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Abstract: The scope of the Pauson-Khand reaction (PKR) of internal trifluoromethyl 

alkynes, previously described with norbornadiene, is expanded to norbornene and ethylene. 

A thorough structural analysis of the resulting PK adducts has been carried out to unveil 

that α-trifluoromethylcyclopentenones are preferred in all cases, independently of the 

electronic properties of the alkyne. The regioselectivity observed with norbornadiene and 

ethylene is higher than in the case of norbornene. 
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1. Introduction 

The Pauson-Khand reaction (PKR) is a cobalt catalyzed [2+2+1] cycloaddition between an alkene, 

an alkyne and carbon monoxide to give a cyclopentenone [1]. The intramolecular PKR has been 

extensively used in organic synthesis since both the regio- and the stereochemical outcome of the 

reaction are substrate-controlled. However, the intermolecular PKR has been less exploited mainly 

because of the small range of reactive alkenes. The intermolecular reaction with terminal alkynes is 

completely regioselective affording adducts with the substituent always in α-position of the enone. In 

the case of internal dissymmetric alkynes, the regioselectivity of the PK adducts depends on a 

combination of steric and electronic effects [2–7]. In the absence of steric effects, electron-donating 

groups (EDGs) show preference for the α-position whereas electron-withdrawing groups (EWGs) tend 

to place at the β-position [3–5]. However, recent studies have shown that the electronic effects are less 

significant than previously described [3–5] and can, therefore, be overcome by steric effects [6,7]. In 

this context, we became interested in exploring the reactivity of dissymmetric fluorinated alkynes in 

the intermolecular PKR in order to uncover how the particular electronic and steric properties of these 

substrates affect the regiochemical outcome of the intermolecular PKR [8,9]. 

The remarkable physicochemical properties [10] of fluorinated compounds has led to an increasing 

effort to the development of reliable methods for their preparation and to an exploration of the effect 

that fluorinated substituents have on reactivity [11,12]. In spite of the great development that fluorine 

chemistry has experienced during the last decade, only a few examples of the PKR of fluorinated 

alkynes have been reported to date. The first examples of fluorinated alkynes in the intramolecular 

PKR were reported at the beginning of the past decade [13–18]. In 2010 the first example of 

intermolecular PKR of fluorinated alkynes with norbornadiene was reported [8]. The most striking 

result from this study was the fact that the PKR of fluorinated alkynes was extremely regioselective 

leading, unexpectedly, to the α-fluorinated cyclopentenones. These observations were further 

confirmed recently, when we described [9] the PKR of a large set of internal trifluoromethyl alkynes 

bearing electron-donating and electron-withdrawing groups with norbornadiene. With no exception, 

only the α-trifluoromethylcyclopentenone was obtained in good yield. Given that the electronic effect 

should direct the most electron-withdrawing substituent to the β-position, we hypothesized that it was 

being overridden by the steric hindrance of the trifluoromethyl group. On the other hand, Konno and 

co-workers [19] described the PKR of several trifluoromethyl alkynes with norbornene instead of 

norbornadiene and reported that the regioselectivity of the PKR was not complete. To confirm these 

findings and to shed some light into this somewhat surprising difference between norbornene and 

norbornadiene, we sought to study the PKR of internal dissymmetric alkynes with norbornene and 

ethylene in order to understand how the alkene can influence the regioselectivity of the PKR. 

2. Results and Discussion 

In order to cover a wide range of electronic properties, we chose trifluoromethyl alkynes 1a–d 

containing electron-donating and electron-withdrawing substituted aromatic rings and aliphatic chains 

(Figure 1). The cobalt hexacarbonyl complexes 2a–d of these alkynes were synthesized from the 
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corresponding terminal alkynes following the methodology described by us [9] based on Qing’s 

trifluoromethylation reaction [20,21]. 

Figure 1. Dissymmetric fluorinated alkynes used in this study. 

 

We first carried out the PKR between the cobalt complex of p-tolyltrifluoromethylacetylene (2a) 

and norbornene under typical thermal conditions. The reaction proceeded smoothly and gave the PK 

adducts in an excellent 87% yield as an 86:14 mixture of isomers (Table 1, entry 1). The structure of 

the major isomer 3a was easily determined by NMR and confirmed by chemical correlation: the same 

compound was obtained from the PK adduct of 2a with norbornadiene by catalytic hydrogenation 

(Pd/C, H2, MeOH). The structure of the minor isomer was more difficult to ascertain, since it could be 

either the regioisomer 4a or the endo isomer endo-3a (Figure 2). Careful study by NMR allowed us to 

rule out the endo isomer. One diagnostic observation was the absence of the NOE correlations 

expected for endo-3a (Figure 2). Therefore, we could confirm that the minor PK adduct was the 

regioisomer 4a with the CF3 at the β-position. It is worth to mention that the PKR of the same substrate 

with norbornadiene is completely regioselective. 

