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Nutrition is an interdisciplinary science that studies the interactions of nutrients with the

body in relation to maintenance of health and well-being. Nutrition is highly complex due

to the underlying various internal and external factors that could model it. Thus, hacking

this complexity requires more holistic and network-based strategies that could unveil

these dynamic system interactions at both time and space scales. The ongoing omics

era with its high-throughput molecular data generation is paving the way to embrace

this complexity and is deeply reshaping the whole field of nutrition. Understanding the

future paths of nutrition science is of importance from both translational and clinical

perspectives. Basic nutrients which might include metabolites are important in nutrition

science. Moreover, metabolites are key biological communication channels and represent

an appealing functional readout at the interface of different major influential factors that

define health and disease. Metabolomics is the technology that enables holistic and

systematic analyses of metabolites in a biological system. Hence, given its intrinsic

functionality, its tight connection to metabolism and its high clinical actionability potential,

metabolomics is a very appealing technology for nutrition science. The ultimate goal is to

deliver a tailored and clinically relevant nutritional recommendations and interventions to

achieve precision nutrition. This work intends to present an update on the applications

of metabolomics to personalize nutrition in translational and clinical settings. It also

discusses the current conceptual shifts that are remodeling clinical nutrition practices in

this Precision Medicine era. Finally, perspectives of clinical nutrition in the ever-growing,

data-driven healthcare landscape are presented.

Keywords: metabolomics, precision nutrition, biomarker, omics, precision medicine

INTRODUCTION: METABOLOMICS AND METABOTYPES

The metabolome defines the metabolites present in a given organism (1). Metabolomics refers
to the analysis of the metabolome of biological system (2, 3). Metabolites are small organic
molecules involved or not in enzymatic reactions. Thus, metabolomics is a technology that aims to
biochemically characterize a metabolome and its changes regarding genetic, environmental, drug,
or dietary factors (4). Hence, metabolomics is an appealing tool to define metabotypes (metabolic
phenotypes) that could be used for individual stratification. It is well known that metabolic
characteristics drive individual differences regarding nutritional requirements and responses to
diet and medication (5, 6). Thus, based on this metabolic specificity, dietary recommendations
could be tailored at the individual level. This high customization is supposed to be more
effective in terms of health-care outcomes and costs than conventional general recommendations
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(5, 7). These endeavors led to the emergence of the concept
of metabotyping or metabolic phenotyping, which stratify
individuals based on their metabolic and phenotypic patterns
into metabotype subgroups with high metabolic similarity.
Thus, this metabolic similarity could be used for population
stratification to define tailored dietary or medical intervention
(8–10). Two main technologies are used in metabolomics,
Nuclear magnetic spectroscopy (NMR) and mass spectrometry
(MS) combined or not with a gas phase or liquid phase separation
method (11). NMR spectroscopy has the advantage to be non-
destructive, rapid, highly reproducible, and robust but it lacks
sensitivity. MS-based methods are more sensitive, but they
are destructive and might have lower throughput especially if
combined with a separation dimension. These techniques recover
global, unbiased, and comprehensive chemical information from
the assessed biological samples. Metabolomics workflows are
based on the previous knowledge of the metabolites to analyze.
A targeted approach is defined as a quantitative analysis when
absolute concentrations are determined or a semiquantitative
analysis when relative intensities are determined for a set of
metabolites. The untargeted approach is primarily based on
the qualitative or semiquantitative analysis of the most possibly
detectable metabolites in the biological sample. Untargeted
metabolomics is often used for biomarker discovery studies.
Depending on the study, different parameters should be taken
into account; defining the metabolomics approach (targeted
vs. untargeted), biological samples, sample size, pooling,
experimental conditions (i.e., observational studies, exploratory
studies, time series), sampling conditions and storage, analytical
platforms, and standardized sample preparation procedures. To
translate the metabolomics data into actionable information,
data analysis. The choice of the most appropriate data analysis
strategy depends mostly on the underlying investigation aim.
In mechanistic studies, the structure of the data descriptions of
the built model are more important than its predictive power
to classify new samples. In diagnosis or prognostic applications,
the classification performances of the model are crucial. It is
also to be noted that sample sizes and model validation using
external validation sets are mandatory to avoid overfitting of
the models to avoid spurious conclusions (12). In this review
we will focus on the use of metabolomics in human studies to
achieve personalized nutrition or precision nutrition (PN) which
refers to the design of customized nutritional recommendations
to prevent or to treat nutrition-related disorders (13).

