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Abstract

We consider repeated multi-player games in which players repeatedly and simultaneously choose

strategies from a finite set of available strategies according to some strategy adjustment process. We

focus on the specific class of weakly acyclic games, which is particularly relevant for multi-agent coop-

erative control problems. A strategy adjustment process determines how players select their strategies at

any stage as a function of the information gathered over previous stages. Of particular interest are “pay-

off based” processes, in which at any stage, players only know their own actions and (noise corrupted)

payoffs from previous stages. In particular, players do not know the actions taken by other players and

do not know the structural form of payoff functions. We introduce three different payoff based processes

for increasingly general scenarios and prove that after a sufficiently large number of stages, player ac-

tions constitute a Nash equilibrium at any stage with arbitrarily high probability. We also show how to

modify player utility functions through tolls and incentives in so-called congestion games, a special class

of weakly acyclic games, to guarantee that a centralized objective can be realized as a Nash equilibrium.

We illustrate the methods with a simulation of distributed routing over a network.

1 Introduction

The objective in distributed cooperative control for multi-agent systems is to enable a collection of “self-

interested” agents to achieve a desirable “collective” objective. There are two overriding challenges to

achieving this objective. The first is complexity: finding an optimal solution by a centralized algorithm

may be prohibitively difficult when there are large numbers of interacting agents. This motivates the use of

adaptive methods that enable agents to “self organize” into suitable, if not optimal, collective solutions.

The second challenge is limited information. Agents may have limited knowledge about the status of

other agents, except perhaps for a small subset of “neighboring” agents. An example is collective motion

control for mobile sensor platforms (e.g., [7]). In these problems, mobile sensors seek to position themselves
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to achieve various collective objectives such as rendezvous or area coverage. Sensors can communicate with

neighboring sensors, but otherwise do not have global knowledge of the domain of operation or the status

and locations of non-neighboring sensors.

A typical assumption is that agents are endowed with a reward or utility function that depends on their

own strategies and the strategies of other agents. In motion coordination problems, for example, an agent’s

utility function typically depends on its position relative to other agents or environmental targets, and knowl-

edge of this function guides local motion adjustments.

In other situations, agents may know nothing about the structure of their utility functions, and how their

own utility depends on the actions of other agents (whether local or far away). In this case the only thing

they can do is observe rewards based on experience and “optimize” on a trial and error basis. The situation is

further complicated because all agents are trying simultaneously to optimize their own strategies. Therefore,

even in the absence of noise, an agent trying the same strategy twice may see different results because of the

non-stationary nature of the strategies of other agents.

There are several examples of multi-agent systems that illustrate this situation. In distributed routing for

ad hoc data networks (e.g., [2]), routing nodes seek to route packets to neighboring nodes based on packet

destinations without knowledge of the overall network structure. The objective is to minimize the delay of

packets to their destinations. This delay must be realized through trial and error, since the functional depen-

dence of delay on routing strategies is not known. A similar problem is automotive traffic routing, in which

drives seek to minimize the congestion experienced to get to a desired destination. Drivers can experience

the congestion on selected routes as a function of the routes selected by other drivers, but drivers do not

know the structure of the congestion function. Finally, in a multi-agent approach to designing manufactur-

ing systems (e.g., [9]), it may not be known in advance how performance measures (such as throughput)

depend on manufacturing policy. Rather performance can only be measured once a policy is implemented.

Our interest in this paper is to develop algorithms that enable coordination in multi-agent systems for

precisely this “payoff based” scenario, in which agents only have access to (possibly noisy) measurements of

the rewards received through repeated interactions with other agents. We adopt the framework of “learning

in games” (see [5, 10, 23, 24] for an extensive overview). Unlike most of the learning rules in this literature,

2



which assume that agents adjust their behavior based on the observed behavior of other agents, we shall

assume that agents know only their own past actions and the payoffs that resulted. It is far from obvious that

Nash equilibrium can be achieved under such a restriction, but in fact it has recently been shown that such

“payoff based” learning rules can be constructed that work in any game [4, 8].

In this paper we show that there are simpler and more intuitive adjustment rules that achieve this ob-

jective for a large class of multi-player games known as “weakly acyclic” games. This class captures many

problems of interest in cooperative control [14, 15]. It includes the very special case of “identical interest”

games, where each agent receives the same reward. However, weakly acyclic games (and the related con-

cept of potential games) capture other scenarios such as congestion games [17] and similar problems such

as distributed routing in networks, weapon target assignment, consensus, and area coverage. See [13, 1]

and referenced therein for a discussion of a learning in games approach to cooperative control problems, but

under less stringent assumptions on informational constraints considered in this paper.

For many multi-agent problems, operation at a pure Nash equilibrium may reflect optimization of a col-

lective objective.1 We will derive payoff based dynamics that guarantee asymptotically that agent strategies

will constitute a pure Nash equilibrium with arbitrarily high probability. It need not always be the case that

at least one Nash equilibrium optimizes a collective objective. Motivated by this consideration, we also

discuss the introduction of incentives or tolls in a player’s payoff function to assure that there is at least

one Nash equilibrium that optimizes a collective objective. Even in this case, however, there may still be

suboptimal Nash equilibria.

The remainder of this paper is organized as follows. Section 2 provides background on finite strategic-

form games and repeated games. This is followed by three types of payoff based dynamics in Section 3 for

increasingly general problems. Section 3.1 presents “Safe Experimentation Dynamics” which is restricted

to identical interest games. Section 3.2 presents “Simple Experimentation Dynamics” for the more general

class of weakly acyclic games but with noise free payoff measurements. Section 3.3 presents “Sample

Experimentation Dynamics” for weakly acyclic games with noisy payoff measurements. Section 4 discusses

how to introduce tolls and incentives in payoffs so that a Nash equilibrium optimizes a collective objective.

1Nonetheless, there are varied viewpoints on the role of Nash equilibrium as a solution concept for multi-agent systems. See

[20] and [12].
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Section 5 presents an illustrative example of a traffic congestion game. Finally, Section 6 contains some

concluding remarks. An important analytical tool throughout is the method of resistance trees for perturbed

Markov chains [22], which is reviewed in an appendix.

2 Background

In this section, we will present a brief background of the game theoretic concepts used in the paper. We

refer the readers to [6, 23, 24] for a more comprehensive review.

2.1 Finite Strategic-Form Games

Consider a finite strategic-form game with n-player set P := {P1, ...,Pn} where each player Pi ∈ P has

an action set Yi and a utility function Ui : Y → R where Y = Y1 × ...×Yn. We will sometimes use a single

symbol, e.g., G, to represent the entire game, i.e., the player set, P , action sets, Yi, and utility functions Ui.

For an action profile y = (y1, y2, ..., yn) ∈ Y , let y−i denote the profile of player actions other than

player Pi, i.e.,

y−i = {y1, . . . , yi−1, yi+1, . . . , yn} .

With this notation, we will sometimes write a profile y of actions as (yi, y−i). Similarly, we may write Ui(y)

as Ui(yi, y−i).

An action profile y∗ ∈ Y is called a pure Nash equilibrium if for all players Pi ∈ P ,

Ui(y
∗
i , y

∗
−i) = max

yi∈Yi

Ui(yi, y
∗
−i). (1)

Furthermore, if the above condition is satisfied with a unique maximizer for every player Pi ∈ P , then y∗ is

called a strict (Nash) equilibrium.

