
 Open access Proceedings Article DOI:10.1109/ICWS.2015.80

Paving the Way towards Semi-automatic Design-Time Business Process Model
Obfuscation — Source link

Elio Goettelmann, Amina Ahmed-Nacer, Samir Youcef, Claude Godart

Institutions: French Institute for Research in Computer Science and Automation

Published on: 27 Jun 2015 - International Conference on Web Services

Topics: Business process modeling, Artifact-centric business process model, Business process, Model transformation
and Context (language use)

Related papers:

 A Formal Broker Framework for Secure and Cost-Effective Business Process Deployment on Multiple Clouds

 Security and privacy approach of cloud computing environment

 Data Security in Cloud Computing - Issues and Solutions to SaaS

 Developing Secure Cloud Applications

 Security issues in Cloud Computing

Share this paper:

View more about this paper here: https://typeset.io/papers/paving-the-way-towards-semi-automatic-design-time-business-
31uiax7vbh

https://typeset.io/
https://www.doi.org/10.1109/ICWS.2015.80
https://typeset.io/papers/paving-the-way-towards-semi-automatic-design-time-business-31uiax7vbh
https://typeset.io/authors/elio-goettelmann-3x4gksidx6
https://typeset.io/authors/amina-ahmed-nacer-4oc8ubtcuz
https://typeset.io/authors/samir-youcef-mvw5q2tqc3
https://typeset.io/authors/claude-godart-29xxd1orjk
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/conferences/international-conference-on-web-services-grhrl99j
https://typeset.io/topics/business-process-modeling-1y6l20ks
https://typeset.io/topics/artifact-centric-business-process-model-1vixusa7
https://typeset.io/topics/business-process-1duww34h
https://typeset.io/topics/model-transformation-14pedqsf
https://typeset.io/topics/context-language-use-18vh7dju
https://typeset.io/papers/a-formal-broker-framework-for-secure-and-cost-effective-1xrjo0ugz9
https://typeset.io/papers/security-and-privacy-approach-of-cloud-computing-environment-gbemhuyt9t
https://typeset.io/papers/data-security-in-cloud-computing-issues-and-solutions-to-3mclxb2f2x
https://typeset.io/papers/developing-secure-cloud-applications-1li5vield7
https://typeset.io/papers/security-issues-in-cloud-computing-20u7s87xg8
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/paving-the-way-towards-semi-automatic-design-time-business-31uiax7vbh
https://twitter.com/intent/tweet?text=Paving%20the%20Way%20towards%20Semi-automatic%20Design-Time%20Business%20Process%20Model%20Obfuscation&url=https://typeset.io/papers/paving-the-way-towards-semi-automatic-design-time-business-31uiax7vbh
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/paving-the-way-towards-semi-automatic-design-time-business-31uiax7vbh
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/paving-the-way-towards-semi-automatic-design-time-business-31uiax7vbh
https://typeset.io/papers/paving-the-way-towards-semi-automatic-design-time-business-31uiax7vbh

HAL Id: hal-01237681
https://hal.inria.fr/hal-01237681

Submitted on 3 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Paving the Way towards Semi-automatic Design-Time
Business Process Model Obfuscation

Elio Goettelmann, Ahmed-Nacer Amina, Samir Youcef, Claude Godart

To cite this version:
Elio Goettelmann, Ahmed-Nacer Amina, Samir Youcef, Claude Godart. Paving the Way to-
wards Semi-automatic Design-Time Business Process Model Obfuscation. 2015 IEEE International
Conference on Web Services, ICWS 2015, IEEE, Jun 2015, New York, United States. pp.9,
฀10.1109/ICWS.2015.80฀. ฀hal-01237681฀

https://hal.inria.fr/hal-01237681
https://hal.archives-ouvertes.fr

Paving the way towards Semi-automatic

Design-time Business Process Model Obfuscation

Elio Goettelmann1,2, Amina Ahmed-Nacer1,3, Samir Youcef1 and Claude Godart1

1LORIA - INRIA Grand Est 2CRP Henri Tudor 3LIMED

Université de Lorraine, Nancy L-1855 Luxembourg-Kirchberg Université Abderhaman Mira, Bejaia

France Luxembourg Algeria

elio.goettelmann@tudor.lu, {amina.ahmed-nacer, samir.youcef, claude.godart}@loria.fr

Abstract—Business process (BP) stakeholders want to enjoy the
benefits of the cloud, but they are also reluctant to expose their
BP models which express the know-how of their companies. To
prevent such a know-how exposure, this paper proposes a design-
time approach for transforming a BP model into BP fragments
so that these BP fragments externalized in a multi-cloud context
do not allow a cloud resource provider to understand a critical
fragment of the company. While existing contributions on this
topic remain at the level of principles, we propose an algorithm
supporting automatically such a BP model transformation.

