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Abstract Classifier calibration is the process of converting classifier scores into reliable
probability estimates. Recently, a calibration technique based on isotonic regression has
gained attention within machine learning as a flexible and effective way to calibrate classi-
fiers. We show that, surprisingly, isotonic regression based calibration using the Pool Adja-
cent Violators algorithm is equivalent to the ROC convex hull method.

Keywords Classification · Classifier calibration · ROC · Class skew

1 Introduction

Most binary classification models are commonly used to provide not just class labels but
also instance scores. These scores are usually interpreted as the confidence the classifier
has in its prediction: the higher the score, the higher the probability that the given case is
positive.

In some applications the scores generated by classifiers are used to estimate posterior
class membership probabilities. The posterior probabilities are necessary for example when
the classifier is used for cost-sensitive applications, in which precise judgments about the
cost of errors must be made. However, the raw scores are not always good estimates of
true probabilities. Some model classes are notoriously poor at producing accurate estimates
(Niculescu-Mizil and Caruana 2005), so before using scores as posterior probability es-
timates, they must be calibrated. Recently, a technique based on isotonic regression has
gained attention as a simple and effective way to calibrate classifiers (Zadrozny and Elkan
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2002; Niculescu-Mizil and Caruana 2005; Caruana and Niculescu-Mizil 2006). The cal-
ibration technique uses the Pool Adjacent Violators (PAV) algorithm to find an isotonic
(monotonically increasing) transformation of the classifier’s scores that yields the lowest
Brier Score (and cross-entropy).

In other application domains, the scores generated by a classifier do not have to be treated
as calibrated posterior probabilities. The scores are instead used for an ROC analysis of the
classifier(s). The ROC analysis is useful, for example, to estimate the expected performance
of a classifier under varying misclassification costs. In this context, Provost and Fawcett
(2001) introduced the ROC convex hull (ROCCH) algorithm. The initial purpose of the
ROCCH was to facilitate the selection of the classifier that is optimal for given misclas-
sification costs and the elimination of classifiers that are never optimal regardless of the
misclassification costs

In this paper we prove that the PAV and ROCCH algorithms are equivalent, a surprising
result given that the two algorithms were developed in different contexts and for different
purposes. Indeed, generating the ROCCH of a single classifier can be viewed as finding an
isotonic transformation of the scores that maximizes the area under the ROC curve (AUC).
This transformation turns out to be isomorphic to the isotonic transformation generated by
the PAV algorithm that minimizes Brier Score and cross-entropy.

The purpose of this article is not to argue that one technique subsumes the other, or that
one is superior to the other, but to demonstrate the connection between these apparently
unrelated techniques. Showing that the two are equivalent allows extensions and insights
for one technique to be applied to the other. Furthermore, revealing such connections might
lead to new thinking in the community.

2 Calibration and the PAV algorithm

In many applications it is important to be able to interpret the scores output by a classifier
as well calibrated posterior probabilities. For example, in cost-sensitive decision making,
where different instances have different misclassification costs that might not be known
at training time, well calibrated probabilities are essential to making decisions that will
minimize the total expected cost. Probabilistic predictions are also essential in domains such
as medical decision making, weather forecasting, fraud detection and risk analysis. Even
when probabilistic outputs are not really necessary, they are often desirable because they are
more meaningful and easier to interpret than some uncalibrated score.

Unfortunately, some widely used classifiers do not make well calibrated probabilistic
predictions. For example, SVMs and AdaBoost were not designed to generate probabilistic
classifiers, and Naive Bayes is well known to produce biased probability estimates due to
unrealistic independence assumptions (Niculescu-Mizil and Caruana 2005). In order to use
such classifiers in the above mentioned applications, their predictions must be calibrated;
i.e. the instance scores must be transformed into well-calibrated posterior probabilities.