In this paper we will consider three classes of games: identical interest games, potential games, and

weakly acyclic games. Each class of games has a connection to general cooperative control problems and

multi-agent systems for which there is some global utility or potential function φ : Y → R that a global

planner seeks to maximize [14].
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2.1.1 Identical Interest Games

The most restrictive class of games that we will review in this paper is identical interest games. In such a

game, the players’ utility functions {Ui}
n
i=1 are chosen to be the same. That is, for some function φ : Y →

R,

Ui(y) = φ(y),

for every Pi ∈ P and for every y ∈ Y . It is easy to verify that all identical interest games have at least one

pure Nash equilibrium, namely any action profile y that maximizes φ(y).

2.1.2 Potential Games

A significant generalization of an identical interest game is a potential game. In a potential game, the change

in a player’s utility that results from a unilateral change in strategy equals the change in the global utility.

Specifically, there is a function φ : Y → R such that for every player Pi ∈ P , for every y−i ∈ Y−i, and for

every y′i, y
′′
i ∈ Yi,

Ui(y
′
i, y−i) − Ui(y

′′
i , y−i) = φ(y′i, y−i) − φ(y′′i , y−i).

When this condition is satisfied, the game is called a potential game with the potential function φ. It is

easy to see that, in potential games, any action profile maximizing the potential function is a pure Nash

equilibrium, hence every potential game possesses at least one such equilibrium.

2.1.3 Weakly Acyclic Games

Consider any finite game G with a set Y of action profiles. A better reply path is a sequence of action profiles

y1, y2, ..., yL such that, for every 1 ≤ ℓ ≤ L − 1, there is exactly one player Piℓ such that i) yℓ
iℓ

6= yℓ+1
iℓ

,

ii) yℓ
−iℓ

= yℓ+1
−iℓ

, and iii) Uiℓ(y
ℓ) < Uiℓ(y

ℓ+1). In other words, one player moves at a time, and each time a

player moves he increases his own utility.

Suppose now that G is a potential game with potential function φ. Starting from an arbitrary action

profile y ∈ Y , construct a better reply path y = y1, y2, ..., yL until it can no longer be extended. Note first

that such a path cannot cycle back on itself, because φ is strictly increasing along the path. Since Y is finite,
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the path cannot be extended indefinitely. Hence, the last element in a maximal better reply path from any

joint action, y, must be a Nash equilibrium of G.

This idea may be generalized as follows. The game G is weakly acyclic if for any y ∈ Y , there exists a

better reply path starting at y and ending at some pure Nash equilibrium of G [23, 24]. Potential games are

special cases of weakly acyclic games.

2.2 Repeated Games

In a repeated game, at each time t ∈ {0, 1, 2, . . . }, each player Pi ∈ P simultaneously chooses an action

yi(t) ∈ Yi and receives the utility Ui(y(t)) where y(t) := (y1(t), . . . , yn(t)). Each player Pi ∈ P chooses

his action yi(t) at time t according to a probability distribution pi(t), which we will refer to as the strategy of

player Pi at time t. A player’s strategy at time t can rely only on observations from times {0, 1, 2, ..., t − 1}.

Different learning algorithms are specified by both the assumptions on available information and the mech-

anism by which the strategies are updated as information is gathered. For example, if a player knows the

functional form of his utility function and is capable of observing the actions of all other players at every

time step, then the strategy adjustment mechanism of player Pi can be written in the general form

pi(t) = Fi

(
y(0), ..., y(t − 1);Ui

)
.

An example of a learning algorithm, or strategy adjustment mechanism, of this form is the well known

fictitious play [16]. For a detailed review of learning in games we direct the reader to [5, 23, 24, 11, 21, 18].

In this paper we deal with the issue of whether players can learn to play a pure Nash equilibrium through

repeated interactions under the most restrictive observational conditions; players only have access to (i) the

action they played and (ii) the utility (possibly noisy) they received. In this setting, the strategy adjustment

mechanism of player Pi takes on the form

pi(t) = Fi

(
{yi(0), Ui(y(0)) + νi(0)}, ..., {yi(t − 1), Ui(y(t − 1)) + νi(t − 1)}

)
, (2)

where the νi(t) are zero mean independent and identically distributed (i.i.d.) random variables.
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3 Payoff Based Learning Algorithms

In this section, we will introduce three simple payoff based learning algorithms. The first, called Safe

Experimentation, guarantees convergence to a pure optimal Nash equilibrium in any identical interest game.

Such an equilibrium is optimal because each player’s utility is maximized. The second learning algorithm,

called Simple Experimentation, guarantees convergence to a pure Nash equilibrium in any weakly acyclic

game. The third learning algorithm, called Sample Experimentation, guarantees convergence to a pure Nash

equilibrium in any weakly acyclic game even when utility measurements are corrupted with noise.

3.1 Safe Experimentation Dynamics for Identical Interest Games

3.1.1 Constant Exploration Rates

Before introducing the learning dynamics, we introduce the following function. Let

Umax
i (t) := max

0≤τ≤t−1
Ui(y(τ))

be the maximum utility that player Pi has received up to time t − 1.

We will now introduce the Safe Experimentation dynamics for identical interest games.

1. Initialization: At time t = 0, each player randomly selects and plays any action, yi(0). This action

will be initially set as the player’s baseline action at time t = 1 and is denoted by yb
i (1) = yi(0).

2. Action Selection: At each subsequent time step, each player selects his baseline action with proba-

bility (1 − ǫ) or experiments with a new random action with probability ǫ, i.e.:

• yi(t) = yb
i (t) with probability (1 − ǫ)

• yi(t) is chosen randomly (uniformly) over Yi with probability ǫ

The variable ǫ will be referred to as the player’s exploration rate.

3. Baseline Strategy Update: Each player compares the actual utility received, Ui(y(t)), with the max-

imum received utility Umax
i (t) and updates his baseline action as follows:

yb
i (t + 1) =

{

yi(t), Ui(y(t)) > Umax
i (t);

yb
i (t), Ui(y(t)) ≤ Umax

i (t).

This step is performed whether or not Step 2 involved exploration.
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4. Return to Step 2 and repeat.

The reason that this learning algorithm is called “Safe” Experimentation is that the utility evaluated at

the baseline action, U(yb(t)), is non-decreasing with respect to time.

Theorem 3.1 Let G be a finite n-player identical interest game in which all players use the Safe Experi-

mentation dynamics. Given any probability p < 1, if the exploration rate ǫ > 0 is sufficiently small, then for

all sufficiently large times t, y(t) is an optimal Nash equilibrium of G with at least probability p.

Proof Since G is an identical interest game, let the utility of each player be expressed as U : Y → R

and let Y ∗ be the set of “optimal” Nash equilibrium of G, i.e.,

Y ∗ = {y∗ ∈ Y : U(y∗) = max
y∈Y

U(y)}.

For any joint action, y(t), the ensuing joint action will constitute an optimal Nash equilibrium with at

least probability
(

ǫ

|Y1|

)(
ǫ

|Y2|

)

· · ·

(
ǫ

|Yn|

)

,

where |Yi| denotes the cardinality of the action set of player Pi. Therefore, an optimal Nash equilibrium

will eventually be played with probability 1 for any ǫ > 0.

Suppose an optimal Nash equilibrium is first played at time t∗, i.e., y(t∗) ∈ Y ∗ and y(t∗ − 1) /∈ Y ∗.