PATHWAYS TOWARD PRECISION
NUTRITION

Nutritional Research
Nutritional research focuses on unveiling the interrelationships
between diet and health to prevent or treat diet-related
disorders (14). It is established that the individual nutritional
needs vary largely according to anthropometrics such as age,
gender and also on physiological states and other biological
and environmental attributes (15). Furthermore, the response
to dietary interventions exhibits substantial inter-individual

variation. In this era of precision medicine, it is time to tailor
dietary intervention and advice at the individual level such
as biomarkers related to red meat (16) or bread consumption
(17). To effectively understand diet and lifestyle interaction
in health and disease, robust, and informative biomarkers for
nutritional status are mandatory (18, 19). However, different
challenges hamper the application of nutritional biomarkers.
First, there is no consensus on nutritional biomarker definition,
its assessment and use. Furthermore, even the well-validated
biomarkers lack consistency to support strong recommendations
(20, 21). To overcome these constraints, several initiatives have
been launched to promote the identification and development
of new nutritional biomarkers by defining methods, conditions,
and settings of nutritional biomarker quantification to set
standardized and actionable protocols (22, 23). In addition to
this organizational and strategic endeavors, deep and extensive
research is still mandatory to provide a deep molecular
understanding of nutrients effects on health and disease.
Recently, a comprehensive definition of personalized nutrition
has emerged that describes three main levels in precision
nutrition: level 1 is dietary advice based on dietary intake;
level 2 adds to level 1 phenotypic metrics and laboratory
tests; level 3 goes deep by adding, to the previous levels, the
genetic information layer (22). Large-scale initiatives such as
the Food4me performed randomized control trial to assess
improvements in personalized dietary advice compared to
conventional approaches (7). The results showed changes
in dietary behavior related to customized nutritional advice.
However, from a public health perspective, these results are
hard to scale up. This work intends to present an update on
the applications of metabolomics to personalize nutrition in
translational and clinical settings. It also discusses the current
conceptual shifts that are remodeling clinical nutrition practices
in this Precision Medicine era.

Traditional Dietary Assessment Techniques
and Their Limitations
For decades, nutritional research has been a crucial pillar
to unveil diet–health relationships at both individual and
population scale. However, consistency, validation and
reproducibility of the dietary assessments have been the
great challenges (19). For a long time, food diaries, 24 h recalls
and Food Frequency Questionnaire (FFQ) are used as self-report
dietary assessment methods in human nutrition studies (24).
Multiple days weighted food records are often used in controlled
dietary studies (25). However, these dietary records are time
consuming and tedious for both participants and investigators,
and lack accuracy and consistency (25, 26) which limits their
integration in large-scale studies. Alternatives such as 24 h
recalls may be used. This method may include a structured
collection of detailed information about food intake during
the previous 24 h. A major drawback is that these recalls are
subjected to inter-day nutritional variation (25). For large-
scale studies, self-administered FFQ are preferred to evaluate
food intake. All these methods (food records, recalls, and
FFQ) require an intensive preparation before implementation.
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However, the managing and processing of a well-validated
FFQ is rather smooth for large studies. Still, inaccurate portion
size estimation, socially distorted answers, lack of objectivity
and accuracy in self-reported data, and errors in food intake
composition hamper FFQ and make it prone to record errors
(27, 28). The implementation of high-throughput omics tools
enables the holistic and integrative interrogation of nutrition
by identifying nutrition-specific biomarkers to objectively
assess dietary intake. These biomarkers may provide actionable
information to fill in the gaps of self-reported food intake
given the tight connection between metabolite production,
food intake, the microbiome, and health status (29). Indeed,
stratification of individuals into groups can be achieved through
the analysis of their respective metabolic profiles. This approach
of grouping subjects based on their metabolic phenotype was
coined “metabotyping” and has been used in several of studies
(30, 31). This review will examine this concept in the field of
personalized nutrition.