Formally, given a classifier f that scores instances, f : X → R, calibration creates a func-
tion m such that m(f (x)) → [0,1] is an estimate of the posterior probability that instance
x is in the positive class. Various methods have been proposed for finding the mapping m

such as methods based on parametric estimation (Platt 1999), binning (Zadrozny and Elkan
2001) or nonparametric Isotonic Regression (Zadrozny and Elkan 2002).

Initially introduced by Zadrozny and Elkan (2002), the Isotonic Regression method relies
on the assumption that the function that transforms the scores output by a classifier into
calibrated posterior probabilities is monotonically increasing (isotonic) with respect to the
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classifier score; i.e. a higher score implies a higher probability that the instance is positive.
Given a training set (fi, yi), where fi = f (xi) is the output of the classifier for instance xi

and yi ∈ {0,1} is the corresponding label, Isotonic Regression will find the isotonic function
m such that:

m = arg minz

∑
(yi − z(fi))

2 (1)

where the arg min is taken over all isotonic functions. While the Isotonic Regression problem
is presented here in terms of Brier Score,1 it can be proved that the same isotonic transforma-
tion is obtained when using any proper scoring function,2 including cross-entropy (log-loss).

The most extensively studied algorithm for the isotonic regression problem is the Pool
Adjacent Violators (PAV) algorithm. The PAV algorithm is conceptually straightforward.
Given a set of training cases ordered by the scores assigned by the classifier, it first assigns
a probability of one to each positive instance and a probability of zero to each negative
instance, and puts each instance in its own group. It then looks, at each iteration, for adjacent
violators: adjacent groups whose probabilities locally increase rather than decrease. When
it finds such groups, it pools them and replaces their probability estimates with the average
of the group’s values. It continues this process of averaging and replacement until the entire
sequence is monotonically decreasing. The result is a sequence of instances, each of which
has a score and an associated probability estimate, which can then be used to map scores
into probability estimates.

The pseudocode for the PAV algorithm is shown in Algorithm 1. This is a conceptual
rendition of the algorithm meant to better illustrate the equivalence with the ROCCH algo-
rithm; an efficient version of the algorithm which has O(N) time and space complexity is
given by Wilbur et al. (2005).

Algorithm 1 Basic PAV method for generating probability estimates

Input: Scored training set (fi, yi), where fi is the score assigned by the classifier and yi is
the correct class.
Output: Stepwise constant function generated by m

1: begin
2: Sort training set instances increasing by fi

3: Put each training instance in its own group, Gi,i and predict mi,i = yi

4: while ∃Gk,i−1 and Gi,l ST mk,i−1 ≥ mi,l do
5: Pool the instances in Gk,i−1 and Gi,l into one group, Gk,l

6: mk,l = (
∑l

i=k yi)/(l − k + 1)

7: Predict mk,l for all instances in Gk,l

8: end while
9: Output the stepwise constant function generated by m

10: end

Table 1 shows an example of the PAV algorithm operating on a sequence of 15 instances,
six negatives and nine positives. The PAV algorithm begins by sorting the instances in de-
creasing order by score and assigning probability estimates of 1 for each positive example

1Brier Score is used to assess the quality of the probabilities predicted by a classifier (Brier 1950). It is
equivalent to squared error for two-class problems.
2A scoring rule is said to be proper if it is minimized (maximized) in expectation when the true posterior
probability is predicted.
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Table 1 An illustration of the PAV algorithm

# Score Probabilities

Initial a1 a2 b c1 c2 d

0 0.9 1 1 1 1 1 1 1

1 0.8 1 1 1 1 1 1 1

2 0.7 0 0 0 0 0 0 3/4

3 0.6 1 1 1 1 1 1 3/4

4 0.55 1 1 1 1 1 1 3/4

5 0.5 1 1 1 1 1 1 3/4

6 0.45 0 0 0 0 1/2 2/3 2/3

7 0.4 1 1 1 1 1/2 2/3 2/3

8 0.35 1 1 1 1 1 2/3 2/3

9 0.3 0 0 0 1/2 1/2 1/2 1/2

10 0.27 1 1 1 1/2 1/2 1/2 1/2

11 0.2 0 0 1/3 1/3 1/3 1/3 1/3

12 0.18 0 1/2 1/3 1/3 1/3 1/3 1/3

13 0.1 1 1/2 1/3 1/3 1/3 1/3 1/3

14 0.02 0 0 0 0 0 0 0

and 0 for each negative example. The algorithm iteratively looks for adjacent violators: a
local non-monotonicity in the sequence. Initially, adjacent violators (a zero followed by a
one) exist at instance pairs 2–3, 6–7, 9–10 and 12–13.