Then the baseline joint action must remain constant from that time onwards, i.e., yb(t) = y(t∗) for all t > t∗.

An optimal Nash equilibrium will then be played at any time t > t∗ with at least probability (1− ǫ)n. Since

ǫ > 0 can be chosen arbitrarily small, and in particular such that (1 − ǫ)n > p this completes the proof. ✷

3.1.2 Diminishing Exploration Rates

In the Safe Experimentation dynamics, the exploration rate ǫ was defined as a constant. Alternatively, one

could let the exploration rate vary to induce desirable behavior. One example would be to let the exploration

rate decay, such as ǫt = (1/t)1/n. This would induce exploration at early stages and reduce exploration
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at later stages of the game. The theorem and proof hold under the following conditions for the exploration

rate:

lim
t→∞

ǫt = 0,

lim
t→∞

t∏

τ=1

[

1 −

(
ǫτ

|Y1|

)(
ǫτ

|Y2|

)

· · ·

(
ǫτ

|Yn|

)]

= 0.

3.2 Simple Experimentation Dynamics for Weakly Acyclic Games

We will now introduce the Simple Experimentation dynamics for weakly acyclic games. These dynamics

will allow us to relax the assumption of identical interest games.

1. Initialization: At time t = 0, each player randomly selects and plays any action, yi(0). This action

will be initially set as the player’s baseline action at time 1, i.e., yb
i (1) = yi(0). Likewise, the player’s

baseline utility at time 1 is initialized as ub
i(1) = Ui(y(0)).

2. Action Selection: At each subsequent time step, each player selects his baseline action with proba-

bility (1 − ǫ) or experiments with a new random action with probability ǫ.

• yi(t) = yb
i (t) with probability (1 − ǫ)

• yi(t) is chosen randomly (uniformly) over Yi with probability ǫ

The variable ǫ will be referred to as the player’s exploration rate. Whenever yi(t) 6= yb
i (t), we will

say that player Pi experimented.

3. Baseline Action and Baseline Utility Update: Each player compares the utility received, Ui(y(t)),

with his baseline utility, ub
i(t), and updates his baseline action and utility as follows:

• If player Pi experimented (i.e., yi(t) 6= yb
i (t)) and if Ui(y(t)) > ub

i(t) then

yb
i (t + 1) = yi(t),

ub
i(t + 1) = Ui(y(t)).

• If player Pi experimented and if Ui(y(t)) ≤ ub
i(t) then

yb
i (t + 1) = yb

i (t),
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ub
i(t + 1) = ub

i(t).

• If player Pi did not experiment (i.e., yi(t) = yb
i (t)) then

yb
i (t + 1) = yb

i (t),

ub
i(t + 1) = Ui(y(t)).

4. Return to Step 2 and repeat.

As before, these dynamics require only utility measurements, and hence almost no information regarding

the structure of the game.

Theorem 3.2 Let G be a finite n-player weakly acyclic game in which all players use the Simple Experi-

mentation dynamics. Given any probability p < 1, if the exploration rate ǫ > 0 is sufficiently small, then for

all sufficiently large times t, y(t) is a Nash equilibrium of G with at least probability p.

The remainder of this subsection is devoted to the proof of Theorem 3.2. The proof rely on the theory

of resistance trees for perturbed Markov chains (see the appendix for a brief review).

Define the state of the dynamics to be the pair [y, u], where y is the baseline joint action and u is the

baseline utility vector. We will omit the superscript b to avoid cumbersome notation.

Partition the state space into the following three sets. First, let X be the set of states [y, u] such that

ui 6= Ui(y) for at least one player Pi. Let E be the set of states [y, u] such that ui = Ui(y) for all players

Pi and y is a Nash equilibrium. Let D be the set of states [y, u] such that ui = Ui(y) for all players Pi and

y is a disequilibrium (not a Nash equilibrium). These are all the states.

Claim 3.1 a. Any state [y, u] ∈ X transitions to a state in E ∪ D in one period with probability O(1).

b. Any state [y, u] ∈ E ∪ D transitions to a different state [y′, u′] with probability at most O(ε).

Proof For any [y, u′] ∈ X , there exists at least one player Pi such that u′
i 6= Ui(y). If all players repeat

their part of the joint action profile y which occurs with probability (1− ǫ)n, then [y, u′] transitions to [y, u],

where ui = Ui(y) for all players Pi. Thus the process moves to [y, u] ∈ E ∪ D with prob O(1). This

proves statement (a). As for statement (b), any state in E ∪ D transitions back to itself whenever no player
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experiments, which occurs with probability at least O(1). ✷

Claim 3.2 For any state [y, u] ∈ D, there is a finite sequence of transitions to a state [y∗, u∗] ∈ E, where

the transitions have the form2:

[y, u] →
O(ǫ)

[y1, u1] →
O(ǫ)

... →
O(ǫ)

[y∗, u∗]

where uk
i = Ui(y

k) for all i and for all k > 0, and each transition occurs with probability O(ǫ).

Proof Such a sequence is guaranteed by weak acyclicity. Since y is not an equilibrium, there is a better

reply path from y to some equilibrium y∗, say y, y1, y2, ..., y∗.

At [y, u] the appropriate player Pi experiments with probability ǫ, chooses the appropriate better reply

with probability 1/|Yi|, and no one else experiments. Thus the process moves to [y1, u1] where u1
i = Ui(y

1)

for all players Pi with probability O(ǫ). Notice that for the deviator Pi, Ui(y
1) > Ui(y), therefore

u1
i = Ui(y

1). For the non-deviator, say player Pj , u1
j = Uj(y

1) since y1
j = yj . Thus [y1, u1] ∈ D ∪ E. In

the next period, the appropriate player deviates and so forth. ✷

Claim 3.3 For any equilibrium [y∗, u∗] ∈ E, any path from [y∗, u∗] to another state [y, u] ∈ E∪D, y 6= y∗,

that does not loop back to [y∗, u∗] must be of one of the following two forms:

1. [y∗, u∗] →
O(ǫ)

[y∗, u′] →
O(ǫk)

[y′, u′′] → ... → [y, u], where k ≥ 2;

2. [y∗, u∗] →
O(ǫk)

[y′, u′′] → ... → [y, u], where k ≥ 2.

Proof The path must begin by either one player experimenting or more that one player experiment-

ing. Case (2) results if more than one player experiments. Case (1) results if exactly one agent, say agent

Pi, experiments with an action y′i 6= y∗i and all other players continue to play their part of y∗. This hap-

pens with probability (ǫ/|Yi|)(1 − ǫ)n−1. In this situation, player Pi cannot be better off, meaning that

2We will use the notation z → z′ to denote the transition from state z to state z′. We use z →
O(ǫ)

z′ to emphasize that this

transition occurs with probability of order ǫ.
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Ui(y
′
i, y

∗
−i) ≤ Ui(y

∗), since by assumption y∗ is an equilibrium. Hence the baseline action next period

remains y∗ for all players, though their baseline utilities may change. Denote the next state by [y∗, u′]. If

in the subsequent period all players continue to play their part of the action y∗ again, which occurs with

probability (1− ǫ)n, then the state reverts back to [y∗, u∗] and we have a loop. Hence the only way the path

can continue without a loop is for one or more players to experiment in the next stage, which has probability

O(ǫk), k ≥ 1. This is exactly what case (1) alleges. ✷

Proof [Theorem 3.2] This is a finite aperiodic Markov process on the state space Y × Ū . Furthermore,

from every state there exists a positive probability path to a Nash equilibrium. Hence, every recurrent class

has at least one Nash equilibrium. We will now show that within any recurrent class, the trees (see Appendix)

rooted at the Nash equilibrium will have the lowest resistance. Therefore, according to Theorem A.1, the a

priori probability that the state will be a Nash equilibrium can be made arbitrarily close to 1.