Figure 2. Characteristic NOE's for the endo diastereomers that are not present in the exo isomers. 

 

The alkyne cobalt complexes 2b-c were submitted to the same reaction conditions and both 1H and 
19F-NMR of the crude reaction products also showed two sets of signals. Careful purification and 

analysis of their NMR spectra showed that the major isomers were the α-fluorinated compounds 3b–c 

whereas the minor isomers were the β-fluorinated PK adducts (Table 1). However, in the case of 3d 

the presence of the minor regioisomer was marginal, so it could only be detected by 19F-NMR. These 

results are in agreement with those reported by Konno and co-workers [19]. The regioselectivities we 

detect for the PKR of 2b and 2c are in concordance with their results for the same substrates. The 

spectroscopical data is also coincident with the one given in their report, although in our case we 

provide complete characterization for all the major and minor diastereomers for the first time. 

The fact that the regioselectivity was poorer with an electron-withdrawing substituent in the alkyne 

(compound 2c) than with electron-donating substituents (compounds 2a–b) adds more difficulty in 
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understanding the regiochemistry of the PKR. If we assume that the trifluoromethyl group will 

preferentially occupy the α-position in the final product mainly for steric reasons, we could argue that 

this tendency should be reinforced when having an electron-withdrawing substituent partner, since it 

would prefer the β-position, and diminished with an electron-donating group, that would compete for 

the α-position. Theoretical studies on the regiochemistry of these reactions are ongoing in our 

laboratory in order to explain these results. 

Table 1. Regioselectivity of the PKR of trifluoromethyl alkynes 1a–d with norbornene. 

 

Entry SM R Product Yield (%) Ratio 3:4 

1 2a p-MePh 3a, 4a 87 86:14 
2 2b p-MeOPh 3b, 4b 51 86:14 
3 2c p-ClPh 3c, 4c 41 71:29 
4 2d C11H23 3d 40 >95:5 

Once explored the reactivity of norbornene in the PKR, we tackled the PKR of dissymmetric 

fluorinated alkynes with ethylene [2], tetramethylnorbornadiene [22], and (E)-cyclooctene [23], all of 

them used as alkenes in the PKR. As for the PKR with norbornene and in order to cover a 

representative range of electronic properties, we selected the same alkynes 1a–c as before. However, 

instead of the alkyne 1d with an aliphatic side chain, we selected ethylphenyltrifluoromethylacetylene 

(1e) in order to decrease the volatility and lipophilicity of the final product and therefore simplify its 

isolation and handling. 

We first carried out an optimization of the ethylene reaction with the cobalt complex 1a as a model. 

The beneficial effect of the use of molecular sieves as an additive for the intermolecular PKR is  

well-established [24,25], and our group had already experienced how the use of this zeolite in PKRs 

with ethylene increased the reaction yields dramatically [2]. At sight of these precedents, we decided to 

include molecular sieves in our optimization reactions. These zeolites are supposed to promote the 

PKR by increasing the availability of ethylene in the solvent and by acting as a micro-reactor. In order 

to further increase the presence of ethylene in the liquid sine of the reaction, we decided to carry out 

the reaction at low temperature and to activate it with N-methylmorpholine-N-oxide (NMO), the 

addition of which was done slowly in order to prevent decomposition of the starting cobalt-alkyne 

complex (Table 2). 

The yields obtained were very low in all cases when activating the reaction by the addition of 

NMO. The use of molecular sieves did not improve the reaction yield (entry 1), and our attempts to 

carry out the reaction at lower temperature to slow down the oxidation of our cobalt complex and to 

increase the solubility of ethylene were fruitless (entries 2, 3). 
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Table 2. PKR of trifluoromethyl alkynes 1a–e with ethylene. 

