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Abstract

The PAX6 gene is a transcription factor expressed early in development, predominantly in the eye,

brain and gut. It is well known that mutations in PAX6 may result in aniridia, Peter's anomaly and

kertatisis. Here, we present mutation analysis of a patient with aniridia, autism and mental retardation.

We identified and characterized a 1.3 Mb deletion that disrupts PAX6 transcriptional activity and

deletes additional genes expressed in the brain. Our findings provide continued evidence for the role

of PAX6 in neural phenotypes associated with aniridia.

Introduction

The Paired box 6 (PAX6) gene encodes a transcription factor that is involved in several

developmental pathways and is expressed early in the development of the eye, numerous

regions of the brain, and the pancreas. The 22 Kb PAX6 gene contains 14 exons, including an

alternatively spliced exon 5a, and encodes a 422 aa protein. The Pax6 protein contains two

DNA binding domains—a paired domain and a homeodomain—and one proline/serine/

threonine-rich (PST) transactivation domain.

Mutations in PAX6 primarily cause aniridia, though different types of mutations in PAX6 lead

to different ocular phenotypes. For example, while most PAX6 nonsense mutations lead to

aniridia (MIM 106210), many missense mutations result in Peter's anomaly (MIM 603807)

(Azuma et al. 1996, 1998; Azuma and Yamada 1998; Azuma et al. (1999). It is thought that

while nonsense mutations result in haploinsufficiency due to nonsense mediated decay (NMD),

missense mutations may affect the ability of Pax6 to bind to specific targets thereby leading

to differing phenotypes (Azuma et al. 2003; Chao et al. (2003; Hanson (2003).
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Additionally, PAX6 is a key gene in a contiguous gene deletion syndrome termed ‘WAGR’,

so named for ‘Wilm's tumor, aniridia, genital or urinary tract abnormalities, and mental

retardation/developmental delay’ (MIM 194072). This syndrome is usually the result of a

deletion encompassing all or part of PAX6 and Wilm's tumor 1 (WT-1). However, with the

development of more specific fluorescent in situ (FISH) probes it is apparent that smaller

deletions in this region can result in WAGR syndrome. WAGR syndrome also varies in its

presentation. It is thought that mutations and deletions in WT-1 are likely responsible for the

Wilm's tumor phenotype while mutations and deletions in PAX6 are likely responsible for the

aniridia phenotype (van Heyningen et al. 2007; Fischbach et al. (2005). It is still unclear which

genes in the WAGR locus are responsible for the mental retardation phenotype associated with

the syndrome.

However, beyond eye phenotypes, there is emerging evidence for the role of PAX6 mutations

in human behavioral and neurodevelopmental phenotypes. It is well known that PAX6

influences development of the nervous system and brain through regulation of proneural genes

such as neurogenin 2 (Ngn2) and achaete-scute complex homolog-like 1 (Mash-1) (van

Heyningen and Williamson 2002; Scardigli et al. (2003). In human populations, recent studies

have identified individuals with PAX6 mutations who present only with mental retardation and

aniridia (Malandrini et al. 2001; Ticho et al. (2006; Graziano et al. (2007). MRI studies of

patients with aniridia and no obvious intellectual deficits have shown subtle brain abnormalities

including a lack of the anterior commisure and pineal gland (Mitchell et al. 2003). The Pax6

heterozygous mutant mouse, small eye, shows both ocular and neuronal phenotypes including

an absent olfactory bulb, a decrease in cortical neurons and cortical plate thickness, as well as

altered dorso-ventral patterning of the forebrain.

Here we describe molecular genetic characterization of a male with autism, moderate mental

retardation, and familial aniridia. The genetic investigation of individual 3A was performed

with both targeted fluorescent in situ hybridization probes and a high-density oligonucleotide

microarray. These tests identified a deletion 3′ to PAX6 that adds to the growing number of

genetic abnormalities implicating PAX6 not only in eye phenotypes, but also in

neurodevelopmental and behavioral disorders such as autism.

Phenotypic characterization

The patient was the 5 lb 12 oz result of a 37-week gestation. He is the only child of non-

consanguineous parents (Fig. 1). His mother also has aniridia and a history of major depression,

anxiety, and social awkwardness but was not diagnosed with autism. The mother's quality and

quantity of social relationships is significantly diminished as reported by family members. She

is currently estranged from her son and other members of her immediate family.

Pregnancy and birth history were unremarkable, though the patient was brought back to the

hospital three days after birth because he had lost weight and had a decreased temperature.

Bilateral complete aniridia was present from birth. As an infant he was described as colicky.

He sat at 5 months, crawled at 8–9 months and walked at 12–13 months. He first spoke at 18

months and developed roughly a dozen words. His language regressed at age two and by 36

months he was nonverbal, was diagnosed with autism at the University of Washington, Seattle,

and remains nonverbal to date.