Index Terms—Business Process; Security Risk Management;
Cloud; Privacy; Obfuscation

I. INTRODUCTION

Cloud computing avoids upfront infrastructure costs, and

helps organizations to focus on their core business activities,

instead of their system infrastructure.

This concerns also business process (BP) execution. Com-

panies have a long tradition of cross-organizational processes,

especially in SaaS architectures. But in general such settings

are well established between well-known cooperating business

actors: the idea here is to go one step further with the exter-

nalization of BP fragments in the cloud with less established

and as a consequence more risky cooperation links.

In fact, using off-premise and shared cloud infrastructures

exposes the information systems of companies to new kind

of security risks. And what is yet a problem in general is

probably more exacerbated in the context of business processes

which express the know-how of companies: they are ready to

outsource their business processes to the cloud, but they want

to preserve their know-how.

One way for companies to prevent risks is to transform

their process models at premises so that one externalized BP

fragment do not allow understanding a critical part of a BP

model. This is connected to the idea of program obfuscation

that makes code harder to understand or read, generally for

privacy or security purposes. And in the same way that an

obfuscator tool is sometimes used to convert a straight-forward

program into one that works the same way but is much harder

to understand [1], our objective is to develop means supporting

BP models obfuscation.

In [2], we have elaborated a methodology for transforming

and obfuscating a BP model before a trusted deployment in

the cloud. But this obfuscation process is yet at the level of

recommendations and the work has to be done mainly by

designers’ hands. The objective of this paper is to go one

step further and to describe an approach for partly automating

this obfuscation process.

The rest of this paper is organized as follows. Section II

establishes the motivation and the context of this work. Then,

section III characterizes the notion of a critical BP fragment,

on which a particular effort must be paid for obfuscation. The

following section explains how obfuscation is put in practice

in our architecture. Section V discusses the state of the art and

finally section VI concludes and introduces some future work.

II. MOTIVATIONS AND CONTEXT

This section gives the motivation and the context of our

work. It starts with an example illustrating some practical

needs for process model obfuscation. Then it presents a

synthesis of process obfuscation means and localizes the place

where this paper contributes. Finally we situate the process

obfuscator tool in a global architecture and explain how the

obfuscator integrates with other components.

A. Motivating example

Fig. 1 depicts a loan process in a bank which objective is

to accept or reject a loan request. Depending on the customer

history and other parameters (loan amount, . . .), the loan is

treated in different ways. In general, the risk of the loan is

evaluated, but the loan request can be either directly accepted

or rejected. At any point in the process the hierarchy can

directly intervene. The final decision is taken depending on

the loan request treatment and the hierarchy validation.

The bank is ready to use cloud resources. However, it needs

to be in confidence with its cloud providers, and especially to

be sure that its strategy for directly accepting or rejecting a

loan will not be disclosed. In the same way, it does not want

to disclose how the hierarchy intervenes in the process and

how the final decision is taken. One way for reaching this

objective is to anticipate problems before they occur and the

bank is ready to make some preliminary work in this direction.

For mitigating risks, the bank can transform its BP model

using the principles and the methodology introduced in [2]

and overviewed in section II-B, and which consequence is to

obfuscate BP models.

B
a
n
k

Get Loan
Application

(GLA)

Check
Customer

Credit (CCC)

Risk
Evaluation

(RE)

Risk
Capture (RC)

Direct Loan
Agreement

(DLA)

Loan
Reject (LR)

Hierarchy
Validation (HV)

Decision
Consolidation

(DC)

Final
Decision (FD)

X

+

X

+

Fig. 1. A Loan Process

B. Process obfuscation means

The objective of the obfuscation activity is to preserve

the know-how that BP models formalize. This encompasses

different means [2] that this section overviews:

1) Retain sensitive data and logic at premises: Of course,

one way to preserve the know-how contained in the process is

not to disseminate it and to retain sensitive parts at premises.

For example, in the Loan process example, designers can

decide to maintain at premises Check Customer Credit and

Final Decision tasks that contain important know-how.

2) Split BP logic into several BP fragment logics: Another

intuitive mean is to split the BP logic in several fragments and

to distribute them to different cloud providers so-that a cloud

provider has only a partial view of the whole logic. In the

Loan example, in the case designers do not decide to maintain

Check Customer Credit and Final Decision on promises, these

should probably be managed by two different cloud providers.

3) Add non-functional logic: Adding useless code in a

program is a mean used by programmers for obfuscating it.

In the same objective, useless BP fragments can be added. In

this direction, we understood that some service logic added

for non-functional purpose (security, replication for verifica-

tion, . . .) has also the property to increase the complexity of

BP logic understanding.

