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The role of brown adipose tissue (BAT) in human metabolism and its potential as an anti-
obesity target organ have recently received much renewed attention. Following radiological
detection of substantial amounts of BAT in adults by several independent research groups,
an increasing number of studies are now dedicated to uncover BAT’s genetic, develop-
mental, and environmental determinants. In contrast to murine BAT, human BAT is not
present as a single major fat depot in a well-defined location. The distribution of BAT in
several areas in the body significantly limits its availability to research. A human brown
adipocyte cell line is therefore critical in broadening the options available to researchers in
the field. The human BAT-cell line PAZ6 was created to address such a need and has been
well characterized by several research groups around the world. In the present review, we
discuss their findings and propose potential applications of the PAZ6 cells in addressing
the relevant questions in the BAT field, namely for future use in therapeutic applications.
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INTRODUCTION
THE ROLE OF BROWN AND WHITE ADIPOCYTES IN METABOLISM
The continuous rise in the incidence of world-wide obesity reflects
the persistent lack of efficient treatment strategies. Obesity results
when energy intake exceeds energy expenditure on a regular basis
(National Institutes of Health, 2010; World Health Organization,
2010). Excess calories are stored as single intracellular triacylglyc-
erol (TG) droplets in white adipose tissue (WAT), the organism’s
largest reserve of energy. Conversely, brown adipose tissue (BAT)
shifts the energy balance toward expenditure. BAT dissipates the
energy resulting from the catabolism of glucose and fatty acids
using uncoupling protein 1 (UCP1)-mediated thermogenesis. In
rodents kept in cold, despite comprising only a few percent of
the body weight, BAT may reduce more than 50% of all the oxy-
gen inhaled/food consumed and hence, dissipate chemical energy
of same magnitude (Cannon and Nedergaard, 2011; Nedergaard
et al., 2011).

As expected from their distinct physiological roles, WAT and
BAT were shown to derive from different precursor cells (Seale
et al., 2008). While WAT cells originate in the lateral plate meso-
derm, from pericyte-like cells associated with blood vessels, BAT-
cells share with myocytes a common Myf5+ precursor originated
in the dermomyotome derived from the paraxial mesoderm (Seale
et al., 2008). The transcriptional regulator PRDM16 (PRD1–BF1–
RIZ1 homologous domain containing 16) was shown to determine
the brown fat fate of the Myf5-positive precursors (Seale et al.,
2008). Additionally, UCP1-positive cells can arise in WAT under
certain conditions (cold exposure, for example). These cells have

been designated as “brite” and although they express UCP1 at
much lower levels than BAT adipocytes, they do not possess many
features of “classic” BAT-cells (Waldén et al., 2012). Besides Myf5,
present in BAT but not “brite precursors,” the molecular mark-
ers homeobox C9 (Hox9) and Zinc fingers in the cerebellum 1
(Zic1) also display adipose depot-dependent expression. Zic1 is
only expressed in “classic” BAT while Hox9 is expressed in both
“brite” and WAT, but not BAT (Waldén et al., 2012).

BAT DETECTION IN HUMANS
Although it was long considered that the prominent BAT depots
of newborns were progressively lost with age, to end up being
supposedly absent from human adults, a combination of positron
emission and computer tomography (PET/CT) data from a num-
ber of studies originally done to detect metabolically active tumors,
recently confirmed by dedicated analyzes that a significant propor-
tion of adult humans may actually possess significant amounts of
physiologically relevant BAT (Nedergaard et al., 2007; Cypess et al.,
2009; van Marken Lichtenbelt et al., 2009; Orava et al., 2011). The
prevalence in pediatric patients is nevertheless, still several fold
higher than in adults, although an increase in BAT may occur
from childhood to adolescence in both boys and girls, as mea-
sured by CT Hounsfield Units of X-ray attenuation’s (HU) and
PET (Gilsanz et al., 2011).