His behaviors were and continue to be consistent with a diagnosis of autism. As a toddler and

young child he displayed arm flapping, toe walking, spinning, showed little to no eye contact,

and did not engage in pretend play. Instead he engaged in extensive ritualistic lining and

organizing of toys and objects. He did not engage his peers or adults socially, though he was

affectionate with his parents. He is now described as rigid and routine bound. He has periods

of hyperactivity and constant vocalization, most often humming Christmas tunes and
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inappropriate laughter. He currently takes Abilify (10 mg daily) for disruptive and self-

injurious behavior. He is not described as aggressive towards others. He has severe

compulsions including hair pulling, and is impulsive without regard to consequences. He takes

Clonidine (0.2 mg nightly) and Trazodone (75 mg nightly) for severe sleep disturbance and

sleeps an average of 6 h a night. He also displays a remarkably high pain tolerance, strong

preference for soft and extremely spicy foods, and Pica behaviors. His intellectual development

was significantly delayed. Behavior problems have prevented valid IQ testing, though adaptive

behaviors as reported by teachers and parents are consistent with moderate mental retardation.

He also presents with a sebaceous nevus on the scalp midline. The patient also underwent a

brain MRI at the University of Iowa Hospitals and Clinics (UIHC) at age 13 years, which was

unremarkable for gross cortical malformations.

PAX6 deletion detection

Cytogenetic characterization in patient 3A

Cytogenetic testing was conducted through UIHC to determine the cause of the aniridia,

developmental delay and autism in patient 3A. Karyotyping and fragile X testing were both

unremarkable. Testing of the Prader-Willi/Angelman locus (15q11-13) for deletions and

abnormal methylation was also normal. The patient was also evaluated for WAGR syndrome.

Renal ultrasound at age 13 years was negative, and FISH analysis of the 11p12-14 WAGR

region showed a deletion only of probe FO2121 ish del(11)(p13p13)(FO2121-), 11p13(FATx2,

D11S324x2, WT-1x2). The location of the deleted probe is approximately 100 kb distal to the

3′ prime end of PAX6. This region has been shown to harbor regulatory elements for PAX6

expression (Lauderdale et al. 2000; Kleinjan et al. 2006; Kim and Lauderdale 2006).

Deletion detection in patient 3A

The deletion boundaries were further delineated using Affymetrix GeneChip® Human

Mapping 250K Microarrays. DNA from patient 3A and his father 2A (mother was unavailable

for testing), was hybridized according to the manufacturer's instructions to affymetrix NspI

arrays, which contain probes for ∼260,000 SNPs scattered across the genome. The assay uses

250 ng of genomic DNA digested with NspI and restriction enzyme (New England Biolabs,

Boston, MA), ligated to an adaptor using T4 DNA ligase (New England Biolabs), and amplified

by PCR using Titanium Taq (Clontech). PCR products were then purified from excess primer

and salts by a DNA amplification cleanup kit (Clontech) and a 90 μ aliquot was fragmented

using DNase I. An aliquot of the fragmented DNA was separated and visualized in a 3% agarose

gel in 1X TBE buffer to ensure that the bulk of the product had been properly fragmented. The

fragmented samples were end-labeled with biotin using terminal deoxynucleotidyl transferase

before each sample was hybridized to the NspI arrays for 16 h at 49°C. After hybridization the

arrays were washed and stained using an Affymetrix Fluidics Station 450. The most stringent

wash was 0.6 × SSPE, 0.01% Tween-20 at 45°C, and the samples were stained with R-

phycoerythrin (Molecular Probes). Imaging of the microarrays was performed using a

GCS3000 (Affymetrix) high-resolution scanner. To detect genomic duplications and deletions,

we used a publicly available program, CNAG, developed at The University of Tokyo (Nannya

et al. 2005).

For patient 3A, analysis of the microarray data identified six putative CNVs (Table 1). The

CNVs seen on chromosomes 10q11, 15q11 and 17q12 were present in the asymptomatic father

and are known to be common copy number polymorphisms according to publicly available

databases (Nannya et al. 2005;Conrad et al. 2006;Sebat et al. 2004). Of the remaining three

CNVs, the two on chromosomes 4q21 and 11q21, have been identified in control populations

and are listed in the Database of Genomic Variants (Iafrate et al. 2004). The 11p14.1-p13

deletion was novel and contained the PAX6 enhancer elements (Fig. 2) and thus was the focus
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of further characterization. We narrowed the deletion region by assessing heterozygosity of

the genotypes generated from the SNP array. The 1.3 Mb deletion begins approximately 35

Kb distal to the last exon of PAX6 (Fig. 3). The deletion includes the 3′ enhancer regions

characterized by Lauderdale and Wilensky (2000). Additionally, the coding regions of PAX6

were sequenced in the proband and his father to rule out the possibility of a compound

heterozygous mutation. No additional mutations were identified.