In order to apply Theorem A.1, we will construct minimum resistance trees with vertices consisting of

every possible state (within a recurrence class). Each edge will have resistance 0, 1, 2, ... associated with the

transition probabilities O(1), O(ǫ), O(ǫ2), ..., respectively.

Our analysis will deviate slightly from the presentation in the appendix. In the discussion in the ap-

pendix, the vertices of minimum resistance trees are recurrence classes of an associated unperturbed Markov

chain. In this case, the unperturbed Markov chain corresponds to Simple Experimentation dynamics with

ǫ = 0, and so the recurrence classes are all states in E ∪ D. Nonetheless, we will construct resistance trees

with the vertices being all possible states, i.e., E∪D∪X . The resulting conclusions remain the same. Since

the states in X are transient with probability O(1), the resistance to leave a node corresponding to a state in

X is zero. Therefore, the presence of such states does not affect the conclusions determining which states

are stochastically stable.

Suppose a minimum resistance tree T is rooted at a vertex v that is not in E. If v ∈ X , it is easy to

construct a new tree that has lower resistance. Namely, by Claim 3.1a, there is a 0-resistance one-hop path

P from v to some state [y, u] ∈ E ∪ D. Add the edge of P to T and subtract the edge in T that exits from

the vertex [y, u]. This results in a [y, u]-tree T ′. It has lower resistance than T because the added edge has
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zero resistance while the subtracted edge has resistance greater than or equal to 1 because of Claim 3.1b.

This argument is illustrated in Figure 1, where the red edge of strictly positive resistance is removed and

replaced with the blue edge of zero resistance.

[y, u’’]

[y, u’] [y, u]

[y’, u][y’, u’]

[y, u’’]

[y, u’] [y, u]

[y’, u][y’, u’]

R > 1

R = 0

Original Tree T (Rooted in X) Revised Tree T’ (Rooted in D or E)

Figure 1: Construction of alternative to tree rooted in X .

Suppose next that v = [y, u] ∈ D but not in E. Construct a path P as in Claim 3.2 from [y, u] to some

state [y∗, u∗] ∈ E. As above, construct a new tree T ′ rooted at [y∗, u∗] by adding the edges of P to T and

taking out the redundant edges (the edges in T that exit from the vertices in P ). The nature of the path P

guarantees that the edges taken out have total resistance at least as high as the resistances of the edges put

in. This is because the entire path P lies in E ∪ D, each transition on the path has resistance 1, and, from

Claim 3.2b, the resistance to leave any state in E ∪ D is at least 1.

To construct a new tree that has strictly lower resistance, we will inspect the effect of removing the

exiting edge from [y∗, u∗] in T . Note that this edge must fit either case (1) or case (2) of Claim 3.3.

In case (2), the resistance of the exiting edge is at least 2, which is larger than any edge in P . Hence

the new tree has strictly lower resistance than T , which is a contradiction. This argument is illustrated in

Figure 2. A new path is created from the original root [y, u] ∈ D to the equilibrium [y∗, u∗] ∈ E (blue

edges). Redundant (red) edges emanating from the new path are removed. In case (2), the redundant edge

emanating from [y∗, u∗] has a resistance of at least 2.

In case (1), the exiting edge has the form [y∗, u∗] → [y∗, u′] which has resistance 1 where u∗ 6= u′. The

next edge in T , say [y∗, u′] → [y′, u′′], also has at least resistance 1. Remove the edge [y∗, u′] → [y′, u′′]

from T , and put in the edge [y∗, u′] → [y∗, u∗]. The latter has resistance 0 since [y∗, u′] ∈ X . This results
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[y’, u’’]

[y, u]

[y*, u*]

[y’, u’]

[y*, u’][y’’, u’’]

[y, u’]

[y, u’’]

[y’, u’’]

[y, u]

[y*, u*]

[y’, u’]

[y*, u’][y’’, u’’]

[y, u’]

[y, u’’]

R = 1

R = 1

R = 1

R > 1

R > 1

R > 2

Original Tree T (Rooted in D - Case 2) Revised Tree T’ (Rooted in E)

Figure 2: Construction of alternative to tree rooted in D for Case (2).

in a tree T ′′ that is rooted at [y∗, u∗] and has strictly lower resistance than does T , which is a contradiction.

This argument is illustrated in Figure 3. As in Figure 2, a new (blue) path is constructed and redundant

(red) edges are removed. The difference is that the edge [y∗, u′] → [y′, u′′] is removed and replaced with

[y∗, u′] → [y∗, u∗].

[y’, u’’]

[y, u]

[y*, u*]

[y’, u’]

[y*, u’][y’’, u’’]

[y, u’]

[y, u’’]

[y’, u’’]

[y, u]

[y*, u*]

[y’, u’]

[y*, u’][y’’, u’’]

[y, u’]

[y, u’’]

R = 0

R = 1

R = 1

R = 1

R = 1

R > 1

R > 1

R > 1

Original Tree T (Rooted in D - Case 1) Revised Tree T’ (Rooted in E)

Figure 3: Construction of alternative to tree rooted in D for Case (1).

To recap, a minimum resistant tree cannot be rooted at any state in X or D, and therefore can only be

rooted in E. Therefore, when ǫ is sufficiently small, the long-run probability on E can be made arbitrarily
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close to 1, and in particular larger than any specified probability p. ✷

3.3 Sample Experimentation Dynamics for Weakly Acyclic Games with Noisy Utility Mea-

surements

3.3.1 Noise-free Utility Measurements

In this section we will focus on developing payoff based dynamics for which the limiting behavior exhibits

that of a pure Nash equilibrium with arbitrarily high probability in any finite weakly acyclic game even

in the presence of utility noise. We will show that a variant of the so-called Regret Testing algorithm [4]

accomplishes this objective for weakly acyclic games with noisy utility measurements.

We now introduce Sample Experimentation dynamics.

1. Initialization: At time t = 0, each player randomly selects and plays any action, yi(0) ∈ Yi. This

action will be initially set as the player’s baseline action, yb
i (1) = yi(0).

2. Exploration Phase: After the baseline action is set, each player engages in an exploration phase over

the next m periods. The length of the exploration phase need not be the same or synchronized for

each player, but we will assume that they are for the proof. For convenience, we will double index the

time of the actions played as

y̌(t1, t2) = y(m t1 + t2)

where t1 indexes the number of the exploration phase and t2 indexes the actions played in that ex-

ploration phase. We will refer to t1 as the exploration phase time and t2 as the exploration action

time. By construction, the exploration phase time and exploration action time satisfy t1 ≥ 1 and

m ≥ t2 ≥ 1. The baseline action will only be updated at the end of the exploration phase and will

therefore only be indexed by the exploration phase time.

During the exploration phase, each player selects his baseline action with probability (1 − ǫ) or ex-

periments with a new random action with probability ǫ. That is, for any exploration phase time t1 ≥ 1

and for any exploration action time satisfying m ≥ t2 ≥ 1,

• y̌i(t1, t2) = yb
i (t1) with probability (1 − ǫ),
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• y̌i(t1, t2) is chosen randomly (uniformly) over (Yi \ yb
i (t1)) with probability ǫ.