Positron emission and computer tomography scans have
become indisputably the gold-standard in BAT detection.
However, the requirement for radiolabeled tracers limits its use.
8F-2-fluoro-2-deoxyglucose (F-DG) is typically used and its signal
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is only detected in metabolically active cells. This caveat has lead
to growing interest in alternative BAT detection techniques. The
feasibility of using magnetic resonance imaging (MRI) and mag-
netic resonance spectroscopy (MRS) for BAT detection is discussed
elsewhere (Hu and Gilsanz, 2011). Of particular note, the distinc-
tion of BAT from WAT has been achieved based on their relative
fat contents, which produce different signal patterns in chemical-
shift–water–fat separation MRI (Hu et al., 2010a,b). Additionally,
BAT and WAT were also shown to appear in non-overlapping
regions in the HU scale (BAT displaying greater attenuation due
to its higher vascularization and water content), even though both
tissues are HU-negative and therefore distinguishable from bone
and all other HU-positive soft tissues (Hu et al., 2011).

With the repeated detection and the general acceptance of the
presence of substantial BAT in most human adults, a BAT-based
route of pharmacologic intervention against obesity may now
become more feasible.

PHYSIOLOGICAL RELEVANCE OF BAT IN HUMANS
While there is a large quantity of studies supporting the impor-
tance of BAT metabolism to body weight in rodents, the literature
is scarce in studies done in humans. Still, the inverse relationship
between BMI and BAT found repeatedly in recent studies and in
PET/CT scans analyzed retrospectively (see reviews by Betz and
Enerbäck, 2011 and van Marken Lichtenbelt, 2011), suggest that
BAT could be protective against weight gain in humans.

Functionally, results from an in vivo analysis of adult human
BAT (Orava et al., 2011) parallel previous findings in rodents
(Bartelt et al., 2011). By combining PET/CT imaging, blood tests
and gene expression from biopsies, human volunteers were shown
to respond to cold exposure with a remarkable 12-fold increase
in glucose uptake, accompanied by a doubling in BAT perfusion
rate, well correlated with the subjects’ metabolic rates (Orava et al.,
2011).

The PET scans from 10 healthy men show an average BAT
volume of 130 cm3, which corresponds to tens of grams of tis-
sue (Saito et al., 2009; van Marken Lichtenbelt et al., 2009). When
exposed to the cold (16˚C for 2 h), these subjects showed increased
metabolic rate, concomitant with BAT activation, reflected in the
increased F-DG uptake.

Quantitative estimations of the potential metabolic impact of
BAT to whole body energy expenditure in humans were extrapo-
lated from observations in rodents and considerations on human
BAT mass have been made upon analysis of F-DG PET/CT scans.
Based on the maximal heat-producing capacity of 300 W/kg sug-
gested for the mouse, 50g of maximally stimulated BAT (which
can occur physiologically in humans) could dissipate daily 3–5%
extra calories (Rothwell and Stock, 1981). This caloric deficit could
translate to a loss of approximately 4 kg (∼9 pounds) in the adult
yearly weight.

Though preliminary, the physiological data obtained to date
points toward the potential benefits of BAT in human health.
Therefore, maximizing BAT amounts and mimicking cold activa-
tion pharmacologically may constitute effective combined strate-
gies against weight gain and the associated complications of obe-
sity. Before getting so far, there is an urgency to develop and

evaluate human brown adipocyte models as essential tools for
the discovery of molecular targets to modulate BAT viability,
proliferation, and activation.

BAT-DERIVED CELL LINES FROM RODENTS
Hibernomas grown in p53 Knock Out mice or SV40 large T antigen
transgenic mice have been used to generate immortalized murine
BAT-cell lines (defined by UCP1 gene expression) such as the T37i
(Penfornis et al., 2000), the HIB-1B (Ross et al., 1992), and the
HB2 (Irie et al., 1999) cell lines (see review by Klein et al., 2002).
These in vitro systems have helped acquire substantial knowledge
of murine BAT biology.