 

Entry SM R Conditions Product Yield 

1 1a p-MePh 
6 bars ethylene, NMO b (10 equiv), 4 Å MS 

(activated a; 15x alkyne mass), rt, DCM 
5a 18% 

2 1a p-MePh 6 bars ethylene, NMO b (10 equiv), rt, DCM 5a 25% 
3 1a p-MePh 6 bars ethylene, NMO b (10 equiv), 0 °C, DCM 5a 9% 
4 1a p-MePh 6 bars ethylene, 70 °C to 80 °C, toluene 5a 53% 
5 1b p-MeOPh 6 bars ethylene, 80 °C to 85 °C, toluene 5b 58% 
6 1c p-ClPh 6 bars ethylene, 80 °C to 85 °C, toluene 5c 56% 
7 1e PhC2H4 6 bars ethylene, 80 °C to 85 °C, toluene 5e 23% 
a dried at 200 °C under high vacuum for 8 h, then stored in a vacuum oven; b slow addition; rate: 1 equiv./20 min. 

Our best result was obtained when carrying out the reaction thermally and without the presence of 

molecular sieves (entry 4). Once explored the reaction conditions, we proceeded to test the remaining 

selected substrates (entries 5–7). Even though the yields were moderate, the crude reaction mixtures 

were very clean and the final products very easy to purify. In all cases only one PK adduct could be 

recovered upon purification and, after careful NMR analysis, all of them were assigned as the  

α-trifluoromethylcyclopentenones. Unfortunately, the reactions with other olefins were unsuccessful; 

complex 2d showed no reactivity with tetramethylnorbornadiene [22] after 24 h at 80 °C, whereas 

complex 2c decomposed in the presence of (E)-cyclooctene [23] and NMO in methylene chloride.  

Removal of the trifluoromethyl group from the norbornadiene PK adducts allowed us the 

preparation of the previously unknown regioisomeric PK adducts of terminal alkynes. [8] Therefore, 

the trifluoromethyl group was used as a steering group to control the regioselectivity of the PK. With 

the new norbornene PK adducts in hand we wanted to test the generality of the process. Following the 

conditions previously established by our group [8,9], the reactions proceeded smoothly and, even 

though the yields were only moderate, they were clean in general and the products could be easily 

purified. The only exception was adduct 3d since, even though the final product could be detected by 

NMR and isolated, it was accompanied by unidentified reaction by-products. The minor regioisomers 

were also submitted to these reaction conditions and no evolution could be observed in any case, which 

represents a further confirmation that the minor adducts correspond, as expected, to the β-

trifluoromethyl regioisomers and not to the diastereomeric endo α-trifluoromethyl products. PK 

adducts with ethylene 5a–d were also submitted to the destrifluoromethylation reaction conditions 

(Table 3). However, probably due to the volatility of the final products, they could not be isolated.  
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Table 3. Removal of the trifluoromethyl group form the norbornene PK adducts. 

 

Entry SM R Product Yield (%) 

1 3a p-MePh 6a 28 
2 3b p-MeOPh 6b 49 
3 3c p-ClPh 6c 30 
4 3d C11H23 6d nd 

3. Experimental  

3.1. General 

Non-aqueous reactions were carried out under nitrogen atmospheres and with flame-dried 

glassware. Dry toluene was purchased directly from Sigma-Aldrich (St. Louis, MO, USA). 

Commercially available reagents were used with no further purification. All reactions were monitored 

by TLC analysis using Merck 60 F254 silica gel on aluminum sheets. Silica gel chromatography was 

performed by using 35-70 µm silica or an automated chromatography system (Combiflash®, Teledyne 

Isco, Lincoln, NE, USA) with hexanes/ethyl acetate gradients as eluent, unless noted otherwise.  

NMR spectra were recorded at room temperature on a Varian Mercury 400 or a Bruker 300 

instrument. 1H and 13C-NMR spectra were referenced to the residual peaks of the deuterated solvent. 
19F-NMR spectra were referenced by the spectrometer without any external pattern. The following 

abbreviations were used to define the multiplicities: s, singlet; d, doublet; t, triplet; q, quadruplet; p, 

quintuplet; m, multiplet; br s, broad signal. The chemical shifts () are expressed in ppm and the 

coupling constants (J), in hertz (Hz). IR spectra were recorded in a Thermo Nicolet Nexus FT-IR 

apparatus, either by preparing a KBr disk or by depositing a film of the product on a NaCl window. 

Absorptions are given in wavenumbers (cm−1). Melting points were recorded in a Büchi B-540 

apparatus. Mass spectrometry analysis was performed as high resolution ESI analysis.  

3.2. General Conditions for the Pauson-Khand Reaction with Norbornene 

The cobalt complexes 2 were prepared according to reference 9. The cobalt complex was dissolved 

in anhydrous toluene (4 mL/0.1 mmol complex) in a round bottom flask equipped with a magnetic 

stirrer and put under N2. Norbornene (10 eq.) was then added, and the system was heated up to 80 °C. 