4) Obfuscate data: Data obfuscation is also largely used to

obfuscate programs. Cryptography is used to obfuscate data,

but to execute, a task needs non encrypted data. Another mean

which can be used with readable data is anonymization. It

allows tasks working with neutralized data, and in our context

to hide (partly) the link between data and logic. In the Loan

process example, anonymizing customer information account

when possible is a way to render the strategy of the bank for

loan management more difficult to discover.

5) Separate logic and data: The idea there is to store the

logic and its related data in different places so that a cloud

cannot mine some links between data and logic by analysing

logic and data storage.

6) Split cases between clouds: The objective is to split the

process cases (instances) between the different clouds so that

none of the clouds has enough data to mine the process logic

(the number of different cases necessary to mine a BP model

is easily calculable [3]).

In this work we focus on BPs logic splitting for program

obfuscation. However, while deciding how to split a process

is feasible for an informed designer having the semantics of

the process in mind, it appears to be very difficult to automate

this activity as it is concerned with process semantic. It is our

objective in this paper to contribute to such automation.

C. Architecture

The architecture described in Fig. 2 is a case among several

variants but nevertheless it is quite representative for our

problematic. It is not revolutionary and a large part of its com-

ponents already exist in more traditional SaaS architectures

between companies where a composite service orchestrates

services from different service providers. The difference here

is that in the cloud context, not only services, but also the

computing infrastructure and the BPMS (Business Process

Management System) platform can be outsourced and shared.

Moreover, in the cloud context, peer-to-peer negotiations are

also more difficult and clearly limited: this increases security

risks.

For example, the architecture in Fig. 2 is close to this

in [4] concerned with SaaS. Nevertheless, some components

are impacted and new requested: they are enlightened in white

in in Fig. 2 and discussed below from the cloud consumer,

cloud broker and cloud provider sides.

1) Cloud consumer side: A cloud consumer, i.e. a client

of cloud resources, initiates the deployment of a business

process by developing a first version of the BP model including

the initial business process logic and some non-functional

requirements, i.e. QoS requirements, and especially in our

case, security requirements.

In our approach, QoS/Security requirements are formalized

in terms of constraints ([5]) which feed the cloud selection al-

gorithm of the cloud broker. Typically, we can note (in addition

to other QoS constraints): the pre-assignment of a task to a

specific cloud recognized for its expertise in a task domain,

or the definition of tasks co-location or separation constraints

for organizational purposes, for example the grouping of tasks

requiring the same nature of resources, or more specifically

related to security, a constraint for separating two tasks in an

obfuscation objective, or the requirement of a minimal trust

level for a specific task . . .

Thus, as depicted in Fig. 2 the consumer tool-kit includes

a traditional modelling tool (for example a BPMN1 editor),

a tool for supporting security/QoS requirement elicitation,

and finally a tool called obfuscator for supporting the

obfuscation of a process model.

1BPMN: Business Process Management Notation, . . .

Cloud
Provider(s)

Cloud
Broker(s)

Cloud
Consumer

Cloud offering
description

BP fragment
configuration

BP enactment

Cloud offering

BP logic

Risk
assessment

BP models
obfuscator

Security req.
editor

BP models
editor

QoS req. editor

Cloud selection
tool

BP splitting and
fragment weaving

BP deployment

BP fragment
configuration

BP enactment

BP logic

Risk
assessment

QoS req. and
constraints

Threat/Task/Provider

risk value matrix

Cloud configuration

Cloud-ready BP

Secutity req.
and constraints

Local BP
fragment

On-premises
BP fragment

Fig. 2. Architecture

Finally the consumer needs to enact a process, what is more

or less complex depending on the contract between the client

and the broker, but is not really impacted by our context.

2) Cloud broker side: The central operation of the cloud

broker is, based on the BP logic and the security and QoS

needs, to assign BP fragments to cloud providers. This can be

seen as a multi-criteria optimization problem: “how to find an

optimal assignment of clouds to tasks which maximize perfor-

mance and minimize costs while assuming the requested level

of security?” This algorithm inputs directly some QoS/security

constraints, and some more elaborated values as a synthetic

security risk calculated by a risk assessment tool. In fact, the

result of the obfuscation tool introduced in this paper is

a set of constraints which will enrich the QoS/security

constraints in input of the global optimization problem

resolved by the cloud broker.

This risk assessment tool confronts the consumer security

needs with the cloud providers security promises for calcu-

lating, in a first time for each couple task/provider, and in

a second time for each potential configuration of clouds, a

synthetic risk value. In our work, client requests and cloud

promises are compared using a common reference based on

the taxonomy work done by the CSA [6] and the ENISA [7]

public organizations. See [8] for more on this topic.

When tasks are assigned to cloud providers, the cloud broker

projects the BP logic on each selected cloud provider defining

in such a way a BP fragment per cloud. The next function is

to re-create the BP in its entirety by weaving the resulting BP

fragments.

Finally the cloud broker deploys the BP fragments to the

concerned providers and establishes the communication links

between the different providers, and between the providers and

the client, as requested.