THE NEED FOR HUMAN ADIPOCYTE IN VITRO MODELS
Striking differences between the thermogenic requirements of
mice and humans limit however the extent to which the findings
in animals can be extrapolated to the human situation. Such dif-
ferences are well illustrated by the fact that while clothed humans
consume food equivalent to only about 2% of their total body
energy content, a laboratory mouse living at 24˚C will consume
approximately 50% of its total body energy content daily, and will
dedicate a large proportion of this energy to BAT heat produc-
tion. If food is scarce, mice enter into torpor, an adaptive drop in
body temperature and reduced metabolic rate, not seen in humans
(Himms-Hagen, 1999). This increased need for BAT-generated
heat is directly correlated with the higher surface-to-body mass
ratios of smaller mammals (Himms-Hagen, 1999).

A number of comparative studies highlight significant dif-
ferences in the genetic, metabolic, and physiologic make-up of
adipose tissue among species.

For example, the genes for Type II iodothyronine deiodinase
(DIO2), peroxisome-proliferator-activated receptor 1α (PGC1α)
and PRDM16 have been shown to be highly enriched in the murine
BAT versus WAT but only slightly more abundant in the human
BAT versus WAT (Svensson et al., 2011).

Notably, the degree of white adipocyte responsiveness to the
selective β3 adrenergic agonists BRL37344 and CGP12177 (rela-
tive to isoproterenol) was shown to inversely correlate with animal
size. Rats and hibernators such as golden hamsters and dormouse
were shown to be hyper-responders, medium-size mammals such
as rabbits and dogs were weak-responders, and monkeys and men
were reported to be either very weak or non-responders (Lafontan
and Berlan, 1993).

Another distinguishing parameter in the lipid metabolism of
mice and men is the predominant lipoprotein class carrying cho-
lesterol: low-density lipoproteins (LDL) in humans, high-density
lipoproteins (HDL) in rodents (Vitic and Stevanovic, 1993).

Finally, the shared amino acid identity of mouse and human
UCP1 is less than 80%. The rodent UCP1 kinetics has been
extensively studied in a variety of expression systems. Isolated
mitochondria, liposomes, lipid bilayers, yeast, cell lines, and tissue
have been used. A comparative table displaying the results for the
membrane potential, UCP1 protein concentration, and the rates
of proton transport of each system can be found in the review by
Hirschberg et al. (2011). In contrast, no study on human UCP1
kinetics has been performed to date.
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In view of such species-dependent variations, studies ultimately
aimed at being translated into the clinics must ideally be conducted
on human cellular models of white and BAT whenever available.
Additionally, the specific lack of studies on human UCP1 kinetics
urgently calls for a human brown adipocyte cell line (or precursor
cell line) with the obvious advantage of allowing this system to be
characterized in its native environment.

HUMAN ADIPOCYTE-LIKE CELL LINES
Biopsies of spontaneous tumors have provided a source of
immortalized precursor cells that can be differentiated into white
adipocytes in vitro (Table 1). The Lisa-2 cells (Wabitsch et al.,
2000) and the LS-14 cells (Hugo et al., 2006) were obtained
from patients with liposarcoma. The AML-I cells (Torii et al.,
2003) were derived from peripheral blood mononuclear cells
from a patient with acute myeloid leukemia. Another white pre-
adipocyte cell line, which continuously proliferates in culture,
was obtained from a patient with the Simpson–Golabi–Behmel
syndrome (Wabitsch et al., 2001). The Chub-S7 cell line (Dari-
mont et al., 2003) was derived from subcutaneous white adipose
and immortalized with the human telomerase reverse transcrip-
tase (hTERT) and the papillomavirus E7 oncoprotein (HPV-E7;
Table 1).

In contrast to the general availability of peripheral subcuta-
neous or omental tissues and of occasional occurrence of liposar-
comas (Wibmer et al., 2010), hibernoma, or pheochromocytoma
tumors associated with well-localized BAT depots are extremely
rare (Lath et al., 2011), probably explaining why there are no
reports on immortalized cell lines of such origin in the literature.