The reaction was allowed to progress for 24 h. After that time, the solvent was removed under reduced 

pressure. The crude was purified by silica gel chromatography using mixtures of hexanes/AcOEt of 

increasing polarity. 

(3aS*,4R*,7S*,7aR*)-3-(4-Tolyl)-2-(trifluoromethyl)-3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-

1-one: The general procedure was followed starting from cobalt complex 2a (75 mg, 0.15 mmol) and 
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heated at 80 °C for 24 h. The desired products were isolated as white solids (36 mg, 87%) and as a 

5.9:1 mixture of regioisomers that could be separated by silica gel chromatography. Major regioisomer 

3a: Mp: 94–96 °C. IR (KBr) max. = 2961, 2874, 1705, 1618, 1364, 1124, 983, 831 cm−1. 1H-NMR 

(400 MHz, CDCl3)  = 1.01 (dp, J = 10.8 and 1.4 Hz, 1H), 1.12 (dp, J = 10.7 and 1.9 Hz, 1H), 1.35 (m, 

2H), 1.63 (m, 2H), 2.00 (dd, J = 3.0 and 1.5 Hz, 1H), 2.42 (s, 2H), 2.45 (dt, J = 5.6 and 1.1 Hz, 1H), 

2.60–2.56 (m, 1H), 3.09 (ddd, J = 4.9, 3.0 and 1.6 Hz, 1H), 7.31–7.24 (m, 4H). 13C-NMR (100 MHz, 

CDCl3)  = 21.4 (CH3), 28.4 (CH2), 28.9 (CH2), 31.5 (CH2), 38.4 (CH), 39.6 (CH), 52.9 (CH), 54.3 (q, 
4JCF = 1 Hz, CH), 121.5 (q, 1JCF = 273 Hz, C), 127.5 (q, 5JCF = 2 Hz, CH), 129.2 (CH), 130.9 (C), 132.0 

(q, 2JCF = 31 Hz, C), 141.1 (C), 179.1 (q, 4JCF = 3 Hz, C), 203.6 (m, C). 19F-NMR (376 MHz, CDCl3)  = 

−59.88 (d, J = 2.4 Hz, 3F). HRMS (ESI) calculated for C18H18F3O 307.1304, found 323.1303 [M+H]+. 

Minor regioisomer 4a: Mp: 94–96 °C. IR (KBr) max. = 2958, 1719, 1608, 1512, 1173, 1127 cm−1.  
1H-NMR (400 MHz, CDCl3)  = 1.23–1.08 (m, 2H), 1.39 (m, 2H), 1.70–1.59 (m, 1H), 1.84–1.72 (m, 

1H), 2.40–2.35 (m, 3H), 2.45 (d, J = 5.5 Hz, 1H), 2.56–2.54 (m, 2H), 2.93 (d, J = 5.5 Hz, 1H), 7.15 (d, 

J = 8.1 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H). 13C-NMR (100 MHz, CDCl3)  = 21.4 (CH3), 28.3 (CH2), 

29.0 (CH2), 31.3 (CH2), 38.2 (CH), 40.1 (CH), 47.2 (q, 3JCF = 2 Hz, CH), 53.6 (CH), 124.2 (q, 1JCF = 274 

Hz, C), 126.0 (C), 128.7 (q, 5JCF = 2 Hz, CH), 128.8 (CH), 139.2 (C), 155.4 (C), 207.9 (C). 19F-NMR 

(376 MHz, CDCl3)  = −60.08 (s, 3F). HRMS (ESI) calculated for C18H18F3O 323.1304, found 

323.1306 [M+H]+. 

(3aS*,4R*,7S*,7aR*)-3-(4-Methoxyphenyl)-2-(trifluoromethyl)-3a,4,5,6,7,7a-hexahydro-1H-4,7-

methanoinden-1-one: The general procedure was followed starting from cobalt complex 2b (123 mg, 

0.25 mmol) and heated at 80 °C for 96 h. The desired products were isolated as colorless oils (35 mg, 

51%) and as a 6.4:1 mixture of regioisomers that could be separated by silica gel chromatography. 