Again, the variable ǫ will be referred to as the player’s exploration rate.

3. Action Assessment: After the exploration phase, each player evaluates the average utility received

when playing each of his actions during the exploration phase. Let nyi

i (t1) be the number of times

that player Pi played action yi during the exploration phase at time t1. The average utility for action

yi during the exploration phase at time t1 is

V̂ yi

i (t1) =

{
1

n
yi
i (t1)

∑m
t2=1 I{yi = y̌i(t1, t2)}Ui(y̌(t1, t2)), nyi

i (t1) > 0;

Umin, nyi

i (t1) = 0,

where I{·} is the usual indicator function and Umin satisfies

Umin < min
i

min
y∈Y

Ui(y).

In words, Umin is less than the smallest payoff any agent can receive.

4. Evaluation of Better Response Set: Each player compares the average utility received when playing

his baseline action, V̂
yb

i (t)
i (t1), with the average utility received for each of his other actions, V̂ yi

i (t1),

and finds all played actions which performed δ better than the baseline action. The term δ will be

referred to as the players’ tolerance level. Define Y ∗
i (t1) to be the set of actions that outperformed the

baseline action as follows:

Y ∗
i (t1) =

{

yi ∈ Yi : V̂ yi

i (t1) ≥ V̂
yb

i (t1)
i (t1) + δ

}

. (3)

5. Baseline Strategy Update: Each player updates his baseline action as follows:

• If Y ∗
i (t1) = ∅, then yb

i (t1 + 1) = yb
i (t1).

• If Y ∗
i (t1) 6= ∅, then

– With probability ω, set yb
i (t1 + 1) = yb

i (t1). (We will refer to ω as the player’s inertia.)

– With probability 1 − ω, randomly select yb
i (t1 + 1) ∈ Y ∗

i (t1) with uniform probability.

6. Return to Step 2 and repeat.
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For simplicity, we will first state and prove the desired convergence properties using noiseless utility

measurements. The setup for the noisy utility measurements will be stated afterwards.

Before stating the following theorem, we define the constant α > 0 as follows. If Ui(y
1) 6= Ui(y

2) for

any joint actions y1, y2 ∈ Y and any player Pi ∈ P , then |Ui(y
1)− Ui(y

2)| > α. In words, if any two joint

actions result in different utilities at all, then the difference would be at least α.

Theorem 3.3 Let G be a finite n-player weakly acyclic game in which all players use the Sample Experi-

mentation dynamics. For any

• probability p < 1,

• tolerance level δ ∈ (0, α),

• inertia ω ∈ (0, 1), and

• exploration rate ǫ satisfying min{(α − δ)/4, δ/4, 1 − p} > (1 − (1 − ǫ)n) > 0,

if the exploration phase length m is sufficiently large, then for all sufficiently large times t > 0, y(t) is a

Nash equilibrium of G with at least probability p.

The remainder of this subsection is devoted to the proof of Theorem 3.3.

We will assume for simplicity that utilities are between -1/2 and 1/2, i.e., |Ui(y)| ≤ 1/2 for any player

Pi ∈ P and any joint action y ∈ Y .

We begin with a series of useful claims. The first claim states that for any player Pi the average utility

for an action yi ∈ Yi during the exploration phase can be made arbitrarily close (with high probability) to the

actual utility the player would have received provided that all other players never experimented. This can be

accomplished if the experimentation rate is sufficiently small and the exploration phase length is sufficiently

large.

Claim 3.4 Let yb be the joint baseline action at the start of an exploration phase of length m. For

• any probability p < 1,

• any δ∗ > 0, and
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• any exploration rate ǫ > 0 satisfying δ∗/2 ≥ (1 − (1 − ǫ)n−1) > 0,

if the exploration phase length m is sufficiently large then

Pr

[∣
∣V̂ yi

i − Ui(yi, y
b
−i)

∣
∣ > δ∗

]

< 1 − p.

Proof Let ni(yi) represent the number of times player Pi played action yi during the exploration phase.

In the following discussion, all probabilities and expectations are conditioned on ni(yi) > 0. We omit

making this explicit for the sake of notational simplicity. The event ni(yi) = 0 has diminishing probability

as the exploration phase length m increases, and so this case will not affect the desired conclusions for

increasing phase lengths.

For an arbitrary δ∗ > 0,

Pr

[∣
∣V̂ yi

i − Ui(yi, y
b
−i)

∣
∣ > δ∗

]

≤ Pr

[∣
∣V̂ yi

i − E{V̂ yi

i }
∣
∣ +

∣
∣E{V̂ yi

i } − Ui(yi, y
b
−i)

∣
∣ > δ∗

]

≤ Pr

[∣
∣V̂ yi

i − E{V̂ yi

i }
∣
∣ > δ∗/2

]

︸ ︷︷ ︸

(∗)

+Pr

[∣
∣E{V̂ yi

i } − Ui(yi, y
b
−i)

∣
∣ > δ∗/2

]

︸ ︷︷ ︸

(∗∗)

.

First, let us focus on (∗∗). We have

E{V̂ yi

i } − Ui(yi, y
b
−i) = [1 − (1 − ǫ)n−1]

[

E{Ui(yi, y−i(t))|y−i(t) 6= yb
−i} − Ui(yi, y

b)
]

,

which approaches 0 as ǫ ↓ 0. Therefore, for any exploration rate ǫ satisfying δ∗/2 > (1 − (1 − ǫ)n−1) > 0,

we know that

Pr

[∣
∣E{V̂ yi

i } − Ui(yi, y
b
−i)

∣
∣ > δ∗/2

]

= 0.

Now we will focus on (∗). By the weak law of large numbers, (∗) approaches 0 as ni(yi) ↑ ∞. This implies

that for any probability p̄ < 1 and any exploration rate ǫ > 0, there exists a sample size n∗
i (yi) such that if

ni(yi) > n∗
i (yi) then

Pr

[∣
∣V̂ yi

i − E{V̂ yi

i }
∣
∣ > ρ/2

]

< 1 − p̄.

Lastly, for any probability p̄ < 1 and any fixed exploration rate, there exists a minimum exploration length

m > 0 such that for any exploration length m > m,

Pr [ni(yi) ≥ n∗
i (yi)] ≥ p̄.
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In summary, for any fixed exploration rate ǫ satisfying δ∗/2 ≥ (1 − (1 − ǫ)n−1) > 0, (∗) + (∗∗) can be

made arbitrarily close to 0, provided that the exploration length m is sufficiently large. ✷

Claim 3.5 Let yb be the joint baseline action at the start of an exploration phase of length m. For any

• probability p < 1,

• tolerance level δ ∈ (0, α), and

• exploration rate ǫ > 0 satisfying min{(α − δ)/4, δ/4} ≥ (1 − (1 − ǫ)n−1) > 0,

if the exploration length m is sufficiently large, then each player’s better response set Y ∗
i will contain only

and all actions that are a better response to the joint baseline action, i.e.,

y∗i ∈ Y ∗
i ⇔ Ui(y

∗
i , y

b
−i) > Ui(y

b)

with at least probability p.

Proof Suppose yb is not a Nash equilibrium. For some player Pi ∈ P , let y∗i be a strict better reply

to the baseline joint action, i.e. Ui(y
∗
i , y

b
−i) > Ui(y

b) and let yw
i be a non-better reply to the baseline joint

action, i.e. Ui(y
w
i , yb

−i) ≤ Ui(y
b).

