks are labeled by dots. Valley-blockade (VB) and spin-blockade (SB) suppress current
in the positive-bias direction. Energies of relevant states are sketched for δ = 0 in (iv) and (v). For negative-bias (electron
transport (2, 0) → (1, 1)), the spin-blockaded GS–GS transition (gray in (iv)) is readily circumvented by a transition close in
energy (black). For positive-bias (electron transport (1, 1) → (2, 0)), the next available transition is higher in energy (red in
(v)) and requires a valley flip. (d) Evolution of single-dot two-particle energies in magnetic field, sketched with Eex = 0.9 meV,
gv = 28 and gs = 2. The two different GSs (red) define regime A and B.

on each dot) and (2, 0) (both electron on the left dot)
states govern the transport. (Note that we observe the
same physics around the charge occupation (1, 1) and
(0, 2), only swapping the role of the left and the right
dot, see Supplemental Materials S6.) An example of cur-
rent map of bias-triangles at B = 800 mT is shown in
Fig. 1(c). In one bias direction [Fig. 1(c,i)], the high
conductance bias triangles are complete; in the other
bias direction [Fig. 1(c,ii)] however, the triangles appear
smaller with a missing baseline. Here, energetically al-
lowed transitions are blocked by the Pauli exclusion prin-
ciple, blocking charge transport and suppressing current,
demonstrating the Pauli blockade effect. Comparing line-
cuts [Fig. 1(c,iii)] along the dashed arrows we see: At the
baselines (black dots), for negative bias the peak cur-
rent is ∼ 180 pA, whereas for positive bias it is masked
by the noise floor (∼ 300 fA). In the remaining part
of the positive-bias triangles, the current is ∼ 3 times
weaker compared to that in the negative-bias ones. In
the following discussion, and with the aid of schematics
[Fig. 1(c,iv and v)], we will attribute the missing baseline
to spin blockade, and the weaker current in the tip of the
triangle to valley blockade.

A thorough understanding of the relevant (1, 1) and
(2, 0) states is crucial for interpreting the nature of the
blockade. Here, we introduce the recently established
level spectrum of one- and two-particle states in single
BLG QDs [6, 7, 13–16, 29, 30], and limit our discussion

to the lowest orbital state (the next orbital state is >
1.7 meV higher in energy, see Supplemental Materials S2
and S3).

Within the first energy shell, the single-dot–single-
particle states are four-fold degenerate. A small spin–
orbit coupling ∆SO ∼ 80 µeV [6, 7] splits them into
two Kramer pairs, |↓ K−〉 and |↑ K+〉, and |↑ K−〉 and
|↓ K+〉 (see Supplemental Materials S1). A magnetic
field splits the spin states by ∆E↑/↓ = ±gsµBB/2 in
energy, where gs = 2 [12, 14, 15]. Analogously, the val-
leys K± couple to a perpendicular magnetic field with
∆EK± = ±gvµBB⊥/2, linearly in the low-field limit. The
valley g-factor gv is an order of magnitude larger than the
spin g-factor gs [12, 13, 15].

For weakly coupled double dots, exchange interaction
is negligible between two electrons, each residing on one
dot. The (1, 1) basis states can therefore be approxi-
mated as product states of two sets of single-dot–single-
particle states, generating 16 (1, 1) basis states with 10
distinct energies E(1,1) that are sums of the energies of
the two sets (shown in Supplemental Materials S4). The
ground state (1, 1)GS is always |↓ K−, ↓ K−〉.

Contrarily, the (2, 0) states are better described in the
basis of spin and valley singlet and triplets. We con-
sider only the lower symmetric orbital wave function, so
that the product of the valley and spin states is neces-
sarily anti-symmetric. In this way, we reduce the 16 ba-
sis states to 6. Evolution of this single-dot two-particle
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FIG. 2. Finite-bias triangles at VMB = −5.81 V in A: regime A with (2, 0)GS :
∣∣T−s 〉