We will describe the algorithm operating from the bottom of the instance sequence to the
top. First, in step a1, the violation generated by instances 12 and 13 is removed by pooling
the two instances together and assigning them a probability estimate of 1/2 (see column
a1). This introduces a new violation between the instance 11 and the adjacent group 12–13.
To remove this new violation, in step a2, instance 11 and the group 12–13 are pooled to-
gether, forming a pool of three instances (two negatives and one positive) whose probability
estimate is 1/3. The result is shown in column a2.

Next, instances 9–10 (one negative and one positive) are pooled, assigning a probability
of 1/2 to each instance. The result is shown in column b.

In steps c1 and c2, the violations between instances 6–8 (one negative and two positives)
are removed in two steps. Similarly, instances 2–5 (one negative and three positives) are
pooled into a group of probability 3/4 (the intermediate steps are omitted). The final result is
shown in column d. The sequence of probability estimates is now monotonically decreasing
and no violators remain. This sequence can now be used as the basis for a function that maps
classifier scores into probability estimates.

3 ROC space and the ROC convex hull algorithm

Receiver Operating Characteristic (ROC) analysis was first employed during the World
War II to analyze the predictions made by RADAR “receiver operators” (Swets 1988;
Swets et al. 2000). ROC analysis has subsequently become a classic tool in signal detec-
tion theory and it has been widely used in medical diagnosis, psychology, radiology, and,
more recently, machine learning.
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Fig. 1 An ROC graph of three
scoring classifiers

Let {p,n} be the positive and negative instance classes, and let {Y,N} be the classifica-
tions produced by a hard classifier. The true positive rate, tp rate, of a classifier is:

tp rate = p(Y|p) ≈ positives correctly classified

total positives
.

The false positive rate, fp rate, of a classifier is:

fp rate = p(Y|n) ≈ negatives incorrectly classified

total negatives
.

The tp rate and fp rate of a hard classifier define the coordinates of a point in ROC space,
with tp rate plotted on the Y axis and fp rate plotted on the X axis. When a classifier outputs
continuous scores, a hard classification may be obtained by using a threshold to decide the
cutoff point. The tp rate and fp rate statistics vary together monotonically as the threshold
is varied from the lowest output score to the highest, resulting in a curve called the ROC
curve. An ROC curve illustrates the error trade-offs made by a given classifier under all
misclassification costs and all class distributions. Figure 1 shows a typical ROC plot of three
classifiers.

Algorithm 2 is a basic algorithm for generating an ROC curve from a data set. It exploits
the monotonicity of thresholded classifications: any instance that is classified as positive
with respect to a given threshold will be classified as positive for all lower thresholds. This
algorithm assumes that the classifier assigns scores to instances. The function f (i) is the
score assigned to instance i by the classifier. In this algorithm, tp rate and fp rate start
at zero. Each positive instance increments tp rate by 1/total positives and each negative
instance increments fp rate by 1/total negatives. The algorithm maintains a stack R of ROC
points, pushing a new point onto R after each group of tied instances (instances with the
same score) is processed. The final output is the stack R, containing the points on the ROC
curve. Each group of tied instances will therefore generate on the ROC graph a line segment
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with slope equal to:

slope = pos/total positives

neg/total negatives
= 1

skew
× pos

neg
(2)

where pos and neg represent the number of positive cases and negative cases respectively in
the group, and skew is the ratio of positive to negative cases in the data set.