Using Claim 3.4, for any probability p̄ < 1 and any exploration rate ǫ > 0 satisfying min{(α −

δ)/4, δ/4} ≥ (1 − (1 − ǫ)n−1) > 0 there exists a minimum exploration length m > 0 such that for any

exploration length m > m the following expressions are true:

Pr

[

|V̂
yb

i

i − Ui(y
b
i , y

b
−i)| < δ∗

]

≥ p̄, (4)

Pr

[

|V̂
y∗

i

i − Ui(y
∗
i , y

b
−i)| < δ∗

]

≥ p̄, (5)

Pr

[

|V̂
yw

i

i − Ui(y
w
i , yb

−i)| < δ∗
]

≥ p̄, (6)

where δ∗ = min{(α − δ)/2, δ/2}. Rewriting equation 4 we obtain

Pr

[

|V̂
yb

i

i − Ui(y
b
i , y

b
−i)| < δ∗

]

≤ Pr

[

V̂
yb

i

i − Ui(y
b
i , y

b
−i) < (α − δ)/2

]

,
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and rewriting equation 5 we obtain

Pr

[

|V̂
y∗

i

i − Ui(y
∗
i , y

b
−i)| < δ∗

]

≤ Pr

[

V̂
y∗

i

i − Ui(y
∗
i , y

b
−i) > −(α − δ)/2

]

,

≤ Pr

[

V̂
y∗

i

i − (Ui(y
b
i , y

b
−i) + α) > −(α − δ)/2

]

,

= Pr

[

V̂
y∗

i

i − Ui(y
b
i , y

b
−i) > (α + δ)/2

]

,

meaning that

Pr [y∗i ∈ Y ∗
i ] ≥ p̄2.

Similarly, rewriting equation 4 we obtain

Pr

[

|V̂
yb

i

i − Ui(y
b
i , y

b
−i)| < δ∗

]

≤ Pr

[

V̂
yb

i

i − Ui(y
b
i , y

b
−i) > −δ/2

]

,

and rewriting equation 6 we obtain

Pr

[

|V̂
yw

i

i − Ui(y
w
i , yb

−i)| < δ∗
]

≤ Pr

[

V̂
yw

i

i − Ui(y
w
i , yb

−i) < δ/2
]

,

≤ Pr

[

V̂
yw

i

i − Ui(y
b
i , y

b
−i) < δ/2

]

,

meaning that

Pr [yw
i /∈ Y ∗

i ] ≥ p̄2.

Since p̄ can be chosen arbitrarily close to 1, the proof is complete. ✷

Proof [Theorem 3.3] The evolution of the baseline actions from phase to phase is a finite aperiodic

Markov process on the state space of joint actions, Y . Furthermore, since G is weakly acyclic, from every

state there exists a better reply path to a Nash equilibrium. Hence, every recurrent class has at least one Nash

equilibrium. We will show that these dynamics can be viewed as a perturbation of a certain a Markov chain

whose recurrent classes are restricted to Nash equilibria. We will then appeal to Theorem A.1 to derive the

desired result.

We begin by defining an “unperturbed” process on baseline actions. For any yb ∈ Y , define the true

better reply set as

Ȳ ∗
i (yb) =

{

yi : Ui(yi, y
b
−i) > Ui(y

b)
}

.
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Now define the transition process from yb(t1) to yb(t1 + 1) as follows:

• If Ȳ ∗
i (yb(t1)) = ∅, then yb

i (t1 + 1) = yb
i (t1).

• If Ȳ ∗
i (yb(t1)) 6= ∅, then

– With probability ω, set yb
i (t1 + 1) = yb

i (t1).

– With probability 1 − ω, randomly select yb
i (t1 + 1) ∈ Ȳ ∗

i (t1) with uniform probability.

This is a special case of a so-called “better reply process with finite memory and inertia”. From [24, Theorem

6.2], the joint actions of this process converge to a Nash equilibrium with probability 1 in any weakly acyclic

game. Therefore, the recurrence classes of this unperturbed are precisely the set of pure Nash equilibria.

The above unperturbed process closely resembles the Baseline Strategy Update process described in

Step 5 of Sample Experimentation Dynamics. The difference is that the above process uses the true better

reply set, whereas Step 5 uses a better reply set constructed from experimentation over a phase. However,

by Claim 3.5, for any probability p̄ < 1, acceptable tolerance level δ, and acceptable exploration rate ǫ,

there exists a minimum exploration phase length m such that for any exploration phase length m > m, each

player’s better response set will contain only and all actions that are a strict better response with at least

probability p̄.

With parameters selected according to Claim 3.5, the transitions of the baseline joint actions in Sample

Experimentation Dynamics follow that of the above unperturbed better reply process with probability p̄

arbitrarily close to 1. Since the recurrence classes of the unperturbed process are only Nash equilibria,

we can conclude from Theorem A.1 that as p̄ approaches 1, the probability that the baseline action for

sufficiently large t1 will be a (pure) Nash equilibrium can be made arbitrarily close to 1. By selecting the

exploration probability ǫ sufficiently small, we can also conclude that the joint action during exploration

phases, i.e., y(mt1 + t2), will also be a Nash equilibrium with probability arbitrarily close to 1.

✷
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3.3.2 Noisy Utility Measurements

Suppose that each player receives a noisy measurement of his true utility, i.e.,

Ũi(yi, y−i) = Ui(yi, y−i) + νi,

where ni is an i.i.d. random variable with zero mean. In the regret testing algorithm with noisy utility

measurements, the average utility for action yi during the exploration phase at time t1 is now

V̂ yi

i (t1) =

{
1

n
yi
i (t1)

∑m
t2=1 I{yi = y̌i(t1, t2)}Ũi(y̌(t1, t2)), nyi

i (t1) > 0;

Umin, nyi

i (t1) = 0.

An straightforward modification of the proof of Theorem 3.3 leads to the following theorem.

Theorem 3.4 Let G be a finite n-player weakly acyclic game where players’ utilities are corrupted with a

zero mean noise process. If all players use the regret testing dynamics, then for any

• probability p < 1,

• tolerance level δ ∈ (0, α),

• inertia ω ∈ (0, 1), and

• exploration rate ǫ satisfying min{(α − δ)/4, δ/4, 1 − p} > (1 − (1 − ǫ)n) > 0,

if the exploration phase length m is sufficiently large, then for all sufficiently large times t > 0, y(t) is a

Nash equilibrium of G with at least probability p.

3.3.3 Comment on Length and Synchronization of Players’ Exploration Phases

In the proof of Theorem 3.3, we assumed that all players’ exploration phases were synchronized and of

the same length. This assumption was used to ensure that when a player assessed the performance of a

particular action, the baseline action of the other players remained constant. Because of the players’ inertia

this assumption is unnecessary. The general idea is as follows: a player will repeat his baseline action

regardless of his better response set with positive probability because of his inertia. Therefore, if all players

repeat their baseline action a sufficient number of times, which happens with positive probability, then

the joint baseline action would remain constant long enough for any player to evaluate an accurate better

response set for that particular joint baseline action.
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4 Influencing Nash Equilibria in Resource Allocation Problems

In this section we will derive an approach for influencing the Nash equilibria of a resource allocation problem

using the idea of marginal cost pricing. We will illustrate the setup and our approach on a congestion game

which is an example of a resource allocation problem.