3) Cloud provider side: The first function of a cloud

provider is its ability to describe the services it offers. Force is

to note that currently a service description mainly focuses on

the functional dimensions of the service and that the terms of

contracts between the cloud and its consumers are generally

limited to cost and performance considerations, and that poor

care is given to security issues. However, some grounding

work still exists to support security properties descriptions of

offers: in our work we have used the Security Trust Assurance

Registry (STAR) of the Cloud Security Alliance (CSA) [9]

which seems to us being a good starting point. Another point

concerns the metrics for comparing such cloud descriptions.

There is also a lack of standards in this area and in our

work we were inspired by the Common Assurance Maturity

Model [10] and the EuroCloud Star Audit model [11].

To support the execution of a BP fragment model, a cloud

must provide an API that exposes the requested function for

executing and connecting BP process fragments.

III. CRITICAL BP FRAGMENTS CHARACTERIZATION

This section is organized as follows. The next section

overviews our approach, i.e. hiding decisions and synthe-

ses by distributing the concerned fragments in different

clouds. Section III-B establishes intuitively some syntactic

links between critical fragments and BP models, taking the

BPMN notation as a reference (section II-A). Section III-C

formalizes the notions of a decision and of a synthesis which

are the cornerstones of our approach.

A. Approach: decisions and syntheses hiding

Among the different means listed in section II-B, we

concentrate here on the objective to split a BP logic into

several BP fragments and to assign BP fragments to different

cloud providers so that a cloud provider alone will not be

able to rebuild valuable information about the BP know-how.

In this objective, the first step is to find out the critical

business process fragments. Our working hypothesis is that

B
a
n
k

Get Loan
Application

(GLA)

Check
Customer

Credit (CCC)

Risk
Evaluation

(RE)

Risk
Capture (RC)

Direct Loan
Agreement

(DLA)

Loan
Reject (LR)

Hierarchy
Validation (HV)

Decision
Consolidation

(DC)

Final
Decision (FD)

X

+

X

+

P
B1

B11 B111

B1111

Fig. 3. Splitting the Loan Application process in blocks.

the more critical fragments of a BP model, i.e. fragments

which includes more know-how about the process, are these

which are concerned with, on the one hand decisions, i.e. the

places where some strategic choices are made, and on the other

hand, syntheses, i.e. the places where different contributions

are synthesized.

The main problem here is that, while designers are intu-

itively able to define such fragments, using their knowledge

of the process, automating this task, which means to be

able to syntactically characterize such critical fragments, is

largely more hazardous. Especially, if decisions and syntheses

are explicitly contained in some fragments, they can also be

implicitly mined from others not apparently so critical. This

is typically the case, as developed below, for the different

alternative flows associated to a decision, which can allow

mining the corresponding decision.

These critical fragments identified, the objective is to split

them in fragments to be assigned to different providers while

assuming that their combination will preserve the whole BP

semantic and continue to hide process decisions and syntheses.

B. Intuition of decisions and syntheses in BP models

The question addressed here is “how decisions and synthe-

ses can be syntactically characterized in a BP model?” The

following sections formalize the intuitions which emerged in

the study of several academic examples and were globally

validated against other such examples.

a) Hypotheses: In the following, we take the well-known

BPMN notations as a reference for BP modelling. We make

also the hypothesis that our BPMN processes are well struc-

tured [12]. To make short, to each opening (x)or-split gateway

corresponds a closing (x)or-join gateway, and to each opening

and-split gateway corresponds a closing and-join gateway. In

addition, the fragments between such brackets do not overlap.

It has been demonstrated that it is not a limit in theory and

we discuss quickly practical limits in section VI.

Our motivating example in Fig. 1 is well structured because

the and-split is closed by an and-join, the xor-split is closed by

an xor-join, there is no gateway between these two gateways,

and the xor-split-xor-join block is completely included in the

and-split-and-join block.

b) Decisions (intuitive definition): We have established a

relation between decisions and (x)or-split gateways triggering

alternatives fragments, and more precisely that the decisions

are taken in the task or fragment preceding such gateways. We

call Decision opening such a critical fragment. In our example,

the CCC task implements a Decision opening fragment.

c) Syntheses (intuitive definition): Respectively, we have

associated syntheses to and-join gateways synchronizing sev-

eral flows executing in parallel, and more precisely that

syntheses are done in the task or fragment succeeding such

gateways. We call Synthesis closing such a critical fragment.