Algorithm 2 Generating an ROC curve

Inputs: L, the set of test examples; f (i), the probabilistic classifier’s estimate that
example i is positive; P and N .
Outputs: R, a list of points defining the ROC curve.
1: begin
2: Lsorted ← L sorted decreasing by f scores
3: fp rate ← 0; tp rate ← 0
4: R ← 〈〉
5: fprev ← −∞
6: i ← 1
7: while i ≤ |Lsorted| do
8: if f (i) �= fprev then
9: push (fp rate, tp rate) onto R

10: fprev ← f (i)

11: end if
12: if Lsorted[i] is a positive example then
13: tp rate ← tp rate + 1/P

14: else /*i is a negative example*/
15: fp rate ← fp rate + 1/N

16: end if
17: i ← i + 1
18: end while
19: push (1,1) onto R

20: end

Provost and Fawcett (2001) show that a classifier is potentially optimal if and only if
it lies on the convex hull of the set of points in ROC space. The convex hull of the set
of points in ROC space is called the ROC convex hull (ROCCH) of the corresponding set
of classifiers. The ROCCH is a piecewise-linear, concave-down “curve.” Therefore, as x

increases, the slope of the ROCCH is monotonically non-increasing with k − 1 discrete
values, where k is the number of ROCCH component classifiers, including the degenerate
classifiers that define the hull endpoints.

In its original formulation, the ROCCH method does not generate probabilities from
instance scores. However, each point on the ROC graph corresponds to a score, and (2) can
be used to map hull slopes into probability estimates once the skew is known. Section 4
explains this.

The ROCCH formulation has a number of useful implications. Since only the classifiers
on the convex hull are potentially optimal, no others need be retained. The conditions under
which a classifier should operate (class skew and error costs) may be translated into a so-
called iso-performance line, which in turn may be used to identify a portion of the ROCCH
containing the optimal classifiers for those conditions.
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Fig. 2 The instances of Table 1
in ROC space

Algorithm 3 ROC Convex Hull Algorithm for a single classifier

Input: Scored training set (fi, yi), where fi is the score assigned by the classifier and yi

is the correct class.
Output: Stepwise constant function generated by r

1: begin
2: Sort training set instances increasing by fi

3: Put each training instance in its own group, Gi,i

4: Generate the ROC curve
5: while ∃Gk,i−1 and Gi,l that generate a concavity in the ROC curve do
6: Pool the instances in Gk,i−1 and Gi,l into one group, Gk,l

7: Let rk,l ST fk ≤ rk,l ≤ fl

8: Predict rk,l for all instances in Gk,l

9: Regenerate the ROC curve
10: end while
11: Output the stepwise constant function generated by r

12: end

Figure 2 shows the ROC graph and its convex hull for the example in Table 1. The solid
line represents the ROC graph and the dashed line the convex hull. Each hull segment can be
viewed as being generated by a tie between the instances it “covers”. In fact, in the case of a
single classifier, the ROC convex hull can be viewed as generating an isotonic transformation
of the original classifier intended to maximize the area under the ROC curve. To achieve this,
the ROCCH algorithms “fixes” the concavities in the ROC graph by grouping instances that
generate a concavity and creating a tie between them (i.e. predicting the same value for all
instances in the group). The pseudocode for generating the ROC convex hull transformation
for a classifier is shown in Algorithm 3. Again, this is a rather inefficient rendition of the
algorithm that is only intended to illustrate the connection with the PAV algorithm.
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Note that each convex hull segment in Fig. 2 corresponds to a pooling of the instances
performed in Sect. 2, Table 1. For example, the line segment labeled d corresponds to pool-
ing of instances 2–5, resulting in a group comprising one negative and three positive ex-
amples; the segment labeled c corresponds to grouping instances 6–8 and so on. Each hull
segment covers a group of instances with the same prediction generated by the PAV algo-
rithm, and each group of instances generated by PAV is covered by a hull segment. So, for
this example, the PAV and ROCCH algorithms find the same isotonic transformation. In the
next section we prove that this equivalence holds for all classifiers.