4.1 Congestion Game Setup

We consider a transportation network with a finite set R of road segments (or resources) that needs to be

shared by a set of selfish drivers labeled as D := {d1, ..., dn}. Each driver has a fixed origin/destination

pair connected through multiple routes. The set of all routes available to driver di is denoted by Yi. A route

yi ∈ Yi consists of multiple road segments, therefore, yi ⊂ R. Player Pi taking route yi incurs a cost cr for

each road segment r ∈ yi. The utility of driver di taking route yi is defined as the negative of the total cost

incurred, i.e., Ui = −
∑

r∈yi
cr. Of course, the utility of each driver will depend on the routes chosen by

other drivers.

If we assume that the cost incurred in a road segment depends only on the total number of drivers sharing

that road, then drivers are anonymous, and this leads to a congestion game [17]. The utility of driver di is

now stated more precisely as

Ui(y) = −
∑

r∈yi

cr(σr(y)),

where y := (y1, ..., yn) is the profile of routes chosen by all drivers and σr(y) is the total number of drivers

using the road segment r.

It is known that a congestion game admits the following potential function,

φ̂(y) =
∑

r∈R

σr(y)
∑

k=1

cr(k).

Unfortunately, this potential function lacks practical significance for measuring the effectiveness of a routing

strategy in terms of the overall congestion.
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4.2 Congestion Game with Tolls Setup

One approach for equilibrium manipulation is to influence drivers’ utilities with tolls [19]. In a congestion

game with tolls, a driver’s utility takes on the form

Ui(y) = −
∑

r∈yi

cr(σr(y)) + tr(σr(y)),

where tr(k) is the toll imposed on route r if there are k users.

Suppose that the global planner is interested in minimizing the total congestion experienced by all drivers

on the network, which can be evaluated

Tc(y) :=
∑

r∈R

σr(y)cr(σr(y)).

It has been shown that there exists a set of tolls such that the potential function associated with the con-

gestion game with tolls is aligned with the total congestion experienced by all drivers on the network ([13],

Proposition 4.1).

Proposition 4.1 Consider a congestion game of any network topology. If the imposed tolls are set as

tr(k) = (k − 1)[cr(k) − cr(k − 1)], ∀k ≥ 1,

then the total negative congestion experienced by all drivers, φc(y) = −Tc(y), is a potential function for

the congestion game with tolls.

This tolling scheme results in drivers’ local utility functions being aligned with the global objective of

minimal total congestion.

Now suppose that the global planner is interested in minimizing a more general measure3,

φ(y) :=
∑

r∈R

fr(σr(y))cr(σr(y)). (7)

An example of an objective function that fits within this framework and may be practical for general resource

allocation problems is

φ(y) =
∑

r∈R

cr(σr(y)).

3In fact, if cr(σr(y)) 6= 0 for all y, then equation (7) is equivalent to
∑

r∈R
fr(σr(y)).
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We will now show that there exists a set of tolls, tr(·), such that the potential function associated with

the congestion game with tolls will be aligned with the global planner’s objective function of the form given

in equation (7).

Proposition 4.2 Consider a congestion game of any network topology. If the imposed tolls are set as

tr(k) = (fr(k) − 1)cr(k) − fr(k − 1)cr(k − 1), ∀k ≥ 1,

then the global planners objective, φc(y) = −φ(y), is a potential function for the congestion game with

tolls.

Proof Let y1 = {y1
i , y−i} and y2 = {y2

i , y−i}. We will use the shorthand notation σy1

r to represent

σr(y
1). The change in utility incurred by driver di in changing from route y2

i to route y1
i is

Ui(y
1) − Ui(y

2) = −
∑

r∈y1
i

(
cr(σ

y1

r ) + tr(σ
y1

r )
)

+
∑

r∈y2
i

(
cr(σ

y2

r ) + tr(σ
y2

r )
)
,

= −
∑

r∈y1
i \y

2
i

(
cr(σ

y1

r ) + tr(σ
y1

r )
)

+
∑

r∈y2
i \y

1
i

(
cr(σ

y2

r ) + tr(σ
y2

r )
)
.

The change in the total negative congestion from the joint action y2 to y1 is

φc(y
1) − φc(y

2) = −
∑

r∈(y1
i ∪y2

i )

(
fr(σ

y1

r )cr(σ
y1

r ) − fr(σ
y2

r )cr(σ
y2

r )
)
.

Since

∑

r∈(y1
i ∩y2

i )

(
fr(σ

y1

r )cr(σ
y1

r ) − fr(σ
y2

r )cr(σ
y2

r )
)

= 0,

the change in the total negative congestion is

φc(y
1) − φc(y

2) =

−
∑

r∈y1
i \y

2
i

(
fr(σ

y1

r )cr(σ
y1

r ) − fr(σ
y2

r )cr(σ
y2

r )
)
−

∑

r∈y2
i \y

1
i

(
fr(σ

y1

r )cr(σ
y1

r ) − fr(σ
y2

r )cr(σ
y2

r )
)
.
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Expanding the first term, we obtain

∑

r∈y1
i \y

2
i

(
fr(σ

y1

r )cr(σ
y1

r ) − fr(σ
y2

r )cr(σ
y2

r )
)

=
∑

r∈y1
i \y

2
i

(
fr(σ

y1

r )cr(σ
y1

r ) − (fr(σ
y1

r − 1))cr(σ
y1

r − 1)
)
,

=
∑

r∈y1
i \y

2
i

(
fr(σ

y1

r )cr(σ
y1

r ) − ((fr(σ
y1

r ) − 1)cr(σ
y1

r ) − tr(σ
y1

r ))
)

=
∑

r∈y1
i \y

2
i

(
cr(σ

y1

r ) + tr(σ
y1

r )
)
.

Therefore,

φc(y
1) − φc(y

2) = −
∑

r∈y1
i \y

2
i

(
cr(σ

y1

r ) + tr(σ
y1

r )
)

+
∑

r∈y2
i \y

1
i

(
cr(σ

y2

r ) + tr(σ
y2

r )
)
,

= Ui(y
1) − Ui(y

2).

✷

By implementing the tolling scheme set forth in Proposition 4.2, we guarantee that all action profiles

that minimize the global planner’s objective are equilibrium of the congestion game with tolls.

In the special case that fr(σr(y)) = σr(y), then Proposition 4.2 produces the same tolls as in Proposi-

tion 4.1

5 Illustrative Example – Congestion Game

We will consider a discrete representation of the congestion game setup considered in Braess’ Paradox [3].

In our setting, there are 1000 vehicles that need to traverse through the network. The network topology and

associated congestion functions are illustrated in Figure 4. Each vehicle can select one of the four possible

paths to traverse across the network.

The reason for using this setup as an illustration of the learning algorithms and equilibrium manipulation

approach developed in this paper is that the Nash equilibrium of this particular congestion game is easily

identifiable. The unique Nash equilibrium is when all vehicles take the route as highlighted in Figure 5. At

this Nash equilibrium each vehicle has a utility of 2 and the total congestion is 2000.
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Start Finish

Figure 4: Congestion Game Setup

c(k) = 1

c(k) = 1c(k) = k / 1000

c(k) = 0

c(k) = k / 1000

Figure 5: Illustration of Nash Equilibrium in Proposed Congestion Game.