In our example, the FD task implements a Synthesis closing

fragment.

d) Decision dependency: Also, we find out that if a de-

cision is mainly implemented in a task or fragment preceding

an (x)or-split gateway, such a decision is often complemented

by an action in the task or fragment following the (x)or-

join gateway closing the opening or-split. We say that there

is a Decision dependency between these two complementing

fragments. In our example, there is a Decision dependency

between DC and CCC.

e) Synthesis dependency: Respectively if a synthesis is

mainly implemented in a task or fragment succeeding an and-

join gateway, such a synthesis is often prepared in the task

or fragment preceding the opening and-split gateway corre-

sponding to the closing and-join gateway). We say that there

is a Synthesis dependency between these two complementing

fragments. In our example, there is a Synthesis dependency

between GLA and FD.

f) Alternative relationship: As introduced above, deci-

sions are also implicitly existing in the flows arising from

decisions fragments. In fact, regarding decisions, analysing

the alternative flows following an or-split can allow mining

the decision strategy by comparing the different data states

and the conditions flowing in the different alternatives. We

say that there is an Alternatives relationship between the

fragments in these alternative flows. Back to our example,

analysing the three flows issued from the or-split gateway can

allow understanding the algorithm used in the CCC task by

comparing the different loan properties considered in the three

flows. There is an Alternatives relationship between these three

flows.

Surely things are more difficult and this way of doing

is incomplete; for example we had a reflection about the

opportunity to separate or not the flows contributing to a

synthesis, but this appeared us not so useful and currently

we do not consider this case. Also the result of obfuscation

can lead to inconsistencies with designer choices (see sec-

tion IV-D). Nevertheless we find that our approach is quite

plausible in general and applies in most cases. However, due

to this uncertainty the obfuscation service currently remains

interactive.

C. Decisions and syntheses specification

The above section has intuitively introduced and char-

acterized the critical fragments associated to decisions and

syntheses. This section explains how to specify more formally

these notions.

In this objective, we use an internal representation of a BP

based on the R-PST model (Refined Process Structure Tree)

defined in [12]. In such a structure, decisions and syntheses

elements are characterized as nodes with a specific position in

the tree, and as some relationships between the corresponding

nodes.

Before formalizing decisions and syntheses, we overview

the R-PST internal representation of a BP.

1) R-PST representation of a BP: To implement our ap-

proach, we have extended the algorithm described in [12]

which allows to break down a BP model logic in a R-PST

tree. This algorithm has some application conditions consistent

with the BP modelling hypotheses we have introduced above.

In a first step, the process is broken down in canonical

blocks. A canonical block is a BP fragment with one entry

and one exit (SESE: Single Entry/Single Exit). The entry of

the canonical block is either a task (in the case of a sequence

flow), or a gateway splitting the flow in several alternative

sub-flows ((x)or-split gateway) or concurrent sub-flows (and

gateway). The exit of a canonical block started with an (x)or-

split gateway is an (x)or-join gateway (decision block); the

exit of a canonical block started with an and-split gateway

is an and-join gateway (parallel block). Roughly speaking, a

canonical block is a BP fragment between two complementary

split and join gateways.

A canonical block can include one or more canonical

blocks, but either in their entirety or not at all, i.e. blocks

cannot overlap. Block imbrication is the hierarchy property

used in R-PST.

Fig. 3 depicts the decomposition of the Loan Application

process in canonical blocks.

More formally, a R-PST is basically a classical tree (see

Fig. 4-(a)), i.e. a set of nodes, each node having either one

parent or none (the root). Each node has one or several

children, or none (a leave). In our model, the set of children

is ordered. Thus a node has one left brother (which precedes

the node in the list of its parent children) and a right brother

(which succeeds it in this list).

2) R-PST tree decorated with decision and synthesis prop-

erties: Working with such a structure largely simplifies the

characterization and visualization of decision and synthesis

elements as illustrated below. In the following, we simply

use the well-known technique of attributed grammar [13] to

decorate the R-PST tree. Fig. 4-(b), depicts our motivating

example, with attributes for representing Decision opening,

Synthesis closing, Decision dependency, Synthesis dependency

and Alternatives dependency, as formally defined below:

a) Node type.: Each node is labelled with a type:

type : node →



















“X”, if it is a decision block

“ + ”, if it is a synthesis block

“seq”, if it is a sequence block

nothing else

b) BP fragment criticality: The criticality attribute ex-

presses if a fragment is a Decision opening or a Synthesis

closing fragment.

criticality : node →











“do”, if it is a decision opening

“sc”, if it is a synthesis closing

nothing else

Its value is defined as follows:

Decision opening fragment. In the R-PST tree, a node

which is the left brother of a node with type = “X” is a

decision opening fragment. Its criticality attribute has the

value “do”:

Let n be a node of the R-PST tree,

type(n) = “X” → criticality(left brother(n)) = “do”
To visualize this property, the CCC task is exposed with “do”

in Fig. 4-(c).

Synthesis closing fragment. In the R-PST tree, a node

which is the right brother of a node with type = “+” is a

synthesis closing. Its criticality attribute has the value “sc”.