Stromal vascular cells obtained from adult human biopsies
following F-DG PET/CT scans were recently shown to differen-
tiate in vitro into UCP1-positive adipocytes. This study confirms
unequivocally the presence of potential BAT-cell precursors in
the supraclavicular region in humans independent of their F-
DG PET/CT status, as both PET-negative and positive biopsies
provided UCP1-positive cells (Lee et al., 2011).

Although human primary stem cells that differentiate into
brown adipocytes in vitro can now be routinely obtained, an obvi-
ous caveat is that they cannot be propagated beyond a few cell
passages and cannot be easily compared between individuals due
to expected genetic variations.

THE PAZ6 CELL LINE
ORIGIN
The PAZ6 cell line was obtained from the vascular stromal frac-
tion from human infant BAT and immortalized through trans-
fection with the genes coding for the SV40 T and t antigens
under the control of the vimentin promoter (Zilberfarb et al.,
1997). It fulfills the condition of an immortalized human cell
model with the ability to differentiate into brown adipocytes in
culture.

UCP1 DETECTION
Uncoupling protein 1 was shown by qPCR and Northern Blot to
be present in differentiated PAZ6 cells and to be further induced
by norepinephrine (NE; Figure 1). Presence of this BAT-exclusive
protein is a required criterion for defining BAT.

FIGURE 1 | Expression of the UCP1 gene in PAZ6 pre-adipocytes and

adipocytes. PAZ6 cells were differentiated as described in the legend of
Figure 1. (a) RT-PCR analysis of the UCP gene expression: lane 1, PAZ6
pre-adipocytes; lane 2; PAZ6 differentiated adipocytes; lane 3; PAZ6
differentiated adipocytes incubated with 10–5 M norepinephrine for 4 h;
lane 4, positive control: human brown adipose tissue from a patient with
pheochromocytoma; + and − symbols indicate the presence or absence of
reverse transcriptase. Each lane contained 200 ng total RNA. Size of the
amplification product: 498 base pairs. cDNAs were amplified for 33 cycles
(Zilberfarb et al., 1997).

Table 1 | Human adipocyte cell lines.

Cell line White or brown Immortalization method Reference

Lisa White Spontaneous tumor (liposarcoma) Wabitsch et al. (2000)

LS-14 White Spontaneous tumor (liposarcoma) Hugo et al. (2006)

AML-1 White Spontaneous tumor (leukemia) Torii et al. (2003)

SGBS White Simpson–Golabi–Behmel syndrome Wabitsch et al. (2001)

Chub-S7 White Telomerase reverse transcriptase and

papillomavirus E7 oncoprotein transformed

Darimont et al. (2003)

SVF from supra-clavicular fat Brown* None Lee et al. (2011)

Primary stem cells Brown* None Morganstein et al. (2010), Elabd et al. (2009)

PAZ6 Brown* SV40 T and t antigens transformed Zilberfarb et al. (1997)

*Expressing UCP1.
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This UCP1-expressing human cell line may enable the char-
acterization of human UCP1 in its “normal” environment and
may help support the concept that “BAT can counteract obesity
in humans.” However immortalization and advanced passaging
can alter the cell phenotype (Hirschberg et al., 2011). Uncoupling
activity may be down-regulated upon continuous propagation of
cells in vitro since UCP-mediated thermogenesis results from phys-
iologic adaptation in whole animal, in a sympathetic-dependent
manner (Festuccia et al., 2010). Drugs that promote UCP1 gene
expression have been successfully used to overcome this in vitro
caveat.

Technical issues aside, UCP1 concentration in human BAT may
be several fold lower than in rodents (Lean et al., 1986), predicting
low UCP1 in future human cellular models. Proper normaliza-
tion will be essential to correct species-associated differences in
absolute UCP1 content and total levels should be accounted for in
estimations concerned with metabolic significance.