Major regioisomer 3b: IR (film) max. = 2960, 2876, 1713, 1604, 1512, 1175, 839 cm−1. 1H-NMR  

(400 MHz, CDCl3)  = 1.00 (dp, J = 10.8 and 1.4 Hz, 1H), 1.09 (m, 1H), 1.34–1.37 (m, 2H), 1.62–1.64 

(m, 2H), 2.00 (s, 1H), 2.45 (dt, J = 5.7 and 1.1 Hz, 1H), 2.57 (dd, J = 2.6 and 1.4 Hz,1H), 3.12 (ddt,  

J = 5.9, 2.3 and 1.2 Hz, 1H), 3.87 (s, 3H), 6.93–7.02 (m, 2H), 7.37–7.42 (m, 2H). 13C-NMR (100 MHz, 

CDCl3)  = 28.5 (CH2), 28.9 (CH2), 31.6 (CH2), 36.7 (CH), 39.6 (CH), 52.5 (CH), 54.2 (q, 4JCF = 1 Hz, 

CH), 55.4 (CH3), 114.0 (CH), 121.7 (q, 1JCF = 273 Hz, C), 125.7 (C), 129.8 (q, 5JCF = 2 Hz, CH), 

130.9 (q, 2JCF = 25 Hz, C), 161.8 (C), 178.3 (q, 3JCF = 3 Hz, C), 203.6 (C). 19F-NMR (376 MHz, 

CDCl3)  = −59.77 (d, J = 2.4 Hz, 3F). HRMS (ESI) calculated for C18H18F3O2 323.1253, found 

323.1251 [M+H]+. Minor regioisomer 4b: IR (film) max. = 2958, 1719, 1608, 1512, 1173 cm−1.  
1H-NMR (400 MHz, CDCl3)  = 1.21–1.07 (m, 2H), 1.46–1.31 (m, 2H), 1.64 (tt, J = 12.6 and 4.2 Hz, 

1H), 1.84–1.71 (m, 1H), 2.44 (d, J = 5.5 Hz, 1H), 2.57–2,51 (m, 2H), 2.92 (d, J = 5.5 Hz, 1H), 3.82 (d, 

J = 2.9 Hz, 4H), 6.97–6.89 (m, 2H), 7.27–7.19 (m, 2H). 13C-NMR (100 MHz, CDCl3)  = 28.3 (CH2), 

29.0 (CH2), 31.3 (CH2), 38.2 (CH), 40.1 (CH), 47.1 (q, 3JCF = 2 Hz, CH), 53.5 (CH), 55.2 (CH3), 113.6 

(CH), 113.7 (q, 2JCF = 14 Hz, C), 128.3 (C), 130.3 (q, 5JCF = 2 Hz, CH), 156.1 (q, 1JCF = 220 Hz, C), 

160.3 (C), 208.1 (C). 19F-NMR (376 MHz, CDCl3)  = −60.90 (s, 3F). HRMS (ESI) calculated for 

C18H18F3O2 323.1253, found 323.1255 [M+H]+. 

(3aS*,4R*,7S*,7aR*)-3-(4-Chlorophenyl)-2-(trifluoromethyl)-3a,4,5,6,7,7a-hexahydro-1H-4,7-

methanoinden-1-one: The general procedure was followed starting from cobalt complex 2c (100 mg, 
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0.20 mmol) and heated at 80 °C for 72 h. The desired products were isolated as colorless oils (19 mg, 

41%) and as a 2.5:1 mixture of regioisomers that could be separated by silica gel chromatography. 

Major regioisomer 3c: IR (film) max. = 2961, 1718, 1365, 1188, 1128 cm−1. 1H-NMR (400 MHz, 

CDCl3)  = 1.01–1.10 (m,1H), 1.17–1.08 (m, 1H), 1.41–1.29 (m, 2H), 1.69–1.60 (m, 2H), 2.04–1.98 

(m, 1H), 2.48 (dd, J = 5.6 and 1.3 Hz, 1H), 2.63–2.57 (m, 1H), 3.09–3.02 (m, 1H), 7.34–7.27 (m, 2H), 

7.49–7.41 (m, 1H) . 13C-NMR (100 MHz, CDCl3)  = 28.4 (CH2), 28.9 (CH2), 31.5 (CH2), 38.1 (CH), 

40.0 (CH), 53.0 (CH), 54.3 (CH), 121.2 (q, 1JCF = 274 Hz, C), 128.7 (q, 5JCF = 2 Hz, CH), 128.9 (CH), 

132.2 (C), 133.0 (q, 2JCF = 31 Hz, C), 136.7 (C), 177.2 (q, 4JCF = 3 Hz, C), 203.1 (C). 19F-NMR (376 MHz, 

CDCl3)  = −59.97 (d, J = 2.1 Hz, 3F). HRMS (ESI) calculated for C17H15ClF3O 327.0758, found 

327.0759 [M+H]+. Minor regioisomer 4c: IR (film) max. = 2960, 1720, 1492, 1175 cm−1. 1H-NMR 