Let n be a node of the R-PST tree,

type(n) = “ + ” → criticality(right brother(n)) = “sc”
To visualize this property, the DC task is exposed with “sc”

in Fig. 4-(c).

c) Decision dependency:

In a R-PST tree, there is a decision dependency between the

left brother and the right brother of a node with type “X”.

Let n be a node of the R-PST tree,

type(n) = “X” → decisions dependency(

left brother(n),

right brother(n))

To visualize this property, a decision dependency is depicted

between fragments CCC and DC in Fig. 4-(c).

d) Synthesis dependency:

In a R-PST tree, there is a synthesis dependency between the

left brother and the right brother of a node with type “+”. Let

n be a node of the R-PST tree,

type(n) = “ + ” → synthesis dependency(

left brother(n),

right brother(n))

To visualize this property, a synthesis dependency is depicted

between fragments GLA and FD in Fig. 4-(c).

Fig. 4. (a): R-PST abstract concepts, (b): Loan process R-PST, (c): decorated Loan process R-PST

e) Alternative dependency:

In a R-PST tree, there is an alternative dependency between

all the children of a node which type is “X”. Let n be a node

of the R-PST tree,

type(n) = “X” → alternative dependency(

children(n))

To visualize this property, an alternative relationship is de-

picted between fragments B1111, DLA and LR in figure 4-(c).

IV. SEMI-AUTOMATIC BP LOGIC OBFUSCATION

In this section we explain how the critical fragments are

used to obfuscate a BP model.

Process model

Transformation R-PST representation

Constraints

generation

trust_level and separate

constraints

Consistency

checking

Consistent trust_level and

separate constraints

Fig. 5. Obfuscator architecture

A. Approach

As introduced above, this work has been developed in a

broader context where obfuscation is just one dimension: risk

management [8], cost and performance optimization [14] are

other ingredients that we consider in a global optimization

approach. As a consequence, the result of the obfuscation

service is not directly the assignment of fragments to cloud

providers, but the definition of trust-level and separation con-

straints as defined below, which are inputs for this optimization

algorithm. Also, in Fig. 2, trust-level and separation constraints

are parts of the security requirements and constraints provided

by the cloud client and used by the Risk assessment and Cloud

selection components of the cloud broker.

Trust-level constraints allow assigning to a decision opening

fragment (respectively to a synthesis closing fragment) a

minimum trust level which will be used to assert that the cloud

assigned to this fragment by the optimization algorithm is

trusted enough. Separation constraints requests two fragments

not to be assigned to the same cloud.

This lead to the following process for obfuscation con-

straints generation (Fig. 5):

1) In the first step, we build the hierarchical representation

of the BP logic as a R-PST tree (section III-C1).

2) In the second step, we decorate the tree with know-how

attributes (as defined in section III-C2).

3) In the third step, we apply rules 1 to 5 below on the

tree structure using know-how attributes to generate

separation and trust-level constraints.

4) In the fourth step, the consistency of constraints is

checked against constraints of other sources coming

from designer choices or cost, performance optimization.

B. Rules for BP fragment assignment for decision and synthe-

sis hiding

Consistently with the general principles introduced above,

we have defined the following rules for assigning BP frag-

ments to cloud providers:

• Rule 1 (concerned with Decision opening): if possible,

break down the fragment preceding the or gateway, or at

least assign it to a cloud with a high level of trust

• Rule 2 (concerned with Synthesis closing): if possible

break down the fragment succeeding the and gateway, or

at least assign it to a cloud with a high level of trust

• Rule 3 (concerned with Decision dependency): assign

the fragment preceding an opening or-split gateway and

the fragment following the corresponding closing or-join

gateway to two different clouds

B
a
n

k

Get Loan
Application

(GLA)

Check
Customer

Credit (CCC)

Risk
Evaluation

(RE)

Risk
Capture (RC)

Hierarchy
Validation (HV)

X

+

X

+

C
lo

u
d

 1

Decision
Consolidation

(DC)

Final
Decision (FD)

X

+

X

+

C
lo

u
d

 2

Loan
Reject (LR)

X

+

X

+

Direct Loan
Agreement

(DLA)

Receive

Receive

Receive

Fictive
Activity

Send

Send

Send

Receive

Receive

Send

Receive

Send

Fictive
Activity

Receive

Receive

Send

Receive

Fig. 6. The fragmented Loan Process

• Rule 4 (concerned with Synthesis dependency): assign

fragment preceding an opening and-split gateway and the

fragment following the corresponding closing and-join

gateway to two different clouds

• Rule 5 (concerned with Alternatives relationship): assign

the different fragments following a or-split gateway (the

different alternatives of the choice) to different clouds.

Regarding rule 1 and rule 2, splitting decisions and syn-

theses comes from free when Decision opening and Synthesis

closing are themselves complex fragments including at least

one or or and blocks. In the case it is a single task, only

a recommendation of splitting the fragment can be given in

addition to assign it to a cloud with a good trust level.