CHARACTERIZATION OF THE HUMAN BROWN ADIPOCYTE CELL LINE
PAZ6
Continuous characterization of the PAZ6 brown adipocytes since
their initial development in 1997 (Zilberfarb et al., 1997) has
revealed the expression of several key adipogenic markers. The
cells have also been employed as an in vitro model for the study
of adipose-specific processes, such as leptin secretion and nuclear
receptor-dependent gene expression (Bailleul et al., 1997; Grosfeld
et al., 2002; Oberkofler et al., 2002, 2004a,b) in addition to simply
being utilized as a “host” in vitro vessel for studies of generic cel-
lular processes (Esterbauer et al., 2000, 2001; Hazan et al., 2002;

Tang et al., 2008). These additional findings and their relevance
to a better understanding of (brown) adipose tissue biology are
discussed here.

ADIPOGENIC MARKERS
The 14 days differentiation cocktail described by Zilberfarb et al.
(1997) was shown to up-regulate the genes for β1,β2, and β3 adren-
ergic receptors (β-AR), hormone sensitive lipase (HSL), lipopro-
tein lipase (LPL), adipsin, glucose transporters 1 and 4 (GLUT
1 and 4), and leptin. The mRNA’s of adipocyte-positive TNF-
α receptors, TNFR1 and TNFR2 are also detected in confluent
PAZ6 (Zilberfarb et al., 2001). The expression of such genes paral-
lels the progressive accumulation of multilocular fat stores in the
cytosol of PAZ6 cells (Figure 2; Zilberfarb et al., 1997) and dis-
play expression kinetics comparable to human primary adipocytes
(Figure 3).

Treatment with the β3-AR agonist CGP12177A, a β1 and β2

antagonist (Blin et al., 1994), promotes glycerol release by PAZ6
adipocytes at levels comparable to forskolin, NE, or isoproterenol
(Zilberfarb et al., 1997), confirming that coupling of the β3-AR to
lipolysis is intact in PAZ6. The β3 is the predominant AR subtype
detected in PAZ6 cells (75% of the total β-AR binding; Jockers
et al., 1998), an important feature also seen in the membranes of
brown adipocytes obtained from a BAT capsule growing around
a pheochromocytoma adrenal gland tumor. Similar to brown
adipocytes and differentiated peritumoral precursors pre-treated
with NE for several hours, PAZ6 β3-AR signaling undergoes desen-
sitization (Jockers et al., 1998), in part due to the down-regulation
in receptor number (Jockers et al., 1998).

FIGURE 2 | Multilocular lipid accumulation in PAZ6 adipocytes upon differentiation. (A) PAZ6 pre-adipocytes in culture. (B) Differentiated PAZ6
adipocytes. Differentiation was carried out for 3 weeks in propagation medium supplemented with 1 nM T3, 850 nM insulin, 100 nM dexamethasone, and 1 μM
pioglitazone (Zilberfarb et al., 1997).
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FIGURE 3 | Comparison of the expression of adipocytes markers

during the course of differentiation of PAZ6 cells and human primary

adipocytes from subcutaneous adipose tissue of the abdominal

region. Cells were differentiated as described in the legend of Figure 1.
The expression of adipocyte markers was evaluated by RT-PCR as described
by Zilberfarb et al. (1997).

The melatonin receptor 1b isoform (MT2), earlier found in
BAT and WAT, is expressed in PAZ6 cells (Brydon et al., 2001).
There, melatonin doses around the physiological IC50 were shown
to be inhibitory to forskolin-dependent rise in cyclic adenosine
monophosphate (cAMP; Brydon et al., 2001).