4 Equivalence between PAV and ROCCH

In this section we prove the equivalence between the PAV algorithm and the ROCCH algo-
rithm for a single classifier. Formally we prove that:

Theorem 1 For any binary classifier and for any training set (fi, yi) the following are true:

1. The ROC graph of the PAV-transformed classifier is identical to the convex hull of the
original classifier.

2. For each instance, the prediction made by the PAV-transformed classifier is equal to

slope · skew

1 + slope · skew

where slope is the slope of the segment on the convex hull of the original classifier the
instance belongs to and skew is the ratio of positive to negative cases in the training set.

Proof To prove the theorem we will use the versions of the PAV and single-classifier
ROCCH presented in algorithms 1 and 3 respectively. Both algorithms work by grouping
adjacent instances in order to remove violations. In the case of PAV the violation consists
of a local non-monotonicity, while in the case of ROCCH a violation consists of a local
concavity in the ROC curve.

The order in which adjacent groups are joined has no affect on the final result for either
of the two algorithms. Indeed, for any order, the PAV algorithm will find the maximum
likelihood (minimum cross-entropy) solution which is unique (Ayer et al. 1955). Similarly,
for any order, the ROCCH algorithm will find the convex hull of the ROC curve which is
also unique.

Since both algorithms start with the same initial groups (i.e. each point in its group),
and the final result is independent of the order in which groups are merged by the two
algorithms, it is sufficient to prove that whenever one algorithm decides to join two groups
the other algorithm will join them too. So we only have to prove that two adjacent groups
will generate a concavity in the ROC curve if and only if they will generate a violation.

Let Gk,j−1 and Gj,l , with fk ≤ fj−1 ≤ fj ≤ fl be two groups that generate a concavity
in the ROC curve. Let slopek,j−1 and slopej,l be slopes of the segments corresponding to
Gk,j−1 and Gj,l respectively. Let

poss,t =
t∑

i=s

yi,

negs,t =
t∑

i=s

1 − yi
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be the number of true positive cases and true negative cases in the group Gs,t . If Gk,j−1 and
Gj,l generate a concavity on the ROC curve (slopek,j−1 > slopej,l), then:

posk,j−1

negk,j−1
= slopek,j−1 · skew > slopej,l · skew = posj,l

negj,l

.

This is true if and only if:

mk,j−1 =
∑j−1

i=k yi

j − k
= posk,j−1

posk,j−1 + negk,j−1
>

posj,l

posj,l + negj,l

= mj,l

which means that Gk,j−1 and Gj,l generate a violation in the PAV algorithm.
In conclusion, both algorithms generate the same groups of tied instances implying that

the ROC graph of the PAV-transformed classifier is the convex hull of the original classifier.
The relationship between the prediction made by the PAV-transformed classifier for an

instance and the slope of convex hull segment that instance belongs to follows directly
from (2). �

5 Conclusions

In this paper we prove that the pool adjacent violators algorithm and the ROC convex hull
algorithm are equivalent. Essentially, PAV and ROCCH converge to the same transformation
from different directions. ROCCH always maintains the order of the cases and improves the
performance at each step, while PAV starts with the best possible classifier and, at each step,
corrects the ordering.

An interesting corollary is that for any classifier there exists a single isotonic transfor-
mation that yields, for a given data set, optimal ROC area, Brier Score, cross-entropy, and
minimum cost for any choice of threshold value and misclassification costs.

Showing the equivalence between the two techniques allows extensions and insights for
one technique to be applied to the other. For example, Flach and Wu (2005) have shown how
classifier performance may be improved by rearranging instance scores so as to eliminate
concavities in ROC space. Because of the isomorphism between ROC space and the PAV
algorithm, their technique may be applied to the PAV algorithm as well to improve prob-
ability scores. We hope that this article stimulates new thinking among machine learning
researchers of both probability estimation and ROC techniques, and leads to improvements
to each group of methods.
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