(400 MHz, CDCl3)  = 1.12–1.18 (m, 2H), 1.47–1.34 (m, 2H), 1.69–1.60 (m, 1H), 1.84–1.73 m, 1H), 

2.47 (d, J = 5.5 Hz, 1H), 2.56 (s, 2H), 2.98–2.91 (m, 1H), 7.21–7.17 (m, 2H), 7.40–7.36 (m, 2H).  
13C-NMR (100 MHz, CDCl3)  = 28.2 (CH2), 29.1 (CH2), 31.3 (CH2), 38.2 (CH), 40.2 (CH), 47.3 (q, 
3JCF = 2 Hz, CH), 53.6 (CH), 124.0 (C), 127.4 (C), 128.5 (C), 130.2 (q, 5JCF = 2 Hz, CH), 135.4 (C), 

207.3 (C) .19F-NMR (376 MHz, CDCl3)  = −60.16 (s, 3F). HRMS (ESI) calculated for C17H15ClF3O 

327.0758, found 327.0760 [M+H]+. 

(3aS*,4R*,7S*,7aR*)-2-(Trifluoromethyl)-3-undecyl-3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-

1-one (3d): The general procedure was followed starting from cobalt complex 2d (150 mg, 0.28 mmol) 

and heated at 80 °C for 19 h. The desired product was isolated as a colorless oil (41 mg, 40%). IR 

(film) max. = 2927, 2855, 1718, 1638, 1367, 1130 cm−1. 1H-NMR (400 MHz, CDCl3)  = 0.91–0.86 

(m, 3H), 1.06–1.03 (m, 2H), 1.65–1.60 (m, 20H), 1.78–1.70 (m, 1H), 2.28 (d, J = 5.5 Hz, 1H), 2.37 (d, 

J = 4.4 Hz, 1H), 2.43 (m, 1H), 2.50 (d, J = 4.1 Hz, 1H), 2.70 (dd, J = 5.6 and 2.4 Hz, 1H), 2.85–2.75 

(m, 1H). 13C-NMR (100 MHz, CDCl3)  = 14.1 (CH3), 22.7 (CH2), 28.3 (CH2), 28.51–28.3 (q, 6JCF = 1 Hz, 

CH2), 29.2 (CH2), 29.3 (CH2), 29.3 (CH2), 29.4 (CH2), 29.6 (CH2), 29.9 (CH2), 30.5 (q, 5JCF = 2 Hz, 

CH2), 31.5 (CH2), 31.9 (CH2), 38.0 (CH), 39.4 (CH), 51.6 (CH), 54.0 (CH), 122.0 (d, 1JCF = 273 Hz, 

C), 132.7 (q, 2JCF = 31 Hz, C), 184.6 (q, 3JCF = 3 Hz, C), 203.9 (C). 19F-NMR (376 MHz, CDCl3) 
 = −61.06 (s, 3F). HRMS (ESI) calculated for C22H34F3O 371.2556, found 371.2559 [M+H]+. 

3.3. General Conditions for the Des-trifluoromethylation Reaction 

The desired PK adduct was dissolved in nitromethane (3 mL/0.1 mmol) in a round bottom flask 

equipped with a magnetic stirrer and a condenser and the system was put under nitrogen. Water (5 eq.) 

and DBU (1 eq.) were then added, and the system was heated to reflux until no starting material could 

be detected by TLC analysis. Upon completion of the reaction, the solvent was removed under vacuum 

and the crude was purified by silica gel chromatography with mixtures of hexanes/EtOAc of increasing 

polarity. 

(3aS*,4R*,7S*,7aR*)-3-(4-Tolyl)-3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-1-one (6a): The 

general procedure was followed starting from adduct 3a (77 mg, 0.24 mmol). The reaction proceeded 

during 12 h and, after purification, the desired product was obtained as a colorless oil (16 mg, 28%). 

IR (film) max. = 2957, 1688, 1591, 1193 cm−1. 1H-NMR (400 MHz, CDCl3)  = 0.97–1.02 (m, 1H), 

1.17–1.11 (m, 1H), 1.50–1.33 (m, 2H), 1.76–1.63 (m, 2H), 2.32–2.29 (m, 1H), 2.39 (d, J = 5.5 Hz, 
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1H), 2.41 (s, 3H), 2.50–2.48 (m, 1H), 3.17–3.14 (m, 1H), 6.59 (d, J = 1.1 Hz, 1H), 7.28–7.24 (m, 2H), 

7.60–7.56 (m, 2H). 13C-NMR (100 MHz, CDCl3)  = 21.5 (CH3), 28.6 (CH2), 29.2 (CH2), 31.8 (CH2), 

38.7 (CH), 39.0 (CH), 50.2 (CH), 55.2 (CH), 127.6 (CH), 129.3 (CH), 129.6 (CH), 130.7 (C), 141.6 

(C), 175.0 (C), 210.7 (C) . HRMS (ESI) calculated for C17H19O 239.1430, found 239.1430 [M+H]+. 