Also resembling other adipocyte in vitro models (Tontonoz and
Spiegelman, 2008), PAZ6 differentiation was shown to respond
to the thiazolidinediones: naphthylazo (5-[2-(2-naphthylmethyl)-
5-benzofuranylmethyl]-2,4-thiazolidinedione) or pioglitazone (5-
[4-[2-(5-ethyl-2-pyridyl)ethoxy]benzyl]-2,4-thiazolidinedione)
with up-regulation of the classic adipose-marker adipocyte pro-
tein 2 (aP2) and also of the genes coding for the adipogenic-
associated proteins–peroxisome proliferator-activated receptor
gamma (PPARγ), β3-AR, HSL, and uncoupling protein 2 (UCP2;
Strobel et al., 1999). Moreover, PAZ6 respond to dexametha-
sone with up-regulation of the fat-metabolism-related genes
for CCAAT-enhancer-binding proteins alpha (C/EBPα), PPARγ,
LPL, and leptin (Zilberfarb et al., 2001) in a dose-dependent
manner.

The levels of the adipokine leptin expressed and secreted by
PAZ6 were shown to be remarkably comparable to human primary
adipose cells. Leptin levels responded to low oxygen concentration
culturing or chemically induced hypoxia with a two to threefold
induction in expression. The hypoxia-inducible GLUT1 was up-
regulated as expected and, not surprisingly, GLUT4, UCP2, and
the lipid-processing proteins aP2 and HSL were down-regulated
in hypoxic PAZ6 (Grosfeld et al., 2002).

The secretion of the leptin mutant R105W transfected in PAZ6
cells was impaired. Its retention by size-exclusion membranes that
normally allow the elution of wild-type leptin suggests that the
R105W form aggregates in the adipose cell (Boute et al., 2004).

PAZ6 cells express the human mRNA splice variant of the lep-
tin receptor gene encoding a protein designated “leptin receptor
gene-related protein” (OB-RGRP) distinct from the classic leptin
receptor (OB-R; Bailleul et al., 1997). OB-RGRP was suggested to
negatively regulate the function of the OB-R by decreasing its cell
surface expression levels (Couturier et al., 2007). Hence, its expres-
sion might regulate leptin activity with consequent implications
for the biology of PAZ6 cells.

NUCLEAR RECEPTORS
In PAZ6, peroxisome proliferator-activated receptor gamma co-
activator 1-alpha (PGC1α)-dependent increase in UCP1 gene
expression by retinoic acid (RA) or TZD (Oberkofler et al., 2002)
has been observed, while a PPARα-specific agonist WY14,643
failed to regulate the expression of the UCP1 gene unless combined
with RA (Oberkofler et al., 2002).

The UCP1 promoter is known to contain an enhancer region
3.7 kb upstream of the transcription initiation site containing sev-
eral putative nuclear receptors (Cao et al., 2004; Collins et al.,
2010). Specifically, a 221 bp region, 2.5 kbp upstream of the start
codon, contains a PPARγ (PPRE), cis-acting cAMP (CREB), and
thyroid hormone (TRE) response elements. Retinoic acid receptor
(RAR) was also described to mediate increased UCP1 expres-
sion, even though RA levels do not rise in the cold. PPARα is
regulated by cold and has been associated with increased UCP1
levels (Cao et al., 2004; Collins et al., 2010). The finding that
the latter was not sufficient for the UCP1 gene activation is sug-
gestive of the complex interplay between the several promoter
receptors, transcriptional factors and cofactors. To explain the
lack of effect of WY14,643 alone, it was hypothesized that –
in non-stimulated states – PPARα binds a putative repressor
forming a complex that could dissociate in the presence of p38
mitogen-activated protein kinases (p38 MAPK) signaling. Con-
firming this hypothesis, Oberkofler et al. (2002) showed that a
MAPK-specific inhibitor (SB202190) completely abolished the
stimulatory response seen in the PGC1α-dependent UCP1 pro-
moter activity of cells treated with the combination RA/WY14,643
(Oberkofler et al., 2002).

Inhibition of the p38 MAP kinase signaling pathway with the
same inhibitor was shown to impair PAZ6 adipocyte differentia-
tion in an independent study (Zilberfarb et al.,unpublished results;
Figure 4).