Follow-up molecular studies

A panel of 400 independent autism probands was screened for mutations in the last exon of

PAX6, (the 14th exon including exon 5a) and the 3′UTR (N = 200) of PAX6 using single strand

conformation polymorphism (SSCP) (Sheffield et al. 1993). We chose to screen only the 14th

exon and 3′UTR at this time because of the potential increase in liability toward autistic-like

impairments associated with mutations toward the 3′ end of PAX6. We screened these regions

using amplicons less than 250 bp in length. PCR products were electrophoresed on 6%

nondenaturing polyacrylamide gels at 20W for approximately 3 h at room temperature while

being cooled by a fan. The gels were then treated with silver nitrate to visualize the amplified

DNA fragments. Any amplicons showing SSCP shifts were then forward and reverse

sequenced to determine if a base pair change had occurred. The sequence data were analyzed

using the Sequencher gene analysis computer program (Gene Codes, Ann Arbor, MI). We

identified only one novel SNP (3′UTR + 314[T/C]) in the 3′UTR that did not segregate with

autism in the affected family and is likely a rare polymorphism.

Discussion

We thus report a deletion of the 3′ region of PAX6 that is causing aniridia and, we believe,

autism in the same individual. The mutation was likely inherited maternally, as this patient's

mother also had sporadic aniridia and a lifelong history of anxiety, social awkwardness and

depression that required at least one psychiatric hospitalization (per report of father).

Aniridia is almost exclusively caused by PAX6 mutations, which include nonsense (37%);

frame shift (23%); and splice site, missense, anti-termination mutations, and in-frame deletions

or insertions (39%) (Hanson 2003). Nonsense mutations are presumed to produce truncated

transcripts that activate NMD, resulting in haploinsffiency of PAX6. Missense mutations of

PAX6 are a less frequent cause of aniridia than expected, and while it is known that missense

variants often result in different ocular conditions (e.g. keratisis), some have speculated that

missense variants may also result in more severe neural phenotypes that are thus not enriched

in the aniridia population (Tzoulaki et al. 2005). Based on earlier findings, it has been suggested

that the 3′ end of the gene is of special interest in this vein for a number of reasons. First,

aniridia-causing nonsense mutations of PAX6 rarely occur near the 3′ end of the gene. While

such variants may simply be less deleterious, it is also the case that mutations near the end of

transcripts often escape NMD, and thus these mutations may produce more severe dominant

negative phenotypes (Tzoulaki et al. 2005). In keeping with this, two previously cited PAX6

anti-termination mutations that resulted in translation into the 3′ untranslated region produced

autism or autism spectrum phenotypes in addition to aniridia (Chao et al. 2003; Heyman et al.

1999). Also, a de novo nonsense mutation in exon 10, which falls within the 3′ end of the gene

containing the PST transactivation domain, was recently found in an individual with aniridia

and mental retardation (Graziano et al. 2007). It was for this reason that the last exon of

PAX6 was screened for mutations in our sample of 400 autism probands. While none of the

probands showed evidence of a mutation, our screening technology cannot detect deletions

that extend the length of the amplicon, nor did any of the probands in this set have aniridia.
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Our finding, while located near the 3′ end of PAX6 likely results in haploinsufficieny as

previously seen in similar deletions and rearrangements (Lauderdale et al. 2000; Fantes et al.

1995). Deletions in this region have been shown to abolish PAX6 expression and cause aniridia

in patients due to loss of enhancers and a downstream regulatory region (DRR) (Lauderdale

et al. 2000; Crolla and van Heyningen 2002). These enhancers have shown compelling

evidence of tissue specificity as well as cooperativity (Kleinjan et al. 2006; Kim and Lauderdale

2006). To our knowledge, ours is the first cryptic deletion of this kind in a patient with aniridia,

autism and mental retardation. Figure 3 illustrates the locations of some of the emerging

enhancer regions and reported patient breakpoints.

While the aniridia in our subject is almost certainly caused by the PAX6 deletion, it is possible

that his autism is due to a different genetic defect, or is caused by a combination of the

PAX6 deletion and deletion of one or more of the other genes in this region. Six other genes

lie in the deleted region: metalophosphoesterase domain containing 2 (MPPED2), doublecortin

domain containing 5 (DCDC5), doublecortin domain containing 1 (DCDC1), IMP1 inner

mitochondrial membrane (IMMP1L), zinc finger CLS domain containing 3 (DPH4) and

elongation factor protein 4 (ELP4). Very little is known about these genes. MPPED2,

DCDC1 and DCDC5 are expressed in fetal brain but their specific function is unclear. ELP4

is a ubiquitously expressed member of a complex of proteins that associates with histone

acetyltransferases and RNA polymerase II to aid transcriptional elongation, while IMMP1L

has peptidase activity and is localized to the mitochondria. Aside from PAX6, the doublecortin

genes are the most compelling candidates for an autism/mental retardation susceptibility gene

in this region. Mutations in doublecortin (DCX) are known to cause lissencephaly, a disorder

of neuronal outgrowth that results in mental retardation (Kerjan and Gleeson 2007). However,

we note that our subject had a clinically normal brain MRI and his autism is not likely due to

unregulated neuronal outgrowth as in the case of DCX mutations, although it is possible that

more subtle changes in brain morphology were not detected.