(3aS*,4R*,7S*,7aR*)-3-(4-Methoxyphenyl)-3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-1-one 

(6b): The general procedure was followed starting from adduct 3b (55 mg, 0.17 mmol). The reaction 

proceeded during 12 h and, after purification, the desired product was obtained as a colorless oil (21 mg, 

49%). IR (film) max. = 2957, 1678, 1554, 1178 cm−1. 1H-NMR (400 MHz, CDCl3) = 0.96–1.05 (m, 

1H), 1.19–1.10 (m, 1H), 1.51–1.31 (m, 2H), 1.74–1.61 (m, 2H), 2.31 (d, J = 4.0 Hz, 1H), 2.38 (dt,  

J = 5.5 and 1.2 Hz, 1H), 2.49 (d, J = 3.8 Hz, 1H), 3.13 (d, J = 5.3 Hz, 1H), 3.87 (s, 3H), 6.53 (d,  

J = 1.0 Hz, 1H), 6.94 (m, 2H), 7.67–7.62 (m, 2H) . 13C-NMR (100 MHz, CDCl3)  = 28.6 (CH2), 29.2 

(CH2), 31.8 (CH2), 38.6 (CH), 39.1 (CH), 50.2 (CH), 55.2 (CH), 55.4 (CH), 114.3 (CH), 126.0 (C), 

128.1 (CH), 129.4 (CH), 161.9 (C), 174.6 (C), 210.5 (C). HRMS (ESI) calculated for C17H19O2 

255.1380, found 255.1378 [M+H]+. 

(3aS*,4R*,7S*,7aR*)-3-(4-Chlorophenyl)-3a,4,5,6,7,7a-hexahydro-1H-4,7-methanoinden-1-one (6c): 

The general procedure was followed starting from adduct 3c (19 mg, 0.06 mmol). The reaction 

proceeded during 12h and, after purification, the desired product was obtained as a colorless oil (4 mg, 

30%). IR (film) max. = 2954, 1677, 1593, 1092 cm−1. 1H-NMR (400 MHz, CDCl3)  = 0.99–1.06 (m, 

1H), 1.16–1.09 (m,1H), 1.50–1.33 (m, 2H), 1.77–1.60 (m, 2H), 2.30–2.25 (m, 1H), 2.40 (dt, J = 5.5 

and 1.2 Hz, 1H), 2.50 (d, J = 4.1 Hz, 1H), 3.14 (d, J = 5.4 Hz, 1H), 6.60 (d, J = 1.1 Hz, 1H), 7.45–7.41 

(m, 2H), 7.62–7.59 (m, 2H). 13C-NMR (100 MHz, CDCl3)  = 28.6 (CH2), 29.2 (CH2), 31.8 (CH2), 

38.8 (CH), 50.2 (CH), 55.2 (CH), 128.8 (CH), 129.2 (CH), 130.5 (CH), 131.9 (C) 137.1 (C), 173.4 (C), 

210.3 (C). HRMS (ESI) calculated for C16H16ClO 259.0884, found 259.0884 [M+H]+. 

3.4. General Conditions for the Pauson-Khand Reaction with Ethylene 

The cobalt complex of the desired alkyne (2)was dissolved in anhydrous toluene  

(7 mL/0.1 mmol complex) in a pressure flask provided with a manometer and a magnetic stirrer. The 

system was then loaded with ethylene (6 bars) and heated up at 80–85 °C until no starting cobalt complex 

could be detected by TLC. After that time, the solvent was removed under reduced pressure. The crude 

was purified by silica gel chromatography using mixtures of hexanes/EtOAc of increasing polarity. 