Pathways Toward Precision Nutrition
The goal of precision or personalized nutrition (PN) is the design
of customized nutritional recommendations to prevent or to
treat nutrition-related disorders (13). PN aims to set dynamic
nutritional recommendations based on individual attributes and
external environmental factors. Hence, PN strategies should
include genomics information, other factors such as dietary
and physical activity patterns, metabolome, and microbiota. The
post-genomic era generated various genome-wide association
studies (GWAS) that allow the identification of genomic
factors that might unveil the inter-individual metabolic response
variability to specific diets. Various genes and polymorphisms
have been defined as relevant factors to explain diet-specific
metabolic responses (32–36). However, there is weak clinical
evidence to establish comprehensive and integrated framework
for personalized nutritional interventions in clinical settings (37).
Despite this, different successful implementations already made
it to the clinic. For example, in inborn errors of metabolism
(IEM) which are a group of about 500 rare genetic diseases
due to defects in a given biochemical pathway due to the
deficiency or abnormality of an enzyme, its cofactor, or a
transporter, leading to an accumulation of the substrate or lack
of the product. In IEM, nutritional strategies are crucial in
treatment of some disease such as phenylketonuria screening
(38). Interventional nutrition has allowed the implementation of
specific diet and saved patients from devastating outcomes for
them and their families. In the wellness sphere, genetic tests are
used to define slow or fast metabolizers (33). While genomic-
based customized nutrition is already being implemented, PN
might lack sufficient evidence for full integration into clinical
setting (39).

METABOLOMICS AS A KEY ENABLER OF
PRECISION NUTRITION

Metabolomics is a key tool to investigate the effect of
food on the individual’s health. By identifying food-derived

biomarkers, inter-individual variability in metabolizing same
foods in health and disease states. Metabolomics could enhance
nutrition assessment through three main pathways: dietary
intake biomarker discovery, diet-related diseases exploration
through cohort studies, and dietary intervention assessment
through metabolic patterns. A summary of discussed studies are
presented in Table 1.

Dietary Intake Biomarker Discovery Using
Intervention Studies
Dietary intervention studies are based on consuming specific
food followed by biofluid collection either postprandial or
following a short-term intervention (54). Urine is the most used
biological sample due to its convenience compared to plasma and
serum. This strategy unveiled potential food intake biomarkers
such as citrus fruit (40), red meat (41), coffee (42), tea (43),
sugar-sweetened beverages (44), and wine (45). Even though,
several food specific biomarkers have been reported they still lack
independent large-scale validation studies. It also worth noting
that most of these biomarkers are rapidly secreted in urine.
Thus, they are mostly acute food intake biomarkers. Hence, given
this temporal limit, longer-term biomarkers of food intake are
crucially needed. Currently, an increasing number of studies are
assessing biomarkers in serum and plasma.

Dietary Biomarker Discovery Using Cohort
Studies
Large-scale cohort studies are also valuable tools to discover
dietary biomarkers. Dietary data may be collected using
traditional methods to identify consumer profiles related to
specific food (e.g., low and high consumers, consumers, and non-
consumers). In this case, metabolomic profiles are compared
between these subgroups to unveil potential dietary biomarkers.
Given their practicability, Self-reported dietary assessment
methods are often used in large-scale studies tend to rely
on which are known to be notoriously prone to error. It
is worth noting these studies are mainly association studies
and don’t allow causal inference (55). Intervention studies are,
therefore, needed to validate the potential metabolite as a specific
food intake biomarker. Several cohort studies identified intake
biomarkers such as fish (46), red meat (16, 56), whole-grain
bread (17), and walnuts (47). Furthermore, metabolomics has
also been used in populational stratification (57–59). Recently,
Wittenbecher et al. (16) applied serum metabolomics to unveil
significant relationships between different red meat intake
biomarkers with risk of type-2 diabetes. The authors state that
high levels of ferritin, low glycine, and altered hepatic derived
lipids in the circulation were associated with both total red meat
consumption and diabetes risk. This first study assessing a large
set of metabolites revealed the link between red meat intake and
diabetes risk and thus achieved an important step in biomarker
discovery in precision nutrition. Unveiling these links between
will allow deeper understanding potential metabolic pathways
as disease drivers. These pathways could be validated through
more interventional nutrition studies using targeted approaches
for biomarker validation.
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TABLE 1 | Examples of metabolomics-based studies in nutritional research.

Groups Platform Aim Main findings References

DIETARY INTAKE BIOMARKER DISCOVERY USING INTERVENTION STUDIES

8 healthy males

18–50 years old

Fluorescence detection

Targeted metabolomics

To compare the effects of citrus

dietary levels of proline betaine

on glycine betaine excretion, and

on plasma total homocysteine

and betaine concentrations in

healthy volunteers

Proline and betaine in dietary levels had little

effect on plasma total homocysteine

concentrations in healthy humans.