Further support for PAX6 as the autism disease gene, however, comes from studies showing

that a variety of cognitive and brain phenotypes are associated with PAX6 mutations. Indeed

Heyman et al. (1999) noted a peculiar behavioral phenotype that segregated with a PAX6

mutation in a large, three-generation pedigree. Family members showed impulsivity, social

ineptness, and disinhibition (Heyman et al. 1999). Subsequent fMRI studies of this family

resulted in identification of both structural and functional brain abnormalities (Ellison-Wright

et al. 2004). Additionally, children with PAX6 anirida and no obvious cognitive delay were

found to have difficulty processing auditory information despite normal audiograms (Bamiou

et al. 2007a, b). These children also had significantly smaller corpus callosi and anterior

commissures—structures that contain interhemispheric fibers—compared to children without

PAX6 mutations. It is also interesting to note that over half of this small sample of children

with PAX6 mutations also showed difficulty with understanding prosody and extrapolating

meaning from spoken language (i.e., didn't “get a joke” as well as peers). This impairment is

also often seen in children with Asperger Syndrome or high-functioning autism. Another recent

report identified a missense mutation in exon 6 that segregated with aniridia and varying

degrees of cognitive impairment and affective dyscontrol in 14 members of a large five

generation pedigree (Dansault et al. 2007). Some affected family members also showed brain

dysmorphology as assessed by MRI. Taken together, these impairments in auditory and

language processing, cognition, and social perception show significant overlap with the core

symptom domains of autism. While still tentative, the connection between aniridia, autism,

and 11p14.1-p13 is reinforced by rates of autism in WAGR syndrome as high as 20–25%

(Fischbach et al. 2005; Xu et al. 2007). Though these reports do not implicate PAX6

specifically, they do offer a broader rational for the existence of an autism gene in the 11p14.1-

p13 region and suggest that WAGR syndrome may also cause a rare syndromal form of autism,

much like neurofibromatosis (Zafeiriou et al. 2007; Williams and Hersh 1998).
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In conclusion, our study complements a growing body of work showing increased liability

toward a spectrum of cognitive and behavioral abnormalities that include autism in individuals

with PAX6 mutations (Table 2). Additionally, our data and suggests that 11p14.1-p13 may

harbor liability toward autism in a small number of cases. We suggest that PAX6 should be

prioritized as a candidate gene in this region and investigated more thoroughly. Additionally,

the Pax6 downstream targets Ngn2 and Mash-1 should be considered as possible candidate

genes for autism. This is not necessarily surprising given that many of the key regulatory genes

that influence eye development, such as PAX6, are also involved in early neural development.

Muscle-eye-brain disease, for example, is caused by mutations in O-mannose beta-1,2-N-

acetylglucosaminyltransferase, while mutations in CEP290 can cause both Leber's Congenital

Amaurosis and Joubert Syndrome, which is characterized by autistic-like features (Cideciyan

et al. 2007). It may in fact be the case that eye and brain phenotypes arising from dysfunction

of the same gene will become recognized as a common occurrence.
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Fig. 1.

Pedigree of family A
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Fig. 2.

Deletion region in patient 3A. The deletion is 1.3 MB and contains enhancer elements (“e”)

for PAX6, as well as a number of other potential autism candidate genes. The dots in the upper

part of the ideogram indicated individual signal intensity values for SNP probes, the line within

the dots is a Hidden Markov Model prediction of copy number. The lower part of the CNAG

ideogram is a smoothed statistical average of signal intensity. The CNAG output is scaled to

the chromosome key below it, indicating the chromosome band of the deletion
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Fig. 3.

Deletion breakpoints in relation to some defined 3′ enhancer regions. Arrowheads represent

patient deletion/rearrangement breakpoints. It should be noted that Crolla and van Heyningen

(2002) identified more breakpoints than those depicted here, however this is the most proximal

breakpoint that may leave PAX6 transcription unit in tact. Six children shared this breakpoint

and all were under the age of 1 year when studied. The boxes represent enhancer regions

(Griffin et al. 2002; Kleinjan et al. 2001, 2004, 2006; Kim and Lauderdale 2006). The

downstream regulatory region is denoted with a dashed line. This region is critical to basal

levels of PAX6 transcription. ELP4, which is not shown, is located approximately 27 Kb

telomeric to PAX6
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