C. Constraints generation

A trust level constraint trust level(fi) > l is assigned to

each fragment (block in the R-PST tree) which critical attribute

value is do or sc. It is either a decision opening (rule 1) or a

synthesis closing (rule 2) fragment. This level l is application

dependent. Nevertheless it requires a global reference for all

cloud provider; see [8] for a discussion about the definition of

such a global reference.

A separate(fi, fj) constraint is defined for each

decision dependency(fi, fj) (rule 3) and each

synthesis dependency(fi, fj) (rule 4).

A separate(fi, fj) constraint is defined (rule 5)

for each couple of fragments fi, fj taken from an

alternative relationship.

D. Interactive consistency checking

The objective of this activity is to verify the consistency

of constraints, and especially the constraints generated by

the obfuscator tool against the constraints of other sources.

In theory, due to our modelling hypotheses and especially

the SESE (Single Entry/Single Exit) principle, inconsistencies

between constraints automatically generated by the obfuscator

cannot occur.

Especially, the consistency of the constraints automatically

generated and the constraints manually defined by the de-

signers have to be verified. This is due, on the one hand to

the uncertainty in the automation of decisions and syntheses

detection, and on the other hand to the strategic decision of

designers, for example the decision to retain on premises all

or a part of the components of a critical fragment.

Regarding the trust level constraints, there is an incon-

sistency when the obfuscator tool and a designer propose

different trust levels for the same fragment. In such a case,

the final choice is on the designer responsibility.

Regarding the separate constraints, an inconsistency exists

when a separate(fi, fj) constraint, generated by the obfus-

cator, and a colocate(fi, fj) constraint, defined by a designer,

occur simultaneously.

A colocate(fi, fj) constraint means that fragments fi and

fj must be assigned to the same cloud provider. This can

be for security purpose; for example a designer decide to

maintain fi and fj on premises because they are very critical

fragments. This can be also for other reasons, for example,

cost or performance optimization (see [5] for more about co-

location constraints).

In the case of such a conflict, the colocate(fi, fj) constraint

wins in general as it corresponds to a designer choice, but in

any case, the final choice rests yet on his/her responsibility.

E. Back to the motivating example

Applying this algorithm to our example, 7 constraints are

generated:

trust level(FD) > l1
trust level(CCC) > l2
separate(GLA,FD)
separate(CCC,DC)
separate(B1111, DLA)
separate(B1111, LR)
separate(DLA,LR)

Fig. 6 depicts a distribution of the loan process consistent

with these constraints.

Just for the example, a designer can decide to maintain

on premises CCC and DC thus generating the constraint

colocate(CCC,DC) inconsistent with separate(CCC,DC). In

consequence, he has to delete the separate(CCC,DC) con-

straint.

V. STATE OF THE ART

As introduced above, this work is developed in the vein

of [15] and of our previous work [2]. But these propositions

remained at the level of principles and methodologies.

Regarding works directly addressing privacy preservation,

force is to note that most of them are concerned with the

execution time ([16] for example) and that very few apply

at the design time. At design time, [17] generate obfuscated

BP models from BP, but with a different purpose (model

sharing and analysis) and techniques which are not adapted to

our context. Between design time and execution time, [18] is

concerned with privacy preserving of BP models provenance,

what is complementary, but not directly related to our work.

Other works are concerned with process model splitting

and process fragments weaving [19], [20], [4], [21] but other

work either do not consider the privacy dimension at all, or

do not automatically generate splitting recommendations from

a direct analysis of the BP logic.

VI. CONCLUSION

Preserving the know-how implemented in its processes is

the first guarantee to provide before an enterprise can accept

to deploy them in the cloud. As a contribution to this topic, this

paper has introduced a first semi-automatic approach for ob-

fuscating a business process by simply analysing the BP logic

for efficiently splitting it in several fragments, and assigning

each fragment to different clouds, so that a cloud alone cannot

discover valuable information about the enterprise know-how.

One can consider that the five rules above can generate

an important fragmentation of process models. But, on the

one hand this can be the price to pay for the preservation of

know-how, and on the other hand this fragmentation can be

reduced by designer decisions who can decide to maintain on

premises several critical fragments or that some fragments are

finally not so critical and can be combined. This can also be

optimized on the basis of measures of know-how risk and the

acceptance of a threshold for risk [8] (out of the scope of this

paper). The fact that we consider well-parametrized process

models is also a restriction, but the same hypothesis is often

done in most theoretical work about BP. Also, we consider

that in our context, we are mainly concerned with high level

coordination, and at this level, this constraint seems realistic.

While a complete validation of the choices made in our

algorithm yet remains to be done against more numerous and

realistic process models, our experiments against academic

examples has confirmed our intuitions and the plausibility

of the approach. We have also demonstrated the technical

feasibility of the approach by simply extending a BPMN to

R-PST algorithm.