The ratio of sterol regulatory element-binding protein 1a/1c
(SREBP1a/1c) in cells lines compared to primary tissues (spleen
excluded) such as liver, adipose, adrenals, and others is inverted
(Shimomura et al., 1997). This inverted pattern was also detected
in PAZ6 cells, where the ratio SREBP1a/1c equals to 14. Predom-
inance of the 1a isoform has been also found in 3T3-L1 cells
where the 1c isoform is in fact, undetectable. 3T3-L1 differen-
tiation results in an additional several fold increase in SREBP1a
levels, with SREBP1c remaining below the detection threshold. In
PAZ6 co-transfected with PGC1a/SREBP1c Luc-reporter, treat-
ment with liver X receptor (LXR)/retinoid X receptor (RXR)
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FIGURE 4 | Effect of inhibition of p38 MAP kinase on the expression of

adipocyte differentiation markers in PAZ6 cells. PAZ6 pre-adipocytes
(Pread) were cultured during 1 week in differentiation medium containing or
not of the p38 inhibitor SB2022190 (10 mM). mRNA was then extracted and
the expression of adipocyte differentiation markers was evaluated by
RT-PCR as described by Zilberfarb et al. (1997).

agonists cells increased the activity of the SREBP1c promoter
(Oberkofler et al., 2004b), leading to the interpretation that low
LXR activity, due to low PGC1α content might be the cause
of the SREBP isoform ratio inversion of cell lines. The iso-
form 1a is much more active in stimulating transcription from
SRE-1-containing promoters and was described to stimulate cho-
lesterol metabolism-related genes (HMG CoA synthase, HMG
CoA reductase, and LDL receptor) with greater ability than
fatty acid metabolism-related ones (fatty acid synthase, acetyl
CoA carboxylase, and LPL). This predominance of SREBP1a
in vitro could be attributed to the elevated cholesterol demand
of rapidly proliferating cultured cells, a relationship yet to be
investigated.

COMPARATIVE cDNA MICROARRAY ANALYSIS VERSUS LISA-2
A comparative microarray study between the PAZ6 and Lisa-
2 cell lines (and between those and WAT) was performed by
Van Beek et al. (2008). The authors firstly identified, through
a cDNA subtraction strategy, the 30 most discriminating genes
between WAT and two non-adipose tissues (lung and colon).
Subsequently, by comparative cDNA microarray analysis, the per-
cent expression of those cDNA’s by PAZ6 and Lisa-2 cells relative
to WAT was calculated. In both cell lines most of those highly
discriminating, adipose-enriched genes were detected, several of
which were, as expected, up-regulated by differentiation. Impor-
tantly, the gene expression pattern of the Lisa-2 cell line was
reported to resemble WAT more closely than the PAZ6 (Van
Beek et al., 2008). However, as a cDNA library of BAT was not
established in parallel to WAT, the particular distinction between

the respective white and brown features of the Lisa-2 and the
PAZ6 cells was not addressed. Nonetheless, the study confirmed
the similarities among the human adipose cell lines and the
primary tissue and helped differentiate genes expressed in all
three adipocyte-derived cells from those found in non-adipose
tissues.

OTHERS ADIPOSE TISSUE FEATURES OF PAZ6 CELLS
In agreement with two other studies on the effects of the
steroid hormone dehydroepiandrosterone (DHEA) on human
pre-adipocytes, the proliferation of PAZ6 cells, tested in parallel
with 3T3-L1 and human primary pre-adipocytes, was significantly
inhibited (Rice et al., 2010). The effect was observed in both cell
lines under a 24 h exposure of 100 nM to 100 μM DHEA. Intra-
adipocyte DHEA concentration is an order of magnitude higher
than the circulating levels which are within the nanomolar range,
so the concentrations used in those test were within physiological
levels (Rice et al., 2010).

The transcriptional activity of the wild-type or a variant UCP2
promoter was analyzed in PAZ6 cells. The common G/A polymor-
phism was shown to be associated with a 22% increase in transcrip-
tional activity in differentiated but not in PAZ6 pre-adipocytes
(Esterbauer et al., 2001).