|Sv〉 at B = (a) 0 T and (b) 200 mT,

and in B: regime B with (2, 0)GS : |Ss〉
∣∣T−v 〉

at B = 800 mT for (i) negative (electron transport (2, 0) → (1, 1)), and (ii)
positive (electron transport (1, 1)→ (2, 0)) source–drain bias VSD. (iv,v) Schematics of electrochemical potentials µ of relevant
transitions for (i,ii), sketched at δ = 0, when µGSs align. Non-zero δ allows for higher energy transitions. (iii) Line-cuts along
the dashed arrow, with VL,R converted into δ. Current resonances are labeled by numbered colored circles. Valley-blockade
(VB) and spin-blockade (SB) regions are marked. Current is suppressed for positive bias (1, 1) → (2, 0) by the valley- and
spin-blockade, and is enhanced for clarity in the line-cuts (iii) by a factor of 5, 10, and 15 for A(a), A(b), and B. In A(a,ii), the
valley blockade is lifted at the edges of the triangles, where the electron in the dot can exchange with electrons in the source
or drain leads (yellow arrows in A(a,ii) and schematic outlined in yellow in A(a,iii)). In B, the line-cut is taken at the dotted
instead of the dashed line, due to a shift of the bias triangle along the ε direction, a result of the change of (2, 0)GS.

spectrum [15, 29, 30] in a perpendicular magnetic field
is sketched in Fig. 1(d). At low field, the spin-triplet–

valley-singlet states,
∣∣∣T−/0/+s

〉
|Sv〉, are lower in energy,

than the spin-singlet–valley-triplets, |Ss〉
∣∣∣T−/+v

〉
, by the

exchange energy Eex. At high field, |Ss〉 |T−v 〉 is lowered
enough in energy due to coupling with the magnetic field
to become the GS. We therefore separate the discussion
into two regimes, where the (2, 0)GS is |T−s 〉 |Sv〉 in regime
A, and |Ss〉 |T−v 〉 in regime B.

With the knowledge of the expected (1, 1) and (2, 0)
states, we look in Fig. 2 at finite-bias triangles with
low inter-dot coupling, where occurrences of elastic tun-
nelings are observed as current resonances in the left
and right dot energy difference, i.e. the detuning axis
δ = εL − εR. The different appearances of the three pair
of triangles indicate distinct sets of transitions involved,
but the current at positive bias is always suppressed com-
pared to negative bias: Unless higher orbital states are
within reach in the bias window, due to the Pauli ex-
clusion principle, there exist no (2, 0) states matching
both spin and valley quantum numbers of the (1, 1)GS

|↓ K−, ↓ K−〉.

In regime A (Fig. 2A), states involved in the GS–GS
transitions (1), (1′) (red) have mismatching valleys. Un-
less another transition channel from the GSs exists, al-
lowing the electron to by-pass this blockade, an electron
loaded into the GSs would be stuck and would suppress
the current at the baselines, until a valley-flip event oc-
curs.

However, at B = 0 T the baseline for (2, 0) → (1, 1)
[Fig. 2A(a,i)] is strong, with a peak current of ∼ 350 pA
[Fig. 2A(a,iii)], as the valley-blockaded transition (1)
(red) is easily circumvented by the non-blockaded transi-
tion (3) (orange), because the (1, 1) states |↓ K−, ↓ K−〉
and |↓ K−, ↓ K+〉 (or |↓ K+, ↓ K−〉) are nearly degener-
ate in energy at B = 0 T. At B = 200 mT [Fig. 2A(b)],
these (1, 1) states are valley split in energy by gvµBB.
Hence, transitions (1) and (3) no longer occur at the same
energy, as (1) is lowered in detuning while (3) stayed the
same. We see therefore in Fig. 2A(b,i) a valley-blockaded
region with suppressed current, which at higher δ is lifted
by the onset of transition (3).

By contrast, for (1, 1) → (2, 0) [Fig. 2A(a and b, ii)]
the valley blockade cannot be circumvented by another
transition. Current at the baseline is suppressed by a
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FIG. 3. Evolution in magnetic field of GS transitions for (a) negative and (b) positive source–drain bias VSD. Evolution in
magnetic field for (i) line-cut along the δ-axis (dashed arrows in Fig. 2A), and (ii) calculated transitions with Eex = 0.9 meV,
∆SO = 80 µeV, gv = 28 and gs = 2, from (2, 0)GS in (a,ii), and from (1, 1)GS in (b,ii). Except for the GS–GS transition (2)
and (2′), transitions requiring spin flips (sketched in light gray in (ii)) are not labeled. The thicker lines in (ii) represent the
GS–GS transitions, and hence define the baselines of the bias triangles. Yellow, blue, and purple represent non-blockaded (NB),
valley-blockaded (VB), and spin-blockaded (SB) regions, respectively. At high field, oscillations periodic in 1/B are observed
for both bias directions [28].

factor larger than five at B = 0 T, and larger than ten
at B = 200 mT. This is because the next available (2, 0)
state accessible from the (1, 1)GS : |↓ K−, ↓ K−〉 with
matching valleys is |Ss〉 |T−v 〉. Transition (2′) (gray) to
this state is not only higher in energy, but also requires
a spin flip. Even at finite δ where enough energy is
provided, no lifting of the valley blockade via this spin-
mismatched transition is observed.