(40)

17 healthy males

24–74 years old

Fluorescence detection

Targeted metabolomics

Four analytes (creatinine, taurine,

1-methylhistidine, and

3-methylhistidine) specifically

found in meat and excreted in

urine were investigated.

Urinary 1-methylhistidine and 3-methylhistidine

as potential biomarkers of meat intake

(41)

7 females and 1 male

28–45 years old

NMR untargeted

metabolomics

Identification of coffee

consumption biomarkers

2-furoylglycine as a putative biomarker for

coffee consumption

(42)

20 healthy males

18–40 years old

NMR untargeted

metabolomics

Nutrikinetic modeling of tea

consumption using metabolic

data

Identification of increased urinary excretion of

several gut-mediated metabolites of tea

flavonoids

(43)

280 males and 285 females

18–64 years old

NMR untargeted

metabolomics

To identify urinary biomarkers

indicative of sugar-sweetened

consumption

Formiate, citrulline, taurine, and isocitrate were

identified as markers of sugar-sweetened

beverages intake

(44)

35 healthy males

18–69 years old Untargeted and targeted

metabolomics

Mass spectrometry

and NMR

Identification of wine

consumption biomarkers

Red wine and grape juice consumption alters

microbial fermentation and amino acid

metabolism

(45)

DIETARY BIOMARKER DISCOVERY USING COHORT STUDIES

33 males and 35 females

58–60 years old

Untargeted mass

spectrometry metabolomics

To develop a data-driven

procedure to discover urine

biomarkers indicative of habitual

exposure to different foods

Specific metabolites as dietary biomarkers of

oily fish [methyl-histidine] and coffee

[dihydrocaffeic acid derivatives]

(46)

1,257 females and 790

males

35–64 years old

Including 801 type 2

diabetes cases

Mass spectrometry targeted

metabolomics

This study aimed to identify

blood metabolites that possibly

relate red meat consumption to

the occurrence of type 2

diabetes

Six biomarkers (ferritin, glycine, diacyl

phosphatidylcholines 36:4 and 38:4,

lysophosphatidylcholine 17:0, and

hydroxy-sphingomyelin 14:1) were associated

with red meat consumption and diabetes risk

(16)

275 males (55–80 years)

and females (60–80 years)

Untargeted mass

spectrometry metabolomics

Whole-grain bread consumption

biomarkers

Pyrraline, riboflavin, 3-indolecarboxylic acid

glucuronide, 2,8-dihydroxyquinoline

glucuronide, and N-α-acetylcitrulline were also

tentatively identified

(17)

275 males (55–80 years)

and females (60–80 years)

Untargeted mass

spectrometry metabolomics

To characterize the dietary

walnut fingerprinting

18 metabolites, including markers of fatty acid

metabolism, ellagitannin-derived microbial

compounds, and intermediate metabolites of

the tryptophan/serotonin pathway

(47)

DIETARY BIOMARKER DISCOVERY USING DIETARY PATTERNS

24 healthy premenopausal

females

20–50 years old

Targeted metabolomics To identify typical and atypical

metabolite temporal patterns in

response to paired meal

challenge tests.

Three subgroups related to insulin resistance

and leptin levels are identified

(48)

12 males and 12 females

36–69 years old

Ultraviolet detection

targeted metabolomics

Assessed the response to

dietary carotenoids in juice

(watermelon and tomato)

Five metabolic subgroups with related to

dietary. This study identified strong and weak

metabolizers of carotenoids over time

(49)

740 males and 760 females

18–90 years old

Mass spectrometry targeted

metabolomics

Assessment of demographics,

dietary habits, and metabotype

Two subgroups were identified regarding

fasting metabolic profile and the postprandial

insulin levels.