The glycoprotein 130 ligands oncostatin M, interleukin-6, and
cardiotrophin-1 increased several fold the secretion of the vascu-
lar endothelial growth factor (VEGF) in PAZ6 pre-adipocytes (4,
3.5, and 3-fold, respectively) and adipocytes (3.5, 2, and 2-fold,
respectively), in line with findings obtained from adipose tissue ex
vivo, subcutaneous and visceral pre-adipocytes (Rega et al., 2007).

FUTURE PERSPECTIVES
Uncoupling protein 1 confers to mammals the ability to func-
tionally cope with low ambient temperatures (Nicholls, 2001;
Klingenspor et al., 2008). Thought to have first appeared in
placental mammals, this transporter was later found to possess
orthologs in marsupials and even ectotherm vertebrates (Nicholls,
2001; Klingenspor et al., 2008). Whether a thermogenic function
holds true in these other vertebrates requires direct testing. Nev-
ertheless, in the adequately clothed adult human, this perhaps
dispensable thermogenic capacity has recently been recognized as
an attractive anti-obesity target. Its potential to increase energy
dissipation with no physical effort strongly appeals to the med-
ical community, as compliance with standard diet and exercise
recommendations is generally low. The benefits of increased BAT
capacity further extend to improved clearance of circulating glu-
cose and lipids (Bartelt et al., 2011; Orava et al., 2011) in a
fashion analogous to the contracting skeletal musculature (Ivy,
1997).

It is, however, important to distinguish BAT mass from BAT-
derived energy expenditure increase. While in cold adaptation,
energy expenditure raises in parallel with BAT mass (Rothwell
and Stock, 1984; Ouellet et al., 2011), the manipulation of BAT
mass through specific drugs or genetic interventions can only
translate into increased energy expenditure if all the components
of the tissue’s thermogenic machinery are active. Some of these
components are yet to be uncovered.
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Table 2 | Brown adipose-specific, adipose-specific, and other PAZ6

cells features.

PAZ6 Brown adipose features Reference

UCP1 expression Zilberfarb et al. (1997)

Multilocular fat accumulation Zilberfarb et al. (1997)

β3-AR predominance Jockers et al. (1998)

PAZ6 ADIPOSE FEATURES

aP2, PPARγ, C/EBP-α, HSL, LPL, leptin,

GLUT1, and GLUT4 presence

Zilberfarb et al. (1997)

β1, β2, and β3-AR expression and

β-adrenergic-coupled lipolysis

Zilberfarb et al. (1997)

PPARγ-sensitive differentiation Strobel et al. (1999)

Melatonin receptor expression (isoform

MT2, found in BAT)

Brydon et al. (2001)

OTHER PAZ6 FEATURES

Transfectable Oberkofler et al. (2002, 2004a,b)

Anti-proliferative response to DHEA Rice et al. (2010)

A human brown adipose cell model, such as the PAZ6 cells,
could become an essential tool to address these relevant ques-
tions: what conditions contribute to persistence of the “BAT-like”
phenotype or protection from apoptosis? What factors stimu-

late nutrient catabolism and subsequent UCP1-mediated proton
leak? What are the signaling pathways involved in thermogenic
activation? Are there highly specific compounds with agonistic
activity for such pathways? What constitutes the BAT “secretome”?
Can BAT-cells be successfully engineered for transplantation in
humans? Would individuals receiving BAT surgically become less
cold-sensitive as possibly are those who naturally possess larger
BAT depots?

CONCLUSION
The PAZ6 studies compiled to date include a significant list of
BAT-specific characteristics (Table 2). The biological significance
of the UCP1 levels expressed by differentiated PAZ6 adipocytes
deserves to be better explored. The proper assessment of uncou-
pled respiration in PAZ6 cells will provide definite support to the
relevance of the gene expression and morphology data. Continu-
ous characterization will further support the use of PAZ6 cell line
as a bona fide human brown adipocyte model and increase the
number of its potential applications.
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