3-(p-Tolyl)-2-(trifluoromethyl)cyclopent-2-en-1-one (5a): The general procedure was followed starting 

from cobalt complex 2a (63 mg, 0.13 mmol). The desired product was isolated as a white solid (17 mg, 

53%). Mp: 83–85 °C. IR (KBr) max. = 2978, 1681, 1594, 1092 cm−1. 1H-NMR (400 MHz, CDCl3) 
 = 2.38 (s, 3H), 2.70 (m, 2H), 2.87 (m, 2H), 7.16 (d, J = 8.0 Hz, 2H), 7.22 (d, J= 8.0 Hz, 2H).  
13C-NMR (100 MHz, CDCl3)  = 21.3 (CH3), 24.08 (CH2), 34.0 (CH2), 122.5 (q, 1JCF = 273 Hz, C), 

125.9 (C), 128.8 (q, 5JCF = 2 Hz, CH), 128.9 (CH), 139.2 (C), 145.5 (C), 153.4 (C), 206.1 (C).  
19F-NMR (376 MHz, CDCl3)  = −62.82 (s, 3F) .HRMS (ESI) calculated for C13H12F3O 241.0835, 

found 241.0836 [M+H]+. 
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3-(4-Methoxyphenyl)-2-(trifluoromethyl)cyclopent-2-en-1-one (5b): The general procedure was 

followed starting from cobalt complex 2b (35 mg, 0.07 mmol). The desired product was isolated as a 

colorless oil (11 mg, 58%). IR (film) max. = 2934, 1725, 1608, 1513, 1259, 1173 cm−1. 1H-NMR  

(400 MHz, CDCl3)  = 2.69 (m, 2H), 2.87 (m, 2H), 3.83 (s, 3H), 6.94 (m, 2H), 7.25 (m, 2H). 13C-NMR 

(100 MHz, CDCl3)  = 24.7 (q, 4JCF = 2 Hz, CH2), 30.4 (CH2), 55.2 (CH3), 113.7 (CH), 121.0 (C), 

122.6 (q, 1JCF = 273 Hz, C), 130.4 (q, 5JCF = 2 Hz, CH), 145.0 (q, 3JCF = 3 Hz, C), 152.6 (q, 2JCF = 34 Hz, 

C), 160.3 (C), 206.3 (C) . 19F-NMR (376 MHz, CDCl3)  = −62.76 (s, 3F) . HRMS (ESI) calculated for 

C13H15F3NO 274.1049, found 274.1045 [M+NH4]
+. 

3-(4-Chlorophenyl)-2-(trifluoromethyl)cyclopent-2-en-1-one (6c): The general procedure was followed 

starting from cobalt complex 2c (34 mg, 0.07 mmol). The desired product was isolated as a yellow oil 

(10 mg, 56%). IR (film) max. = 2917, 1723, 1489, 1257, 1126 cm−1. 1H-NMR (400 MHz, CDCl3) 
 = 2.71 (m, 2H), 2.90 (m, 2H), 7.21 (m, 2H), 7.39 (m, 2H). 13C-NMR (100 MHz, CDCl3)  = 24.9 (CH2), 

34.0 (CH2), 127.2 (C), 128.5 (CH), 130.3 (CH), 135.5 (C), 205.4 (C). 19F-NMR (376 MHz, CDCl3) 
 = −62.87 (s, 3F). HRMS (ESI) calculated for C12H9ClF3O 261.0289, found 261.0285 [M+H]+. 

3-Phenethyl-2-(trifluoromethyl)cyclopent-2-en-1-one (6e): The general procedure was followed 

starting from cobalt complex 2e (74 mg, 0.15 mmol). The desired product was isolated as a colorless 

oil (9 mg, 23%). IR (film) max. = 2933, 1721, 1236, 1129 cm−1. 1H-NMR (400 MHz, C6D6)  = 1.45 

(m, 2H), 1.59 (m, 2H), 2.35–2.48 (m, 4H), 6.73–6.92 (m, 5H). 13C-NMR (100 MHz, C6D6)  = 24.0 

(CH2), 25.8 (CH2), 32.8 (CH2), 34.3 (q, 4JCF = 1 Hz, CH2), 123.2 (q, 1JCF = 273 Hz, C), 124.7 (C), 

125.9 (C), 126.2 (C), 128.2 (CH), 128.3 (CH), 128.4 (CH), 205.4 (q, 3JCF = 20 Hz, C). 19F-NMR  

(376 MHz, C6D6) = −64.40 (s, 3F). HRMS (ESI) calculated for C14H14F3O 285.1461, found 

285.1461 [M+H]+. 

4. Conclusions  

In summary, we have expanded the PKR of dissymmetric trifluoromethyl alkynes to alkenes other 

than norbornadiene such as norbornene and ethylene. The regioselectivity of these reactions was 

complete in the case of ethylene, but mixtures of α- and β-trifluoromethyl cylopentenones were 

detected in the PK adducts of norbornene. The structure of the β-trifluoromethyl cyclopentenones was 

confirmed by chemical correlation and by NMR analysis. 
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