The valley blockade is lifted at B = 0 T at the outer
edges of the triangles [Fig. 2A(a,ii), yellow arrows], with
current similar to the non-blockaded inelastic current. At
the edges, the GS electrochemical potential of the right
dot µR,(1,1)GS is aligned with the drain µD [2, 20, 31], al-
lowing an electron with blockaded quantum numbers to
tunnel back into the lead, in exchange for one with quan-
tum numbers that allow the transport to continue. This
lifting is no longer observed at finite field B = 200 mT
in Fig. 2A(b,ii), as the blockaded (1, 1)GS |↓ K−, ↓ K−〉
and the non-blockaded (1, 1) state |↓ K−, ↓ K+〉 are split
by gvµBB, more than the thermal energy.

In regime B at higher field, when (2, 0)GS becomes
|Ss〉 |T−v 〉 (Fig. 2B), the GS–GS transitions (2) and (2′)
are spin-blockaded. However, for the (2, 0) → (1, 1) bias
direction [Fig. 2B(i)], the spin-blockaded transition (2)

(gray) can be circumvented via transition (4) (purple)
that is very close in energy (only a Zeeman splitting
higher in detuning, see Supplemental Materials S5 for
more details), with a peak current of 200 pA [Fig. 2B(iii)].

For (1, 1)→ (2, 0) [Fig. 2B(ii)], the spin-blockade leak-
age current is smaller than the noise floor. The next
available transition in detuning is the valley-blockaded
transition (1′) (red) discussed above. This transition is
observed at larger δ, with a peak current of 10 pA. Spin
conservation during inter-dot tunneling is a stronger con-
dition than valley conservation, as the valley blockaded
transition (1′) lifts the spin blockade [Fig. 2B(ii)], but the
spin-blockaded transition (2′) cannot lift the valley block-
ade [Fig. 2A(a and b, ii)]. When increasing inter-dot cou-
pling, we enhance current from transport via non-elastic
tunneling, and arrive at the Fig. 1(c) shown before.

We inspect the line-cuts along the δ-axis (dashed ar-
rows in Fig. 2A) in magnetic field for the continuous
evolution of the identified transitions. The results are
displayed in Fig. 3(a and b,i) for (2, 0) → (1, 1) and
(1, 1) → (2, 0), respectively. The corresponding cal-
culated transition energies are plotted in Fig. 3(a and
b,ii) (see Supplemental Materials S4 for evolution of the
states). VSD opens up a bias window of 1 meV starting
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from the baseline, shown as higher conductance regions
in the measurements (a and b,i), and colored regions in
the calculated transitions (a and b,ii). Beyond the bias
window, electron occupancy is Coulomb blockaded in ei-
ther (1, 1) or (2, 0).

For (2, 0) → (1, 1), in regime A, transitions (1), (3),
and (5) split linearly in energy with the magnetic field,
with gv ≈ 28, corresponding to the (1, 1) valley configura-
tions |K−,K−〉, |K−,K+〉 (|K+,K−〉), and |K+,K+〉.
The kink in the baseline [red and gray in Fig. 3(a)] in-
dicates the change of GS–GS transitions from (1) to (2),
caused by the change of the (2, 0)GS from |T−s 〉 |Sv〉 to
|Ss〉 |T−v 〉.

For (1, 1) → (2, 0), only the valley-blockaded transi-
tion (1′) is observed. At high field, the bias window
diminishes and the edges appear no longer parallel to
(1′), but to (2′) instead. This indicates the change of the
GS–GS transition from (1′) [red in Fig. 3(b)] to the spin-
blockaded transition (2′) (gray), with resonance masked
by the noise floor.