(50)

19 postmenopausal finish

females

56–66 years old

Untargeted mass

spectrometry

Assessment of metabolic

phenotypes in a randomized

controlled, crossover meal study

Medium- to long-chain acylcarnitines shows

opposite patterns related to fruits and desert

intake. Whereas, short-chain acylcarnitines and

amino acids, were positively correlated with

saturated fat

(51)

(Continued)
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TABLE 1 | Continued

Groups Platform Aim Main findings References

79 females 28 males

18–65 years old

Untargeted mass

spectrometry

Developing a compliance tool by

using metabotyping strategies by

comparing average Danish Diet

or a New Nordic Diet for 6

months

22 unique food exposure markers were

identified that covered 7 food groups

(strawberry, cabbages, beetroot, walnut, citrus,

green beans, and chocolate)

(52)

16 females 21 males

18–50 years old

Targeted mass

spectrometry

Assessment Western and

Prudent dietary patterns on

metabotypes

Western dietary pattern is related to saturated

fat intakes with a metabolic signature

characterized by higher levels of short-chain

acylcarnitines and amino acids including

branched amino acids and aromatic amino

acids

(53)

Dietary Biomarker Discovery Using
Dietary Patterns
O’Sullivan et al. pioneered the combination of dietary patterns
and metabolomic patterns (60). Then, this approach has been
widely used in several studies (53, 61–64). It generally involves
applying chemometrics and multivariate statistical strategies to
model the metabolic patterns and the food intake behavior.
Different methods could be used. Unsupervised learning
methods are exploratory and are used to define metabolically
similar groups. The methods included k-means cluster analysis
(65–70), hierarchical clustering (71–73), self-organizing maps
(74), principal component analysis (PCA) (48, 51), factor analysis
(70), and mixed effect modeling (75, 76). Supervised learning
methods are predictive and are used to select biomarkers to
predict diet related metabolic patterns. Among these methods
partial least squares regression is widely used (51, 77). Univariate
statistics such as t-test and ANOVA, can also be used to
find discriminant features between the studied groups. It is
worth noting that cross-validation and the use of training
and validation sets are crucial for model validation. Krishnan
et al. (48) used metabolomics to stratify response groups to
meals with different glycemic indices. The study included 24
healthy premenopausal women aged between 20 and 50 years
old. The authors assessed blood glucose, insulin, and leptin
as covariates. The study revealed three distinct biologically
meaningful subgroups one with higher insulin resistance and
the other with higher leptin levels (48). Wang et al. assessed
the response to dietary carotenoids in juice (watermelon and
tomato) including 23 healthy subjects (49). Dynamic response
of individual plasma carotenoids has been assessed. The study
revealed five metabolic subgroups with related to dietary
carotenoids. This study identified strong and weak metabolizers
of carotenoids over time. The different responses seem to be
induced by genetic variants of the carotenoid metabolizing
enzyme β-carotene 15,15’-monooxygenase 1 (49). Li et al.
(50) from the Irish National Adult Nutrition Survey (NANS)
included 1,500 participants (740 males and 760 females) aged
between 18 and 90 years. This study assessed habitual food
and beverage consumption in an Irish cohort. The authors
assessed 26 plasma fatty acids and identified four subgroups
with distinct fatty acid patterns related to demographics,
dietary habits, and metabotype (50). Moazzami et al. assessed

metabolic phenotypes in a randomized, controlled, crossover
meal study including 19 postmenopausal finish women with
mean age of 61 years. One hundred eighty-nine metabolites
were assessed (51). Two metabolic subgroups were identified
regarding fasting metabolic profiles and the postprandial insulin
levels. Despite similar glycaemia after bread intake, plasma
leucine, isoleucine, sphingomyelins, and phosphatidylcholines
were associated with insulin sensitivity. The authors suggest the
use of fasting metabotypes to probe the postprandial insulin
behaviors in individuals with normal glycaemia to stratify
population (51). Andersen et al. aimed to develop a compliance
tool by using metabotyping strategies (52). The authors have
applied untargeted metabolomics on 181 urine samples from
subject assigned to either an Average Danish Diet or a New
Nordic Diet for 6 months. The data resulted in a predictive
model used to track non-compliant subjects. This study shows
how metabolomics could help to build metabolic predictors
to follow complex diets compliance as long as metabolites are
quantitatively assessed and the multivariate models are robustly
validated. Dietary patterns may also help in studying diet and
disease interrelationships. Bouchard-Mercier et al. studied in 37
plasma, using targetedmetabolomics, the metabotypes associated
with the Western and Prudent dietary patterns. The data
suggest that medium- to long-chain acylcarnitines show opposite
patterns related to fruits and desert intake. Whereas, short-
chain acylcarnitines and amino acids, were positively correlated
with saturated fat (53). These studies show the potential of
metabolomics is not only a tool dietary pattern compliance,
but also to identify and assess diet and disease relationships
(78–80).