Regarding future work, if the objective of this work is to

prevent one cloud provider to discover some know-how of

a client company, it does not consider how an alliance of

several cloud providers can attack our solution: it is what we

are currently investigating.

REFERENCES

[1] C. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and
obfuscation tools for software protection,” Software Engineering, IEEE

Transactions on, vol. 28, no. 8, pp. 735–746, Aug 2002.
[2] E. G. an Nicolas Mayer and C. Godart, “A general approach for a trusted

deployment of a business process in clouds,” in ACM Fifth International

Conference on Management of Emergent Digital EcoSystems (MEDES),
2013, pp. 92–99.

[3] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. J. M. M. Weijters, “Workflow mining: A survey
of issues and approaches,” Data Knowl. Eng., vol. 47, no. 2, pp. 237–
267, 2003.

[4] W. Fdhila, M. Dumas, C. Godart, and L. Garcı́a-Bañuelos, “Heuristics
for composite web service decentralization,” Software and System Mod-

eling, vol. 13, no. 2, pp. 599–619, 2014.
[5] W. Fdhila, M. Dumas, and C. Godart, “Optimized decentralization of

composite web services,” in CollaborateCom’10, 2010, pp. 1–10.
[6] Cloud Security Alliance, “The Notorious Nine - Cloud Computing Top

Threats in 2013,” Tech. Rep., 2013.
[7] European Network and Information Security Agency, “Benefits, risks

and recommendations for information security,” Tech. Rep., 2009.
[8] E. Goettelmann, K. Dahman, B. Gâteau, E. Dubois, and C. Godart, “A

security risk assessment model for business process deployment in the
cloud,” in IEEE International Conference on Services Computing (SCC),
2014, pp. 307–314.

[9] Cloud Security Alliance, “Security, Trust and Assurance Registry,” https:
//cloudsecurityalliance.org/star/, Tech. Rep., 2014.

[10] Common Assurance Maturity Model, “Common Assurance Matu-
rity Model Guiding Principles,” http://www.common-assurance.com/
resources/Common-Assurance-Maturity-Model-vision.pdf, 2010.

[11] EuroCloud Deutschland eco e.V., “Eurocloud Star Audit,” http://www.
saas-audit.de/en/511/requirements/, 2012.

[12] A. Polyvyanyy, L. Garcı́a-Bañuelos, and M. Dumas, “Structuring acyclic
process models,” in Business Process Management - 8th International

Conference (BPM), 2010, pp. 276–293.
[13] D. E. Knuth, “The genesis of attribute grammars,” in Attribute Gram-

mars and their Applications, International Conference (WAGA).
[14] K. Bessai, S. Youcef, A. Oulamara, C. Godart, and S. Nurcan, “Schedul-

ing strategies for business process applications in cloud environments,”
IJGHPC, vol. 5, no. 4, pp. 65–78, 2013.

[15] M. Jensen, J. Schwenk, J. Bohli, N. Gruschka, and L. Iacono, “Security
prospects through cloud computing by adopting multiple clouds,” in
CLOUD’11, 2011, pp. 565–572.

[16] R. Conforti, M. L. Rosa, G. Fortino, A. H. M. ter Hofstede, J. Recker,
and M. Adams, “Real-time risk monitoring in business processes: A
sensor-based approach,” Journal of Systems and Software, vol. 86,
no. 11, pp. 2939–2965, 2013.

[17] H.-G. Fill, “Using obfuscating transformations for supporting the sharing
and analysis of conceptual models,” in Multikonferenz Wirtschaftsinfor-

matik, 2012.
[18] M. Bentounsi, S. Benbernou, and M. J. Atallah, “Privacy-preserving

business process outsourcing,” in IEEE 19th International Conference

on Web Services (ICWS), 2012, pp. 662–663.
[19] R. Khalaf and F. Leymann, “E role-based decomposition of business

processes using BPEL,” in IEEE International Conference on Web

Services (ICWS), 2006, pp. 770–780.
[20] E. Goettelmann, W. Fdhila, and C. Godart, “Partitioning and cloud

deployment of composite web services under security constraints,” in
IEEE International Conference on Cloud Engineering (IC2E), 2013, pp.
193–200.

[21] E. F. Duipmans, L. F. Pires, and L. O. B. da Silva Santos, “A
transformation-based approach to business process management in the
cloud,” J. Grid Comput., vol. 12, no. 2, pp. 191–219, 2014.

https://cloudsecurityalliance.org/star/
https://cloudsecurityalliance.org/star/
http://www.common-assurance.com/resources/Common-Assurance-Maturity-Model-vision.pdf
http://www.common-assurance.com/resources/Common-Assurance-Maturity-Model-vision.pdf
http://www.saas-audit.de/en/511/requirements/
http://www.saas-audit.de/en/511/requirements/