Regions of no-blockade, valley-blockade, and spin-
blockade are labeled in Fig. 3(a and b,ii). Current
strength in these regions decreases due to the blockade
effect in this order [Fig. 3(a and b,i)]. The singlet–triplet
energy splitting, crucial for spin-qubit operation, can be
tuned in magnitude by magnetic field, or by tuning the
valley g-factor with gate voltages [13].

In conclusion, in our BLG QDs we show controlled
switching between two regimes: At low perpendicular
magnetic field, the (2,0) ground state is a spin-triplet-
valley-singlet, allowing for observation of valley block-
ade; whereas at higher field, the spin-singlet-valley-triplet
(2,0) ground state allows for the observation of robust
spin blockade. These results demonstrate exquisite con-
trol over spin and valley states, thorough understanding
of the intricate two-particle Hilbert space, and high sam-
ple quality of our BLG QDs. The observation of blockade
paves the way for future graphene based spin and valley
qubits.
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S1. METHODS

The device is fabricated as described in [11, 12], and
schematically depicted in Fig. 1(a). A false-colored AFM
image of the sample is shown in Fig. S1(a). Stacked with
the dry-transfer technique [33], the van der Waals hetero-
structure lies on a silicon chip with 280 nm surface SiO2.
The stack consists of a bottom graphite back gate [dark
gray in Fig. 1(a)], and on top of it a BLG flake (black)
encapsulated in 38 nm thick bottom and 20 nm thick top
hBN flakes (blue). Ohmic edge contacts (light grey) with
Cr and Au of 10 and 60 nm thickness, respectively, are
evaporated after etching through the top hBN flake with
reactive ion etching. A pair of 5 nm thick Cr, 20 nm thick
Au split gates (purple) are deposited on top, defining a
1 µm long, 100 nm wide channel. Separated by a layer
of 30 nm thick amorphous Al2O3 grown by atomic layer
deposition, finger gates (yellow and green) of 20 nm in
width, and 5 nm Cr and 20 nm Au in thickness, lie across
the channel. Neighboring finger gates are separated by
75 nm from center to center.

The spatial variation of the band-edge of the coupled
double electron dot is sketched in Fig. S1(b). We utilize
the tunable BLG band-gap ∆gap that arises from the ap-
plication of an electric displacement field perpendicular
to the BLG sheet [8–10]. Closely arranged finger gates
allow for local control within the 100 nm wide channel
formed by the split gates. Negative barrier gate voltages
VLB,MB,RB tune regions underneath into the gap, isolat-
ing our pair of coupled double electron dots from the
n-type channel, providing individual control of the dot-
lead [13, 27], and inter-dot tunnel coupling [17]. Dots
L, R are independently controlled by the plunger gate
voltages VL,R.

We perform measurements in He3/ He4 dilution refrig-
erators at electronic temperatures of around 150 mK.

S2. ONE-ELECTRON STATES

Behavior around the one-electron states (1, 0) and
(0, 1) is studied. Finite bias triangle measurements are
shown for two different source–drain bias sizes (|VSD| =
1 mV, 2.5 mV) in Fig. S2. In contrast to what was ob-
served for the two-electron case Fig. 2(a), little asymme-
try in bias-direction is observed here. The lack of block-
ade is expected for the one-electron states. An electron
tunneling in from the source reservoir into the left dot (or
from the drain into the right dot) has all spin and valley
configurations at its disposal, since there is no electron
in either of the dots before the transport as all states in
both dots are unoccupied (0, 0).

A larger source–drain bias [|VSD| = 2.5 mV, Fig. S2(b)]
allows access to higher energy states. For both bias di-
rections, a conductance step is observed at |δ| = 1.7 meV,
beyond which the single-dot orbital state higher in energy

FIG. S1. (a) False-colored AFM image of the sample used,
where the colors of the gates corresponds to the ones shown in
Fig.1(a). Voltages supplied to these gates are la belled. (b)
Schematic sketch of the conduction band (CB) and valence
band (VB) edge variation along the channel, underneath the
respective gates.