INTERROGATING MICROBIOTA-DIET
CROSS TALKS THROUGH
METABOLOMICS

Gut microbiota profiling is gaining great interest in nutritional
interventions to assess dietary effects on gut microbiome
ecosystem diversity (81). The core idea is to tailor nutritional
interventions by optimizing the richness and diversity of the
gut microbiota (82). Diet may effect on the gut microbiota
and its impact on the microbial metabolome is very appealing.
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Diet may serve as a substrate that can be processed by the gut
microbiota for the production of small molecules to sustain
host-microbiome interactions (83–85). For example, it has been
reported that the majority of microbiota-derived short-chain
fatty acids is absorbed by the host (86) and contributes to
host nutrition (87). The FRUVEDomics Study is a behavioral
interventional trial. It aims to identify metabolomics- and
microbiome-based nutritional risk factors. The study included
36 participants that were randomized into three intervention
groups, fruits and vegetables diet, associated either with low-fat
or low carbohydrates (88). The results suggested that metabolic
syndrome is correlated to higher Firmicutes to Bacteroidetes
ratio (88). Other studies highlight the relevance of interrogating
the gut microbiota to achieve precision nutrition (89, 90).
These studies suggest that increased fasting plasma levels
of trimethylamine (TMA), produced by gut microbiota, is
associated with increased risk of atherosclerosis. These studies
led to targeted recommendations of nutrition advice such as
reducing red meat intake (91) for subjects with gut microbial
ecosystem that could convert red meat related nutrients into
proatherogenic molecules. Other general recommendations may
also be questioned, such as using artificial sweeteners, as reported
by Suez et al. (92) who reported that high sweetener intake
may lead to glucose intolerance in subjects with sensitive gut
microbiota (92). However, their results seem to be controversial
given the used high dose of sweetener (93, 94). Another way to
take advantage of this microbiota-host interaction through diet
and thus, through metabolites, is to use prebiotics which are
substrates that are selectively and used by host microorganisms
and led to better health for the host. They are another appealing
mean to take advantage of microbiome modulation (95). Some
studies suggest a potential therapeutic use of prebiotics (96–
99). For example, fiber-rich diet is associated with an increased
Prevotella/Bacteroides ratios and improved glucose metabolism
(100). However, diet is a highly diverse biochemical space,
often tuned by the microbiota (101). Thus, dietary interventions
may be personalized based on this fine-tuning of microbiome
of diet (102). Zeevi et al. used an elegant strategy integrating
microbiome, clinical, and dietary data to build predictive models
to shape customized dietary recommendations for healthier
glycaemia (18). Using genome-scale metabolic modeling, Shoaie
et al. elegantly modeled the interactions of diet, gut microbiota,
and host metabolism. The authors successfully predicted
microbiomemetabolic responses related to a dietary intervention
in obese subjects and formally validated their predictions using
fecal and blood metabolomics data (103). Given this microbiota
plasticity, microbiome-targeted interventions are very appealing
approach to personalize diet intervention. However, this
microbiota plasticity may be dependent on previous dietary
habits (104) and baseline microbial populations, which could
hamper microbiota-directed intervention responses (105). Thus,
high resolution definition of key diet-responsive microbiome
is very important to enhance the prediction performance of
dietary interventions. Despite current challenges that hamper
effective clinical translation of microbiota-related to nutrition
interventions, new analytical, and computational developments
may help overcome these limits. Indeed, its integration with

other omics such as proteomics and metabolomics for better and
more accurate functional profiling (18, 106). However, still large-
scale studies are needed to draw robust conclusions. Moreover,
controlled studies are mandatory to characterize environmental
factors independent of diet which may be crucial in modeling the
gut microbiota ecosystem. These evidence-based requirements
will help to open promising opportunities in designing
personalized nutritional strategies to shape the precision
nutrition era.