Since a potential game is weakly acyclic, the payoff based learning dynamics in this paper are applica-

ble learning algorithms for this congestion game. In a congestion game, a payoff based learning algorithms

means that drivers have access only to the actual congestion experienced. Drivers are unaware of the con-

gestion level on any alternative routes. Figure 6 shows the evolution of drivers on routes when using the

Simple Experimentation dynamics. This simulation used an experimentation rate of ǫ = 0.25%. The colors

on the plots are consistent with the colors of each route as indicated in Figure 4. One can observe that the

vehicles’ collective behavior does indeed approach that of the Nash equilibrium.

In this congestion game, it is also easy to verify that this vehicle distribution does not minimize the total

congestion experience by all drivers over the network. The distribution that minimizes the total congestion

over the network is when half the vehicles occupy the top two roads and the other half occupy the bottom
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Figure 6: Evolution of Number of Vehicles on Each Road Using Simple Experimentation Dynamics

two roads. The middle road (pink) is irrelevant.

One can employ the tolling scheme developed in the previous section to locally influence vehicle behav-

ior to achieve this objective. In this setting, the new cost functions, i.e. congestion plus tolls, are illustrated

in Figure 7.

c(k) = 1

c(k) = 1
c(k) = k / 1000 +

(k-1) / 1000

c(k) = 0

c(k) = k / 1000 +
(k-1) / 1000

Figure 7: Congestion Game Setup with Tolls to Minimize Total Congestion

Figure 8 shows the evolution of drivers on routes when using the Simple Experimentation dynamics.

This simulation used an experimentation rate of ǫ = 0.25%. When using this tolling scheme, the vehi-
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cles’ collective behavior approaches the new Nash equilibrium which now minimizes the total congestion

experienced on the network. The total congestion experienced on the network is now approximately 1500.
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Figure 8: Evolution of Number of Vehicles on Each Road Using Simple Experimentation Dynamics with

Optimal Tolls

There are other tolling schemes that would have resulted in the desired allocation. One approach is to

assign an infinite cost to the middle road, which is equivalent to removing it from the network. Under this

scenario, the unique Nash equilibrium is for half the vehicles to occupy the top route and half the bottom,

which would minimize the total congestion on the network. Therefore, the existence of this extra road, even

though it has zero cost, resulted in the unique Nash equilibrium having a higher total congestion. This is

Braess’ Paradox [3].

The advantage of the tolling scheme set forth in this paper is that it gives a systematic method for

influencing the Nash equilibria of any congestion game. We would like to highlight that this tolling scheme

only guarantees that the action profiles that maximize the desired objective function are Nash equilibria of

the new congestion game with tolls. However, it does not guarantee the lack of suboptimal Nash equilibria.

In many applications, players may not have access to their true utility, but do have access to a noisy

measurement of their utility. For example, in the traffic setting, this noisy measurement could be the result

of accidents or weather conditions. We will revisit the original congestion game (without tolls) as illustrated
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in Figure 4. We will now assume that a driver’s utility measurement takes on the form

Ũi(y) = −
∑

r∈yi

cr(σr(y)) + νi,

where νi is a random variable with zero mean and variance of 0.1. We will assume that the noise is driver

specific rather than road specific.

Figure 9 shows a comparison of the evolution of drivers on routes when using the Simple and Sample

Experimentation dynamics. The Simple Experimentation dynamics simulation used an experimentation rate

ǫ = 0.25%. The Sample Experimentation dynamics simulation used an exploration rate ǫ = 0.25%, a

tolerance level δ = 0.002, an exploration phase length m = 500000, and inertia ω = 0.85. As expected, the

noisy utility measurements influenced vehicle behavior more in the Simple Experimentation dynamics than

the Sample Experimentation dynamics.
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Figure 9: Comparison of Evolution of Number of Vehicles on Each Road Using Simple Experimentation

Dynamics and Sample Experimentation Dynamics (baseline) with Noisy Utility Measurements

6 Concluding Remarks

We have introduced Safe Experimentation dynamics for identical interest games, Simple Experimentation

dynamics for weakly acyclic games with noise-free utility measurements, and Sample Experimentation dy-

namics for weakly acyclic games with noisy utility measurements. For all three settings, we have shown that
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for sufficiently large times, the joint action taken by players will constitute a Nash equilibrium. Furthermore,

we have shown how to guarantee that a collective objective in a congestion game is a (non-unique) Nash

equilibrium.

Our motivation has been that in many engineered systems, the functional forms of utility functions are

not available, and so players must adjust their strategies through an adaptive process using only payoff

measurements. In the dynamic processes defined here, there is no explicit cooperation or communication

between players. One the one hand, this lack of explicit coordination offers an element of robustness to a va-

riety of uncertainties in the strategy adjustment processes. Nonetheless, an interesting future direction would

be to investigate to what degree explicit coordination through limited communications could be beneficial.
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A Appendix: Background on Resistance Trees

For a detailed review of the theory of resistance trees, please see [22]. Let P 0 denote the probability

transition matrix for a finite state Markov chain over the state space Z. Consider a “perturbed” process

such that the size of the perturbations can be indexed by a scalar ǫ > 0, and let P ǫ be the associated

transition probability matrix. The process P ǫ is called a regular perturbed Markov process if P ǫ is ergodic

for all sufficiently small ǫ > 0 and P ǫ approaches P 0 at an exponentially smooth rate [22]. Specifically, the

latter condition means that ∀z, z′ ∈ Z,

lim
ǫ→0+

P ǫ
zz′ = P 0

zz′ ,
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and

P ǫ
zz′ > 0 for some ǫ > 0 ⇒ 0 < lim

ǫ→0+

P ǫ
zz′

ǫr(z→z′)
< ∞,

for some nonnegative real number r(z → z′), which is called the resistance of the transition z → z′. (Note

in particular that if P 0
zz′ > 0 then r(z → z′) = 0.)

Let the recurrence classes of P 0 be denoted by E1, E2, ..., EN . For each pair of distinct recurrence

classes Ei and Ej , i 6= j, an ij-path is defined to be a sequence of distinct states ζ = (z1 → z2 → ... → zn)

such that z1 ∈ Ei and zn ∈ Ej . The resistance of this path is the sum of the resistances of its edges, that

is, r(ζ) = r(z1 → z2) + r(z2 → z3) + ... + r(zn−1 → zn). Let ρij = min r(ζ) be the least resistance

over all ij-paths ζ. Note that ρij must be positive for all distinct i and j, because there exists no path of zero

resistance between distinct recurrence classes.

Now construct a complete directed graph with N vertices, one for each recurrence class. The vertex

corresponding to class Ej will be called j. The weight on the directed edge i → j is ρij . A tree, T , rooted

at vertex j, or j-tree, is a set of N − 1 directed edges such that, from every vertex different from j, there

is a unique directed path in the tree to j. The resistance of a rooted tree, T , is the sum of the resistances

ρij on the N − 1 edges that compose it. The stochastic potential, γj , of the recurrence class Ej is defined

to be the minimum resistance over all trees rooted at j. The following theorem gives a simple criterion for

determining the stochastically stable states ([22], Theorem 4).

Theorem A.1 Let P ǫ be a regular perturbed Markov process, and for each ǫ > 0 let µǫ be the unique sta-

tionary distribution of P ǫ. Then limǫ→0 µǫ exists and the limiting distribution µ0 is a stationary distribution

of P 0. The stochastically stable states (i.e., the support of µ0) are precisely those states contained in the

recurrence classes with minimum stochastic potential.
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