FIG. S2. Finite-bias triangles near one-electron (1, 0) and
(0, 1) states at VMB−5.81 V, B = 0 T, for a |VSD| = 1 mV and
b |VSD| = 2.5 mV, for (i) negative (electron transport (1, 0)→
(0, 1)), and (ii) positive (electron transport (0, 1) → (1, 0))
VSD. The conductance steps labeled by the white arrows in
(b) at |δ| = 1.7 meV indicate access to the higher orbital state.
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FIG. S3. Evolution in magnetic field of GS transitions between one-electron states (0, 1) and (1, 0). Evolution of the line-cut
along the δ-axis (dashed lines) in Fig. S2(b) for (a) negative (VSD = −2.5 mV, electron transport (1, 0) → (0, 1)), and (b)
positive (VSD = 2.5 mV electron transport (0, 1)→ (1, 0)) source–drain bias VSD. VSD opens a bias window of 2.5 meV. Outside
of the bias window, current is Coulomb blockaded at either (0, 1) or at (1, 0). (c) Calculated single-particle states E0,1 with
∆SO = 80 µeV, gv = 32 and gs = 2. GS of (1, 0) is sketched in red and shifted arbitrarily in the energy axis, where transitions
from this are labeled and identified in (a) as current peaks. At high field (B > 800 mT), (1, 0)GS

∣∣↓ K−〉 oscillations periodic
in 1/B, i.e., Shubnikov–de Haas oscillations [28].

becomes accessible in the bias window, and transport via
the higher orbital state can occur.

We study the evolution in a perpendicular magnetic
field for the line-cut along the detuning δ-axis at con-
stant total energy ε, as indicated by the white dot-
ted lines in Fig. S2(b). The result at |VSD| = 2.5 mV
is shown in Fig. S3(a) for negative (electron transport
(1, 0) → (0, 1)), and Fig. S3(b) for positive (electron
transport (0, 1)→ (1, 0)) bias voltages. As expected the
two magneto-spectroscopy maps appear similar in bias
direction, each with two prominent resonance peaks, la-
beled transitions (0) and (0′) (pink), and (1) and (1′)
(green). As shown in Fig. S3(c) (pink arrow), the GS–
GS transition (0) corresponds to an electron tunneling
from one dot into the same state in the next dot, without
spin or valley flip events. Whereas at higher δ, when the
magnetic-field-split higher valley states become accessi-
ble, the electron loaded into one dot has the additional
option to tunnel into a state in the next dot with a differ-
ent valley number (i.e., from K− to K+), providing that
a valley flip event occurs [transition (1), green arrow in
Fig. S3(c)]. This extra transport channel (1) gives rise to
a conductance peak due to elastic tunneling, and splits
away from transition (0) owning to the coupling between
the valley states and the magnetic field. We extract a
valley g-factor gv = 32 from the slope of (1) in detun-
ing, agreeing with previous measurements [12, 13, 15].

The small difference with the value from the two-electron
case gv = 28 can be attributed to the different plunger
gate voltages [13]. The small spin–orbit coupling term
∆SO ∼ 80 µV [6, 7] is not resolved in this measurement.

For the calculated energies and transitions here we
have assumed the same valley g-factor gv for both the
left and the right dots. If gv were to be different be-
tween the two dots, the GS–GS transition (0) and (0′)
would have a finite slope in magnetic field, correspond-
ing to |gv,L − gv,R|. Here (0) stays roughly constant in
δ in magnetic field, indicating the symmetry of the two
dots [13].

If the spin-flip event were to be common, we would
naturally also expect to see current resonances corre-
sponding to transitions between states of opposite spins,
e.g., from |↓ K−〉 to |↑ K−〉. The detuning of these res-
onances would evolve in the magnetic field with a slope
corresponding to the spin g-factor gs. Such a feature is
however missing from the measurement, indicating the
strong conservation of spin upon inter-dot tunneling, a
similar conclusion as the two-electron study.

The study of these one-electron case measurements
matches with the expectation from the single-particle lev-
els [6, 7], and also with previous studies [7], which con-
firms our correct accounting of carrier numbers in the
double dot system.
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FIG. S4. Low-field regime with spin-triplet–valley-singlet
(2,0) ground state. Finite-bias triangles near the two-electron
(1, 1) and (2, 0) states at VMB−5.81 V, B = 0 T, for (i) nega-
tive (VSD = −2.5 mV, electron transport (1, 0)→ (0, 1)), and
(ii) positive (VSD = 2.5 mV electron transport (0, 1)→ (1, 0))
source–drain bias VSD. The conductance steps labeled by the
white arrows in (b) at |δ| = 1.7 meV indicate access to the
higher orbital state, lifting the valley blockade in (ii).