PRECISION NUTRITION THROUGH
INTEGRATIVE OMICS

As above mentioned, food patterns and eating behaviors
are extremely complex that include multilayer informational
flows (107). Gene–diet interactions might play a role in the
development of and protection against chronic diseases (108).
For example, the antioxidant content of the Mediterranean
diet could a protective mechanism since antioxidants modulate
gene expression (109). It is well known that oxidation and
inflammation processes are interconnected and may contribute
to different diseases the physiopathology (110). Epigenetics
explores heritable DNA modifications that may regulate
chromosome architecture to modulate gene expression without
changing the underlying sequence (111). Epigenetic phenomena
are critical for along the whole lifespan. Different studies confirm
the complex interactions that exist among food components,
dietary patterns, and epigenetic modifications (112, 113).
Lillycrop et al. reported the effect of nutrition through the life
span and how in early life nutritional exposure can induce long-
term changes in DNA methylation (114). Petersen et al. reported
strong influences of genetic variants on metabotypes which
shows the relevant exploration of the interconnection between
metabolomics and gene regulation through epigenetics (115).
This confirms that integrating metabolomics to other omics
might be of a great interest in both translational and clinical
level. Given this biological complexity, systematically tracking
relationships between diet and diseases through multiomics
lences is very challenging (116, 117). So, innovative systematic
strategies are urgently needed to unveil the role of food
types in disease pathogenesis for, ultimately, design dietary
recommendation to promote health and wellbeing or to cure
diseases. Some efforts are already promising. For example, Zheng
et al. proposed a computational framework for establishing
diet-disease associations and additional information on the role
of diet in disease development. The authors used large-scale
gene expression datasets and network-based analyses to identify
diet-disease relationships that could be used to build dietary
recommendations tools (118). Jensen et al. proposed a platform
to explore dietary recommendations in association with drugs
by building food-drug association database (119). Zeevi et al.
proposed an appealing and actionable integration ofmicrobiome,
clinical, and dietary data to customize dietary recommendations
to tightly monitor glycemia (18). However, large-scale multi-
omic nutritional intervention studies are rare. The current
high cost for multi-omics large-scale dataset generation and
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the lack of streamlined pipelines for smooth integration
of the heterogeneous datasets hamper the development of
such studies.

CHALLENGES AND FUTURE
PERSPECTIVES TOWARD PRECISION
NUTRITION

One of the raised limits of PN is that most studies are
observational rather than from randomized controlled
trials (RCTs) with assessed clinical end points. Limited
information is so far available to confirm that PN produce
more accurate and sustained changes in behavior than currently
used approaches and do these PN strategies led to better
health (7, 19, 120). So far, no large scale and long term
personalized nutrition study has been carried out (19, 121).
The logistical burden and costs of large-scale nutrition
intervention studies with disease risk as outcomes hamper
their implementation. Thus, the use of diet changes, or
established biomarkers of disease (glycated hemoglobin A1c,
blood pressure, or cognitive assessment) as outcomes may be
potential surrogates (121). Advancement of the young discipline
of PN, including metabotyping, will require new perspectives.
Setting strong theoretical foundations by identifying key
individual attributes that drive the personalization process.
Evidence for cost effectiveness of well-designed interventional
studies is also fundamental. Moreover, the introduction
of a regulatory framework is mandatory to gain trust of
health professionals and policy makers and enhance public
protection. This will need a substantial enhancement in the
scientific evidence using robust random control trials. These
efforts should include multidisciplinary teams, comprising
clinicians, behavioral psychologists, nutritionists, computer
scientists, and biomedical scientists (19). Furthermore, the
integration of other “omics” to provide deeper mechanistic

insights will be crucial to improve the evidence of precision
nutrition (103, 122).

CONCLUSION

Metabolomics proved to be a valuable tool for the measurement
of biochemical changes associated health changes related to
diet. It is also, highly, promising in identification of nutritional
biomarkers to monitor nutritional intervention studies. The
greatest challenge for metabolomics research is its integration
with other omics and phenotypic data (123). However, better
standardization of metabolomics data is mandatory to effectively
implement its functional and operational integration. This
will enhance our knowledge of diet-health relationships.
Nutrition research is intrinsically multidisciplinary, and
so is metabolomics. It requires collaboration among research
scientists with overlapping expertise areas including nutritionists,
clinicians, nurses, bioinformaticians, analytical scientists,
statisticians and chemists, and many other stakeholders. This
expertise integration is vital to develop the knowledge to
establish the evidence-based precision nutrition. The greatest
challenge to cracking the relationships between food and health
is to decipher the high inter-individual variability responses to
food intake. The new frontier of the nutritional sciences lies in
our ability to predictably engineer our physiologic networks for
diet, health, and disease. This will ultimately allow fine tuning
of diet intervention and health monitoring (18). Efforts must be
done to support evidence-based nutritional research and achieve
effective diet-based disease prevention.
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