S3. HIGHER ORBITAL STATE

The two-electron bias triangles at 0 T at higher source–
drain bias (VSD = 2.5 mV) than that studied in the main
text is shown in Fig. S4. They are the same as the ones
shown in Fig. 2, apart from the extra conductance step
(indicated by the white arrows) at |δ| = 1.7 meV, acces-
sible now with the larger bias window. This conductance
step occurs at the same detuning as that for the one-
electron case shown in Fig. S2, and corresponds to the
higher orbital state.

S4. TWO-ELECTRON STATE ENERGIES AND
TRANSITIONS

The calculated evolution in magnetic field of the two-
electron state energies are shown in Fig. S5, with the rel-
evant GS transitions labeled. All non-spin flipped tran-
sitions originating from the (2, 0)GS in Fig. S5(a), and
originating from the (1, 1)GS in Fig. S5(b), are labeled.

S5. BLOCKADE IN NEGATIVE BIAS
DIRECTIONS

In the main manuscript, we have discussed extensively
about the spin blockade occurring in the positive bias
direction. However, there could also be spin blockade
occurring for the negative bias direction, at high mag-
netic field in regime B. At regime B, the (1, 1) ground
state is both spin- and valley- polarized. However, the
(2, 0) ground state in regime B, (2, 0) |Ss〉 |T−v 〉, is only
valley polarized, but spin-mixed. Therefore, transition
from this (2, 0) ground state to the (1, 1) ground state
(labeled transition (2) in Fig.2 and Fig.3 in the main
text, and in Fig.S5) is blocked by the spin selection rule,
hence demonstrates spin blockade.

At B = 800 mT where we did our measurement how-
ever, the spin Zeeman splitting is very small ( 90µeV).
One can, look at the size of the negative bias trian-
gles shown in Fig.2 in the main text: the triangles at
B = 800 mT [Fig.2B(i)] is slightly smaller than that at
B = 200 mT [Fig.2A(b,i)]. This effect is however not
prominent in the resolution of the measurement.

Regions corresponding to this spin blockade is also la-
beled in the schematics in Fig.3(a,ii) of the main text.
The measurement in Fig.3(a,i) however cannot resolve
this region.

Blockade in the negative bias direction is hard to con-
firm, when the bias triangles in the positive direction
also shows blockade. In this case, baselines of triangles
in both bias directions are missing and suppressed by the
spin-blockade effect, and one can therefore not identify
blockade of the larger triangle in the negative bias direc-
tion as we cannot compare its size with ’less-blockaded’
triangles.

S6. BLOCKADE IN THE OPPOSITE CHARGE
OCCUPATION

In the main text of the manuscript we focused on the
blockade between (1, 1) and (2, 0) charge occupation, i.e.
between each electron on one dot, and both electrons on
the left dot. Similarly we can also observe Pauli blockade
in the opposite charge arrangement, between (1, 1) each
electron on one dot, and (0, 2) both electron on the right
dot. Here the physics is exactly the same, just that the
role of left and right dot is exchanged. Fig. S6 show
bias triangles near the (1, 1) and (0, 2) charge states at
B = 0 T, 200 mT and 800 mT, for both bias directions.
The interpretation of Pauli blockade here is exactly the
same as that discussed in Fig.2 in the main text.
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FIG. S5. Calculated evolution in magnetic field of the two-electron energies, for (a) E(1,1), when two electrons each reside on
one dot, and for (b) E(2,0) when both electrons reside on the same dot, with Eex = 0.9 meV, ∆SO = 80 µeV, gv = 28, and
gs = 2. The (2, 0) GSs in (a), and the (1, 1) GSs in (b) are sketched in bold lines and shifted arbitrarily in energy for clarity.
The transitions that originate from the ground states are labeled as discussed in the main text.

FIG. S6. Finite-bias triangles at VBG = 5.0 V, VMB = −6.22 V at in regime A with (0, 2)GS :
∣∣T−s 〉

|Sv〉 at B = (a) 0 T and (b)

200 mT, and in regime B with (0, 2)GS : |Ss〉
∣∣T−v 〉

at (c) B = 800 mT for (i) positive (electron transport (0, 2) → (1, 1)), and
(ii) negative (electron transport (1, 1)→ (0, 2)) source–drain bias VSD.
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